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ABSTRACT

Many self-supervised methods have been proposed with the target of image
anomaly detection. These methods often rely on the paradigm of data augmenta-
tion with predefined transformations. However, it is not straightforward to apply
these techniques to non-image data, such as time series or tabular data. Here we
propose a novel data refinement (DR) scheme that relies on neural autoregressive
flows (NAF) for self-supervised anomaly detection. Flow-based models allow to
explicitly learn the probability density and thus can assign accurate likelihoods to
normal data which makes it usable to detect anomalies. The proposed NAF-DR
method is achieved by efficiently generating random samples from latent space and
transforming them into feature space along with likelihoods via invertible mapping.
The samples with lower likelihoods are selected and further checked by outlier
detection using Mahalanobis distance. The augmented samples incorporated with
normal samples are used to train a better detector to approach decision bound-
aries. Compared with random transformations, NAF-DR can be interpreted as a
likelihood-oriented data augmentation that is more efficient and robust. Extensive
experiments show that our approach outperforms existing baselines on multiple
tabular and time series datasets, and one real-world application, significantly im-
proving accuracy and robustness over the state-of-the-art baselines.

1 INTRODUCTION

Anomaly detection, finding rare data that substantially differs from the majority of the data, is one of
the essential problems in artificial intelligence. One typical anomaly detection setting is a one-class
classification, where the target is to detect samples as normal or anomalous. Many deep anomaly
detection methods are recently proposed to solve one class classification tasks, specifically on image
benchmarks, with different scenarios, including supervised anomaly detection, unsupervised anomaly
detection, and self-supervised anomaly detection (Ruff et al., 2021). Here, we focus on the self-
supervised setting where we have a training set of normal samples without anomalies and detect
anomalies in the testing set which contains both normal and anomalous samples.

Figure 1: NAF-DR first transforms the data into multiple subspaces and learns a feature space by a neural
network. Then we build an accurate density estimation via NAF and assign a higher likelihood to normal (a
lower likelihood to anomaly) in latent space. NAF-DR is free to draw samples and transform them to feature
space with explicit likelihoods via invertible mapping. Using a marginal strategy, these samples are partially
selected to approach the decision boundary by incorporating normal data for improving the detector during
training. This allows for more effective data augmentation.
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However, for data beyond images, such as tabular or time series data, we have several challenges
in pursuing accurate and robust detection of anomalies. First, many recent advances in anomaly
detection rely on data augmentation. Typical transformations, such as translation, rotation, and
reflection, are designed for images so that a strong detector is obtained based on the transformation
predictions. Unfortunately, it is less well known which transformations are useful and hand-crafted
transformation is not a straightforward task for non-image data (Bergman & Hoshen, 2020; Qiu
et al., 2021). Second, many tabular and time series data are from medical and healthcare. Small
dataset size with sparse labels gives rise to unique difficulties which result that the anomaly detection
performance is always under our expectation (Zong et al., 2018). Third, although many deep anomaly
detection methods show exceptional performance on large-scale image benchmarks, it is still a
non-trivial task to handle small-scale tabular and time series data with high reliability and robustness
(Pang et al., 2021). This work aims at addressing these challenges in the scenario of self-supervised
anomaly detection for data types beyond images. We develop a novel active learning scheme for
effective data augmentation, which is a simple end-to-end procedure built upon a likelihood-based
anomaly detection. The key idea is to leverage the advantages of neural autoregressive flows to assign
likelihoods to normal data which enables to detect anomalies. Augmented samples with explicit
likelihoods, drawn from the learned flow models can incorporate with original small data to improve
the detector accuracy with high robustness.

Specifically, our proposed method consists of two core components: NAF anomaly detection frame-
work (NAF-AD) and NAF-based data refinement scheme (NAF-DR). Figure 1 visualizes the core
idea behind our method. NAF-AD first performs data augmentation via random affine transformations
and learns a feature space extracted by a neural network. The feature distribution of normal samples
is captured by utilizing the latent space of a NAF model (Huang et al., 2018). Unlike GANs or VAEs,
flow-based models enable a bijective mapping between feature space and latent space in which each
sample is assigned to a likelihood, which is used to derive a score function to decide if a sample is
normal or anomalous. We propose NAF-DR by efficiently generating random samples from latent
space and transforming them into feature space via bijective mapping. The samples with lower
likelihoods are selected and further checked by outlier detection using Mahalanobis distance. The left
effective samples are merged into normal data to approach decision boundaries for better detection.
Compared with random transformations, NAF-DR can be interpreted as a likelihood-oriented data
augmentation that is more active and efficient. As a result, we achieve superior performance in deep
anomaly detection beyond images.

2 RELATED WORK

Deep Anomaly Detection. Many recent advances have been proposed to use deep learning
for anomaly detection. Ruff et al. (2021) provided a thorough survey and review on the recent
development of deep anomaly detection approaches. Related work on deep anomaly detection include
one class classification (Ruff et al., 2018; Liznerski et al., 2020; Ruff et al., 2019), outlier exposure
(Hendrycks et al., 2019a; Goyal et al., 2020), and out-of-distribution (OOD) detection (Ren et al.,
2019; Hendrycks & Gimpel, 2017; Kirichenko et al., 2020).

There has been an increasingly growing interest in self-supervised scenarios since this supervision is
easy to obtain in practical settings and also shows promising accuracy in detecting anomalies (Pang
et al., 2019; Hendrycks et al., 2019b; Sohn et al., 2020; Tack et al., 2020; Li et al., 2021; Sehwag
et al., 2020). Self-supervised methods solve one or more classification-based auxiliary tasks (e.g.,
data transformations (Golan & El-Yaniv, 2018; Wang et al., 2019)), using normal data for training
and the learned classifier is useful to detect anomalies. Bergman & Hoshen (2020) extended the
work from Golan & El-Yaniv (2018); Wang et al. (2019) to investigate self-supervised anomaly
detection for general data. This approach is established based on the open-set setting with affine
transformations for tabular datasets. Qiu et al. (2021) followed a similar scope for anomaly detection
but with learnable transformations, and demonstrated a higher performance.

Likelihood (Density)-based Anomaly Detection. Differing from the classification-based
methods (Ruff et al., 2018; 2019; Bergman & Hoshen, 2020), likelihood-based methods offer a
probabilistic view for anomaly detection. In this scenario, a flow-based model, learning a bijective
mapping between data distributions and latent distributions via invertible neural networks, is an
ideal candidate because it has significant advantages in explicit likelihood calculation and efficient
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sample generation (Kobyzev et al., 2020). Much recent effort has been made to improve model
expressivity and computational efficiency that allow more accurate likelihood calculation and enable
faster sampling (Rezende & Mohamed, 2015). Huang et al. (2018) proposed a neural autoregressive
flow (NAF) which is a universal approximator for density functions and addresses the challenges
in inverse AFs (Kingma et al., 2016). Recently, flow-based models have been explored for deep
AD on large-scale image datasets and show promising results (Rudolph et al., 2021; Zisselman &
Tamar, 2020; Gudovskiy et al., 2021). Inspired by these studies, our work leverages the benefits of
NFs (exact density estimation, efficient sampling, and inference) but focuses on addressing the AD
challenges in general data types beyond images, specifically given limited labeled data.

Data Augmentation and Refinement. Deep anomaly detection tends to require immense amounts
of computational and human resources for training and labeling. The design of effective training
methods that require small labeled training sets is a fundamental research challenge (Tran et al.,
2019). To address this issue, two are particularly interesting: data augmentation, which artificially
generates new samples for training, while active learning selects the most informative subset of
unlabeled samples to be labeled. Although successful in image data, data augmentation does not
utilize computational resources since the generated samples are not guaranteed to be informative
(Shorten & Khoshgoftaar, 2019). Active learning deals with this limitation through an iterative
selection of small subsets while assessing how informative those subsets are for the training process.
Recent advances in active learning rely on the incorporation of the Bayesian approach (Gal et al.,
2017; Tran et al., 2019) and deep generative models (Sinha et al., 2019). Active learning strategies for
anomaly detection (Stokes et al., 2008; Görnitz et al., 2009; Pelleg & Moore, 2004) which identify
informative instances for labeling, have primarily only been explored for shallow detectors and could
be extended to deep learning approaches (Pimentel et al., 2020; Trittenbach & Böhm, 2019) but they
are not feasible due to limited budget or high cost in practice. Unlike conventional data augmentation
or active learning, our goal is to integrate a likelihood-based detector with novel data refinement,
which leads to a more effective data augmentation scheme for designing anomaly detection that
continuously improves via likelihood feedback loops, see Figure 1. This idea has not yet been
explored for self-supervised anomaly detection.

3 NAF-DR METHOD

3.1 DATA TRANSFORMATIONS IN SELF-SUPERVISED SETTING

Assume all data X lies in space Sd, where d is the data dimension. Normal data X lie in subspace
X ⊂ Sd but all anomalies X∗ lie outside X . The task of self-supervised anomaly detection is to
build a classifier C based on completely normal data, such that C(x) = 1 if x ∈ X and C(x) = 0 if
x ∈ Sd \X . Our method is built upon the self-supervised scenario which can be typically defined
above. In the self-supervised setting, data transformations T = {T1, ..., Tk|Tk : X → X} (e.g.,
translation, rotation and reflection), are often used to generate K different views, which leads to
a strong anomaly detector based on the transformation prediction or representations learned using
these views. However, these transformations are not applicable to non-image data. To this end, we
generalize the set of transformations to random affine transformations:

Tk(x) = Ak(x) + bk, Ak ∼ N (0, Id), bk ∼ N (0,1), (1)

where Ak and bk are affine matrix and coefficient respectively, defined by random Gaussian distribu-
tions. The random affine transformation is a more general class that works for general data types
with an unlimited number of transformations.

Since only normal data are used for training, we first transform the normal data X into K subspaces
X1, ..., Xk, and then learn a feature extractor fθ(x) using a neural network parametrized by θ, which
maps the original normal data space X into a feature representation space X̃ . The probability of
data point x after transformation k is denoted by p(Tk(x) ∈ Xk). By assuming independence
between different transformations Tk, the probability that x is normal p(x ∈ X) is the product of the
probabilities that all transformed samples are in their respective subspace.

P(x) = log p(x ∈ X) =

K∑
k=1

log p(Tk(x) ∈ Xk) (2)
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where P(x) computes the degree of the anomaly of each data. Lower probabilities (likelihoods)
indicate more anomalous data. We will introduce how to explicitly calculate these probabilities
(likelihoods) using flow-based models below.

3.2 LEARNING LIKELIHOOD BY AUTOREGRESSIVE FLOWS

Normalizing flows (NF) are a flexible class of generative models that map a target distribution pX(x)
into a base distribution in the latent space pZ(z) via an invertible transformation fψ : Z → X where
fψ is an invertible neural network parametrized by ψ. Based on the change of variable theorem, the
likelihood for an input x is

pX(x) = pZ(f
−1
ψ (x))

∣∣∣∣∣det ∂f
−1
ψ

∂x

∣∣∣∣∣ . (3)

Flow-based models are typically trained by minimizing the negative log-likelihood of the training
data D with respect to the parameters ψ of the invertible transformation fψ .

ψ∗ = argmin
ψ

{− log p(D)} = argmin
ψ

{− log
∏
x∈D

pX(x)}.

Much effort in NFs focuses on designing expressive transformations while retaining efficient comput-
ing the determinant of the Jacobian |detJ |. In particular, autoregressive flows (AFs) decompose a
joint distribution pX(x) into a product of m univariate conditional densities:

pX(x) = pX1(x1)

m∏
i=2

pXi|X<i
(xi|x<i) (4)

where each univariate density is parametrized by an NF. In particular, the transformation f−1,(i)
ψ can

be decomposed via invertible transformation neural network t(i)ψ and condition neural network c(i)ψ :

zi = f
−1,(i)
ψ (x≤i) = t

(i)
ψ (xi, c

(i)
ψ (x<i)). (5)

The resulting flows have a lower triangular Jacobian and the invertibility of the flows as a whole
depends on each t(i)ψ being an invertible function of xi and each c(i) is an unrestricted function.

RealNVP (Dinh et al., 2017) model each t(i)ψ by using an affine transformation whose parameters

are predicted by c(i). However, these models require complex conditioners c(i)ψ and a composition of
multiple flows due to their simplicity which leads to a limitation on expressiveness of fψ .

Neural autoregressive flow (NAF) (Huang et al., 2018) was proposed by learning a complex bijection
using a neural network monotonic in xi, which is a universal approximator for explicitly learning
likelihood with greater expressivity that allows it to better capture multimodal target distributions.

3.3 LIKELIHOOD-BASED ANOMALY SCORE

We propose to utilize the NAF model to learn the distribution of feature space and train the NAF by
maximum likelihood estimate (MLE), which is equivalent to minimizing loss defined by

L(θ,ψ)(Dn) = − 1

|Dn|
∑
x∈Dn

log pX(x) ≈ 1

n

n∑
i=1

[
∥z∥22
2

− log |detJi|
]
+ const. (6)

where n is the size of training data D. During training, flow-based model parameters ψ and feature
extractor parameters θ in L(θ,ψ)(Dn) are simultaneously optimized for feature space x of different
transformations T of an input data. After training, the learned NAF model can be used to evaluate
the log-likelihood of the testing dataset Dt that contains normal and anomalous samples.

We use the calculated likelihoods as a criterion to classify a sample as normal or anomalous. To pursue
a robust anomaly score function S(x), we concatenate all the variable z from multiple transformations
Tk(x) ∈ T and average the negative log-likelihood as

S(x) = −ETk∈T [log pZ(f
−1
ψ (fθ(Tk(x))))], (7)

where fθ(Tk(x)) represents the feature space parametrized by a neural network fθ. The anomaly
score S(x) measures the anomaly degree, which is used to compare with the ground truth labels and
calculate the quantitative metrics, e.g., AUC and F1 score.
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3.4 DATA REFINEMENT SCHEME

Formally, active learning is used to automatically select the most informative subset of unlabeled
training samples and label them by an oracle (domain expert), where the cost is often high in practice.
To this end, we devise a novel data refinement scheme by leveraging the benefits of the NAF model
on efficient sampling and exact likelihood-based inference to query low-confidence decisions, hence
guiding the detector with augmented normal data in the training process. Figure 2 shows the proposed
data refinement scheme with a marginal strategy in two different scenarios:

Synthesized data: if labeled data is small and no unlabeled data is available, the NAF model is able
to generate synthesized data that follow the learned distribution of (normal) training data. Some of
these data are selected and then labeled by likelihood-based inference from the NAF model, which
approximates the capability of an oracle, which is very expensive practically. The labeled normal
data will merge with the normal training data together to retrain and update the NAF model.

Unlabeled data: In a practical scenario, labeled data is sparse but large unlabeled data are often
available. Instead of human labeling by domain experts, a batch of data from an unlabeled data pool
is selected and then labeled via likelihood-based inference by leveraging the advances of the NAF
model. Then these data with normal labels are merged with the training data pool for retrain.
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Figure 2: Data refinement using synthesized data or unlabeled data, and marginal strategy illustration.

Marginal strategy: One of the key enabling techniques is uncertainty sampling, which uses one
classifier to identify unlabeled samples with the least confidence. However, data refinement for
self-supervised anomaly detection is different from the original scope of active learning. We thus
propose a marginal strategy by selecting the sample x∗ that is close to the likelihood-based decision
boundary:

x∗ = argmin
x∈{x1,...,xm}

|L(x)|
Ω

, Ω = max
j

|L(xj)|, j = 1, ...,m (8)

where m is the batch size of new samples from unlabeled data or synthesized data, shown in Fig.
2. Ω is the maximum of likelihood value, which is used for normalization. Benefiting from high
sampling and inference efficiency, we can calculate the log-likelihood of new samples L(xaugj ) and
retain samples with lower likelihoods if L(xaugj ) < Qα(L(xck)) or L(xaugj ) > Q1−α(L(xck)) where
Qα is the α-quantile (α ∈ [0.05, 0.1] is a hyperparameter) and L(xck) is the log-likelihood of current
training data xck ∈ X, k = 1, ..., n. It is critical to design an appropriate likelihood level set trade-off
between aggressive boundary and conservative boundary, see Figure 3 for more discussion.

The samples with lower likelihoods are desired but it is probably an outlier (anomalous data, see
Fig.2) if the likelihood is too small. Thus we have an additional step to check the samples by
outlier detection, which is done by Mahalanobis distance M(x) with a defined threshold δM that is
Mahalanobis distance at χ2

0.05. As a result, the samples with M(x) > δM are rejected. We eventually
determine the augmented samples x∗ by solving the optimization problem in Eq. 8 subject to the
low-confidence and outlier constraints. These samples x∗ are selected as normal samples and added
to update the training.

Stopping criterion: the new augmented samples are selected as normal samples and added to the
current training dataset for retraining. An appropriate stopping criterion for data refinement is a
trade-off between training cost and effectiveness of the detector. We set up two criteria: (1) if the
retrain times increase to the maximum, Tmax or (2) the augmented data size reaches a specific ratio
Rmax of the original training size n given the concern of sample efficiency. The data refinement
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update will be stopped as long as either criterion is triggered. Here, we choose Tmax = 5 and
Rmax = 50%.

Algorithm 1 The NAF-DR algorithm
1: Require: Training and testing datasets Dn,Dt, number of transformations K, feature extractor fθ , NAF

model fψ , hyperparameters α, δm and initialize T = 0 and R = 0 in the stopping criterion
2: while T ≤ Tmax or R ≤ Rmax do
3: // Training process
4: Transform each training sample according to Eq. 1: T1(xi), T2(xi), ..., Tk(xi)← xi, xi ∈ Dn
5: Extract feature representation T̃k(xi)← Tk(xi), k = 1, ...,K via a neural network model fθ
6: Concatenate all different affine transformations T̃k(xi)
7: Evaluate the NAF model fψ for z and |detJ | and minimize the loss L in Eq. 6 to update θ, ϕ
8: // Data refinement process (for training data)
9: Draw samples xaugj from the learned NAF model fψ or from unlabeled data pool in Fig. 2.

10: Evaluate the log-likelihood of new augmented samples L(xaugj ) and current training samples L(xck)
11: Retain samples xaugj with lower likelihoods if L(xaugj ) < Qα(L(xck)) or L(xaugj ) > Q1−α(L(xck))
12: Check the outliers of xaugj if the Mahalanobis distance M(xaugj ) > δM
13: Merge new samples xaugj with normal labels to current training dataset, Dn = Dn ∪ xaugj for retrain
14: // Testing process
15: Transform testing sample by all transformations 1 to K: T1(xt), ..., Tk(xt)← xt, t = 1, ..., nt
16: Calculate the loglikelihood pZ ← f−1

ψ (fθ(Tk(xt)))

17: Concatenate all transformations and average the negative log-likelihoods to compute S(x) in Eq. 7
18: end while

4 EXPERIMENTS

Most image datasets are large-scale and have existing strong baselines so we do not expect significant
improvement via our NAF-DR method. Instead, our focus is on small-scale multiple benchmark
tabular data and time series data, as well as one real-world application in the scientific facility.

4.1 ANOMALY DETECTION BASELINE METHODS

• Shallow AD baselines: Isolation Forest (IForest) (Liu et al., 2008) uses a tree-based model to
isolate anomalies. Local Outlier Factor (LOF) (Breunig et al., 2000) utilizes density estimation
with k-nearest neighbors. One-Class SVM (OC-SVM) (Schölkopf et al., 1999) is a kernel-based
approach for one-class classification.

• Deep AD baselines: Deep Autoencoding Gaussian Mixture Model (DAGMM) (Zong et al., 2018)
uses latent space to estimate density. Deep Support Vector Data Description (DSVDD) (Ruff
et al., 2018) is a distance-based method with one-class SVM in the feature space. Feature Bagging
Autoencoder (FB-AE) (Chen et al., 2017) is an ensemble method with autoencoders as the base
classifier. GOAD (Bergman & Hoshen, 2020) is a self-supervised classification-based method.
Neural NeuTral (Qiu et al., 2021), is a self-supervised method with learned transformations. For
time series data, we also include LSTM-ED (Malhotra et al., 2016) which is an encoder-decoder
model to detect anomalies based on reconstruction error.

4.2 TABULAR DATA EXPERIMENTS

Tabular data is important in anomaly detection applications since medical, health, and cybersecurity
data come in this format. However, many important areas, e.g., medical, only have small-scale data
because the data collection is time-consuming, while labeling relied on expert opinion is expensive.

Datasets. We focus on six tabular datasets, including four small-scale medical datasets, Arrhyth-
mia, Cardiotocograph, Lymphography and Thyroid from the Outlier Detection Datasets (ODDs)
repository1, and two cybersecurity datasets, KDD and KDDRev from the empirical studies of Zong
et al. (2018); Bergman & Hoshen (2020); Qiu et al. (2021) which are used to show our potential
to large-scale datasets. The key statistics (data size, dimension, and anomaly ratio) of the tabular

1http://odds.cs.stonybrook.edu/
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datasets and all relevant details of the datasets can be found in the Appendix. Following the setting of
Zong et al. (2018), we train all models on 50% of the normal data and evaluate the performance on
testing data containing the rest of the normal data as well as all the anomalies.

Implementation Details. We use a standard normal distribution to generate random affine trans-
formation matrices for each case. Similar as the setting in Bergman & Hoshen (2020), we use 256
transformations for small-scale medical datasets and 64 for large-scale datasets (KDD and KDDRev).
For the feature extractor, we used fully-connected hidden layers (1 layer with 8 hidden nodes for the
small-scale datasets and 5 layers with 128 hidden nodes for large-scale datasets) with leaky-ReLU
activations, as well as one 1d convolutional layer on the top. The NAF model consists of 4 flow
blocks with 2 layers (128 hidden units) for small data and 8 flow blocks with 3 layers (1024 hidden
units). We optimized the network parameters using Adam with a learning rate of 0.001.

Table 1: F1-score (%) for anomaly detection on tabular datasets.

Arrhythmia Cardio. Lympho. Thyroid KDD KDDRev

IForest 57.4 79.5 60.4 46.9 90.7 90.6
LOF 50.0 75.3 62.9 52.7 83.8 81.6

OC-SVM 45.8 72.6 58.7 38.9 79.5 83.2

DAGMM 49.8 74.4 61. 47.8 93.7 93.8
DSVDD 53.9±3.1 80.1±1.9 64.1±1.9 70.8±1.8 99.0±0.1 98.6±0.2
FB-AE 51.5±1.6 78.9±1.1 66.2±1.2 75.0±0.8 92.7±0.3 95.9±0.4
GOAD 52.0±2.3 79.7±1.5 66.8±1.4 74.5±1.1 98.4±0.2 98.9±0.3

NeuTraL 60.3±1.1 - - 76.8±1.9 99.3±0.1 99.1±0.3

NAF-AD 55.2±1.1 81.3±1.1 67.3±1.2 77.8±1.1 97.9±0.2 98.2±0.2
NAF-DR 61.1±0.9 84.0±1.0 71.3±0.9 79.8±0.8 98.5±0.1 99.0±0.2

Considering the training cost limit,
we set up a stop criterion by us-
ing a maximum number of iterations
(Nmax = 5) for data refinement. For
each iteration, we draw a branch of
samples where the sample size equals
the training sample size, then rank
the samples based on their likelihood
and finally reject the larger 90% sam-
ples (retain 10% samples with lower
likelihoods near the decision bound-
aries). These samples are further
checked by the Mahalanobis distance
criterion if it is an outlier. After that, we combine these augmented samples with the existing normal
samples to update training.

The implementation details of the baseline methods are replicated from the existing studies (Zong
et al., 2018; Bergman & Hoshen, 2020), as we report their results with mean and standard deviation
(if they provide). We also implement these baselines for two additional small-scale datasets (Cardio.
and Lympho.) using their official code (if they have, otherwise keep the relevant cell blank).

Results. The results of NAF-DR in comparison to all baseline methods on tabular data are shown in
Table 1. We follow the configuration of previous work (Zong et al., 2018; Bergman & Hoshen, 2020;
Qiu et al., 2021) to report results in terms of F1 scores.

• Small-scale datasets: all medical datasets are small with a low anomaly to normal ratio. NAF-DR
outperforms all baselines on these small-scale datasets thanks to the benefits of data refinement.
Compared with GOAD which is a classification-based method, our probabilistic flow-based model
is competitive even without the help of data refinement. NeuTral beats our NAF-AD in the
Arrhythmia dataset but underperforms our NAF-DR method. Since our NAF-DR is flexible to
incorporate any number of transformations such that our robustness is better than NeuTral.

• Large-scale datasets: The deep baselines show superior performance compared with the shallow
methods in this case. NAF-AD is slightly lower than NeuTral, GOAD, and DSVDD but NAF-
DR is still competitive. One explanation is that the performance improvement in such a large
dataset is not significant as in the small-scale case discussed above. The large datasets, having
different dynamics from very small datasets found by Bergman & Hoshen (2020), are probably not
well-suited to the probabilistic methods.

4.3 TIME SERIES DATA EXPERIMENTS

Differing from novelty detection within time series (point or group anomalies), we aim to detect
abnormal time series on a whole time sequence. In other words, the whole time series data is labeled as
normal or anomalies. This scenario is also important in practice. For example, we identify abnormal
facility operations by detecting abnormal sensor measurements over the whole time-series signals
in scientific applications. Anomalies in medical, health, and sports monitoring may indicate injury,
disease, or serious issues.

7



Under review as a conference paper at ICLR 2023

Table 2: Mean and standard deviation of AUC for one-vs-rest tasks

CT EPSY NATOPS RS SAD

IForest 94.3 67.7 85.4 69.3 88.2
LOF 97.8 56.1 89.2 57.4 98.3

OC-SVM 97.4 61.1 86.0 70.0 95.3

DAGMM 89.8±0.7 72.2±1.6 78.9±3.2 51.0±4.2 80.9±1.2
DSVDD 95.7±0.5 57.6±0.7 88.6±0.8 77.4±0.7 86.0±0.1
FB-AE 96.3±0.3 80.1±0.4 89.9±1.2 78.0±0.7 93.9±0.1
GOAD 97.7±0.1 76.7±0.4 87.1±1.1 79.9±0.6 94.7±0.1

LSTM-ED 79.0±1.1 82.6±1.7 91.5±0.3 65.4±2.1 93.1±0.5
NeuTraL 99.3±0.1 92.6±1.7 94.5±0.8 86.5±0.6 98.9±0.1

NAF-AD 97.8±0.1 90.4±0.5 91.9±0.5 85.4±0.6 97.8±0.1
NAF-DR 99.5±0.1 93.2±0.3 95.7±0.3 88.2±0.5 98.4±0.1

Datasets. We focus on five multi-
variate time series datasets from the
UEA multivariate time series clas-
sification archive 2 which has been
widely used for anomaly detection
tasks (Zhang et al., 2020; Ruiz et al.,
2021; Jiao et al., 2020; Zerveas et al.,
2021; Qiu et al., 2021). The datasets
include two relatively large cases,
Character Trajectories (CT) and Spo-
ken Arabic Digits (SAD), and three
small-scale cases, Epilepsy (EPSY),
NATOPS, and Racket Sports (RS).

Evaluation Protocol. We evaluate the NAF method on these benchmarks based on two protocols:
• one-vs-rest: The goal is to create N one class classification tasks by splitting the dataset by N

class labels. The anomaly detection models are trained on data from one class and tested on data
from the rest of the classes. The class used for training is labeled as normal data, while the other
classes are labeled as anomalies.

• m-vs-rest: This protocol is more challenging because multiple classes m (1 < m < N ) are labeled
as normal and the rest of the classes are treated as anomalies. In this case, the normal data is no
longer from one class such that the variability increases significantly.

Implementation Details. The implementation details of most baselines are replicated from Qiu et al.
(2021) and we implemented the FB-AE method using their official code. For the time series datasets
in Table 2, the first four are small-scale while the SAD dataset is slightly large. We, therefore, use a
similar setting in small-scale tabular datasets for the time series AD tasks. For the m-vs-rest tasks,
we use the same setting m = N − 1, which makes the task more challenging Qiu et al. (2021).

Table 3: Mean and standard deviation of AUC for m-vs-rest tasks

CT EPSY NATOPS RS SAD

IForest 57.9 55.3 56.0 58.4 56.9
LOF 90.3 54.7 71.2 59.4 93.1

OC-SVM 57.8 50.2 57.6 55.9 60.2

DAGMM 47.5±2.5 52.0±1.0 53.2±0.8 47.8±3.5 49.3±0.8
DSVDD 54.4±0.7 52.9±1.4 59.2±0.8 62.2±2.1 59.7±0.5
FB-AE 77.2±0.3 63.0±1.2 60.8±0.9 65.3±1.1 70.8±1.3
GOAD 81.1±0.1 62.7±0.9 61.5±0.7 68.2±0.9 70.5±1.4

LSTM-ED 50.9±1.2 56.8±2.1 56.9±0.7 63.1±0.6 58.9±0.5
NeuTraL 87.0±0.2 80.5±1.0 74.8±0.9 80.0±0.4 85.1±0.3

NAF-AD 86.7±0.2 77.3±0.8 71.3±0.6 78.9±0.4 83.0±0.4
NAF-DR 89.3±0.2 81.7±0.7 75.8±0.5 82.7±0.3 83.9±0.3

Results. Table 2 shows the results
of NAF-AD and NAF-DR in com-
parison to the shallow and deep
AD baselines on multiple time se-
ries experiments. NAF-DR outper-
forms all baselines in CT, EPSY,
NATOPS, and RS experiments. In
most cases, the performance from
NAF-AD is already competitive and
further improved by augmented sam-
ples from data refinement. Only on
the SAD dataset, our NAF-DR is out-
performed by NeuTral with learned
transformations which have an advan-
tage over the random transformations, while our data refinement improvement looks marginal because
its dataset size is larger than the other experiments. Our NAF-DR shows a superior performance close
to LOF but still better than the other deep baselines, like GOAD and FB-AE. The shallow baselines
perform worse on the small-scale datasets, like EPSY, NATOPS, and RS, but show better on CT and
SAD. Our NAF-DR can well handle both scenarios although it is designed for addressing the specific
challenges from small data.

The results of the m-vs-rest tasks are shown in Table 3. In this case, NAF-DR outperforms all
baselines on EPSY, NATOPS, and RS experiments. LOF performs best on CT and SAD and is
also competitive in one-vs-rest tasks in Table 2. It is interesting to see this KNN-based method that
outperforms all deep baselines. Compared with the deep baseline, our NAF-DR shows superior
performance on 4 out of 5 experiments. On SAD, NAF-DR is only slightly lower than NeuTral but
still very competitive. Although the m-vs-rest is more challenging, the results are consistent with the
performance under one-vs-rest tasks in Table 2.

2http://www.timeseriesclassification.com/ and more details can be found in Bagnall et al.
(2018).
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Figure 3: Sample augmentation via NAF-DR: aggres-
sive strategy vs conservative strategy.
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Figure 4: Effect of data refinement and the number of
transformations on F1-scores.

4.4 REAL-WORLD APPLICATION: FAILURE DETECTION IN PARTICLE ACCELERATOR

Finally, we demonstrate the NAF-DR method on a real-world failure detection problem in the
Spallation Neutron Source (SNS) facility which is the world’s highest power proton accelerator,
see Fig. 5 Blokland et al. (2021). Achieving high availability is a challenging task in beam ac-
celerators because errant beam pulses can cause running failure and damage to the accelerator.
The goal of this work is to detect upcoming beam loss using historical high-frequency time se-
ries data from monitoring devices and thus stop the accelerator before failure/damage occurs.

Figure 5: Failure detection to predict errant beam pulses in the Spallation Neutron Source (SNS) accelerator.

Table 4: Mean and standard de-
viation of AUC for the SNS task

4 pluses 25 pluses

IForest 68.2±1.4 73.3 ±0.9
LOF 58.8 ±1.2 62.0 ±1.1

OC-SVM 72.1 ±1.3 75.7 ±1.0

DAGMM 74.7±1.1 73.9±0.8
DSVDD 81.9±1.2 82.5±0.9
FB-AE 77.5±0.7 80.1±0.6
GOAD 81.1±1.0 87.3±0.9

LSTM-ED 83.4±0.8 84.9±0.8
NeuTraL 87.3±0.7 88.8±0.6

NAF-AD 89.1±0.6 90.8±0.6
NAF-DR 91.8±0.6 93.4±0.5

In this case, a large amount of data is available from daily monitoring
(∼350 data) but most of the data are unlabeled because data labeling
needs domain experts’ efforts. To demonstrate the applicability of
the data refinement scheme with unlabeled data, we extracted normal
and anomalous pulses from the archived data from July 2020 and
investigate two cases: 4 pulses (2150 good, 148 bad) and 25 pulses
(2530 good, 107 bad) with large enough unlabeled data (notice that
various levels of beam loss are all labeled as “bad", and the pulse
without beam loss is labeled as “good"). Table 4 shows the mean
and standard deviation of AUC performance for this real-world time
series task. Compared with all baseline methods, the NAF-DR method
demonstrates superior performance with better reliability.

5 CONCLUSION

We propose a likelihood-based data refinement method for self-
supervised anomaly detection on small data beyond images. The key contribution is to develop a new
data refinement strategy that benefits from efficient sampling and explicit likelihoods from neural
autoregressive flows. We demonstrate the novel method on several tabular and time series benchmarks
and one real-world scientific application with superior performance over the state-of-the-art methods.
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A APPENDIX

A.1 FLOW-BASED MODEL ARCHITECTURE

Much effort in NFs focuses on designing expressive transformations while retaining efficient comput-
ing the determinant of the Jacobian |detJ |. In particular, autoregressive flows (AFs) decompose a
joint distribution pX(x) into a product of m univariate conditional densities:

pX(x) = pX1
(x1)

m∏
i=2

pXi|X<i
(xi|x<i) (9)

where each univariate density is parametrized by an NF. In particular, the transformation f−1,(i)
ψ can

be decomposed via invertible transformed neural network t(i)ψ and conditioned neural network c(i)ψ :

zi = f
−1,(i)
ψ (x≤i) = t

(i)
ψ (xi, c

(i)
ψ (x<i)). (10)

The resulting flows have a lower triangular Jacobian and the invertibility of the flows as a whole
depends on each t(i)ψ being an invertible function of xi and each c(i) is an unrestricted function.

RealNVP Dinh et al. (2017) model each t(i)ψ by using an affine transformation whose parameters are
predicted by c(i). However, these models require complex conditioners and composition of multiple
flows due to their simplicity which leads to a limitation on the expressiveness of fψ .

Neural autoregressive flow (NAF) Huang et al. (2018) was proposed by learning a complex bijection
using a neural network monotonic in xi. NAF is a universal approximator for explicitly learning
likelihood with greater expressivity that allows it to better capture multimodal target distributions.
The NAF architecture is illustrated by Figure 6.

<latexit sha1_base64="5Yuyk/eXNc5wKbhwFChM+JS0yyc="></latexit> x1

<latexit sha1_base64="H4HL5MmBsZr+JImMglfXAgVARDU="></latexit>y1

<latexit sha1_base64="L+ElzpQWejqHGUvCDXKlEdU4wZo="></latexit>

c(2)

<latexit sha1_base64="1BwX+Rt68s2SZ/9/WU1GSmtpaYI="></latexit> x2

<latexit sha1_base64="usIpnTvFYMSKOTnNczH+TEuYdjo="></latexit>y2

<latexit sha1_base64="pREgpslmLtIU71Y8VM+XNv7c+j0="></latexit>

c(1)

<latexit sha1_base64="oHWAUdw0LEhI5rDM5nLYC0xIs6M="></latexit>y3

<latexit sha1_base64="gO7lXaI9xTcCT+L0fUxgegJNJmE="></latexit> x3
<latexit sha1_base64="DhR1ZqD9nuHlpbPMbWtS6RssMHk="></latexit>

c(3)

<latexit sha1_base64="yQvYT6xuI6e9mltOQ4axMC7qRFM="></latexit>

t(1)
<latexit sha1_base64="MyOqictmeM5jA1EtmUZxz+rFTjA="></latexit>

t(2)
<latexit sha1_base64="5Jfk5plrzRefyKPB32dd7Nu38eM="></latexit>

t(3)

<latexit sha1_base64="iojASgw8dxY2dDBzvItyaouc9wA="></latexit>· · ·

Figure 6: NAF architecture: each c(i) (a neural network) predicts pseudo-parameters for t(i), which in turns
processes xi.

As shown in Fig.6, each conditioner c(i) is an unrestricted function of x<i. To parametrize a
monotonically increasing transformed network t(i), the outputs of each conditioner c(i) are mapped to
the positive real coordinate space by application of an appropriate activation. The result is a flexible
transformation with a lower triangular Jacobian whose diagonal elements are positive.

For the efficient computation of all pseudo-parameters, NAF Huang et al. (2018) uses a masked
autoregressive network fθ. The Jacobian of a NAF is computed using the chain rule on fθ through all
its hidden layers. Since fθ is autoregressive, Jfθ is lower triangular and only the diagonal needs to be
computed for each i. Therefore, the operation requires only computing the derivatives of each t(i)
reducing the time complexity.

A.2 DATASET DETAILS

A.2.1 TABULAR DATASETS

The details of tabular datasets are provided as follows:

• Arrhythmia: A cardiology dataset from the UCI repository Asuncion & Newman (2007) con-
taining attributes related to the diagnosis of cardiac arrhythmia in patients. The datasets consist
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of 16 classes: class 1 are normal patients, 2-15 contains different arrhythmia conditions, and
class 16 contains undiagnosed cases. Following the data preparation of previous works, only 274
continuous attributes are considered. The abnormal classes include 3, 4, 5, 7, 8, 9, 14, and 15. The
rest classes are considered normal.

• Cardiotocography: The Cardiotocography dataset Asuncion & Newman (2007) is obtained from
the ODDS repository, with each sample having 21 features. The dataset comprises 1831 samples,
including 176 anomalies (9.6% contamination).

• Lymphography: The Lymphography dataset Asuncion & Newman (2007) is obtained from the
ODDS repository, with each sample having 18 features. The dataset comprises 148 samples,
including 6 anomalies (4.0% contamination).

• Thyroid: A medical dataset from the UCI repository Asuncion & Newman (2007), containing
attributes related to whether a patient is hyperthyroid. Following the data preparation of previous
works, only 6 continuous attributes are considered. The hyperfunction class is treated as abnormal,
and the rest of the 2 classes are considered normal.

• KDD: The KDD Intrusion Detection dataset was created by an extensive simulation of a US Air
Force LAN network. The dataset consists of the normal and 4 simulated attack types: denial of
service, unauthorized access from a remote machine, unauthorized access from a local superuser,
and probing. The dataset consists of around 5 million TCP connection records. Following the
evaluation protocol in Zong et al. (2018), we use the UCI KDD 10% dataset, which is a subsampled
version of the original dataset. The dataset contains 41 different attributes. 34 are continuous and
7 are categorical. Following Zong et al. (2018), we encode the categorical attributes using 1-hot
encoding.

• KDDCUP: The KDDCUP99 10 percent dataset from the UCI repository contains 34 continuous
attributes and 7 categorical attributes. Following the data preparation of previous works, 7 categori-
cal attributes are represented by one-hot vectors. Eventually, the data has 120 dimensions. The
attack samples are considered normal, and the non-attack samples are considered as abnormal.

• KDDCUP-Rev: It is derived from the KDDCUP99 10 percent dataset. The non-attack samples are
considered normal, and attack samples are considered as abnormal. Following the data preparation
of previous works, attack data is sub-sampled to consist of 25% of the number of non-attack
samples.

The statics of the tabular data is shown in Table 5.

Table 5: Statistical information of the tabular benchmark datasets

Dataset Data size Dim Anomaly ratio Domain

Arrhythmia 274 452 0.15 Medical
Cardio. 1831 21 0.096 Medical

Lympho. 148 18 0.04 Medical
Thyroid 3772 6 0.025 Medical

KDD 494,021 120 0.2 Cybersecurity
KDDRev 121,597 120 0.2 Cybersecurity

A.2.2 TIME SERIES DATASETS

We provide more details and information about the time series data, which are from the UEA
multivariate time series classification archive Bagnall et al. (2018).

• SAD: The full name is Sound of ten Arabic digits, spoken by 88 speakers. The dataset has 8800
samples, which are stored as 13 Mel Frequency Cepstral Coefficients (MFCCs). The data is
zero-padded to have the same time length of 50.

• NATOPS: The full name is Naval air training and operating procedures standardization. The data
is originally from a motion detection competition of various movement patterns used to control
planes in naval air training. The data has six classes of distinct actions. Each sample is a sequence
of x, y, z coordinates for eight body parts of length 51.
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• CT: The full name is Character trajectories (CT). The data consists of 2858 character samples from
20 classes, captured using a WACOM tablet. Each instance is a 3-dimensional pen tip velocity
trajectory. The data is truncated to the length of the shortest, which is 182.

• EPSY: The full name is Epilepsy. The data was generated with healthy participants simulating
four different activities: walking, running, sawing with a saw, and seizure mimicking whilst seated.
The data has 275 cases in total, each being a 3-dimensional sequence of length 203.

• RS: The full name is Racket Sports. The data is a record of university students playing badminton
or squash whilst wearing a smart watch, which measures the x, y, z coordinates for both the
gyroscope and accelerometer. Sport and stroke types separate the data into four classes. Each
sample is a 6-d sequence with a length of 30.

The statistical information of the time series data is summarized in Table 6

Table 6: Statistical information of the time series benchmark datasets

Dataset Data size Dim Length Classes

Character Trajectories 2858 3 182 20
Epilepsy 275 3 206 4
NATOPS 360 24 51 6

Racket Sports 303 6 30 4
Spoken Arabic Digits 8800 13 93 10

A.3 FURTHER DISCUSSION

A.3.1 HOW DOES THE DATA REFINEMENT WORK WITH NAF?

Figure 3 in the main context shows the data augmentation scheme via neural autoregressive refinement
in NAF. Ideally, we expect the augmented samples are near the decision boundary as close as possible.
However, the decision boundary is typically unknown and difficult to determine. Instead, we pursue
an ideal level set of the data likelihood (black dash line), which enables us to detect normal and
anomalies. For each iteration in data refinement, an aggressive strategy is to only retain the samples
with very low likelihoods but this way will expand the likelihood boundary (red dash line) across the
decision boundary. In this way, the likelihood of anomalous data (red dots) in testing may lie at the
same level set as the normal data (green dots), which confuses the detector (anomalous → normal) and
hurt the detection performance. On the contrary, one can choose a conservative strategy by rejecting
the samples with relatively low likelihoods but this way will shrink the likelihood boundary which is
far away from the decision boundary. The potential issue is that the likelihood of normal samples
in testing tends to be smaller and these samples are probably labeled as anomalous data (normal
→ anomalous). To deal with this trade-off issue, we propose a marginal strategy that sequentially
augments samples with a small proportion in each iteration and adaptively pushes them to the
boundary, while controlling the likelihood level set by detecting outliers with Mahalanobis distance.
This scheme effectively avoids data refinement from being too aggressive or too conservative.

A.3.2 HOW DOES NAF-DR IMPROVE THE AD PERFORMANCE?

Figure 4 in main context shows the improvement of F1-score with respect to the proportion of
augmented samples (λ = Naug/Ntrain). We choose the NAF-AD results as the base for four small-
scale experiments in tabular datasets and compare the increment of the F1-score via five data
refinement iterations. All experiments show a consistent trend as augmented samples are gradually
added to the training. Arrhythmia and Lympho. experiments show better improvement since their
original training data is very small. The improvement tends to converge if more iterations are used but
we choose 50% as a threshold given the training cost limitation. Figure 4 in the main context (left)
shows the effect of transformations on data refinement. Although a smaller number of transformations
increases the classification error (also reported by Bergman & Hoshen (2020)), our NAF-DR can
decrease the error via sample augmentation and achieve an equivalent accuracy by using fewer
transformations.
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A.4 LIMITATIONS AND SOCIAL IMPACT OF THE WORK

The authors are aware of the limitations of the presented case studies focusing on small-scale AD
problems with the tabular and time-series type of data formats. The computational challenge in
sequential retrain and update is also a concern, specifically for generative models. As part of future
work, the authors plan to investigate large-scale tabular and time-series problems but also balance the
computational cost and sampling efficiency trade-off.

The presented work falls into the basic research category. As such, the authors are not aware of any
potential direct negative societal impact of the proposed work. On the contrary, the authors of this
paper believe that the presented theory is a minor contribution towards general knowledge, which
accumulation has been historically proved to inherently benefit all humanity.
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