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Figure 1. Maximizing the total correlation within trajectories results in more consistent behavior. As shown in our experiments, this
consistency increases robustness to noise and dynamics changes.

Abstract

Simplicity is a powerful inductive bias. In re-
inforcement learning, regularization is used for
simpler policies, data augmentation for simpler
representations, and sparse reward functions for
simpler objectives, all that, with the underlying
motivation to increase generalizability and robust-
ness by focusing on the essentials. Supplemen-
tary to these techniques, we investigate how to
promote simple behavior throughout the episode.
To that end, we introduce a modification of the
reinforcement learning problem that additionally
maximizes the total correlation within the induced
trajectories. We propose a practical algorithm that
optimizes all models, including policy and state
representation, based on a lower-bound approx-
imation. In simulated robot environments, our
method naturally generates policies that induce
periodic and compressible trajectories, and that
exhibit superior robustness to noise and changes
in dynamics compared to baseline methods, while
also improving performance in the original tasks.
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1. Introduction
Reinforcement learning (RL) is currently the preferred ap-
proach for many challenging, practical control problems,
as it can learn complex neural network policies that ef-
fectively tackle the given task. For example, in robotics,
reinforcement learning is widely used to learn visuomotor
policies for quadrupedal and bipedal locomotion (Lee et al.,
2020a; Radosavovic et al., 2024). However, since RL is a
learning-based method, it is prone to picking up spurious
correlations between high-dimensional sensory inputs and
desired actions, which can lead to brittle policies, that fail
under slight, natural variations in the state. An important
countermeasure involves training policies using domain ran-
domization, in particular in the sim-to-real setting, where
the policy is learned in several varying simulation environ-
ments. Yet, even in such data-intense settings, it remains
unclear whether we can obtain a sufficiently diverse training
distribution to learn policies that transfer to more complex
real-world scenarios, such as those involving robot con-
trollers that need to interact with humans.

Consequently, there is a growing interest in exploring addi-
tional techniques that add inductive biases to obtain simpler,
less brittle policies, for example, by limiting the amount of
state information used by the policy (Goyal et al., 2018; Igl
et al., 2019; Lu et al., 2020), or by maximizing the predic-
tive information within learned representations (Lee et al.,
2020b). Such information-theoretic biases have already
been extended to sequences, to account for the sequential
nature of reinforcement learning. Namely, RPC (Eysenbach
et al., 2021) aims to learn better representations by limiting
the information between state-sequences and embedding-
sequences, and LZ-SAC (Saanum et al., 2023) improves
the predictability of the next action given the history of ac-
tions. However, these formulations only focus on specific
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aspects of the behavior—either state-consistency or action-
consistency—without considering the complete behavior.

Instead, we propose a novel inductive bias that operates on
the level of trajectories. Specifically, we aim to learn poli-
cies that produce simple, consistent, and therefore compress-
ible trajectories, exhibiting a tendency towards open-loop
behavior. We hypothesize that such behavior is not only
more interpretable and predictable, but also more robust
to slight variations in the state that the agent inevitably en-
counters due to sensor noise or unmodeled dynamic effects.
Following the spirit of Newton’s first rule (Newton et al.,
1934, Book III), we are to admit no more reactions to the
state variations than such as are both relevant and sufficient
to achieve high expected return. Intuitively, we expect a
given behavior that performed well for previous variations
to also perform well for future variations. We introduce this
inductive bias by means of the additional objective of maxi-
mizing the total correlation within the generated trajectories.
This total correlation corresponds to the amount of informa-
tion that we can save by using a joint encoding of all states
and actions within trajectories, compared to compressing all
time steps independently. By maximizing total correlation,
the agent is encouraged to produce compressible and pre-
dictable trajectories, and thereby biased towards open-loop
behavior such as clean periodic gaits, without preventing it
from performing adaptations when necessary.

The main contributions of our work are as follows. We intro-
duce the maximum total correlation reinforcement learning
problem (MTC-RL), which extends the typical RL formula-
tion with an additional objective of maximizing trajectory
total correlation. We derive a lower-bound approximation
of the total correlation and use it to propose a practical al-
gorithm for MTC-RL, based on soft-actor critic (Haarnoja
et al., 2018). Our algorithm features an adaptation scheme
to automatically adapt the coefficient of the total correlation
objective by treating it as the Lagrangian multiplier of a
constrained optimization problem. We empirically evaluate
our algorithm on simulated robotic control tasks and show
that the learned policies induce more periodic and better
compressible trajectories than baseline methods (Eysenbach
et al., 2021; Saanum et al., 2023), leading to an improve
in performance, as well as robustness to observation noise,
action noise, and changes in the system dynamics.1

2. Related Work
Information theory provides effective tools to solve prob-
lems in RL (Peters et al., 2010; Memmel et al., 2022; Tishby
& Zaslavsky, 2015; Ma et al., 2023; Chakraborty et al.,
2023), such as representation learning (Oord et al., 2018;

1Our code is publicly available at https://github.com/
BangYou01/MTC.

Gao et al., 2024), and generalization (Goyal et al., 2018).
Motivated by the InfoMax principle (Bell & Sejnowski,
1995), some previous RL methods preserve mutual informa-
tion to extract useful representations from observations, and
have achieved improvement in terms of performance and
robustness on downstream tasks (Kim et al., 2019; Laskin
et al., 2020; Mazoure et al., 2020; Rakelly et al., 2021;
Dunion et al., 2024). These methods usually maximize
mutual information in single transitions. In contrast, our
approach maximizes the total interdependencies within the
trajectories of an agent. Moreover, instead of using separate
objectives for policy and state encoder, we use a unified ob-
jective to optimize policy and representations with respect
to the consistency within the resulting trajectories.

Total correlation is a fundamental concept in information
theory to qualify the statistical dependency among multiple
random variables (Watanabe, 1960). Previous methods have
shown that total correlation is an effective tool to enhance
machine learning models in many tasks, such as disentan-
gled representation learning (Steeg, 2017; Gao et al., 2019)
or structure discovery (Ver Steeg & Galstyan, 2014). Our
work extends these results to the RL setting by observing
that the agent can actively change its behavior to maxi-
mize consistency within state and action sequences. Our
method is also related to previous methods that endow RL
agents with robust behavior (Tessler et al., 2019; Tanabe
et al., 2022; Reddi et al., 2023; Shi & Chi, 2024). While
these methods have proposed purpose-designed methods to
achieve robustness benefits, we focus on demonstrating that
maximizing the total correlation is a simple and effective
task-independent solution for improving robustness.

The principle of simplicity has garnered substantial atten-
tion in constructing learning agents (Chater & Vitányi, 2003;
Tishby & Zaslavsky, 2015; Grau-Moya et al., 2018; Igl et al.,
2019; Goyal et al., 2018; Tishby & Polani, 2010; Leibfried
& Grau-Moya, 2020). Some recent works induce simple
policies by imposing temporal consistency in actions. For
example, Saanum et al. (2023) propose to capture the tem-
poral consistency in action sequences and induce simple
behaviors by incorporating the preference for consistent ac-
tions into the reward function. Another class of methods
enforces temporal consistency in latent representations of
states to obtain policies that produce simple behaviors. For
instance, RPC (Eysenbach et al., 2021) learns policies that
visit states whose representations are temporally consistent
in individual transitions, by minimizing the mutual infor-
mation between a sequence of observations and a sequence
of their representations. In contrast, our total correlation
objective maximizes the consistency among sequences of
state representations and actions. This difference, which
corresponds to learning dynamic models that predict the fu-
ture from a history of actions and states, allows the agent to
achieve consistent behavior throughout whole trajectories.
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Our approach is also related to previous approaches that
extract temporally consistent representations from observa-
tions by learning latent dynamics models (Guo et al., 2022;
Hansen et al., 2022). Unlike these approaches that only
consider temporal consistency in representations of states,
our total correlation objective aims to maximize the consis-
tency among the whole trajectories of state representations
and actions. As shown in our experiments (Fig. 5), addi-
tionally enforcing the consistency within action sequences
by learning the action prediction model improves the per-
formance in the presence of environmental perturbations.
Some approaches learn representations that discard unneces-
sary information in raw states via the Fourier transform (Li
& Pathak, 2021; Ye et al., 2023). In contrast, our approach
filters out irrelevant state information by maximizing total
correlation within trajectories of representations and actions.

3. Preliminaries and Notations
In this section, we provide a brief overview of background
for information theory reinforcement learning, and intro-
duce the notation used throughout the paper.

3.1. Information Theory Background

Mutual information (MI) is a commonly used statistical
dependency measurement in machine learning (Alemi et al.,
2017). Given two random variables x1 and x2, their mutual
information is defined as:

I(x1;x2) = Ex1,x2

[
log

p(x1, x2)

p(x1)p(x2)

]
.

Total correlation, or multi-information, generalizes mutual
information to more than two random variables (Watanabe,
1960; Studenỳ & Vejnarová, 1998). The total correlation
C(x1;x2; . . . ;xn) of n random variables xi, is defined as
the Kullback-Leibler (KL) divergence between the joint
distribution and the product of their marginals,

C(x1;x2; . . . ;xn) = Ex1,x2,...,xn

[
log

p(x1, x2, . . . , xn)∏n
i=1 p(xi)

]
.

This KL divergence corresponds to the expected amount
of information (measured in nats), that we can save when
transmitting the sequence (x1, . . . , xn) using a code that is
optimized with respect to the complete sequence, compared
to independently encoding each random variable xi.

3.2. Markov Decision Process

We formulate the maximum total correlation reinforcement
learning problem in a finite horizon Markov decision process
(MDP), denoted by the tupleM = (S,A, p, r, T ), where S
is the state space,A is the action space, p(st+1|st, at) is the
stochastic dynamic model, r(s, a) is the reward function,

and T is the time horizon. At each time step, the agent ob-
serves the current state st and selects its actions at based on
its stochastic policy π(at|st) and then receives the reward
r(st, at). The original reinforcement learning objective is to
maximize the expected cumulative rewards Eτ

[∑T
t=1 rt

]
where τ = (s1, a1, s2, a2, . . . ) denotes the agent’s trajec-
tory. As typically not all state information is relevant for
choosing the optimal action, we will assume, without loss
of generality, that the policy chooses the action based on
a latent variable zt ∼ f(zt|st) using a learned encoder f .
We refer to the parameters of encoder and policy by θ and
ϕ, respectively, and we sometimes write πϕ and fθ to make
this dependency explicit, however, we typically omit the
subscript for brevity.

While we use the finite horizon setting for formulating MTC-
RL to ensure that the total correlation of trajectories takes
finite values, we will transition to the infinite horizon setting
in Section 4.3, by letting T go to infinity and introducing
a discount factor γ. In the infinite horizon setting, which
underlies the practical implementation used in our experi-
ments, the agent aims to maximize the expected discounted
cumulative rewards Eτ [

∑∞
t=1 γ

trt].

4. Maximum Total Correlation Reinforcement
Learning

In this section, we introduce the maximum total correla-
tion reinforcement learning problem, derive a variational
lower bound on the total correlation, and use it to formulate
an optimization problem that can be solved with existing
reinforcement learning methods.

4.1. Problem Formulation and Motivation

We want to bias the policy towards producing simpler behav-
ior in order to increase its robustness towards state-, action-
or dynamics-perturbations. We quantify the simplicity of
the behavior by the total correlation of the complete tra-
jectories induced by the policy, which corresponds to their
compressibility in an information-theoretic sense. More
specifically, we extend the vanilla reinforcement learning
objective by introducing the additional objective of maxi-
mizing the total correlation within the trajectory of latent
state representations and actions,

max
θ,ϕ

Eπϕ,fθ

[[ T∑
t=1

r(st, at)

]
+ αC(z1; a1; . . . ; aT−1; zT )

]
.

(1)
where the hyper-parameter α controls the trade-off between
both objectives.

Using the latent representation z rather than the raw states s
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for the total correlation objective serves two main purposes.
Firstly, by restricting our total correlation objective to task-
relevant state information, we focus on learning behavior
that is consistent only with respect to aspects of the state
that actually matter for the task. The second motivation for
formulating the total correlation with respect to the learned
state representation is to not only learn more consistent
behavior, but also more consistent representations z. By
penalizing unnecessary variations in the representation, we
aim to learn representations that are more robust to irrelevant
variations in the state.

4.2. A Variational Bound on Total Correlation

The total correlation objective in Eq. 1 can not be decom-
posed into a sum of step-rewards and involves probability
distributions that are typically not available in analytic form.
Hence, we replace it with a variational lower bound, us-
ing a parameterized history-based latent dynamics model
qη(zt+1|z1:t, a1:t) and a parameterized history-based action
prediction model qχ(at|z1:t, a1:t−1),

C(z1; a1; . . . ; aT−1; zT ) ≥ C̃(z1; a1; . . . ; aT−1; zT )

= Eπ,f

[ T−1∑
t=1

[
log

qη(zt+1|z1:t, a1:t)qχ(at|z1:t, a1:t−1)

fθ(zt+1|st+1)πϕ(at|st)

]]
.

(2)
Please refer to Appendix A.1 for the derivation. The con-
tribution of a given time step t to the lower bound is large
when the next latent state and the next action can be well
predicted based on the history, while accounting for the
irreducible uncertainty due to the stochastic encoder f and
the policy π. Hence, this mechanism encourages consistent
trajectories. As shown in our experiments, both state con-
sistency and action consistency are significantly improved
when using the lower bound C̃ within the MTC-RL objective
(see Figure 1), which demonstrates that the lower bound
captures important aspects of the total correlation.

4.3. A Tractable Optimization Problem

By plugging the lower bound C̃ in Eq. 2 into the objective
function Eq. 1, we obtain the tractable objective

max
θ,ϕ,η,χ

Eπϕ,fθ

[
r(sT , aT ) +

T−1∑
t=1

[
r(st, at)

+ α
[
log

qη(zt+1|z1:t, a1:t)
fθ(zt+1|st+1)

+ log
qχ(at|z1:t, a1:t−1)

πϕ(at|st)
]]]

(3)
that we optimize with respect to the parameters of the policy,
encoder, and latent dynamics model.

The policy is, thus, optimized with respect to the

information-regularized reward function

r∗(st, at, st+1) = r(st, at, st+1)

+ α
(
log

qη(zt+1|z1:t, a1:t)qχ(at|z1:t, a1:t−1)

fθ(zt+1|st+1)πϕ(at|st)

)
.

(4)

The modified reward biases the policy towards states for
which the latent representation can be well predicted based
on the history, relative to the uncertainty in the encoder pre-
dictions, and towards actions that can be well predicted by
the action prediction model, relative to the uncertainty of the
policy. Although simplified in notation, this reward function
also depends on the history and on the current parameters
of the policy and encoder. The dependence on past states
might suggest the need for a history-based policy; however,
our ablations show that providing only the current state as
input to the policy can achieve similar performance. Further-
more, despite the non-stationarity introduced by the reward
function’s dependence on policy and encoder parameters,
we did not observe learning instabilities.

The latent history-based dynamics and action prediction
models get trained using maximum likelihood, and the en-
coder and policy get biased towards the history-based pre-
dictions, due to the additional objectives of minimizing the
KL divergence towards history-based models.

For the practical implementation, we switch to the infinite
horizon problem setting by letting T →∞, and introducing
the discount factor γ, that is, we optimize the final objective

max
θ,ϕ,η,χ

Eπϕ,fθ

[ ∞∑
t=1

γtr∗(st, at, st+1)

]
. (5)

As clarified in Appendix A.4 this objective corresponds to
maximizing a lower bound on a natural extension of total
correlation to infinite sequences.

4.4. Maximum Total Correlation Soft Actor Critic

Our total correlation regularized reinforcement learning
problem in Eq. 5 can be optimized straightforwardly with
existing RL methods. For our experiments we implement
MTC on top of soft actor-critic (SAC) (Haarnoja et al.,
2018). As an actor-critic method, SAC alternates between
estimating the Q function (policy evaluation) and improving
the policy with respect to the Q function (policy improve-
ment). SAC considers the maximum entropy RL setting, that
is, it has the additional objective of maximizing the entropy
of the policy, and therefore, it computes the soft-Q function
Qπ

soft(s, a) during policy evaluation, which also accounts for
the expected future entropy of the policy. For our policy
evaluation, we do not need to make any modifications to
SAC, besides replacing the original reward function r(st, at)
with the regularized reward r∗(st, at, st+1). Hence, we also
learn the soft-Q function and use common techniques such
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as target nets (Mnih et al., 2015) and dual Q nets (Fujimoto
et al., 2018; Haarnoja et al., 2018).

For policy improvement, however, we also optimize the dy-
namics model, the action prediction model and the encoder
along with policy. While the prediction models are, thus,
trained on the replay buffer instead of using on-policy sam-
ples, which slightly deviates from the derived update and
may increase the gap of our lower bound, this change allows
for an easy integration of the total-correlation regularizer
for off-policy optimization. Similar to RPC (Eysenbach
et al., 2021), we express the soft-Q function in terms of the
regularized reward and the soft Q-function of the next time
step, to arrive at the following objective,

max
θ,ϕ,η,χ

ED,πϕ,fθ

[
− (α+ β) log(πϕ(at|st))

+ α
(
log

qη(zt+1|z1:t, a1:t)qχ(at|z1:t, a1:t−1)

fθ(zt+1|st+1)

)
+ γ

(
Qπ

soft(st+1, at+1)− (α+ β) log(πϕ(at+1|st+1))
)]

,

(6)
where s1:t+1 and a1:t are sampled from the replay buffer D,
at+1 is sampled from the current policy, and all embeddings
z1:t+1 are sampled from the current encoder. The coefficient
β corresponds to the weight of the entropy regularizer of
SAC.

Furthermore, instead of choosing the hyperparameter α
directly, we optimize it with respect to a desired bound Ip,
by minimizing the dual objective

L(α) = α
(
log

qη(zt+1|z1:t, a1:t)qχ(at|z1:t, a1:t−1)

fθ(zt+1|st+1)πϕ(at|st)
− Ip

)
.

(7)

5. Experimental Evaluation
We performed experiments to investigate how our to-
tal correlation objective compares to vanilla soft-actor
critic (Haarnoja et al., 2018) and the closely related al-
ternative methods RPC (Eysenbach et al., 2021), LZ-
SAC (Saanum et al., 2023) and SPAC (Saanum et al.,
2023) in terms of performance on the original RL objective
(Sec. 5.1 and Sec. 5.4), robustness to noise, dynamics mis-
match and spurious correlation (Sec. 5.2), and consistency
of the resulting trajectories (Sec. 5.3). Furthermore, we per-
formed ablations to investigate the effects for components
of our model and total correlation constraints Ip (Sec. 5.5).

We build MTC on top of the open source implementation of
SAC by Yarats et al. (2021). Whereas the official implemen-
tation of LZ-SAC provided by Saanum et al. (2023) also
uses this SAC implementation, the original implementation
of RPC provided by Eysenbach et al. (2021) is based on the
SAC implementation from TF-Agents. To ensure a reliable

and fair comparison to RPC, we compare MTC to RPC
implemented by its original code (referred to as RPC-Orig
in Table. 1) and to our implementation of RPC built on top
of the same SAC codebase as MTC and LZ-SAC (referred
to as RPC). Please refer to Appendix B for details on the
implementations of the different approaches.

5.1. Performance

In our first set of experiments we evaluate the performance
on the original reinforcement learning problem. Table. 1
shows the final performance of our method and baselines on
eight continuous control tasks from the DeepMind Control
(DMC) (Tassa et al., 2018), a commonly used open-source
simulated benchmark in RL settings. Learning curves are
shown in Fig. 7 in Appendix C.1. MTC achieves better
average asymptotic performance than baselines on the ma-
jority of the tasks. In particular, MTC outperforms SAC on
five tasks, Hopper Stand, Finger Spin, Cheetah Run, Walker
Run, and Quadruped Walk. These results suggest that in-
ducing simple policies by maximizing the total correlation
also benefits policy learning.

5.2. Zero-shot Robustness

Our main motivation for learning consistent behavior and
representations is to improve robustness by focusing on the
essentials. Our policies are biased to produce trajectories
that have fewer variations, so we expect that they are more
robust to unseen disturbances. Hence, we evaluated our
method and baselines in terms of zero-shot robustness to
observation, action , and dynamics perturbations.

Robustness to observation perturbations. We first inves-
tigate how observation perturbations affect policy perfor-
mance by injecting Gaussian noise into the observations,
st ← st + ϵ, where noise ϵ is sampled from a Gaus-
sian distribution, ϵ ∼ N (0,diag(σ2)) with standard de-
viation σ. Using the same tasks as before, we evaluate
our method and baselines on a series of noise strength
σ ∈ [0.02, 0.04, 0.06, 0.08, 0.1]. To compare the robust-
ness across all eight tasks, we normalized the scores by the
score achieved by the best method on each task. The aggre-
gated robustness to observation perturbations with different
noise strengths is shown for different methods in Figure 2
(left). MTC achieves the best aggregated performance when
observations are perturbed with Gaussian noise.

Robustness to action perturbations. As our total cor-
relation objective encourages consistent actions, we also
expect an improvement in terms of robustness to action per-
turbations. Hence, we add Gaussian noise to the actions,
at ← at+ϵ, where ϵ ∼ N (0,diag(σ2)) with noise strength
σ. However, please note that we had to clip the values of
the noisy actions to be within [−1, 1], due to requirements
of the simulator.
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Table 1. Scores (means over 20 seeds with 90% confidence interval) achieved by our method and baselines on eight DMC tasks at 1
million environment steps. MTC achieves better or at least comparable asymptotic performance than all baselines. In particular, MTC
outperforms LZ-SAC, RPC, and SPAC by a large margin on five tasks.

Scores MTC RPC RPC-Orig LZ-SAC SPAC SAC
Acrobot Swingup 184 ± 24 132 ± 31 20±3 100±22 110±29 154 ± 29

Hopper Stand 933± 12 568 ± 96 476± 101 593± 88 213±69 683± 114
Finger Spin 985± 2 869 ± 19 921 ± 13 805± 38 136±121 955± 18
Walker Walk 967± 2 940± 21 951 ± 2 939± 26 883±76 962± 7
Cheetah Run 874± 21 772± 57 636 ± 10 787± 17 458±52 811± 36

Quadruped Walk 944± 5 842 ± 77 598 ± 108 595 ± 110 505±185 738± 93
Walker Run 790 ± 9 778 ± 25 604± 29 732± 22 347±95 767± 13

Walker Stand 983± 2 980 ± 5 971 ±1 977± 2 931±38 985± 2
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Figure 2. We evaluated the robustness towards observation noise (left), action noise (middle) and mass changes (right) on eight tasks
from DMC benchmarks. The plots show the normalized mean rewards averaged over 20 independent runs and 8 tasks, with error bars
representing 90% confidence interval. For each task we normalized the return by the mean return of the best method. Each run includes
30 evaluation trajectories. MTC achieves better aggregated performance than baselines in the presence of perturbations to observations
and actions, while also obtaining higher mean rewards when the body mass is changed slightly.

Overall, MTC achieves higher average rewards than all
baselines even in the presence of strong action perturbations,
see Fig. 2 (middle). Notably, our approach outperforms
SAC in robustness to action perturbations with different
noise strengths, indicating that maximizing trajectory total
correlation improves robustness to action perturbations.

Robustness to dynamics mismatches. We also expect sim-
ple behavior to be more robust towards deviations between
the dynamics encountered during testing compared to the
dynamics used for training. We test the effects of dynamics
mismatch by scaling the mass of each robot body during
evaluation. We evaluate six different scaling factors in each
environment, namely [0.25, 0.5, 0.75, 1.25, 1.5, 1.75], and
present the aggregated results on eight tasks in Fig. 2 (right).
Overall, MTC obtains higher averaged scores than all base-
lines in the presence of small dynamics changes.

Robustness to spurious correlations. We further per-
formed experiments to evaluate the robustness of MTC to
spurious correlations on the Walker Stand task. To that end,

we introduced additional state dimensions that are not con-
trollable by the actor, but instead follow a fixed Gaussian
transition model. These distractors are not correlated with
the remaining states, the actions nor the reward that the
agent receives, although by coincidence, it might appear
that such correlations exist, resulting in spurious correla-
tions. Fig. 11 in Appendix C.9 shows the performance of
our method, RPC and SAC. The plot shows the mean over
10 seeds, with a 90% confidence interval. MTC significantly
outperforms RPC and SAC in rewards, suggesting that MTC
improves robustness to spurious correlations.

5.3. Trajectory Consistency

Arguably, the consistency of a behavior can be most straight-
forwardly judged by visualizing it. Hence, we generated
plots of the state and action trajectories for MTC and all
baselines on the Finger Spin task. We already showed the
trajectories for the first joint in Fig. 1. The remaining joints
are shown in Figure 12 and Figure 13 in Appendix C.10.
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Figure 3. The compressed state-action trajectories obtained by
MTC have smallest file size in expectation.

Based on these visualizations, we argue that MTC produces
the simplest and most consistent trajectories, characterized
by highly cyclical patterns.

To support this qualitative assessment, inspired by Saanum
et al. (2023), we use lossless compression algorithms to
quantify the compressibility of trajectories produced by
learned policies. We round the collected state-action trajec-
tories to one digit behind the decimal point, save them as
.npy-files and compress them using bzip2. Rounding the
floating point numbers was necessary to achieve meaningful
results because otherwise the highly random insignificant
bits would dominate, leading to high variance in the result-
ing file sizes. Figure 3 shows the normalized average file
sizes in bytes among 30 trajectories of 1000 steps for each
of the 8 tasks, with error bars representing 90% confidence
interval. The normalized file sizes are achieved by dividing
the compressed trajectories by the largest compressed trajec-
tory among all methods for each task. Trajectories collected
by MTC can be more efficiently compressed than baselines,
which suggests that the trajectories produced by our poli-
cies show more repetitive, periodic structures to solve tasks.
Furthermore, to more directly evaluate the predictability of
policies, we trained a t-step-ahead action prediction model
for different time steps t in data sets that have been collected
by policies learned with the different methods. Results in
Appendix C.2 show that MTC achieves the smallest predic-
tion errors among all methods for all time steps, indicating
that actions produced by MTC are more easily predicted.

5.4. Non-periodic and High-dimensional Tasks

Our experiments on the DMC control tasks showed that total
correlation regularization can improve the performance and
robustness on locomotion tasks, which are characterized by
periodic motions. As it is also interesting to investigate the
performance of MTC also on task that require non-periodic
behavior, we further evaluate our method on eight robotic
manipulation tasks from the Metaworld benchmark (Yu
et al., 2020). MTC achieves higher average rewards than
baselines on all tasks (see Fig. 4 right and Fig. 8 in Ap-

pendix C.3). These results suggest that encouraging the
agent to generate smooth and simple trajectories by maxi-
mizing total correlation contributes to successful completion
of the manipulation task.

We further evaluate our approach on six image-based DMC
tasks from the Planet benchmark (Hafner et al., 2019). On
these tasks, the policy selects actions based on raw high-
dimensional images rather than compact states. To han-
dle image observations, we use a convolutional neural net-
work encoder and a random shift augmentation. To ensure
a fair comparison, each algorithm use the same encoder
and image augmentation. We compare the aggregated per-
formance across 6 tasks in Fig. 4 (left). MTC achieves
better performance than leading baselines, including RPC,
CURL (Laskin et al., 2020), SAC-AE (Yarats et al., 2021),
and SAC. We refer to Appendix B.9 for more experimental
details and Appendix C.4 for scores on individual tasks.

5.5. Ablation

Minimizing the KL divergence between the encoder and the
dynamics model (the third term in Eq. 3) and the KL diver-
gence between the policy and the action prediction model
(the last term in Eq. 3) both help to induce predictable tra-
jectories. To further investigate our regularizer, we evaluate
the effect of these two KL divergences. Specifically, we
consider two ablations of MTC, namely MTC-NoA which
removes the KL divergence between the policy and the ac-
tion prediction model in Eq. 3, and SAC which learns a
policy without total correlation maximization. We evaluate
MTC and its two ablations with respect to original task per-
formance, robustness to state, action and dynamics changes
on the Walker Stand task and the Cheetah Run task.

Fig. 5 shows the experimental results. Each subplot shows
mean and 90% confidence interval from 30 episodes, av-
eraged over 20 seeds. On the Walker Stand task, MTC
achieves better performance than its two ablations in the
presence of observation noise and strong dynamics pertur-
bations. When action is perturbed by Gaussian noise, MTC
achieves competitive performance compared to MTC-NoA
but significantly outperforms SAC. On the Cheetah Run task,
MTC achieves better robustness to action noise and mass
changes, while being comparable to its two ablations in
terms of robustness to observation noise. The improvements
over MTC-NoA suggest that learning the action prediction
model improves robustness. In addition, we also observe
that overall MTC-NoA outperforms SAC, indicating that
learning the dynamics model achieves robustness benefits.

We also evaluate the effect of the hyperparameter Ip which
is used for optimizing the weight α of the total correlation
objective. Increasing the value of Ip results in larger val-
ues of α and therefore biases the agent to increase total
correlation. We evaluate the effect of Ip with respect to
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Figure 4. Left: aggregated performance of MTC and baselines at 500K environment steps on six image-based DMC tasks. The plot shows
the normalized average rewards over 5 runs and 6 tasks, with error bars representing 90% confidence interval. For each run, we collect
10 evaluation episodes. MTC achieves better performance than baselines. Right: performance of our method and baselines on three
manipulation tasks from Metaworld. The curves represent the average success rate over 10 different runs, with 90% confidence interval.
Each run collects 10 evaluation episodes. MTC is competitive to baselines.
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Figure 5. We test the robustness of MTC and its two ablations, MTC-NoA and SAC, on the Walker Stand task and the Cheetah Run task.
Overall, MTC achieves better or at least comparable average rewards in the presence of observation noise (left column), action noise
(middle column), and mass changes (right column) than its ablations.

original task performance, compressibility, and robustness
to state, action, and dynamics perturbations on the Walker
Stand task. Fig. 9 in Appendix C shows the experimental
results. Each subplot shows mean and 90% confidence inter-
val from 30 episodes, averaged over 20 seeds. We observe
that tightening the lower bound of our total correlation ob-
jective by increasing Ip doesn’t hurt the final performance
(rewards without perturbations) but significantly decreases
the encoding size of trajectories. This suggests that maxi-
mizing the lower bound of the total correlation helps induce
compressible or structured behaviors. We also find that in-

creasing Ip effectively improves the robustness of learned
policies to observation noise, action noise, and changes in
dynamics (see Fig. 9). This supports our claim that biasing
policies to focus on the essentials helps increase robustness
to perturbations.

6. Discussions and Limitations
Our regularizer in Eq. 4 is related to the regularizer of
RPC (Eysenbach et al., 2021), but generalizes it by con-
sidering the previous trajectory instead of only using the
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information of the current step t, and by also including an
action prediction model. These differences enable us to
improve temporal consistency within trajectories, which sig-
nificantly improves the consistency and robustness of the
resulting behavior, as shown in our experiments. Further-
more, the regularizer in RPC was derived as the negative of
an upper bound on the mutual information between raw and
latent state sequences, I(s1:T ; z1:T ), whereas we prove in
Appendix A.2, that our objective can not be derived from
that perspective. We can, however, derive RPC from our
formulation, showing that maximizing total correlation pro-
vides an important new perspective on regularization in
reinforcement learning that not only results in more consis-
tent and robust behavior, but also deepens our theoretical
understanding of related works.

However, our lower bound of the total correlation corre-
sponds to a sum of negated KL divergences, and is therefore
always negative. Hence, it is not useful for estimating the ac-
tual total correlation, which we know to be positive. While a
vacuous bound may not be useful for estimation, it can still
be valuable for optimization, as in the case of subtracting
a constant offset from the true objective. As demonstrated
in our experiments, our lower bound is very effective for
producing consistent behavior.

7. Conclusion and Future Work
Auxiliary objectives that create inductive biases towards
simpler solutions (regularizers) are commonly, and very
successfully, used in machine learning to learn more gener-
alizable and robust solutions. We propose to use the total tra-
jectory correlation as a novel regularizer for reinforcement
learning, which acts on the level of the behavior. By directly
corresponding to the information-theoretic compressibility
of the induced trajectories, the total correlation is arguably
the most principled choice to quantify the simplicity of a
behavior. As directly maximizing the total correlation is
intractable, we derived a variational lower bound and used it
to formulate a regularized reinforcement learning problem
that can be solved with standard techniques. Compared to
similar sequence-based regularizers, total correlation reg-
ularization achieved very promising results by producing
more consistent behavior that is more robust to state-, action-
and dynamics perturbations. Hence, we believe that total
trajectory correlation may serve as an important goal post
for future reinforcement learning methods. Developing alter-
nate bounds or approximations that better capture the total
correlation while maintaining tractability is a promising
direction for future research.
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A. Proofs
A.1. Derivation Details of the Lower Bound

In this section, we provide full details about how to derive the lower bound (Eq. 2) from the total correlation definition. We
start from the definition of the total correlation and derive a lower bound using a variational approximation q(z1:T , a1:T−1)
of the trajectory distribution.

C(z1; a1; . . . ; aT−1; zT ) = Ep(z1:T ,a1:T−1)

[
log

p(z1:T , a1:T−1)∏T
t=1 p(zt)

∏T−1
t=1 p(at)

]
= Ep(z1:T ,a1:T−1)

[
log

q(z1:T , a1:T−1)∏T
t=1 p(zt)

∏T−1
t=1 p(at)

]
+ DKL

(
p(z1:T , a1:T−1)||q(z1:T , a1:T−1)

)
≥ Ep(z1:T ,a1:T−1)

[
log

q(z1:T , a1:T−1)∏T
t=1 p(zt)

∏T−1
t=1 p(at)

]
.

(8)

We parameterize the variational distribution q(z1:T , a1:T−1) autoregressively:

q(z1:T , a1:T−1) = p(z1)q(a1|z1)
T−1∏
t=1

qη(zt+1|z1:t, a1:t)q(at+1|z1:t+1, a1:t), (9)

where qη(zt+1|z1:t, a1:t) is a history-based dynamics model, q(at+1|z1:t+1, a1:t) a history-based action model.

We plug Eq. 9 into Eq. 8, and then obtain

C(z1; a1; . . . ; aT−1; zT ) ≥ Ep(z1:T ,a1:T−1)

[
log

p(z1)q(a1|z1)
∏T−1

t=1 qη(zt+1|z1:t, a1:t)q(at+1|z1:t+1, a1:t)∏T
t=1 p(zt)

∏T−1
t=1 p(at)

]
= Ep(z1:T ,a1:T−1)

[
log

∏T−1
t=1 qη(zt+1|z1:t, a1:t)∏T−1

t=1 p(zt+1)

]
+ Ep(z1:T ,a1:T−1)

[
log

∏T−1
t=1 qχ(at|z1:t, a1:t−1)∏T−1

t=1 p(at)

]

= Ep(z1:T ,a1:T−1)

[ T−1∑
t=1

log
qη(zt+1|z1:t, a1:t)

p(zt+1)

]

+ Ep(z1:T ,a1:T−1)

[ T−1∑
t=1

log
qχ(at|z1:t, a1:t−1)

p(at)

]
.

(10)

The marginal distributions p(zt+1) and p(at) are unknown. However, the conditional distributions fθ(zt+1|st+1) and
πϕ(at|st) are known and can be substituted while maintaining a lower bound:

C(z1; a1; . . . ; aT−1; zT ) ≥

Ep(z1:T ,a1:T−1)

[ T−1∑
t=1

log
qη(zt+1|z1:t, a1:t)
fθ(zt+1|st+1)

]
+ Ep(s1:T ,z1:T ,a1:T−1)

[ T−1∑
t=1

log
qχ(at|z1:t, a1:t−1)

πϕ(at|st)

]

+

T−1∑
t=1

Ep(st+1)

[
DKL

(
fθ(zt+1|st+1) ∥ p(zt+1)

)]
+

T−1∑
t=1

Ep(st)

[
DKL

(
πϕ(at|st) ∥ p(at)

)]

≥ Ep(z1:T ,a1:T−1)

[ T−1∑
t=1

log
qη(zt+1|z1:t, a1:t)
fθ(zt+1|st+1)

]
+ Ep(s1:T ,z1:T ,a1:T−1)

[ T−1∑
t=1

log
qχ(at|z1:t, a1:t−1)

πϕ(at|st)

]
(11)

where the inequality in the last line holds because of the non-negativity of the KL divergence. Here we obtain the lower
bound in Eq. 2. Notably, the first term and the second term in the last line of Eq. 11 both are lower bounds on the total
correlation.
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A.2. Connections to I(s1:T ; z1:T )

RPC (Eysenbach et al., 2021) aims to minimize the following upper bound of the mutual information between the state
sequence and the latent state sequence,

I(s1:T ; z1:T ) = Ep(s1:T ,z1:T )

[
log

p(z1:T |s1:T )
p(z1:T )

]
≤ Ep(s1:T ,z1:T ,a1:T )

[
log

∏T−1
t=1 f(zt+1|st+1)∏T−1
t=1 q(zt+1|zt, at)

]
. (12)

In contrast to our bound, this bound does not use the history for the dynamics model, and it does not explicitly account for
action consistency. Furthermore, we argue that the lower bound (Eq. 12) does not always hold as it was derived by replacing
p(z1:T |s1:T ) by

∏T−1
t=1 p(zt+1|st+1) (Eysenbach et al., 2021, Appendix C1). These distributions are in general not the same

because information about future state observations can decrease uncertainty about the current latent state, and therefore

p(zt+1|z1:t, s1:T ) ̸= p(zt+1|st+1).

We will now show that the latter replacement may invalidate the upper-bound by analyzing the gap,

E

[
log

p(z1:T |s1:T )
p(z1:T )

]
− E

[
log

∏T−1
t=1 f(zt+1|st+1)∏T−1
t=1 q(zt+1|zt, at)

]

= Ep(s1:T )

[
DKL

(
p(z1:T |s1:T )||p(z1:T )

]
︸ ︷︷ ︸

≥0

−
T−1∑
t=1

Ep(st+1,a1:t,z1:t)

[
DKL

(
f(zt+1|st+1)||q(zt+1|zt, at)

)]
︸ ︷︷ ︸

≥0

.

The second term, may in general be smaller than the first term, for example, when the variational distribution perfectly
matches the encoder, and, thus, the second term does not upper-bound the mutual information I(s1:T , z1:T ).

We can, however, derive RPC based on our total correlation perspective by using the variational distribution

q′(z1:T , a1:T−1) = p(z1)p(a1)

T−1∏
t=1

qη(zt+1|zt, at)p(at+1) (13)

instead of Eq 9.

A.3. Updating Q function

Following the standard recursive Bellman equation, the Q function with parameters υ can be optimized by minimizing the
loss

L (υ) = ED,f,π

[(
Qυ(st, at)− y(st, at)

)2]
(14)

where the target is given by

y(st, at) = r∗(st, at, st+1) + γ(1− d)
[
Qυ(st+1, at+1)− β log(πϕ(at|st+1)

]
(15)

with discounted factor γ and termination flag d and next action at+1 sampled from the current policy. We employ the
independent target Q function to computer the target and stop the gradient through the target Q function.

A.4. Total Correlation for Infinite Sequences

The standard definition of total correlation is only useful for finite sequences, as it would typically not converge in the limit
of infinite sequences. We will now show that our practical implementation which is based on an infinite-horizon MDP,
maximizes a natural extension of the total correlation to infinite sequences.
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We start by introducing the per-step contribution of step t to the total correlation,

Ct(x1; . . . ;xt) := Ex1,x2,...,xt

[
log

p(xt|x1, . . . , xt−1)

p(xt)

]
,

and note that for any finite sequence, its total correlation corresponds to the sum of per-step-contributions,

C(x1;x2; . . . ;xn) = Ex1,x2,...,xn

[
log

p(x1, x2, . . . , xn)∏n
i=1 p(xi)

]
.

=

N∑
t=1

Ct(x1; . . . ;xt).

Intuitively, Ct(x1; . . . ;xt) corresponds to the additional amount of information (measured in nats) that we can save
(compared to per-step encodings) when encoding a sequence of length t instead of a sequence of length t− 1,

Ct(x1; . . . ;xt) = C(x1; . . . ;xt)− C(x1; . . . ;xt−1).

.

Using the per-step contribution of the total correlation Ct, we define the discounted total correlation Cγ(x1; . . . ;x∞) of an
infinite sequence (x1, . . . , x∞) as

Cγ(x1; . . . , x∞) :=

∞∑
t=0

γtCt(x1; . . . , xt). (16)

Hence, the discounted total correlation corresponds to the total correlation, when geometrically discounting future per-step
contributions.

Using this definition, it can be shown analogously to the derivations in Appendix A.1, that maximizing our discounted
objective 5 maximizes a lower bound of the discounted total correlation Cγ(x1; . . . ;x∞).
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B. Experimental Details
B.1. Task Specification

We test our algorithms on MuJoCo-powered continuous control tasks from the Deepmind Control, which provides a
standardized set of benchmarks for reinforcement learning agents. For each task, the episode length is set to 1000 steps, and
the action vector is bounded into [−1, 1]. We refer to (Tassa et al., 2018) for more descriptions of tasks.

B.2. Implementation Details

SAC codebase. We implement our algorithm on top of the common PyTorch implementation of the SAC algorithm (Yarats
et al., 2021). We used the default hyperparameters from that implementation unless specified otherwise. Detailed descriptions
of the SAC implementation are available in (Yarats et al., 2021).

Encoder. The encoder fθ(zt|st) is parametrized as a 3-layer neural network with FCN (units=256)→ FCN (units=256)
→ FCN (units=60) architecture and ReLU hidden activations. Its output is divided into the mean and the standard deviation
of a diagonal Gaussian distribution.

Prediction models. Our prediction models qη(zt+1|z1:t, a1:t) and qη(at|z1:t, a1:t−1) are parameterized by an LSTM
module followed by a 3-layer neural network. The LSTM module is implemented using the common nn.LSTM class
provided by PyTorch. The hidden dimension is set to 256, the output dimension is set to 30, and the number of recurrent
layers is set to 1 for the LSTM module. The 3-layer neural network has the same architecture and activation function as the
encoder. The output of the dynamic model is normalized and then divided into the mean and the standard deviation of a
diagonal Gaussian distribution.

Dual multipliers. We treat the hyperparameter α as a dual multiplier and optimize it via dual gradient ascent. We
initialize the value of α to 10−6 and parametrize it as logα to ensure that it remains positive during optimization. For
optimizing the entropy coefficient, we take the contribution from α into account and directly optimize β′ = β + α.

Bound optimization. We refer to the first term and the second term in the last line of Eq. 11 as the state bound C̃z and the
action bound C̃a, respectively. In practice, we implement our lower bound C̃ in Eq. 2 as a weighted combination of the state
and action bounds, (1−m)C̃z +mC̃a with an additional coefficient m ∈ [0, 1]. Since the state bound and the action bound
both are lower bounds on total correlation (see Eq. 11), their weighted combination is still a lower bound on total correlation.

B.3. Other Hyperparameters

We initialize the replay buffer with 5000 samples from the initial policy and train all agents for 1 million steps. We evaluate
the agent every 20000 steps. All learnable parameters are updated using the Adam optimizer with a learning rate of 10−4.
We determine information constraints Ip and history length by performing hyperparameter tuning. We provide an overview
of our used hyperparameters in Table. 2. For other details, please refer to the provided code.

B.4. Extended Description of Baseline Implementations

SAC. We obtain the results for SAC by running the PyTorch implementations of SAC (Yarats et al., 2021). We use the
same hyperparameters for SAC as our algorithm to ensure a fair comparison. We found that our obtained results for SAC are
stronger than the results of SAC reported in previous work (Yarats & Kostrikov, 2020).

LZ-SAC. We use the official implementation provided by Saanum et al. (2023) to obtain the results for LZ-SAC, since
the official implementation is based on the same codebase of SAC and the hyperparameters has been tuned to achieve good
results on DMC tasks.

RPC. To obtain the results for RPC, we first use the original code provided by Eysenbach et al. (2021), which is built
on top of the SAC implementation from TF-Agents. To achieve as good performance as possible for RPC, we perform
hyperparameter tuning to select the suitable information constraint for RPC. To ensure a fair comparison, we additionally
implement RPC by ourselves, using the same codebase of SAC as MTC and LZ-SAC. We use the same SAC hyperparameters
for our implementation of RPC as our algorithm.
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Table 2. Hyperparameters used in MTC.
Parameter Value

Ip for Cheetah Run, Hopper and Walker Stand -0.5
Ip for other tasks -7.0

history length 8
Replay buffer capacity 1 000 000

Optimizer Adam
Critic learning rate 10−4

Critic Q-function soft-update rate 0.01
Critic target update frequency 2

Actor learning rate 10−4

Actor update frequency 1
Actor log stddev bounds [-10 2]

Temperature learning rate 10−4

Initial temperature 0.1
Initial steps 5000

Discount 0.99
Initial α 10−6

α learning rate 10−4

Representation dimension 30
Number of training steps 106

Coefficient m 10−6

Batch Size for Hopper and Acrobot 512
Batch Size for other tasks 256

B.5. Robustness to Observation Noise

In all experiments of robustness and trajectory compression, for each agent, we evaluated the performance of policies saved
after finishing the training for 1M steps. Gaussian noise is regarded as a strong state distractor for reinforcement learning
algorithms in prior work (Bai et al., 2021). We add the Gaussian noise to observations and the learned policies select the
actions based on the noisy observations.

B.6. Robustness to Action Noise

Noise added to actions can be viewed as a type of environment perturbation. In this experiment, we first use the saved
policies to select the action based on the current state, and add the Gaussian noise to the chosen action. We then clip the
action into [−1, 1] before passing the action signal to the task.

B.7. Robustness to Dynamics

We modify the mass of the robot body to test the robustness of learned policies. In our experiment setup, we get the body
mass of the robot via the env.physics.model.body_mass attribute provided by the environment. Since the body mass varies
across different tasks, we change the mass by scaling it, rather than increasing or decreasing a constant. We then evaluate
the performance of the learned policies on the environment with the changed mass.

B.8. Trajectory Consistency

In our experiment, we measure the compressibility of trajectories using the bzip2 algorithm, which is easily available by
installing the common bz2 python package. For each seed, we collect 30 trajectories using learned policies. Since the
collected trajectories have the same number of data points and these data points have the same numerical precision, the
uncompressed trajectories collected by the different algorithms have the same file size. We compress individual trajectories
by calling the bz2.compress() method provided by the bz2 package. Smaller file sizes of compressed trajectories mean that
trajectories can be better compressed.
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B.9. Image-based DMC Tasks

Figure 6. We evaluate our method on eight image-based DMC tasks.

We evaluate the performance of our method on the commonly used PlaNet benchmark, which consists of a set of complex
image-based continuous control tasks. Specifially, we consider six tasks:Ball-in-cup Catch, Cartpole Swingup, Finger Spin,
Reacher Easy, Walker Walk, and Cheetah Run (see Figure 6). The flexibility of MTC allows us to apply it to image-based
control settings with minimal modifications. We employ the convolutional encoder architecture from SAC-AE (Yarats
et al., 2021) for encoding raw images into representations. Following common practice, we perform data augmentation by
randomly shifting the image by [−4, 4], before we feed images into the encoder. We obtain an individual observation by
stacking 3 consecutive frames, where each frame is an RGB rendering image with size 84× 84× 3 from the 0th camera.
An overview of our used hyperparameters for imaged-based tasks is shown in Table. 3. We refer to our code for more
implementation details.

Table 3. Hyperparameters used in Image-based tasks.
Parameter Value

Ip for Finger and Ball-In-Cup -10.0
Ip for other tasks -0.1

history length for Finger and Ball-In-Cup 3
history length for other tasks 5

Replay buffer capacity 1 00 000
Optimizer Adam

Critic learning rate 10−4

Critic Q-function soft-update rate 0.01
Critic target update frequency 2

Actor learning rate 10−4

Actor update frequency 1
Actor log stddev bounds [-10 2]

Temperature learning rate 10−4

Initial temperature 0.1
Initial steps 5000

Discount 0.99
Initial α 10−6

α learning rate 10−4

Representation dimension 50
Coefficient m 0.0001

Batch Size 256

B.10. Compute Resources

We performed every experiment on an Intel(R) Xeon(R) E5-2620 CPU with GeForce GTX 2080 Ti graphics card and used
approximately one day for training.
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C. Additional Results
C.1. Learning Curves

We show the learning curves of MTC and other approaches on eight DMC tasks in Fig. 7. MTC achieves higher rewards and
faster learning speed than baselines on the majority of tasks. Besides, MTC has a good learning stability on all tasks.
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Figure 7. Learning curves of our method and baselines on 8 DMC tasks. The plot shows the average rewards over 20 seeds with a shading
of 90% confidence interval. MTC achieves better or at least comparable performance and sample efficiency than baselines.

C.2. Predictability of Policies

To directly assess the correlation of learned policies, we additionally trained a t-step-ahead predictive model for t =
[3, 5, 8, 10] time steps on data sets that have been collected with the policy that has been learned with the different methods
for a locomotion task and a manipulation task. The model was trained to predict the action t steps ahead, when given the
current action. We train the predictive model using maximum likelihood estimation. Table 4 and Table 5 compare the
prediction errors of the learned predictive models on the Finger Spin and Drawer-open-v2, respectively. For all tested time
differences, the prediction error of MTC was the smallest among all baselines.

Table 4. We compare the prediction errors (negative log-likelihood) of the learned predictive model for 4 different t time steps on the
Finger Spin task. MTC achieves smaller prediction errors than other methods on all time steps.

Prediction Error (negative log-likehood) t=3 t=5 t=8 t=10
MTC 0.22 0.32 0.48 0.67
RPC 0.34 0.58 0.72 0.76

LZ-SAC 0.96 1.31 1.48 1.53
SAC 0.78 1.13 1.47 1.57

C.3. Metaworld Tasks

We compare MTC to strong baselines, RPC and SAC, on 5 manipulation tasks from Metaworld in Fig 8. Overall, MTC
achieves higher mean rewards than RPC and SAC on all manipulation tasks.

18



Maximum Total Correlation Reinforcement Learning

Table 5. We compare the prediction errors (negative log-likelihood) of the learned predictive model for 4 different t time steps on the
Drawer-open-v2 from Metaworld. MTC achieves smaller prediction errors than other methods on all time steps.

Prediction Error (negative log-likehood) t=3 t=5 t=8 t=10
MTC -4.84 -4.40 -4.05 -3.35
RPC -2.62 -3.05 0.14 0.17
SAC -2.37 -2.07 -2.7 -1.7
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Figure 8. Performance of our method and baselines on 5 manipulation tasks from Metaworld. The plot shows the average success rate and
90% confidence interval over 10 seeds. MTC achieves comparable performance than baselines.

C.4. Image-based DMC Tasks

Table. 6 shows the performance of our approach and baselines on six image-based DMC tasks. Overall, MTC achieves
higher average rewards than baselines on five of six tasks. On the Walker Walk task, for instance, MTC achieves a reward of
939, higher than 917 achieved by RPC and 897 achieved by CURL.

Table 6. Scores (means and standard error over 5 seeds) achieved by our method and baselines on six DMC tasks at 500K environment
steps. Each run includes 10 evaluation episodes. MTC achieves higher or at least comparable average reward than all baselines.

Scores MTC RPC CURL SAC-AE SAC
Cartpole Swingup 868 ± 1 859 ± 8 837±15 748±47 436±94
Ball-in-cup Catch 956± 3 964 ± 3 957± 6 831± 25 355±77

Finger Spin 979± 2 695 ± 43 854 ± 48 839± 68 530±24
Walker Walk 939± 6 917± 15 897 ± 26 836± 24 97±62
Reacher Easy 968± 6 938± 22 891 ± 30 678± 61 191±40
Cheetah Run 585 ± 25 572 ± 15 492± 22 476± 22 250±26

C.5. Ablations on History-based Policies

While our total correlation objective results in a reward function that depends on the past in order to encourage the agent to
perform actions that are consistent with its previous actions, we did not choose a history-based policy in our experiments for
a simpler and fairer comparison. We ran additional experiments to test the effect of history-based observations for standard
SAC and our method on the Finger Spin task. The results are consistent with non-history-based policies (see Table. 7),
indicating that the improvements are caused by our total correlation objective, whereas non-markovianity on observations is
not sufficient.

Table 7. Performance comparison between MTC and SAC and their ablations, whose policies use history-based observations. The table
shows the mean and 90% confidence interval over 10 seeds. For each run, we collected episode rewards at 500K environment steps and
computed the mean over 10 evaluation episodes. MTC achieves consistent performance with its history-based ablation, MTC-history.

Finger Spin MTC MTC-history SAC SAC-history
Score 985 ± 2 986 ± 3 955 ± 18 951 ±23
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C.6. Ablations on Hyperparameters

We evaluate the performance of MTC for three different constraints Ip. The robustness to mass changes and observation and
action noise, and the compression of behaviors are improved while increasing Ip.
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Figure 9. We test the performance of MTC with different constraints Ip. The robustness to mass changes and observation noise, and the
compression of behaviors are improved while increasing Ip.

C.7. Robustness Comparison on A Single Task

A constant increase in noise could result in moderate effects relative to the zero-noise level, larger effects when applied on
top of some existing noise (due to compounding effects), and in negligible effects when applied to very large noise level
where the policy is not able to perform reasonably anyway. Hence, it is difficult to compare the robustness to noise when
the different policies already start at different reward levels. However, we noticed that MTC, RPC, and SAC perform very
similarly on Walker-Stand and investigated the robustness while focusing on this single environment. As shown in Fig. 10,
the robustness of MTC increases with respect to observation noise, action noise as well as mass change.
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Figure 10. Robustness to observation noise (left), action noise (middle), mass changes (right) on Walker Stand. The plot shows the average
reward over 20 seeds, with error bars representing 90% confidence interval. MTC achieves higher rewards than baselines in the presence
of strong observation, action, and mass perturbations.

C.8. Robustness on Metaworld Tasks

We also evaluate the robustness to observation noise, action noise, and mass changes in eight manipulation tasks from
Metaworld. Overall, MTC achieves better performance when actions and dynamics are perturbed, while being comparable
to baselines in the presence of observation noise.

C.9. Robustness to Spurious Correlation

We perform experiments to investigate if MTC is robust to spurious correlations. In the experiment, we added additional
state dimensions that are not controllable by the actor, but instead follow a fixed Gaussian transition model. These distractors
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Table 8. Scores (mean and 90% confidence interval for 20 runs) achieved by our method and baselines at eight manipulation tasks from
Metaworld with action noise, mass changes, and observation noise. Overall, MTC obtained higher scores in the presence of action and
dynamics perturbations, while being comparable to baselines on tasks with observation noise.

500K step scores MTC(Ours) RPC SAC

Action noise with strength 2.0

Handle-pull-side-v2 0.98± 0.01 0.72 ± 0.05 0.62± 0.12
Drawer-open-v2 0.60± 0.13 0.21 ± 0.13 0.19± 0.10

Plate-slide-back-v2 0.71± 0.06 0.67 ± 0.08 0.58± 0.07
Peg-insert-side-v2 0.01± 0.01 0.00 ±0.00 0.00±0.00

Sweep-v2 0.01± 0.01 0.00 ±0.00 0.00±0.00
Button-press-wall-v2 0.24± 0.04 0.26 ± 0.05 0.31± 0.06

Door-lock-v2 0.84± 0.03 0.69 ± 0.06 0.71±0.06
Push-back-v2 0.10± 0.04 0.08 ± 0.03 0.01 ± 0.01

Mass changes with scale 1.75

Handle-pull-side-v2 0.98± 0.02 0.71 ± 0.07 0.65± 0.12
Drawer-open-v2 0.62± 0.13 0.22 ± 0.16 0.21± 0.15

Plate-slide-back-v2 0.98± 0.01 0.87 ± 0.08 0.93± 0.03
Peg-insert-side-v2 0.07± 0.06 0.00 ±0.00 0.00±0.00

Sweep-v2 0.29± 0.10 0.18 ± 0.09 0.18± 0.12
Button-press-wall-v2 0.51± 0.08 0.59 ± 0.12 0.62± 0.10

Door-lock-v2 0.96± 0.02 0.84 ± 0.05 0.86±0.05
Push-back-v2 0.18± 0.07 0.12 ± 0.04 0.00 ± 0.00

Obs noise with strength 0.05

Handle-pull-side-v2 0.95± 0.04 0.74 ± 0.07 0.69± 0.13
Drawer-open-v2 0.45± 0.15 0.18 ± 0.11 0.13± 0.08

Plate-slide-back-v2 0.29± 0.09 0.29 ± 0.08 0.46± 0.07
Peg-insert-side-v2 0.00± 0.00 0.00 ± 0.00 0.00± 0.00

Sweep-v2 0.02± 0.01 0.02 ± 0.02 0.01± 0.01
Button-press-wall-v2 0.27± 0.04 0.24 ± 0.08 0.16± 0.07

Door-lock-v2 0.76± 0.07 0.74 ± 0.04 0.73± 0.04
Push-back-v2 0.00± 0.00 0.00 ± 0.00 0.00± 0.00

are not correlated with the remaining states, the actions nor the reward that the agent receives, although by coincidence, it
might appear that such correlations exists, resulting in spurious correlations. We evaluate our method and baselines on the
Walker Stand task with such observation distractors. Fig. 11 shows the performance of our method, RPC and SAC. The plot
shows the mean over 10 seeds, with a 90% confidence interval. MTC significantly outperforms RPC and SAC in rewards,
suggesting that MTC improves robustness to spurious correlations.

C.10. Visualizations of Trajectories

We visualize the trajectories produced by our method and baselines on the Finger Spin task. For the Finger Spin task,
the dimensions of the action and state space are 2 and 9, respectively. Fig 12 and Fig 13 visualize the action and state
trajectories produced by our method and baselines. We observed that MTC produces more consistent and periodic patterns
in trajectories.
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Figure 11. Robustness to spurious correlations on Walker Stand. MTC achieves higher rewards than RPC and SAC, when states are
expanded with unrelated Gaussian noises.
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Figure 12. Visualizations of action sequences generated by our method and baselines on the Finger Spin task. MTC produces more
consistent and periodic behavior than baselines.
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Figure 13. Visualizations of state sequences generated by our method and baselines on the Finger Spin task. State sequences of our
method show more repeating and periodic patterns.
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