
Learning Cut Generating Functions for Integer
Programming

Hongyu Cheng
Dept. of Applied Mathematics & Statistics

Johns Hopkins University
Baltimore, MD 21218

hongyucheng@jhu.edu

Amitabh Basu
Dept. of Applied Mathematics & Statistics

Johns Hopkins University
Baltimore, MD 21218

basu.amitabh@jhu.edu

Abstract

The branch-and-cut algorithm is the method of choice to solve large scale integer
programming problems in practice. A key ingredient of branch-and-cut is the use
of cutting planes which are derived constraints that reduce the search space for an
optimal solution. Selecting effective cutting planes to produce small branch-and-cut
trees is a critical challenge in the branch-and-cut algorithm. Recent advances have
employed a data-driven approach to select good cutting planes from a parameterized
family, aimed at reducing the branch-and-bound tree size (in expectation) for
a given distribution of integer programming instances. We extend this idea to
the selection of the best cut generating function (CGF), which is a tool in the
integer programming literature for generating a wide variety of cutting planes
that generalize the well-known Gomory Mixed-Integer (GMI) cutting planes. We
provide rigorous sample complexity bounds for the selection of an effective CGF
from certain parameterized families that provably performs well for any specified
distribution on the problem instances. Our empirical results show that the selected
CGF can outperform the GMI cuts for certain distributions. Additionally, we
explore the sample complexity of using neural networks for instance-dependent
CGF selection.

1 Introduction

Integer linear programming is an optimization framework that has diverse applications in logis-
tics [Arntzen et al., 1995, Sinha et al., 1995, Hane et al., 1995], finance [Bertsimas et al., 1999],
engineering [Grossmann and Kravanja, 1995], national defense [Gryffenberg et al., 1997, Jiang et al.,
2014], healthcare [Ajayi et al., 2024, Valeva et al., 2023], statistics [Bertsimas et al., 2016, Dash et al.,
2018, Wei et al., 2019] and machine learning [Bertsimas and Dunn, 2017, Chen et al., 2021, Malioutov
et al., 2023], to give a small sample of applications and related literature. The method of choice for
solving integer programming problems is the well-known branch-and-cut paradigm [Schrijver, 1986,
Nemhauser and Wolsey, 1988, Conforti et al., 2014]. This procedure has two critical ingredients:
branching, which is a way to subdivide the problem into smaller subproblems, and the use of cutting
planes which is a way to reduce the feasible region of a (sub)problem by deriving additional linear
constraints that are implicitly implied by the integrality of the decision variables. To get to a concrete
algorithm from this high level framework, one needs to make certain choices (such as how to branch,
which cutting plane to use etc.) Thus, at a high level, the branch-and-cut method is really a collection
of algorithms equipped with a common set of “tunable parameters". Upon a specific choice of values
for these parameters, one actually obtains a well-defined algorithm that one can deploy on instances
of the problem.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

There is a substantial amount of literature on the mathematical foundations of cutting planes and
branching, and many of their theoretical properties are well understood. Nevertheless, current theory
does not give very precise recipes for making these parameter choices in branch-and-cut for getting
the best performance on particular instances. There are some general insights available from theory,
but a large part of the actual deployment of these algorithms in practice is heuristic in nature. This
state of affairs has prompted several groups of researchers to explore the possibility of using machine
learning tools to make these parameter choices in branch-and-cut; see [Scavuzzo et al., 2024] for a
survey and the references therein.

In this paper we focus on some foundational aspects of the use of machine learning to improve
algorithmic performance of branch-and-cut. One can formalize the problem as follows. Given
a family of instances of integer programming problems, one wishes to select the parameters of
branch-and-cut that will perform well on average, and one wishes to do this in a data-driven manner.
More formally, one assumes there is a probability distribution over the family of instances and the
goal is to find the choice of parameters that gives the best performance in expectation with respect to
this distribution. The probability distribution is not explicitly known, but one can sample instances
from the distribution and use these samples to guide the choice of parameters. This puts the problem
in a classical learning theory framework and one can ask questions like the sample size required to
guarantee success with high accuracy and high probability (over the samples). This perspective was
pioneered in a recent series of papers [Balcan et al., 2021a,c,b, 2022, 2018] with several important
insights and technical contributions. The broader question of selecting a good algorithm from a suite
of algorithms for a computational problem, given access to samples from a distribution over the
instances of the problem, is generally called data-driven algorithm design and has received attention
recently; see [Balcan, 2020, Balcan et al., 2021a] and the references therein. There is also a lot of
recent activity in the related aspect of algorithm design with predictions; see, e.g., [Mitzenmacher
and Vassilvitskii, 2022].

This paper contributes to this line of research that analyzes the sample complexity of using machine
learning tools for parameter selection in branch-and-cut. In particular, we focus on the cut selection
problem, which is also a central theme in the papers [Balcan et al., 2021c,b, 2022]. Thus, we wish to
learn what choice of cutting planes within the branch-and-cut procedure gives the best performance.
Our results differ from this previous work in two main ways.

1. In [Balcan et al., 2021c,b, 2022], the authors focus on the classical cutting plane families
of Chvátal-Gomory (CG) and Gomory Mixed-Integer (GMI) cutting planes. These are
actually two very special cases of a much more general framework for deriving cutting
planes for integer programming problems, which is called cut generating function theory.
The idea behind cut generating functions goes back to seminal work by [Balas, 1971]
and [Gomory and Johnson, 1972a,b] from the 1970s, and there has been a tremendous
amount of progress in our understanding of this theory in the past 15 years. The main point
is that cut generating functions give a parameterized family of cutting planes to choose from,
which vastly generalizes the CG and GMI cuts. We provide sample complexity results for
cut selection from this larger family. This requires new understanding of the structure of
these cutting planes and their interplay with learning theory tools. While we do rely on
some of the ideas from [Balcan et al., 2021c,b, 2022], several new technical and algorithmic
challenges need to be overcome.
The full potential of cut generating functions has not been realized despite sustained efforts
in the past decade; see [Poirrier, 2014, Chapter 6] for a nuanced discussion. We believe an
important factor behind this is that the cut selection problem for this much larger class is
very hard. Thus, while they promise significant gains over traditional ideas like GMI cuts,
it has been difficult to utilize them in practice. Using modern machine learning tools to
help with the cut selection could be the key to deploying these powerful tools in practice.
Thus, we believe our results to be significant in that they are the first of their kind in terms
of establishing a rigorous foundation for using machine learning to solve the cut selection
problem for cut generating functions.

2. All of the work in [Balcan et al., 2021a,c,b, 2022, 2018] focuses on making a single
choice of parameters that does well in expectation. However, it can be significantly more
beneficial to allow the choice of parameters to depend on the instance [Rice, 1976, Gupta
and Roughgarden, 2016]. In recent work, the use of neural networks was suggested as a way
to map instances to the choice of parameters in data-driven algorithm design [Cheng et al.,

2

2024], and sample complexity bounds were derived for learning such a neural network. The
authors in [Cheng et al., 2024] worked with CG and GMI cuts. Here we extend that analysis
to learn neural mappings to more general cut generating functions.

Cut generating functions derive cutting planes by using the data from an optimal simplex tableaux for
the linear programming relaxation of the integer programming problem. CG and GMI cutting planes
are a special case of such cutting planes where data from a single tableaux row is used. Our first result
(Theorem 3.2) establishes sample complexity bounds for a parameterized family of cut generating
functions that uses information from single rows of the simplex tableaux, but goes beyond CG and
GMI cuts. Cut generating function theory also allows the use of information from multiple rows of
the tableaux, which will naturally result in stronger cutting planes because more information from
the problem is used to derive these cuts. Our second result (Theorem 4.4) gives sample complexity
results for a parameterized family of cut generating functions that uses information from k rows,
for any fixed natural number k ≥ 2. In Section 5, these sample complexity results are extended
to learning neural networks that map instances to cut generating functions, achieving an instance
dependent performance.

The choice of the cut generating function families that we study in this paper were dictated by three
things: 1) we should be able to derive cutting planes from them in a computationally efficient way,
2) we should be able to derive concrete sample complexity bounds, and 3) we should be able to
demonstrate that these new cutting planes are better in practice than classical cuts. Sections 3, 4 and 5
achieve aims 1) and 2). Section 6 gives evidence for 3) by showing that our choice of cut generating
functions can indeed improve performance of branch-and-cut, especially with the use of instance
dependent cutting planes. Our performance criteria is the overall tree size (number of nodes explored
by the solver) for solving the problem. For those familiar with cut generating function theory, we
mention that our cut generating functions are all extreme functions. This provides some additional
theoretical underpinning to the claim that these cutting planes are of good quality.

We begin our formal presentation in Section 2 where we introduce the required concepts, terminology
and notation from integer programming and learning theory that are needed to state and prove our
results formally, which is done in Sections 3, 4 and 5.

2 Formal setup of the problem

Throughout the paper, we will use the following standard notations. The sign function sgn :
R → {0, 1} is defined by sgn(x) = 1 if x ≥ 0 and sgn(x) = 0 if x < 0. The set ∆τ

d ={
x ∈ Rd : x1, . . . ,xd ≥ 1

τ ,
∑d

i=1 xi = 1
}

represents a d-dimensional simplex, where τ ≥ 2d is

some predefined number. For a set of vectors {x1, . . . ,xt} ⊆ Rd, we use superscripts to denote
vector indices and subscripts to specify the coordinates in a vector; thus, xi

j refers to the j-th coordi-
nate of vector xi. The floor and ceiling functions, denoted by ⌊·⌋ and ⌈·⌉ respectively, round each
component of a vector down or up to the nearest integer. We denote [x] = x− ⌊x⌋ for any x ∈ Rd,
representing the fractional part of each component of the vector.

2.1 Integer linear programming background

Given positive integers m,n, a pure integer linear programming (ILP) problem in canonical form can
be described as:

max cTx

s.t. Ax ≤ b,x ≥ 0,x ∈ Zn,
(1)

for some A ∈ Zm×n,b ∈ Zm, and c ∈ Rn. This problem is represented by the tuple (A,b, c). In
this paper, we consider the set of ILP instances I such that for any I = (A,b, c) ∈ I, there exists a
universal constant ϱ such that sup {⌈∥x∥∞⌉ : Ax ≤ b,x ≥ 0} ≤ ϱ.

A cutting plane for (1) is given by (α, β) ∈ Rn × R such that the inequality αTx ≤ β is satisfied by
all points in the feasible region {x ∈ Zn : Ax ≤ b,x ≥ 0} of (1).

3

Cut generating functions. We now present the technique of cut generating functions to derive
cutting planes for (1). Consider the equivalent standard form of (1) after introducing slack variables:

Ãy = b, y ∈ Zm+n
+ , (2)

where Ã = [A, I] ∈ Zm×(n+m). The simplex tableaux of the above problem with respect to a basis
B ⊆ {1, . . . ,m+ n} with |B| = m is given by

yB + Ã−1
B ÃNyN = Ã−1

B b, y ∈ Zm+n
+ , (3)

where ÃB and ÃN represent the submatrices of Ã corresponding to the columns indexed by B and
N = {1, . . . ,m+ n} \B, respectively. We select any k rows, where k ∈ {1, ...,m}, from (3) such
that the right-hand side vector is not integral, and write the resulting system as:

z+

n∑
i=1

riyN
i = f , yN ∈ Zn

+, z ∈ Zk
+, (4)

where r1, . . . , rn ∈ Rk and f ∈ Rk\Zk are subvectors of Ã−1
B ÃN and Ã−1

B b, respectively, corre-
sponding to the selected rows. Suppose we have a function π : Rk → R+ satisfying the following
conditions:

1. π(0) = 0, π(f) = 1,

2. subadditivity: π(r+ r′) ≤ π(r) + π(r′),∀r, r′ ∈ Rk,

3. periodicity: π(r+w) = π(r),∀r ∈ Rk,w ∈ Zk,

then for any feasible yN and z we have the following inequality:

1 = π(f) = π

(
z+

n∑
i=1

riyN
i

)
= π

(
n∑

i=1

riyN
i

)
≤

n∑
i=1

π
(
riyN

i

)
≤

n∑
i=1

π
(
ri
)
yN
i . (5)

It’s noteworthy that the optimal solution to the relaxed linear programming problem,
[
yB ,yN

]
=[

Ã−1
B b,0

]
, will always violate this inequality. By substituting out the slack variables using (2), the

inequality
∑n

i=1 π
(
ri
)
yN
i ≥ 1 becomes a cutting plane αTx ≤ β for (1); see Lemma A.3.

We present two classical examples of one-dimensional (i.e., k = 1) cut generating functions here (as
well as their plots in Figure 1a and Figure 1b). A family of one-dimensional cut generating functions
we will use in this paper will be presented in Section 3, and a family of k-dimensional cut generating
functions, for arbitrary k ≥ 1, will be presented in Section 4.

Gomory fractional cut [Gomory, 1958]: Define CGf (r) =
[r]
[f] . Applying this function to the j-th

row of the simplex tableau (4) with fj /∈ Z, the valid cut (5) translates to the Gomory fractional cut:

n∑
i=1

[rij]

[fj]
yN
i ≥ 1 ⇐⇒

n∑
i=1

rij − ⌊rij⌋
fj − ⌊fj⌋

yN
i ≥ 1 ⇐⇒

n∑
i=1

(
rij − ⌊rij⌋

)
yN
i ≥ fj − ⌊fj⌋.

This cut generating function gives cutting planes that are equivalent to the well-known Chvátal-
Gomory (CG) cuts; see [Conforti et al., 2014, Section 5.2.4] for a discussion.

Gomory’s mixed-integer cut [Gomory, 1960]: The GMI cut function GMIf (r) is defined as [r]
[f]

when [r] ≤ [f], and 1−[r]
1−[f] when [r] > [f]. Applying to the j-th row with fj /∈ Z, the valid cut (5)

translates to the GMI cut:∑
i:[rij]≤[fj]

[rij]

[fj]
yN
i +

∑
i:[rij]>[fj]

1− [rij]

1− [fj]
yN
i ≥ 1 ⇐⇒

∑
i:[rij]≤[fj]

[rij]y
N
i +

[fj]

1− [fj]

∑
i:[rij]>[fj]

(
1− [rij]

)
yN
i ≥ [fj].

4

(a) CGf (b) GMIf (c) πp,q
f,s1,s2

Figure 1: Three cut generating functions on [0, 1), where πp,q
f,s1,s2

is defined in Section 3.

2.2 Sample complexity of selecting cut generating functions

We will consider parameterized families of cut generating functions and the sample complexity of
learning which cut generating functions work well. More precisely, we will track how well branch-
and-cut performs when the cutting plane corresponding to a specific cut generating function is added
to the initial linear programming relaxation of the problem, a.k.a the root node of the branch-and-cut
tree. In this paper, we consider the branch-and-cut tree built with a product scoring policy for variable
selection, a depth-first search policy for node selection, and only one cutting plane added at the root
node. We will use the overall tree size needed to solve the problem as the quantitative measure of
performance, which is strongly correlated with the overall solve time.

Consider an unknown probability distribution D over the instance space I. We are presented with
problems drawn independently and identically distributed (i.i.d.) from this distribution. We also have
a family of cut generating functions parameterized by µ ∈ P . Let c(I,µ) denote the cutting plane
obtained by applying the cut generating function corresponding to µ to the instance I as explained
in the previous section. h(I,µ) ∈ [0, B] ∩ Z will denote the truncated branch-and-cut tree size for
some B > 0, when the cutting plane c(I,µ) is used at the root node for processing I .

The objective is to find the cut generating function that minimizes the expected tree size over the
distribution D, i.e., we want to solve the stochastic optimization problem minµ∈P EI∼Dh(I,µ). For
any ε > 0 and δ ∈ (0, 1), the sample complexity of the problem is a natural number N = N(ε, δ)
such that if the number of sampled instances exceeds N , the expected tree size for the distribution
D and the average tree size for the sampled instances differ by less than ε for every µ ∈ P , with
probability (over the samples) at least 1 − δ. Thus, if we have that many samples, we can use the
cut generating function that minimizes the average tree size on our instances (this is a deterministic
optimization problem since the sample is at hand, a.k.a the empirical risk minimization (ERM) or
sample average approximation (SAA) problem) and we will do well in expectation, i.e., generalize to
unseen instances, with high probability.

The pseudo-dimension Pdim(H) is a measure of the ‘complexity’ of the associated function class
H := {h(·,µ) : µ ∈ P}, and is a key concept closely related to sample complexity. It is defined as the
largest integer t for which there exists a set of instances and real values (I1, s1), . . . , (It, st) ∈ I ×R
such that

2t = |{(sgn(h(I1,µ)− s1), . . . , sgn(h(It,µ)− st)) : µ ∈ P}| .
A classical result in statistical learning theory (e.g., Theorem 19.2 in [Anthony et al., 1999]) implies
the sample complexity bound

N(ε, δ) = O
(
B2

ε2

(
Pdim(H) log

(
B

ε

)
+ log

(
1

δ

)))
.

Thus, our task reduces to finding an upper bound for Pdim(H).
In learning theory, identifying the piecewise structure of the function classH = {h(·,µ) : µ ∈ P} is
a standard technique for bounding its pseudo-dimension (see [Anthony et al., 1999, Bartlett et al.,
1998, 2019, Sontag et al., 1998, Balcan et al., 2021a]). For a fixed instance I ∈ I, one shows that

5

the parameter space P can be partitioned into regions such that the function h(I,µ) behaves as a
fixed ‘simple function’ within each region. The partition is defined by a set of functions on P and the
regions of the partition correspond to parameter values in µ ∈ P where these functions have invariant
signs.

Given that our tree size function is an integer-valued function, we present a particular such result
below in Lemma 2.1, which motivates the piecewise structure results presented later in Proposition 3.1
and Proposition 4.3. These results will be used in the proofs of Theorem 3.2 and Theorem 4.4 to
bound the pseudo-dimension. The proof of Lemma 2.1 is provided in Appendix A. Note that a
more general version of this result is given in [Balcan et al., 2021a], but our specific version is
asymptotically better than a direct application of the general result, since Sauer’s lemma ([Sauer,
1972, Shelah, 1972]) is not involved in the proof.
Lemma 2.1. Let h : I × P → Z, where P ⊆ Rd for a natural number d. Suppose that for any fixed
I ∈ I, there exist at most Γ functions, each expressible as the quotient of a polynomial of degree
at most a and a strictly positive function. These functions partition P into regions in which h(I,µ)
remains constant. Then, the pseudo-dimension of the function class {h(·,µ) : µ ∈ P} is given by:

Pdim ({h(·,µ) : µ ∈ P}) = O(d log(Γa)).
Remark 2.2. In Theorems 3.2 and 4.4 that bound the pseudo-dimensions, we assume that the row(s)
used for generating the cut are prefixed for all instances I ∈ I. However, it is straightforward to
extend the analysis to give bounds on the pseudo-dimension when the choice of rows is also learned
along with the cut generating function. We leave these details out of this conference version of the
paper.

3 One-dimensional cut generating functions

In this section, we present a family of one-dimensional cut generating functions (originally proposed
in [Gomory and Johnson, 2003]) that we believe satisfy the three criteria laid out in the Introduction,
i.e., cutting planes can be obtained efficiently from them (we present closed form formulas below),
sample complexity (pseudo-dimension) bounds can be established rigorously (Theorem 3.2 below),
and they result in significantly smaller tree sizes compared to traditional cutting planes (Section 6).

3.1 The construction

(a) π2,2
0.3,−2,7(r) (b) π3,3

0.5,−5,5(r) (c) π4,3
0.6,−12.5,2.5(r)

Figure 2: Three examples of the one-dimensional cut generating functions πp,q
f,s1,s2

on [0, 1).

For any f ∈ (0, 1), p, q ∈ [2,+∞] ∩ Z, s1, s2 ∈ R, let

πp,q
f,s1,s2

(r) = max
{{

min
{
ϕ1i (r), ϕ

2
i (r)

}
: i = 1, . . . , p

}
∪
{
min

{
ψ1
j (r), ψ

2
j (r)

}
: j = 1, . . . , q − 1

}}
,

where

ϕ1i (r) = s1r + i
1− fs1

p
, ϕ2i (r) = s2r + (i− 1)

1− fs2
p− 1

, i = 1, . . . , p,

ψ1
j (r) = s1(r − 1) + (j − 1)

1 + (1− f)s1
q − 1

, ψ2
j (r) = s2(r − 1) + j

1 + (1− f)s2
q

, j = 1, . . . , q − 1.

6

See Figures 1c and 2 for examples with different f, p, q and s1, s2. Let Dp,q
f denote the set of all

(s1, s2) such that πp,q
f,s1,s2

(·) is a valid cut generating function, i.e., it satisfies the three conditions
outlined in Section 2.1. The closed form of this set is provided in Lemma B.1, which indicates that
Dp,q

f is always a (possibly semi-infinite) rectangle.

3.2 Pseudo-dimension bound

We first show that the cutting plane coefficients for (2) derived from this family of cut generating
functions has a piecewise affine linear structure. This is key to establishing the pseudo-dimension
bounds in Theorem 3.2 using Lemma 2.1.
Proposition 3.1. For any fixed f ∈ (0, 1), p, q ∈ N ∩ [2,+∞], and r1, . . . , rn ∈ [0, 1), there exists
a decomposition of the (s1, s2) space Dp,q

f given by at most n hyperplanes such that, within each

region, each coordinate of the cutting plane
[
πp,q
f,s1,s2

(r1), . . . , π
p,q
f,s1,s2

(rn)
]T

is a fixed affine linear
function of (s1, s2).

To make the parameter selection in more controlled manner, we introduce a large positive constant
M and adjust the bounds of s1 and s2 given in Lemma B.1 to finite ranges by replacing −∞ and
+∞ with 1

f−1 −M and 1
f +M , respectively, in the corresponding cases. This restricts (s1, s2) to

the product of 2 bounded intervals, denoted as [l1, u1]× [l2, u2], which is a bounded subset of Dp,q
f .

This allows us to use parameters µ = (µ1,µ2) ∈ [0, 1]2 to control s1 and s2 as follows:
s1 = u1 − µ1(u1 − l1), s2 = l2 + µ2(u2 − l2). (6)

We remark that setting µ1 = µ2 = 0 gives the GMIf function.

We now have all the pieces to state the precise pseudo-dimension bound.
Theorem 3.2. Let p, q ≥ 2 be arbitrary, but fixed, natural numbers. Let T (I,µ) denote the tree size
of the branch-and-cut algorithm after adding the cut induced by the cut generating function πp,q

f,s1,s2
(·)

at the root for a given instance I ∈ I, where s1, s2 are given by the mappings (6) based on µ1,µ2,
and f is determined by I . Then, the pseudo-dimension is given by

Pdim
({
T (·,µ) : I → [0, B] | µ ∈ [0, 1]2

})
= O

(
n2 log((m+ n)ϱ)

)
.

4 k-dimensional cut generating functions

In this section, we present a family of k-dimensional cut generating functions, for arbitrary k ≥ 2,
that we believe satisfy the three criteria laid out in the Introduction, i.e., cutting planes can be obtained
efficiently from them (Theorem 4.2 below), sample complexity (pseudo-dimension) bounds can
be established rigorously (Theorem 4.4 below), and they result in smaller tree sizes compared to
traditional cutting planes (Section 6). We note that this particular family of cut generating functions
has not been studied previously in the literature (from a theory or computational perspective), though
they are a subclass of cut generating functions studied in [Basu and Sankaranarayanan, 2019].

4.1 The construction

Recall that m is the total number of constraints in the original integer program (1), and k ≤ m is the
number of rows from the simplex tableaux used to derive the cutting planes. For any f ∈ [0, 1)k\{0}
and µ = [µ1, . . . ,µk]

T ∈ ∆τ
k with a universal large constant τ ≥ 2m, let

a0 =

∑k
i=1 µie

i∑k
i=1 µifi

, a1 =
1

f1 − 1
e1, ..., ak =

1

fk − 1
ek ∈ Rk,

where ei denotes the i-th standard basis vector in Rk. Define πf ,µ : Rk → R by

πf ,µ(r) := min
z∈Zk

max
i=0,...,k

⟨ai, r+ z⟩.

Using well-known results from cut generating function theory, it can be shown that πf ,µ satisfies the
three conditions in Section 2.1 to qualify as a cut generating function; see, for example, the analysis
in [Basu and Sankaranarayanan, 2019]. It is noteworthy that for each µ = ei with i ∈ {1, . . . , k},
the function πf ,µ is equivalent to the one-dimensional GMI function GMIfi , defined in Section 2.1.

7

(a) (f ,µ) =
([

0.2
0.7

]
,

[
0.3
0.7

])
(b) (f ,µ) =

([
0.4
0.5

]
,

[
0.5
0.5

])
(c) (f ,µ) =

([
0.3
0.6

]
,

[
0.8
0.2

])
Figure 3: Three examples of the 2-dimensional cut generating functions πf ,µ on [0, 1)2.

Remark 4.1. As we pointed out in the introduction, both families of cut generating functions
considered in this paper are extreme for the pure integer infinite relaxation problem [Conforti et al.,
2014, Gomory and Johnson, 1972a,b]. The first family, described in Section 3.1, was proved to be
extreme in Gomory and Johnson’s original paper [Gomory and Johnson, 2003]. For k-dimensional
CGFs, they are minimal valid functions as they are the trivial lifting of the gauge function of maximal(
f + Zk

)
-free convex sets with the covering property [Basu et al., 2013a, Conforti et al., 2014,

Averkov and Basu, 2015]. Then, these k-dimensional CGFs are extreme by the (k+1)-slope theorem
[Basu et al., 2013b].

4.2 Computation and pseudo-dimension

Algorithm 1 shows how to compute the function values πf ,µ(r) (the cutting plane coefficients),
in time that is linear in the dimension k. We then expose an important piecewise structure of the
corresponding family of cutting planes for (2) in Proposition 4.3. This piecewise structure is the key
to establishing upper bounds on the pseudo-dimension (recall Lemma 2.1) for learning the optimal
cut generating function from this family in Theorem 4.4.

Algorithm 1 Computation of πf ,µ(r)

1: Input: k ∈ N+ ∩ [2,∞), f ∈ [0, 1)k\{0}, µ = [µ1, . . . ,µk]
T ∈ ∆τ

k, r ∈ Rk

2: Output: πf ,µ(r)
3: r̄← r− ⌊r⌋ −

∑k
i=1 1(ri ≥ fi + ⌊ri⌋)ei ▷ 1(·) is the indicator function

4: p←
∑k

i=1 µir̄i
5: q ←

∑k
i=1 µifi

6: s←
[r̄1
f1−1 , . . . ,

r̄k
fk−1

]
7: a← max {si : i ∈ {1, . . . , k}}
8: i∗ ← argmax {si : i ∈ {1, . . . , k}}
9: b← max {si : i ∈ {1, . . . , k}\{i∗}}

10: λ∗ ← r̄i∗q−(fi∗−1)p
µi∗ (fi∗−1)−q

11: πf ,µ(r)← min
{
max

{
p+µi∗⌈λ∗⌉

q , r̄i∗+⌈λ∗⌉
fi∗−1 , b

}
,max

{
p+µi∗⌊λ∗⌋

q , r̄i∗+⌊λ∗⌋
fi∗−1 , b

}
,max

{
p
q , a
}}

Theorem 4.2. For any f ∈ [0, 1)k\{0}, τ ≥ 2k, and µ ∈ ∆τ
k, Algorithm 1 computes πf ,µ(r) in

O(k) time. Therefore, the cutting plane obtained from πf ,µ can be computed in O(kn) time.

Proposition 4.3. For any fixed k ∈ Z ∩ [2,+∞], f ∈ [0, 1)k\{0}, r1, . . . , rn ∈ Rk, and τ ≥ 2k,
there exists a decomposition of ∆τ

k obtained by at most 2n(τ +3)2 hyperplanes such that within each
region, each coordinate of the cutting plane

[
πf ,µ(r

1), . . . , πf ,µ(r
n)
]T

is a fixed rational function
given by the quotient of two affine linear functions of µ, where the denominator is always a fixed
positive function of µ.

8

Theorem 4.4. For any fixed k ∈ Z∩ [2,+∞], let T k(I,µ) denote the tree size of the branch-and-cut
algorithm after adding the cut induced by πf ,µ at the root for a given instance I ∈ I, where f is
determined by I . Then, the pseudo-dimension is given by

Pdim
({
T k(·,µ) : I → [0, B] | µ ∈ ∆τ

k

})
= O

(
kn2 log((m+ n)ϱ) + k2 log(nτ)

)
.

5 Learnability of instance-dependent cut generating functions

The authors in [Cheng et al., 2024] studied the learnability of neural networks that select instance-
dependent algorithms for any computational problem, as opposed to selecting a single algorithm that
has the best expected performance, and applied this to the problem of selecting from the Chvatal-
Gomory cutting plane family. Inspired by their work, this section discusses employing neural
networks to dynamically select the most suitable cut generating function from a given family, tailored
to each instance, as opposed to selecting a single cut generating function that has the best expected
performance overall (as was done in Sections 3 and 4). In other words, given access to samples from
the instance distribution, we want to learn the parameters of the optimal neural network that will map
instances to instance specific cut generating functions.

We define a neural network φℓ : Rd × RW → Rℓ consisting of a fully connected architecture with
ReLU activations, L layers, W parameters, d input units, ℓ output units, and U units in total. An
encoder function Enc : I → Rd is employed to transform instances I = (A,b, c) ∈ I into suitable
neural network inputs, where a straightforward choice for Enc could be the flattening of I into a
vector, although more complex encoding strategies can be adopted to capture additional structural
information about the instances. The primary goal is to input the encoded instance Enc(I) into the
neural network, which then predicts parameters for the cut generating function that were discussed in
Section 3 and Section 4. This idea is supported by empirical evidence of performance improvements
when enumerating cutting plane parameters in an instance-dependent manner, as demonstrated in
Table 1. A direct application of the main theorem in [Cheng et al., 2024] yields the following results:
Theorem 5.1. Let h, hk : I × RW → [0, B] denote the branch-and-cut tree size after adding the
cutting planes induced by corresponding cut generating functions, using parameters determined by
the neural network described above. Formally, they are defined as h(I,w) = T (I, φ2(Enc(I),w))
and hk(I,w) = T k(I, φk(Enc(I),w)), where T and T k are the tree size functions defined in
Theorems 3.2 and 4.4 respectively. Then the pseudo-dimension of these two learning problems have
the following upper bounds:

Pdim
({
h(·,w) : w ∈ RW

})
= O

(
LW log(U + 2) + n2W log((m+ n)ϱ)

)
,

Pdim
({
hk(·,w) : w ∈ RW

})
= O

(
LW log(U + k) + kW log(nτ) + n2W log((m+ n)ϱ)

)
.

6 Numerical experiments

Setup. We conducted numerical experiments to evaluate the performance of both one-dimensional
and k-dimensional cut generating functions, as discussed in Section 3 and Section 4, across various
distributions. The performance of these functions was compared to the GMI cut. The parameters for
the cut generating functions were selected to minimize the average branch-and-cut tree size on the
training set of size 100, and these parameters were then applied to the test set of size 100 to evaluate
performance. All results presented in Table 1 are based on the test set, except for the last column. The
experiments were run on a Linux machine equipped with a 12-core Intel i7-12700F CPU and 32GB
of RAM. We solved the integer programming problems using Gurobi 11.0.1 [Gurobi Optimization,
LLC, 2023], with default cuts, heuristics, and presolve settings turned off. The code and data used in
all experiments are available at https://github.com/Hongyu-Cheng/LearnCGF.

Problem descriptions. We considered two types of problems: Knapsack and Packing.

1. Knapsack(N,K): Multiple knapsack problem with N items and K knapsacks. Instances
were generated using the so-called “Chvátal distribution” from [Balcan et al., 2021b]. Note
that there are some trivial upper bound constraints on the variables that contribute to the
simplex tableaux. Even so, the table has n/a entries for the k-row cut strategies for the
1-knapsack problem, as there are not enough fractional rows to generate multi-row cuts for
many instances.

9

https://github.com/Hongyu-Cheng/LearnCGF

2. Packing(m,n): Packing problem with m constraints and n variables. We note that the
knapsack problem can be viewed as a special case of the packing problem with binary
variables. The packing instances were generated using the distribution from [Tang et al.,
2020].

Cutting plane strategies. The following cutting plane strategies were evaluated and compared:

1. GMI: Classical Gomory’s mixed integer cut as defined in Section 2.1.

2. 1-row cut: Generated using the one-dimensional cut generating function defined in Section 3.
We fixed p = q = 2 and performed a grid search with a step size of 0.1 to select the best
parameter µ ∈ {0, 0.1, . . . , 0.9, 1}2.

3. k-row cut: Generated using πf ,µ defined in Section 4 with k ∈ {2, 5, 10}. We uniformly
sampled 121 different µ on the simplex ∆∞

k (see [Gordon-Rodriguez et al., 2020, Smith
and Tromble, 2004]), and selected the best parameter based on the training set.

4. Best 1-row cut: The average tree size using the best parameter for each instance on the
training set. This is not a practical strategy but indicates the strength of the cut generating
functions and the potential for instance-dependent cut generating using neural networks.

Since we aim to demonstrate that cut generating functions can produce stronger cuts than classical
cutting planes, we did not specifically consider which row to select to generate the cut. This problem,
while important in integer programming literature, is outside the scope of this paper. All cuts are
generated from the first row of the simplex tableau with a non-integer right-hand side, and the k-row
cut is generated from the first k such rows. Also, to select the best parameters based on samples (i.e.,
solve the ERM problem), we used a simple grid search and optimized through enumeration, since
the branch-and-cut tree size is a highly sophisticated function of the added cutting planes at the root
node.

Numerical results. As shown in Table 1, the two cut generating function families considered in this
paper reduce the size of the branch-and-cut tree compared to the GMI cut. Although the improvement
over the GMI cut on the test set is less obvious for the packing problem, the last column in the table
shows that there are still cutting planes that perform much better for each instance. Moreover, all
the multi-row cuts on the Knapsack(30, 3) problems outperform the best 1-row cut, indicating that
multi-row cuts can sometimes achieve performance levels that single-row cuts cannot reach.

Table 1: Average tree sizes on 100 instances, after adding a single type of cut at the root.
Problem Type GMI 1-row cut 2-row cut 5-row cut 10-row cut best 1-row cut

Knapsack(20, 1) 158.88 87.0 n/a n/a n/a 35.54
Knapsack(30, 1) 832.16 58.84 n/a n/a n/a 13.98
Knapsack(50, 1) 3543.91 277.01 n/a n/a n/a 125.85

Knapsack(16, 2) 399.86 316.8 178.68 234.09 203.66 102.07
Knapsack(30, 3) 4963.91 4311.04 3430.37 2817.55 2822.37 3561.36

Packing(15, 30) 389.67 367.48 376.86 401.87 391.44 303.72
Packing(20, 40) 1200.55 1123.9 1214.92 1113.82 1185.26 738.58

Acknowledgments and Disclosure of Funding

Both authors gratefully acknowledge support from Air Force Office of Scientific Research (AFOSR)
grant FA95502010341 and National Science Foundation (NSF) grant CCF2006587. The first author
also acknowledges support from the Johns Hopkins University Mathematical Institute for Data Science
(MINDS) Fellowship, the Duncan Award 24-33, and the Rufus P. Isaacs Graduate Fellowship.

10

References
Temitayo Ajayi, Seyedmohammadhossein Hosseinian, Andrew J Schaefer, and Clifton D Fuller.

Combination chemotherapy optimization with discrete dosing. INFORMS Journal on Computing,
36(2):434–455, 2024.

Martin Anthony, Peter L Bartlett, Peter L Bartlett, et al. Neural network learning: Theoretical
foundations, volume 9. Cambridge: Cambridge University Press, 1999.

Bruce C Arntzen, Gerald G Brown, Terry P Harrison, and Linda L Trafton. Global supply chain
management at Digital Equipment Corporation. Interfaces, 25:69–93, 1995.

Gennadiy Averkov and Amitabh Basu. Lifting properties of maximal lattice-free polyhedra. Mathe-
matical Programming, 154:81–111, 2015.

Egon Balas. Intersection cuts – a new type of cutting planes for integer programming. Operations
Research, 19:19–39, 1971.

Maria-Florina Balcan. Data-driven algirithm design. In Tim Roughgarden, editor, Beyond the Worst
Case Analysis of Algorithms. Cambridge University Press, 2020.

Maria-Florina Balcan, Travis Dick, Tuomas Sandholm, and Ellen Vitercik. Learning to branch. In
International conference on machine learning, pages 344–353. PMLR, 2018.

Maria-Florina Balcan, Dan DeBlasio, Travis Dick, Carl Kingsford, Tuomas Sandholm, and Ellen
Vitercik. How much data is sufficient to learn high-performing algorithms? generalization
guarantees for data-driven algorithm design. In Proceedings of the 53rd Annual ACM SIGACT
Symposium on Theory of Computing, pages 919–932, 2021a.

Maria-Florina Balcan, Siddharth Prasad, Tuomas Sandholm, and Ellen Vitercik. Improved sample
complexity bounds for branch-and-cut. arXiv preprint arXiv:2111.11207, 2021b.

Maria-Florina F Balcan, Siddharth Prasad, Tuomas Sandholm, and Ellen Vitercik. Sample com-
plexity of tree search configuration: Cutting planes and beyond. Advances in Neural Information
Processing Systems, 34:4015–4027, 2021c.

Maria-Florina F Balcan, Siddharth Prasad, Tuomas Sandholm, and Ellen Vitercik. Structural anal-
ysis of branch-and-cut and the learnability of gomory mixed integer cuts. Advances in Neural
Information Processing Systems, 35:33890–33903, 2022.

Peter Bartlett, Vitaly Maiorov, and Ron Meir. Almost linear vc dimension bounds for piecewise
polynomial networks. Advances in neural information processing systems, 11, 1998.

Peter L Bartlett, Nick Harvey, Christopher Liaw, and Abbas Mehrabian. Nearly-tight vc-dimension
and pseudodimension bounds for piecewise linear neural networks. The Journal of Machine
Learning Research, 20(1):2285–2301, 2019.

Amitabh Basu and Joseph Paat. Operations that preserve the covering property of the lifting region.
SIAM Journal on Optimization, 25(4):2313–2333, 2015.

Amitabh Basu and Sriram Sankaranarayanan. Can cut-generating functions be good and efficient?
SIAM Journal on Optimization, 29(2):1190–1210, 2019.

Amitabh Basu, Manoel Campêlo, Michele Conforti, Gérard Cornuéjols, and Giacomo Zambelli.
Unique lifting of integer variables in minimal inequalities. Mathematical Programming, 141:
561–576, 2013a.

Amitabh Basu, Robert Hildebrand, Matthias Koppe, and Marco Molinaro. A (k+1)-slope theorem
for the k-dimensional infinite group relaxation. SIAM Journal on Optimization, 23(2):1021–1040,
2013b.

Dimitris Bertsimas and Jack Dunn. Optimal classification trees. Machine Learning, 106:1039–1082,
2017.

11

Dimitris Bertsimas, Christopher Darnell, and Robert Soucy. Portfolio construction through mixed
integer programming at Grantham, Mayo, van Otterloo and Company. Interfaces, 29:49–66, 1999.

Dimitris Bertsimas, Angela King, and Rahul Mazumder. Best subset selection via a modern opti-
mization lens. The Annals of Statistics, pages 813–852, 2016.

Rui Chen, Sanjeeb Dash, and Tian Gao. Integer programming for causal structure learning in the
presence of latent variables. In International Conference on Machine Learning (ICML), pages
1550–1560. PMLR, 2021.

Hongyu Cheng, Sammy Khalife, Barbara Fiedorowicz, and Amitabh Basu. Data-driven algorithm
design using neural networks with applications to branch-and-cut. arXiv preprint arXiv:2402.02328,
2024.

Michele Conforti, Gérard Cornuéjols, and Giacomo Zambelli. Integer programming, volume 271.
Springer, 2014.

Sanjeeb Dash, Oktay Gunluk, and Dennis Wei. Boolean decision rules via column generation.
Advances in neural information processing systems (NeurIPS), 31, 2018.

Santanu S Dey and Laurence A Wolsey. Two row mixed-integer cuts via lifting. Mathematical
Programming, 124:143–174, 2010.

Ralph E Gomory. Outline of an algorithm for integer solutions to linear programs. Bulletin of the
American Mathematical Society, 64(5):275–278, 1958.

Ralph E. Gomory and Ellis L. Johnson. Some continuous functions related to corner polyhedra, I.
Mathematical Programming, 3:23–85, 1972a. ISSN 0025-5610. doi: 10.1007/BF01585008. URL
http://dx.doi.org/10.1007/BF01585008.

Ralph E. Gomory and Ellis L. Johnson. Some continuous functions related to corner polyhedra, II.
Mathematical Programming, 3:359–389, 1972b. ISSN 0025-5610. doi: 10.1007/BF01585008.
URL http://dx.doi.org/10.1007/BF01585008.

Ralph E Gomory and Ellis L Johnson. T-space and cutting planes. Mathematical Programming, 96:
341–375, 2003.

Ralph Edward Gomory. An algorithm for the mixed integer problem. Rand Corporation California,
1960.

Elliott Gordon-Rodriguez, Gabriel Loaiza-Ganem, and John Cunningham. The continuous categorical:
a novel simplex-valued exponential family. In International Conference on Machine Learning,
pages 3637–3647. PMLR, 2020.

Ignacio E Grossmann and Zdravko Kravanja. Mixed-integer nonlinear programming techniques for
process systems engineering. Computers & Chemical Engineering, 19:189–204, 1995.

Ivan Gryffenberg, Jean L Lausberg, Willem J Smit, Stephanus Uys, Sally Botha, F Rauten Hofmeyr,
Ruppert P Nicolay, Willie L van der Merwe, and Gysbert J Wessels. Guns or butter: decision
support for determining the size and shape of South African defense force. Interfaces, 27:7–28,
1997.

Rishi Gupta and Tim Roughgarden. A pac approach to application-specific algorithm selection. In
Proceedings of the 2016 ACM Conference on Innovations in Theoretical Computer Science, pages
123–134, 2016.

Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2023. URL https://www.
gurobi.com.

Christopher A Hane, Cynthia Barnhart, Ellis L Johnson, Roy E Marsten, George L Nemhauser, and
Gabriele Sigismondi. The fleet assignment problem: Solving a large-scale integer program. 70:
211–232, 1995.

Albert Xin Jiang, Manish Jain, and Milind Tambe. Computational game theory for security and
sustainability. Journal of Information Processing, 22(2):176–185, 2014.

12

http://dx.doi.org/10.1007/BF01585008
http://dx.doi.org/10.1007/BF01585008
https://www.gurobi.com
https://www.gurobi.com

Dmitry Malioutov, Sanjeeb Dash, and Dennis Wei. Heavy sets with applications to interpretable
machine learning diagnostics. In International Conference on Artificial Intelligence and Statistics
(AISTATS), pages 5918–5930. PMLR, 2023.

Jiri Matousek. Geometric discrepancy: An illustrated guide, volume 18. Springer Science & Business
Media, 1999.

Michael Mitzenmacher and Sergei Vassilvitskii. Algorithms with predictions. Communications of
the ACM, 65(7):33–35, 2022.

George L Nemhauser and Laurence A Wolsey. Integer and combinatorial optimization, volume 18.
Wiley New York, 1988.

Laurent Poirrier. Multi-row approaches to cutting plane generation. PhD thesis, University of Liege,
Belgium, 2014.

John R Rice. The algorithm selection problem. In Advances in computers, volume 15, pages 65–118.
Elsevier, 1976.

Norbert Sauer. On the density of families of sets. Journal of Combinatorial Theory, Series A, 13(1):
145–147, 1972.

Lara Scavuzzo, Karen Aardal, Andrea Lodi, and Neil Yorke-Smith. Machine learning augmented
branch and bound for mixed integer linear programming. arXiv preprint arXiv:2402.05501, 2024.

Alexander Schrijver. Theory of Linear and Integer Programming. John Wiley and Sons, New York,
1986.

Saharon Shelah. A combinatorial problem; stability and order for models and theories in infinitary
languages. Pacific Journal of Mathematics, 41(1):247–261, 1972.

Gopal P Sinha, BS Chandrasekaran, Niloy Mitter, Goutam Dutta, Sudhir B Singh, Aditya Roy
Choudhury, and PN Roy. Strategic and operational management with optimization at Tata Steel.
Interfaces, 25:6–19, 1995.

Noah A Smith and Roy W Tromble. Sampling uniformly from the unit simplex. Johns Hopkins
University, Tech. Rep, 29, 2004.

Eduardo D Sontag et al. Vc dimension of neural networks. NATO ASI Series F Computer and Systems
Sciences, 168:69–96, 1998.

Richard P Stanley et al. An introduction to hyperplane arrangements. Geometric combinatorics, 13
(389-496):24, 2004.

Yunhao Tang, Shipra Agrawal, and Yuri Faenza. Reinforcement learning for integer programming:
Learning to cut. In International conference on machine learning, pages 9367–9376. PMLR, 2020.

Silviya Valeva, Guodong Pang, Andrew J Schaefer, and Gilles Clermont. Acuity-based allocation
of icu-downstream beds with flexible staffing. INFORMS Journal on Computing, 35(2):403–422,
2023.

Dennis Wei, Sanjeeb Dash, Tian Gao, and Oktay Gunluk. Generalized linear rule models. In
International Conference on Machine Learning (ICML), pages 6687–6696. PMLR, 2019.

13

A Auxiliary Lemmas

Lemma A.1 (Theorem 5.5 in [Matousek, 1999], Lemma 17 in [Bartlett et al., 2019], Lemma 3.3
in [Anthony et al., 1999], Proposition 2.4 in [Stanley et al., 2004]). Let ϕ1, . . . , ϕt : Rd → R be t
multivariate polynomials of degree at most a with t ≥ d and a ≥ 1. Then

|{(sgn(ϕ1(µ)), . . . , sgn(ϕt(µ))) : µ ∈ Rd}| ≤

{(
et
d

)d
, if a = 1,

2
(
2eta
d

)d
, if a ≥ 2,

where e is the base of the natural logarithm.

Proof of Lemma 2.1. For any t ∈ N+∩ [d,+∞) and (I1, s1), . . . , (It, st) ∈ I ×R, there are at most
Γt rational functions, denote as p1

q1
, . . . , pΓt

qΓt
, where each pi is a multivariate polynomial of degree at

most a on µ ∈ P ⊆ Rd, and each qi > 0 on P . For any µ within each of these decomposed regions,
the vector [h(I1,µ), . . . , h(It,µ)]T is invariant. The number of the decomposed regions is given by∣∣∣∣{(sgn(p1(µ)q1(µ)

)
, . . . , sgn

(
pΓt(µ)

qΓt(µ)

))
: µ ∈ P

}∣∣∣∣
≤
∣∣{(sgn (p1(µ))) , . . . , sgn (pΓt(µ))) : µ ∈ Rd

}∣∣
≤2
(
2eΓta

d

)d

,

where the last inequality holds by Lemma A.1. We denote these regions as Q1, . . . , QK̃ , where

K̃ ≤ 2
(
2eΓta

d

)d
. Then we have,

|{(sgn(h(I1,µ)− s1), . . . , sgn(h(It,µ)− st)) : µ ∈ P}|

≤
K̃∑
i=1

|{(sgn(h(I1,µ)− s1), . . . , sgn(h(It,µ)− st)) : µ ∈ Qi}|

=

K̃∑
i=1

1

≤2
(
2eΓta

d

)d

,

where the equality holds since each h(Ij ,µ)− sj is an invariant constant for µ varying in any fixed
Qi. Therefore, the pseudo-dimension is the largest t such that

2t ≤ 2

(
2eΓta

d

)d

,

which is bounded by the largest t such that

1

2
(t− 1) ≤ d log

(
2eΓta

d

)
≤ d

(
2eΓta/d

8eΓa
+ log (8Γa)

)
=

1

4
t+ d log (8Γa) ,

where the second inequality holds because log(x) ≤ x
c + log

(
c
e

)
for positive reals x and c. Then it

follows that Pdim(H) = O(d log(Γa)).

Lemma A.2 (Theorem 4.5 in Balcan et al. [2022]). For any fixed I = (A,b, c) ∈ I, there are at
most O

(
(14)n(m+ 2n)3n

2

ϱ5n
2
)

degree 5 polynomials decomposing the cutting plane space Rn+1

into regions such that the size of the branch-and-cut tree after adding the cut αTx ≤ β at the root
remain the same over all (α, β) within a given decomposed region.
Lemma A.3 ([Tang et al., 2020, Conforti et al., 2014]). For every A ∈ Zm×n,b ∈
Zm, there exists an affine linear transformation that maps a cutting plane derived from a
cut generating function for the standard form integer linear programming feasible region
{(x, s) ∈ Rn × Rm : Ax+ s = b,x, s ≥ 0,x ∈ Zn, s ∈ Zm} into the corresponding cutting plane
for the corresponding canonical form feasible region {x ∈ Rn : Ax ≤ b,x ≥ 0,x ∈ Zn}.

14

Proof. Let aTxx + aTs s ≥ 1 be a cutting plane for the standard form integer linear programming
problem. For any feasible x and s, we have s = b−Ax. Substituting into the inequality, we obtain
the equivalent cutting plane

(
aTsA− aTx

)
x ≤ aTs b− 1 in the canonical form problem. Then it’s clear

that [
α(a)
β(a)

]
=

[
ATas − ax
bTas − 1

]
=

[
−I AT

0 bT

] [
ax
as

]
−
[
0
1

]

is affine linear on a =

[
ax
as

]
since A,b are considered to be fixed.

B Proofs for results in Section 3

Theorem 6 in [Gomory and Johnson, 2003] yields the following lemma.

Lemma B.1. Consider fixed f ∈ (0, 1) and p, q ∈ [2,+∞) ∩ N. πp,q
f,s1,s2

(·) is a valid cut generating
function, i.e., it satisfies the three conditions outlined in Section 2.1, if s1 and s2 are chosen from
Dp,q

f , which is established as follows:

Dp,q
f =

[
p+q−1

(p+q−1)f−p
, 1
f−1

]
×

[
1
f
, p+q−1
q−(p+q−1)(1−f)

]
if (p+ q − 1)f − p < 0 and (p+ q − 1)(1− f)− q < 0,[

p+q−1
(p+q−1)f−p

, 1
f−1

]
×

[
1
f
,+∞

)
if (p+ q − 1)f − p < 0 and (p+ q − 1)(1− f)− q ≥ 0,(

−∞, 1
f−1

]
×

[
1
f
, p+q−1
q−(p+q−1)(1−f)

]
if (p+ q − 1)f − p ≥ 0 and (p+ q − 1)(1− f)− q < 0,(

−∞, 1
f−1

]
×

[
1
f
,+∞

)
if (p+ q − 1)f − p ≥ 0 and (p+ q − 1)(1− f)− q ≥ 0.

(a) π3,3
0.6,−10,3(r) (b) π3,3

0.6,−7,4.5(r) (c) π3,3
0.6,−4,3(r)

Figure 4: For fixed f ∈ (0, 1), p, q ∈ [2,+∞) ∩N, the intersection points of πp,q
f,s1,s2

(·) and GMIf (·)
are fixed.

Lemma B.2. For any fixed f ∈ (0, 1), p, q ∈ [2,+∞)∩N, and any (s1, s2) ∈ Dp,q
f , the intersection

points of πp,q
f,s1,s2

(·) and GMIf (·) are fixed. More specifically, for any (s1, s2) ∈ Dp,q
f with s1 ̸= 1

f−1

and s2 ̸= 1
f , the set of intersection points is explicitly given by{(

if

p
,
i

p

)
: i = 0, . . . , p

}
∪
{(

1− j(1− f)
q

,
j

q

)
: j = 0, . . . , q − 1

}
∪
{(

if

p− 1
,

i

p− 1

)
: i = 1, . . . , p− 2

}
∪
{(

1− j(1− f)
q − 1

,
j

q − 1

)
: j = 1, . . . , q − 2

}
,

and these intersection points decompose the interval [0, 1] into 2(p+ q− 2) subintervals given by the
following break points in ascending order:

0,
f

p
,

f

p− 1
, . . . ,

(p− 2)f

p
,
(p− 2)f

p− 1
,
(p− 1)f

p
, f, 1− (q − 1)(1− f)

q
, . . . , 1.

15

Proof of Lemma B.2. Let s1 < 1
f−1 and s2 > 1

f be any valid slopes. A direct calculation shows that
the intersection points of πp,q

f,s1,s2
(r) and GMIf (r) within r ∈ [0, 1] are given by:

ϕ1i (r) = GMIf (r) ⇐⇒ s1r + i
1− fs1

p
=
r

f
⇐⇒ r = i

f

p
,

ϕ2i (r) = GMIf (r) ⇐⇒ s2r + (i− 1)
1− fs2
p− 1

=
r

f
⇐⇒ r = (i− 1)

f

p− 1
,

ψ1
j (r) = GMIf (r) ⇐⇒ s1(r − 1) + (j − 1)

1 + (1− f)s1
q − 1

=
1− r
1− f

⇐⇒ r = 1− (j − 1)
1− f
q − 1

,

ψ2
j (r) = GMIf (r) ⇐⇒ s2(r − 1) + j

1 + (1− f)s2
q

=
1− r
1− f

⇐⇒ r = 1− j 1− f
q

,

where i ∈ {1, . . . , p} and j ∈ {1, . . . , q − 1}. Eliminating duplicate points and observing a
maximum of 2p+ 2q − 3 intersection points in nondegenerate cases, the lemma statement regarding
the intersection points is confirmed. The interval decomposition is easy to be verified by sorting these
points along their first coordinates.

Proof of Proposition 3.1. Given any fixed r1, . . . , rn ∈ [0, 1), by Lemma B.2, each rj , j = 1, . . . , n,
must lie in one of the intervals independent of s1, s2 (if rj is on the boundary of any of these intervals,
then πp,q

f,s1,s2
(rj) is a constant). It is not hard to see from the construction and Lemma B.2 that within

each interval’s interior, there is exactly one nondifferentiable point of πp,q
f,s1,s2

(·) in the form of the
quotient of two affine linear functions of s1 and s2. For instance,

ϕ1i (r) = ϕ2i (r) ⇐⇒ s1r+ i
1− fs1

p
= s2r+(i−1)

1− fs2
p− 1

⇐⇒ r =
(i− 1) 1−fs2

p−1 − i
1−fs1

p

s1 − s2
.

We denote these corresponding nondifferentiable points in the form f1(s1,s2)
g1(s1,s2)

, . . . , fn(s1,s2)gn(s1,s2)
, where fi

and gi are affine linear functions of s1 and s2. We introduce the following n hyperplanes of s1 and
s2:

{(s1, s2) ∈ Dp,q
f : fi(s1, s2) = rigi(s1, s2)}, i = 1, . . . , n.

Then, within each region decomposed by these hyperplanes, each πp,q
f,s1,s2

(rj) is a fixed affine linear
function of (s1, s2).

Figure 5: Illustration of the proof of Theorem 3.2.

Proof of Theorem 3.2. Lemma A.2 states that there are at most Γ = O
(
(14)n(m+ 2n)3n

2

ϱ5n
2
)

degree 5 polynomials decomposing the cutting plane (α, β) space Rn+1 such that the branch-and-cut
tree size after adding the corresponding cutting plane at the root is the same within each decomposed
region. We denote these degree 5 polynomials as ξ1, . . . , ξΓ. In other words, for any (α, β) ∈ Rn+1

such that the vector (
sgn

(
ξ1

([
α
β

]))
, . . . , sgn

(
ξΓ

([
α
β

])))

16

remains constant, the branch-and-cut tree size after adding αTx ≤ β at the root is invariant.

Proposition 3.1 provides a decomposition of the (s1, s2) space Dp,q
f by n hyperplanes. Consequently,

there exists a corresponding decomposition of the µ space [0, 1]2 by n hyperplanes as well, since µ is
a fixed affine linear function of (s1, s2) as specified by the mapping (6). We denote these decomposed
regions by Q1, . . . , QK ⊆ [0, 1]2, where K = O(n2) due to Lemma A.1. Fix a region Qi for any
i ∈ {1, . . . ,K}, the mapping (6), Proposition 3.1 and Lemma A.3 give three different fixed affine
transformations from µ to a cutting plane for the canonical linear programming problem. We denote
the corresponding cutting plane as [

α(µ)
β(µ)

]
= g(µ) ∈ Rn+1,

where gi, i ∈ {1, . . . , n+ 1}, are affine linear functions of µ. Notice that(
sgn

(
ξ1

([
α(µ)
β(µ)

]))
, . . . , sgn

(
ξΓ

([
α(µ)
β(µ)

])))
= (sgn (ξ1(g(µ)) , . . . , sgn (ξΓ(g(µ))) ,

then there are Γ degree-5 polynomials

(ξ1 ◦ g) , . . . , (ξΓ ◦ g)

over [0, 1]2 such that when they have invariant sign patterns, the branch-and-cut tree size after adding
the corresponding cutting plane at the root is the same. Thus, there are O (KΓ) such degree 5
polynomials in total. Then the pseudo-dimension result follows from Lemma 2.1.

C Proofs for results in Section 4

Proof of Theorem 4.2. The O (k) and O (nk) complexity of Algorithm 1 is straightforward to verify.
We now prove the correctness of the algorithm. Given the vectors a0,a1, . . . ,ak ∈ Rk defined in
Section 4.1, notice that the set{

x ∈ Rk : ⟨a0,x⟩ ≤ 1, ⟨a1,x⟩ ≤ 1, . . . , ⟨ak,x⟩ ≤ 1
}
,

=(f − 1) +

{
x ∈ Rk :

k∑
i=1

µixi ≤ 1,x1 ≥ 0, . . . ,xk ≥ 0

}
:=G(f ,µ)

is a translation of a k-dimensional simplex. From the literature on cut generating functions, there
exists a so-called lifting region (refer to [Dey and Wolsey, 2010, Basu and Paat, 2015, Basu et al.,
2013a]), R ⊆ G(f ,µ), such that for any r ∈ Rk, there exists a r̃ ∈ R ∩

(
f + Zk

)
such that

πf ,µ(r) = max
j=0,...,k

⟨ai, r̃⟩.

Theorem 2.2 in [Basu and Sankaranarayanan, 2019] implies that

R ⊆ G(f ,µ) ⊆ ∪ki=1

(
[f1 − 1, f1]× · · · × [fk − 1, fk] + {λei : λ ∈ Z+}

)
⊆ ∪ki=1

(
[f1 − 1, f1]× · · · × [fk − 1, fk] +

{
λei : λ ∈ Z

})
then for any given r ∈ Rk, we take w = ⌊r⌋+

∑k
i=1 1(ri ≥ fi + ⌊ri⌋)ei ∈ Zk, which is an integer

vector such that r̄ := r−w ∈ [f1 − 1, f1]× · · · × [fk − 1, fk]. Therefore,

πf ,µ(r) = min
z∈Zn

max
j=0,...,k

⟨aj , r+ z⟩

= min
z∈Zn

max
j=0,...,k

⟨aj , r̄+ z⟩

= min
i∈{1,...,k}

min
λ∈Z

max
j=0,...,k

⟨aj , r̄+ λei⟩

= min
i∈{1,...,k}

min
λ∈Z+

max
j=0,...,k

⟨aj , r̄+ λei⟩.

17

Notice that for any i ∈ {1, . . . , k},
max

j=0,...,k
⟨aj , r̄+ λei⟩

=max

{
⟨a0, r̄+ λei⟩, r̄1

f1 − 1
, . . . ,

r̄i−1

fi−1 − 1
,
r̄i + λ

fi − 1
,

r̄i+1

fi+1 − 1
, . . . ,

r̄k
fk − 1

}
=max

{∑k
j=1 µj r̄j∑k
j=1 µjfj

+
µi∑k

j=1 µjfj
λ,

r̄i
fi − 1

+
1

fi − 1
λ,max

{
r̄j

fj − 1
: j ∈ [k]\{i}

}}
(7)

is a one-dimensional piecewise linear function in λ with at most three pieces (relaxing the fea-
sible region of λ from Z to R). Using the notation in Algorithm 1, let p =

∑k
j=1 µj r̄j , q =∑k

j=1 µjfj ≥ 1
τ

∑k
j=1 fj > 0 (since f ̸= 0), a = max

{
r̄j

fj−1 : j ∈ {1, . . . , k}
}

, i∗ =

argmax
{

r̄j
fj−1 : j ∈ {1, . . . , k}

}
, b = max

{
r̄j

fj−1 : j ∈ {1, . . . , k}\{i∗}
}

. Then for i ∈
{1, . . . , k}, there are two cases:

Case 1: i ̸= i∗. In this case, notice that for λ ≥ 0 we have

a =
r̄i∗

fi∗ − 1
≥ r̄i

fi − 1
≥ r̄i + λ

fi − 1

since fi − 1 < 0. Then,

max
j=0,...,k

⟨aj , r̄+ λei⟩ = max

{
p+ µiλ

q
,
r̄i + λ

fi − 1
, a

}
= max

{
p+ µiλ

q
, a

}
is a nondecreasing function of λ over [0,+∞). Therefore,

min
λ∈Z+

max

{
p+ µiλ

q
, a

}
= min

λ∈R+

max

{
p+ µiλ

q
, a

}
= max

{
p

q
, a

}
.

Case 2: i = i∗. In this case, we can rewrite (7) as

max
j=0,...,k

⟨aj , r̄+ λei⟩ = max

{
p+ µi∗λ

q
,
r̄i∗ + λ

fi∗ − 1
, b

}
.

The slopes of these three affine linear functions are µi∗
q ≥

1
τq > 0, 1

fi∗−1 < 0, and 0 respectively.

The intersection point of the graphs of the first two functions is given by J =
(
λ∗, r̄i∗+λ∗

fi∗−1

)
, where

λ∗ = qr̄i∗−p(fi∗−1)
(fi∗−1)µi∗−q since

p+ µi∗λ
∗

q
=

r̄i∗ + λ∗

fi∗ − 1
⇐⇒ ((fi∗ − 1)µi∗ − q)︸ ︷︷ ︸

<0

λ∗ = qr̄i∗−p(fi∗−1) ⇐⇒ λ∗ =
qr̄i∗ − p(fi∗ − 1)

(fi∗ − 1)µi∗ − q
.

Observe that λ∗ is always an optimal solution to min
λ∈R

max
j=0,...,k

⟨aj , r̄+ λei
∗⟩, regardless of whether

the constant function b is below or above J . Since the maximum of three affine linear functions
forms a convex function, the optimal solution of min

λ∈Z
max

j=0,...,k
⟨aj , r̄+ λei

∗⟩ is attained at either ⌊λ∗⌋

or ⌈λ∗⌉. Therefore, we have

min
λ∈Z

max
j=0,...,k

⟨aj , r̄+ λei
∗
⟩

=min

{
max

j=0,...,k

〈
aj , r̄+ ⌊λ∗⌋ei

∗
〉
, max
j=0,...,k

〈
aj , r̄+ ⌈λ∗⌉ei

∗
〉}

=min

{
max

{
p+ µi∗⌈λ∗⌉

q
,
r̄i∗ + ⌈λ∗⌉
fi∗ − 1

, b

}
,max

{
p+ µi∗⌊λ∗⌋

q
,
r̄i∗ + ⌊λ∗⌋
fi∗ − 1

, b

}}
.

Thus, take the minimum of the two cases, we have

πf ,µ(r) = min

{
max

{
p+ µi∗⌈λ∗⌉

q
,
r̄i∗ + ⌈λ∗⌉
fi∗ − 1

, b

}
,max

{
p+ µi∗⌊λ∗⌋

q
,
r̄i∗ + ⌊λ∗⌋
fi∗ − 1

, b

}
,max

{
p

q
, a

}}
.

18

Proof of Proposition 4.3. Observe that the lifting region

R ⊆ G(f ,µ) ⊆
k⋃

i=1

(
[f1 − 1, f1]× · · · × [fk − 1, fk] +

{
λei : λ ∈

[
0,

1

µi

]})

⊆
k⋃

i=1

(
[f1 − 1, f1]× · · · × [fk − 1, fk] +

{
λei : λ ∈ [0, τ]

})
=

k⋃
i=1

(
[f1 − 1, f1]× · · · × [fk − 1, fk] +

{
λei : λ ∈ {0, 1, . . . , τ}

})
.

Let r̄j = rj − ⌊rj⌋ −
∑k

i=1 1(r
j
i ≥ fi + ⌊rji ⌋)ei ∈ [f1 − 1, f1]× · · · × [fk − 1, fk], j = {1, . . . , n}.

Then for any fixed j, based on the proof of Theorem 4.2, we have

πf ,µ(r
j) = min

i∈{1,...,k}
min

λ∈{0,1,...,τ}
max

l=0,...,k
⟨al, r̄j + λei⟩

= min
i∈{1,...,k}

min
λ∈{0,1,...,τ}

max

{
pj + µiλ

q
,
r̄ji + λ

fi − 1
,max

{
r̄jl

fl − 1
: l ∈ {1, . . . , k}\{i}

}}

= min

max

{
pj
q
, aj

}
, min
λ∈{0,1,...,τ}

max

pj + µi∗j
λ

q
,
r̄ji∗j

+ λ

fi∗j − 1
, bj

 ,

where, as defined in Algorithm 1 and Theorem 4.2, pj =
∑k

i=1 µir̄
j
i , q =

∑k
i=1 µifi ≥

1
τ

∑k
i=1 fi > 0, aj = max

{
r̄ji

fi−1 : i ∈ {1, . . . , k}
}

, i∗j = argmax
{

r̄ji
fi−1 : i ∈ {1, . . . , k}

}
,

bj = max
{

r̄ji
fi−1 : i ∈ {1, . . . , k}\{i∗j}

}
.

This motivates considering the following numbers, for any fixed j ∈ {1, . . . , n}:

pj
q
, aj ,

pj + µi∗j
λ

q
,
r̄ji∗j

+ λ

fi∗j − 1
, bj , λ ∈ {0, 1, . . . , τ}.

There are 1 + 1 + (τ + 1) + (τ + 1) + 1 = 2τ + 5 numbers in total, so the pairwise comparison of
these numbers can be done by at most (2τ + 5)(2τ + 6)/2 ≤ 2(τ + 3)2 hyperplanes in the µ space
∆τ

k. This is because, in the worst scenario, the equality

pj + µi∗j
λ

q
=

r̄ji∗j
+ λ′

fi∗j − 1
⇐⇒ pj + λµi∗j

−
r̄ji∗j

+ λ′

fi∗j − 1
q = 0

is a hyperplane on µ, and similar arguments apply to other pairs. These hyperplanes decompose the
∆τ

k space into some regions such that, within each region, the order of the above 2τ + 5 numbers is
fixed. Within each region, πf ,µ(rj) can be expressed as the quotient of two affine linear functions in µ,
with the denominator being q =

∑k
i=1 µifi > 0. Overlapping all hyperplanes across j ∈ {1, . . . , n}

results in at most 2n(τ + 3)2 hyperplanes decomposing the ∆τ
k space.

Proof of Theorem 4.4. Similar to what we have done in the proof of Theorem 3.2, let ξ1, . . . , ξΓ
denote the degree 5 polynomials given in Lemma A.2, where Γ = O

(
(14)n(m+ 2n)3n

2

ϱ5n
2
)

. By

Proposition 4.3, there are at most 2n(τ + 3)2 hyperplanes decomposing the ∆τ
k space such that,

within each decomposed region, each coordinate of the cutting plane derived from the cut generating
functions πf ,µ is a fixed rational function given by the quotient of two affine linear functions on µ.
Also, by Lemma A.1, these hyperplanes decompose the µ space ∆τ

k into at most(
2n(τ + 3)2

k

)k

≤ 2knk(τ + 3)2k := K

19

regions, denoted as Q1, . . . , QK̃ , where K̃ ≤ K.

We fixed a region Qi for any i ∈ {1, . . . , K̃}. For any µ ∈ Qi, we claim that
[
α(µ)
β(µ)

]
can always be

expressed as pi(µ)
q(µ) ∈ Rn+1, where each coordinate of pi is an affine linear function of µ, and q is a

fixed affine linear function of µ. This is because, according to the form derived in Proposition 4.3, the
values of the trivial liftings are either rational functions with the denominator q(µ) =

∑
µifi > 0

(which is fixed once the instance I = (A,b, c) is fixed), or just some constants independent of µ.
Then by Lemma A.3, with a fixed I = (A,b, c), the cutting plane for the original problem is a fixed
affine transformation of the above form. Therefore, in this fixed region Qi, the final form of the
cutting plane is fixed and can be written as pi

q (µ) ∈ Rn+1. Therefore,(
ξ1

([
α(µ)
β(µ)

])
, . . . , ξΓ

([
α(µ)
β(µ)

]))
=

((
ξ1 ◦

pi

q

)
(µ), . . . ,

(
ξΓ ◦

pi

q

)
(µ)

)
gives Γ fixed rational functions of µ, decomposing Qi, in the form of the quotient of two degree 5
polynomials. For any µ ∈ Qi within each decomposed region, these Γ rational functions have an
invariant sign pattern, hence the tree size after adding α(µ)Tx ≤ β(µ) at the root remains the same.
By traversing all Qi, the total number of such rational functions is given by

O
(
2knk(τ + 3)2k(14)n(m+ 2n)3n

2

ϱ5n
2
)
,

then the pseudo-dimension result follows from Lemma 2.1:

Pdim
({
T k(·,µ) : I → [0, B] | µ ∈ ∆τ

k

})
= O

(
kn2 log((m+ n)ϱ) + k2 log(nτ)

)
.

20

NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction indeed clearly state the main contributions and
scope of the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The major part of this paper is theoretical, so the limitations are clear in the
statements of the theorems. The limitations of our numerical approach are mentioned in
Section 6.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

21

Answer: [Yes]
Justification: All assumptions are clearly stated, and all proofs are provided in Appendices A
to C.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The code and data used in all experiments are available at https://github.
com/Hongyu-Cheng/LearnCGF. The details are explained in the README file.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

22

https://github.com/Hongyu-Cheng/LearnCGF
https://github.com/Hongyu-Cheng/LearnCGF

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The code and data used in all experiments are available at https://github.
com/Hongyu-Cheng/LearnCGF. The details are explained in the README file.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: This paper primarily focuses on theoretical aspects. However, implementation
details can be found in Section 6 and in the code.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: This paper primarily focuses on theoretical aspects. The computational
experiments in the Section 6 are only to provide some crisp insights and to verify the
theoretical results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

23

https://github.com/Hongyu-Cheng/LearnCGF
https://github.com/Hongyu-Cheng/LearnCGF
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: These are clearly stated in Section 6 and in the code.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in this paper conforms to the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: This paper has no societal impact.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.

24

https://neurips.cc/public/EthicsGuidelines

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper does not release any data or models that have a high risk for misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The assets used in this paper have been properly cited.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

25

paperswithcode.com/datasets

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This paper does not introduce any new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

26

	Introduction
	Formal setup of the problem
	Integer linear programming background
	Sample complexity of selecting cut generating functions

	One-dimensional cut generating functions
	The construction
	Pseudo-dimension bound

	k-dimensional cut generating functions
	The construction
	Computation and pseudo-dimension

	Learnability of instance-dependent cut generating functions
	Numerical experiments
	Auxiliary Lemmas
	Proofs for results in sec:LearnabilityOf1DimCGF
	Proofs for results in sec:LearnabilityOfKDimCGF

