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ABSTRACT

Real-world binary classification tasks are in many cases unbalanced i.e. the mi-
nority class is much smaller than the majority class. This skewness is challenging
for machine learning algorithms as they tend to focus on the majority and greatly
misclassify the minority. Oversampling the minority using SMOTE before train-
ing the model is a popular method to address this challenge. Inspired by SMOTE,
we propose AE-SMOTE, which by using an autoencoder, (1) maps the features to
a dense continuous latent space, (2) applies oversampling by interpolation in the
latent space, and (3) maps the synthetic samples back to the original feature space.
While SMOTE supports discrete (categorical) features, almost all variants and ex-
tensions of SMOTE do not. Wrapping any one of these SMOTE variants with an
autoencoder will enable it to support multi-modal datasets that include discrete
features. We have empirically shown the effectiveness of the proposed approach
on 35 publicly available datasets.

1 INTRODUCTION

Imbalanced classification tasks arise naturally, for example, consider the problem of credit card fraud
detection where the vast majority of transactions are legitimate and only a few are fraudulent. This
skewness is challenging for machine learning (ML) algorithms since the algorithms tend to focus
on the majority and greatly misclassify the minority. The challenge stems from the ML algorithms
optimizing a different metric than the user is interested in, resulting in an undesirable bias in the
final trained model. Oversampling the minority class and under-sampling the majority class before
training the ML algorithm are popular methods to address this challenge. They are effective because
they yield an augmented dataset for which the algorithm’s loss function and the user’s loss function
are more similar. For a formal description, see Section 3.1.

As opposed to random oversampling, SMOTE was the first framework to propose balancing the
dataset by adding synthetic minority samples Chawla (2002). In SMOTE, the synthetic minority
samples are created by interpolating pairs of the original minority points, hence instead of work-
ing in the original sample space i.e. replicating samples, it generates new samples in the feature
space. When the feature space is sparse, the linear interpolation of samples might create unrealistic
low probability samples. SMOTE addresses this challenge by interpolating pairs of points that are
relatively close in the feature space. However, this strategy is inefficient when the feature space is
high-dimensional, see Blagus & Lusa (2012).

Considering high-dimension multi-modal data, it is commonly assumed that the data reside on an
unknown lower dimension manifold. For such sparse high-dimension data, simple linear interpola-
tion of samples can result in low probability synthetic samples. Motivated by this, we propose Auto
Encoder SMOTE (AE-SMOTE) which is a latent space interpolation scheme based on auto-encoders
for oversampling. In summary, our method consists of an unsupervised dimension reduction step
where samples are mapped to a dense continuous latent space. Subsequently, samples of interest are
interpolated in the learned latent space (using SMOTE or any other interpolation technique) before
being mapped back to the original feature space. Since AE-SMOTE interpolates points in the latent
space, it creates more genuine synthetic samples thus improving prediction performance. See Fig-
ure 1 for an example of AE-SMOTE creating a more realistic synthetic data than SMOTE due to the
manifold embedding.
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Figure 1: An example of the synthetic minority class samples created using SMOTE and AE-SMOTE.
A 2D slice of the 3D feature space where the original minority class samples are marked by orange
dots and the synthetic by blue ×s. The feature space is three dimensional but it is sparse, the
samples lie on a cylinder-shaped 2D manifold. As a result of this sparsity, SMOTE creates some
low probability sample toward the center of the cylinder. AE-SMOTE on the other hand interpolates
samples in the dense latent space resulting in more realistic samples, i.e. closer to the underlying
data manifold.

Many real-life tabular datasets are multi-modal and include not only continuous numeric features but
also categorical features e.g. gender, color, marital status, etc. We will denote the former continuous
and the latter discrete. It is common to assume that the classification of each feature (continuous
or discrete) is known. Modern tabular datasets might include additional data types such as free text
fields, images, and even audio. These are out of the scope of this work. When trying to apply
SMOTE to a multi-modal dataset with discrete features we face two challenges: (1) how to calculate
distances between samples? and (2) how to set the discrete feature values for the synthetic samples?
e.g. how to interpolate ”dog” and ”cat”? The original SMOTE paper introduced SMOTE-NC which
is a SMOTE variant that supports discrete features by: (1) using a heuristic to estimate the distance
implied by the discrete features and (2) the discrete feature values are set to be the majority of the k
nearest neighbors.

To the best of our knowledge, SMOTE-NC is the only SMOTE variant that supports discrete features
explicitly. A common method to apply any interpolation method to discrete features is to encode
them ordinally and consider them to be continuous. This method results in synthetic samples that
are continuous rather than discrete, thus not realistic. Moreover, many algorithms are optimized
for handling discrete features (e.g. Catboost and MLPs with embedding) and such augmentation
will render these optimizations useless. Our approach shifts the challenge of the discrete features
from the interpolation method to the encoder-decoder, where we can leverage previous research.
Additionally, more than 100 extensions and variants of SMOTE were proposed. However, to the best
of our knowledge, none of them support discrete features. By mapping the discrete and continuous
features to a unified continuous latent space, we enable all these algorithms to produce multi-modal
data. An overview of our method is shown in Figure 2.

To solve the problem presented here, it is required to create synthetic examples of structured data.
We explored several methods proposed in the literature, and conclude that our autoencoder based
approach is by far superior to the available alternatives. Unlike naive interpolation-based methods,
it is sophisticated enough to avoid unrealistic examples. On the other hand, unlike GAN based
approaches, it is simple enough to run at scale and avoid system failures related to an overly com-
plex system such as overfitting and mode-collapse. We studied several autoencoder variants and
empirically concluded that the simple vanilla autoencoder provides the best results.

To summarize, the benefits of our approach and our contributions are:1

1Our code can be found at https://github.com/<anon-user>/<anon-repo-name>
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1. Due to the dense embedding and the ability to generate discrete features, AE-SMOTE gen-
erates more realistic synthetic samples compared to other approaches resulting in better
prediction quality

2. More than 100 extensions and variants of SMOTE were proposed. However, almost all of
them support only continuous features. By mapping the discrete and continuous features to
a unified continuous latent space, we enable these algorithms to produce multi-modal data.
We demonstrate this by wrapping polynom-fit, a top performing SMOTE variant, with our
encoder decoder, enabling it to produce multi-modal synthetic samples. In our experiments
AE-Poly yielded better prediction quality than the original polynom-fit.

2 RELATED WORK

Since SMOTE’s inception, more than 100 extensions and variations have been published. However,
to the best of our knowledge only SMOTE-NC proposed in the original paper supports discrete
features. In fact, the two recent survey papers do not even mention discrete features or multi-
modal data, see Fernández et al. (2018) and Kovács (2019). Kovács (2019) empirically compared 85
variants of SMOTE on 104 imbalanced datasets including both continuous and discrete features. The
paper does not describe how the discrete features were processed. We believe that they were simply
treated as continuous after using an ordinal encoder. The best method was found to be polynom-fit
which, similarly to SMOTE, interpolates points in the feature space, see Gazzah & Amara (2008).
However, differently from SMOTE, polynom-fit allows interpolating of minority points that are not
very close to each other. The second best performing algorithm, ProWSyn by Barua et al. (2013),
also allowed interpolating of far apart minority samples. We will not survey all SMOTE variants but
only the methods that resemble SMOTE.

Several variants of SMOTE share the idea of mapping the samples to another space which has some
desired features, using SMOTE to create synthetic samples in the new space and map the synthetic
samples back to the original feature space. Wang et al. (2006) proposed to map the samples using
local linear embedding aiming to create a lower-dimensional space where the data is more separable.
Gu et al. (2009) similarly proposed to use isometric feature mapping (Isomap). Kernel functions
were also used to map the features, see Pérez-Ortiz et al. (2016) and Tang & He (2015). When the
classifier is SVM, oversampling could be done directly in the kernel space, see Mathew et al. (2015).

As they are very natural, auto-encoders were previously proposed as a means to provide the bi-
directional mapping. Bellinger et al. (2015) proposed to create synthetic samples by adding Gaussian
noise to the original samples in the latent space and then decode them back to the feature space.
Later, the same authors proposed to apply SMOTE in the latent space, see Bellinger et al. (2016).
However, there are two key differences between their approach and ours: (1) they train the auto-
encoder on the minority class samples only which, due to the low number of samples, force them to
train shallow models and (2) they did not consider discrete features. Babaei et al. (2019) proposed
to encode the samples and train the classifier in the latent space. To improve unsupervised anomaly
detection, Lim et al. (2018) proposed to use adversarial auto encoders to encode the features into a
Gaussian mixture latent space and augment the dataset in that latent space.

Some methods incorporate mapping the feature to other spaces but use the new space differently.
MOT2LD (Xie et al. (2015)) first maps each training sample into a low-dimensional space and then
applies clustering and weighting heuristics in the low-dimensional space. In ADOMS (Tang &
Chen (2008)) each sample neighbor are derived in the original feature space, however, the synthetic
sample is then created along with the first principal component of the k neighbors.

Generation of tabular multi-modal data was studied in the context of GANs (generative adversarial
networks). The challenge of synthesizing the discrete features was addressed using three methods:
(1) noising the discrete data (Xu & Veeramachaneni (2018)), (2) using a Gumbel softmax (Xu et al.
(2019), Park et al. (2018)) or (3) using an autoencoder to map the data to a continuous latent space
and train the GAN in that space (Choi et al. (2017)). FAST-DAD (Fakoor et al. (2020)) generates
multi-modal synthetic samples by augmenting existing samples using Gibbs sampling. The Gibbs
based augmentation method requires a pre-trained conditional expectation model for all features and
another model is used to label the new samples.
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SMOTE -SMOTE

Figure 2: Overview of our proposed method. Left diagram depicts SMOTE in the sample space,
where blue o are majority samples, orange o are minority samples present in the dataset and blue
+ are synthetic minority examples generated. Sample points x are fed to an encoding blocked hφ
to produce latent points z. Subsequently, samples are manipulated by the function g(zi) prior to
decoding to the original sample space.

3 METHOD

3.1 OVERSAMPLING

Consider a dataset D = {(xi, yi)}Ni=1, where xi are observations sampled from a data-generating
distribution p(x) and yi ∈ {0, 1}. We consider a multi-modal setting where xi is a concatenation
of discrete D = [D1, · · · , D|D|] and continuous features C = [C1, · · · , C|C|]. The classifier f :
X → Y ∈ F is a function learned by an ML algorithm which aims at optimizing f for a given loss
function lA(·)

f = min
f∈F

N∑
i=1

lA(f(xi), yi) (1)

Where we assumed that lA(·) is additive, i.e. the loss of the dataset is the sum of sample losses. To
the best of our knowledge, all mainstream ML algorithms assume additivity of the loss.

On the other hand, in imbalanced classification we are usually interested in optimizing ROC-AUC,
F1-score or G-score which are not additive, hence the ML algorithm cannot directly optimize them.
We denote this second loss function by l(·). Oversampling schemes address this challenge by adding
minority class synthetic samples Daug = {(xi, yi)}Mi=1 to the dataset. The idea is that lA applied to
D ∪Daug will be more similar to l applied to D, i.e.∣∣∣∣∣∣l(D)−

∑
D∪Daug

lA

∣∣∣∣∣∣ <
∣∣∣∣∣l(D)−

∑
D

lA

∣∣∣∣∣ (2)

3.2 MAPPING TO THE LATENT SPACE

To map samples to latent space, we adopt the standard autoencoder scheme proposed in Hinton &
Salakhutdinov (2006). As we are concerned with multi-modal setting, for every categorical column
D, we introduce an embedding layerW ∈ <|D|×d|D| . The input which is a concatenation of discrete
and continuous features is passed through the embedding layers resulting in a feature vector xi ∈
<|C|+

∑|D|
i d|Di| that is used as the input to the autoencoder

zi = hφ(xi) (3)

Where hθ(·) is a high capacity deep neural network, such as a set of fully connected layers.
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As in traditional autoencoders, a decoder module hθ(z) is used to map the latent points back to the
feature space x. The objective minimized while training the AE is the reconstruction loss:

argminEp(x)[d(hθ(z), x)] (4)

In a multi-modal setting, the reconstruction contains both discrete and continuous variables therefore
the function d(·) is a sum of the softmax loss and mean squared error (MSE):

Jrecon(D; θ, φ) =

N∑
i

|C|∑
c

||hθ(zi)c − xci ||22 +
N∑
i

|D|∑
d

1[xDi = o] log(hθ(zi)
o) (5)

Once we have a fully trained autoencoder model we can leverage prior work (e.g. SMOTE, polynom-
fit) on interpolating minority samples in the latent space and using the deocder to generate synthetic
data in the original sample space.

3.3 AE-SMOTE AND E-Poly

As previously mentioned, in order to generate new synthetic samples the set of minority samples
Dminority train = {(xi, yi)|yi = 1} are first mapped into the latent space Zminority. Subsequently,
based on our scheme, we propose to use two minority oversampling techniques: AE-SMOTE that in-
terpolates in the latent space using SMOTE and AE-Poly that interpolates using polynom-fit, Gazzah
& Amara (2008). Briefly, SMOTE and its variants use a distance metric to find nearest neighbors
ziNN to a minority sample zi ∈ Zminority which are then averaged using a uniform noise vector
u ∼ U(0, 1)

zsynth = zi + (1− u)� ziNN (6)

On the other hand, polynom-fit was selected based on it’s performance in the experiments of Kovács
(2019). Additionally, polynom-fit allows interpolation of samples that are far apart in the feature
space which might result in low probability synthetic samples when the feature space is sparse. This
concern is alleviated when the interpolation is carried out in the dense latent space. Recall that
polynom-fit does not support multi-modal data, thus, we enable it to support discrete features by
wrapping it with our autoencoder. We refer the reader to the respective papers for more details on
these methods.

4 EXPERIMENTAL SETUP

In this section we carry out experiments to demonstrate the effectiveness of the proposed method in
addressing imbalanced binary classification challenges.

Data We evaluated the method on 35 public datasets with a varying number of samples, dimensions,
and the ratio of continuous/discrete columns. Out of the 22 datasets were chosen by starting with
all the 104 datasets of Kovács (2019) and filtering out all datasets with less than 1000 rows. This
is done as the datasets we are concerned should have an adequate number of samples to train an
autoencoder and as the training is split into two steps, i.e. an unsupervised learning step and sub-
sequently downstream performance task the train/val/test splits should contain enough samples to
represent the original dataset. Additionally, we added 13 challenging datasets from the imbalanced
dataset benchmark of Lemaitre et al. (2016). For more details on the datasets used refer to Appendix
B. For each dataset, stratified k-fold train/test splits2 with k set to 7, where 80% is sampled as train
and 20% as a test. For datasets where categorical columns exist we encoded them ad ordinal inte-
gers. We preprocess continuous features by normalizing using uniform quantile transformation 3.
For the baselines, we try feeding values using our preprocessing steps or the raw values as certain
methods internally preprocess values, and the better approach is chosen for each baseline.

Methods As previously noted, there are very few methods that allow the generation of multi-modal
tabular data including both continuous and discrete features. We empirically compared AE-SMOTE
and AE-Poly to all available methods:

2Using the sklearn.model selection.StratifiedKFold
3Using the sklearn.preprocessing.QuantileTransformer

5



Under review as a conference paper at ICLR 2021

• SMOTE and polynom-fit: interpolation methods that support only continuous features
• SMOTE-NC: a multi-modal SMOTE variant.
• CatSW: CatBoost model trained on data using sample weights as supported by catboost.
• CTGAN Park et al. (2018): a recent generative GAN model specifically designed to handle

tabular datasets by conditioning on discrete columns. The open source implementation was
used 4.

• DOPING Lim et al. (2018): an adversarial auto-encoder with a gaussian prior and with
the same capacity as our autoecnoder is trained on both minority and majority samples.
Subsequently new samples are generated by mapping to the learned latent space, filtering
minority samples based on magnitude of latent vectors and applying SMOTE.

• TGAN Xu & Veeramachaneni (2018): a precursor to CTGAN where a LSTM network is
used with different heads for each column, where each step corresponds to a column feature
value. This model is trained using the traditional GAN framework.

• TGAN-SkipBauke Brenninkmeijer (2019): Slightly modified TGAN architecture with a
skip connection between the input and the generator output to help with gradient flow.

• TGAN-WGAN Bauke Brenninkmeijer (2019): the TGAN network trained using
wassertein gan loss.

Metrics We use popular metrics for imbalanced data as done in Kovács (2019): F1-score, G-score,
ROC-AUC (area under the receiver operating characteristic curve) as well as PR-AUC (precision
recall area under the curve)

Evaluation To evaluate the synthetic generation methods we augment the training set using the
aforementioned methods and use Catboost (Prokhorenkova et al., 2018) as the classifier due to its
popularity and strong performance on multi-modal tabular data. The classifier is trained on the
same subsets of training/validation sets as the unsupervised training step. For each oversampler,
we considered at most 35 hyperparameters combinations. Note that the number (or ratio) of syn-
thetic samples is a hyperparameter of all oversamplers, for which we run experiments for balance
ratio R = #minority

#majority ∈ {0.1, 0.25, 0.5, 0.75, 1.0}. 5 sets of hyper-parameters were considered for
Catboost. Classification performance was evaluated by stratified 7-fold cross-validation. For each
oversampler and each dataset, the best results for the overall combinations of oversampler param-
eters and classifier parameters are considered as the results of the oversampler for the dataset. For
oversamplers that generate valid synthetic discrete features, the indices of the discrete features are
passed to CatBoost.

TrainingWe summarize the training protocol. We compose both our encoder hφ and hθ as fully
connected layers FC-BN-ReLU. We try training a 1024-1024 FC for both encoder and decoder,
or a 512-512 FC network. When training these networks all samples in the training set are used
(minority & and majority samples). We set the latent space dimension d to one of three different
values {d 4

5 , d
2
3 , d

4
7 }. For all experiments for training to our proposed method we use Adam (Kingma

& Ba, 2014) optimizer with an initial learning rate of 1e − 3 decayed every 10 epochs by a factor
of 0.1 and trained for a maximum of 40 epochs with early stopping on the reconstruction loss of
the validation set. Note that the validation set is obtained by splitting the training set indices into
85% train and 15% validation. For most datasets, it suffices to train for about 20 epochs. Note
that for datasets that contain categorical columns, the embedding size for these columns is set to
min(600, round(1.6∗|D|0.56) where |D| is the number of unique values for the categorical column.
For the model based synthetic generation methods, we make sure there is no data leakage across
the unsupervised training step and classifier training step, this is done by using the pre-generated
stratified training and test splits as explained previously. The random seed was fixed across all runs.
We train all models on a machine with 8 Intel-Xeon Skylake CPUs and 30GB memory.

5 DISCUSSION: THE BARE MINIMUM

Our proposed solution thus far has been amenable to a simple approach. We will further discuss
attempts at improving the proposed method through feature selection and latent space regularization.

4https://github.com/sdv-dev/CTGAN

6



Under review as a conference paper at ICLR 2021

As tabular datasets may be high dimensional and sparse, instead of simply composing the encoder
block as a set of fully connected layers, we pass the features through a set of S feature selector
blocks Sj(xi) where each block computes sparse attention on the subset of features x ∈ <d. The
learnable feature selector block computes outputs using a matrix M ∈ <k×d

sk(x) =

d∑
i

xj · F (Mkj) (7)

where we desire to select k features. In this network, the input layer is a set of such feature selector
blocks S = (s1, · · · s|S|) which are subsequently fed to an encoder hφ where points are mapped
to the latent space representation z. Intuitively, by composing the input with these blocks it helps
to reduce overfitting issues as prevalent in simple fully connected networks. We propose to use the
Gumbel-softmax (Jang et al., 2016; Maddison et al., 2016) as a differentiable selector function at
the input layer. During training each row computes a linear combination of features and gradually
through temperature annealing, the network converges to a subset of k features for each block.

Additionally, as our objective is to interpolate in the latent space, it is desirable to obtain a latent
space that would allow safe interpolation of samples. Recent developments have shown that adding a
regularization loss in the latent space results in a deterministic auto-encoder with similar properties
as in VAEs (Ghosh et al., 2019), all be it much faster and easier to train. Motivated by this, we
add a co-linearity loss: given two samples that should interpolate in the sample space, we define a
transition loss in the latent space as

T (xi, xj) = Norm(1− zi − zj) (8)

where xi, xj are two examples in the sample space and zi and zj are their corresponding latent
mappings via the encoding block. This regularization is added to the objective function and we train
the auto-encoder with this new term:

JAE(D; θ, φ) = Jrecon + ηT (9)

where η ∈ < is the regularization weight.

We have done an ablation study of these proposed changes in Table 15. Note, from the results the
vanilla autoencoder marginally benefits from the regularization term whereas the more complicated
autoencoder with selector blocks shows more benefits from using this interpolation loss term. As
such, the simpler model with fewer hyperparameters is chosen for our final comparison in the results
section.

Table 1: Ablation study on additional changes for improving the simple AE. The values represent
the average ranking across all datasets for each metric. SAE denotes the encoder with selector
blocks. Rows with added regularization have +T appended to the names.

Average Rank
F1-score G-score PR-AUC ROC-AUC all

Method
AE-Poly +T 4.8 5.3 5.4 5.8 5.3
AE-Poly 5.3 5.2 5.3 5.2 5.3
AE-SMOTE 5.2 5.6 5.1 5.6 5.4
AE-SMOTE +T 5.6 5.6 5.6 5.6 5.6
SAE-poly +T 5.4 5.8 5.4 5.9 5.6
SAE-smote +T 7.0 3.8 5.8 6.4 5.7
SAE-smote 7.0 4.4 5.9 6.6 6.0
SAE-poly 6.7 5.6 6.1 5.6 6.0
polynom-fit-SMOTE 4.6 8.4 7.0 6.0 6.5
SMOTE 5.6 7.9 7.5 6.6 6.9

5For more details on the experiments and hyperparameter settings refer to section A
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6 RESULTS

As previously mentioned, to evaluate our method we have chosen a wide range of datasets with
varying feature sizes and discrete/continuous ratios. Following this extensive evaluation, the results
of all oversampling methods on all datasets are presented in Appendix B, we leave the results blank
for certain datasets where oversamplers failed to produce synthetic samples. The aggregated results
are displayed in Table 2. The results were aggregated over all datasets by averaging the methods’
rank, i.e. for each dataset and metric the methods were sorted by performance where the rank of the
best method is 1. Then, the rank of each method was averaged over all datasets. The final column,
”all” column, was produced by averaging the oversamplers ranks over all metrics and datasets.

From Table 2 it is clear that both AE-Poly and AE-SMOTE outperform all other methods. Specifi-
cally, both SMOTE and polynom-fit yield better prediction quality when they are wrapped with an
autoencoder, compare SMOTE and polynom-fit to AE-SMOTE and AE-Poly respectively.

Although polynom-fit has demonstrated better empirical performance in the experiments of Kovács
(2019), in our setting, the traditional SMOTE was superior. This discrepancy might result from
the filtering of very small datasets (less than 1000 rows). Interestingly, even though SMOTE-NC
handles categorical columns explicitly by applying heuristics, SMOTEs simple approach of treating
the categorical features as numeric provides better results.

The advanced GAN based methods recently proposed (including CTGAN which is a recent state of
the art method for tabular data generation) performed poorly compared to the simple interpolation
methods. This could largely be due to mode collapse, and the difficulty of learning a generative
model in a limited data setting. Moreover, due to the complexity of these methods, training them
requires considerably more hardware and is more expensive compared to our simpler autoencoder
method. In particular TGAN is the slowest and most resource hungry amongst all tested methods,
due to the large set of parameters contained within each head representing different columns.

Table 2: Comparison of minority oversampling methods

Average Rank
F1-score G-score PR-AUC ROC-AUC all

Method
AE-Poly 4.0 2.3 3.7 3.9 3.5
AE-SMOTE 3.8 2.7 3.5 4.1 3.5
polynom-fit 4.2 5.8 5.6 5.0 5.2
SMOTE 4.0 6.5 5.4 4.9 5.2
CTGAN 6.3 4.9 5.8 6.5 5.9
DOPING 7.7 5.3 5.7 5.8 6.1
SMOTE-NC 5.1 7.4 6.1 5.9 6.1
CatSW 7.2 9.3 7.9 6.9 7.8
TGAN 8.6 7.5 8.5 8.8 8.4
TGAN-WGAN 8.4 7.7 8.9 8.8 8.4
TGAN-Skip 8.8 8.9 8.9 9.1 8.9

7 CONCLUSION

There are very few methods that allow creation of synthetic multi-modal tabular data including both
continuous and discrete features. We addressed the multi-modal data challenge by encoding the
data in a dense continuous latent space, interpolate there and map the samples back to the original
feature space. Thus, we shift the multi-modal data challenge from the interpolation method to
the autoencoder. As an example, we introduced AE-SMOTE and AE-Poly which generated better
synthetic data thus provided improved prediction performance on a variety of multi-modal datasets.
Our framework, of wrapping an interpolation oversampler with an autoencoder, can be applied to
any interpolation oversampler thus enabling it to produce high-quality multi-modal synthetic data.
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A ABLATION

Our ablation study is conducted over all datasets, using 7-fold stratified splits. The summary of
results are shown in Table A. Although all proposed changes lead to improved results over the
widely used SMOTE and polynom-fit-SMOTE the simpler approach is used in our final results table
in appendix B.

For this experiment, the autoencoder with selector blocks contains two additional hyperparameters
in comparison to the vanilla autoencoder, |S| the number of selector blocks, and the number of
features k each block selects. In our ablation study we set these parameters to 2 ∗ dinput

dlatent
and dlatent

2

respectively, where dlatent is the latent dimension, and dinput is the dimension size of the tabular input
post embedding and as detailed n the experiment section 3.3 the same set of latent dimensions are
experimented with as with the autoencoder. For rows with regularization, we simply set proposed
regularization weight to 10−3 as this generally showed to be a reasonable value for all datasets. The
same training procedure as detailed in section 3.3 is used for all methods.
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B RESULTS

Table 3: Comparison of minority oversampling methods.
Metric

Dataset Method F1 - score G - score PR - AUC ROC - AUC

adult

DOPING 71.53 (±0.58) 84.03 (±0.63) 83.16 (±0.48) 92.96 (±0.25)
SMOTE 72.08 (±0.66) 83.35 (±0.43) 82.70 (±0.33) 92.74 (±0.16)
CatSW 71.32 (±0.64) 75.93 (±0.68) 82.64 (±0.55) 92.80 (±0.24)
polynom-fit-SMOTE 71.41 (±0.66) 83.64 (±0.55) 82.91 (±0.44) 92.83 (±0.23)
SMOTE-NC 72.39 (±0.69) 83.02 (±0.90) 82.82 (±0.64) 92.81 (±0.31)
CTGAN 71.54 (±0.51) 84.01 (±0.67) 83.08 (±0.43) 92.91 (±0.22)
AE-SMOTE 71.53 (±0.51) 83.99 (±0.64) 83.12 (±0.52) 92.95 (±0.26)
AE-Poly 71.64 (±0.49) 84.01 (±0.67) 83.17 (±0.46) 92.97 (±0.23)
TGAN-Skip 71.02 (±0.64) 82.65 (±0.93) 81.98 (±0.73) 92.34 (±0.31)
TGAN-WGAN 71.37 (±0.53) 83.85 (±0.63) 83.00 (±0.43) 92.88 (±0.24)
TGAN 71.27 (±0.61) 83.84 (±0.64) 82.98 (±0.48) 92.86 (±0.27)

fraud

DOPING 86.48 (±2.62) 97.31 (±0.91) 84.93 (±3.15) 97.68 (±0.90)
SMOTE 84.97 (±2.11) 92.85 (±0.93) 85.00 (±3.75) 97.36 (±1.65)
CatSW 27.35 (±11.86) 39.92 (±10.17) 75.83 (±5.88) 95.81 (±2.95)
polynom-fit-SMOTE 85.14 (±2.07) 92.97 (±1.35) 84.89 (±2.92) 98.04 (±0.93)
SMOTE-NC 84.97 (±2.11) 92.85 (±0.93) 85.00 (±3.75) 97.36 (±1.65)
CTGAN 84.48 (±2.05) 94.49 (±1.77) 81.31 (±3.47) 96.22 (±2.01)
AE-SMOTE 85.25 (±2.25) 96.23 (±1.79) 83.34 (±3.52) 97.31 (±1.22)
AE-Poly 86.00 (±2.49) 97.48 (±0.80) 84.76 (±2.55) 97.87 (±0.98)
TGAN-Skip - (±−) - (±−) - (±−) - (±−)
TGAN-WGAN - (±−) - (±−) - (±−) - (±−)
TGAN - (±−) - (±−) - (±−) - (±−)

covtype

DOPING 84.55 (±0.69) 95.37 (±0.33) 92.95 (±0.38) 99.75 (±0.03)
SMOTE 85.67 (±0.60) 94.45 (±0.34) 93.12 (±0.22) 99.78 (±0.02)
CatSW 74.49 (±3.90) 77.57 (±3.29) 91.79 (±1.35) 99.79 (±0.03)
polynom-fit-SMOTE 83.70 (±0.49) 94.95 (±0.30) 92.23 (±0.27) 99.73 (±0.03)
SMOTE-NC 85.92 (±0.31) 94.73 (±0.31) 93.23 (±0.28) 99.77 (±0.02)
CTGAN 83.44 (±0.48) 95.48 (±0.30) 92.17 (±0.37) 99.69 (±0.05)
AE-SMOTE 84.86 (±0.69) 95.37 (±0.33) 93.04 (±0.37) 99.76 (±0.03)
AE-Poly 83.95 (±0.53) 95.46 (±0.30) 92.52 (±0.35) 99.71 (±0.03)
TGAN-Skip 83.38 (±0.50) 95.37 (±0.32) 92.14 (±0.20) 99.69 (±0.04)
TGAN-WGAN 84.28 (±1.31) 95.41 (±0.18) 92.74 (±0.75) 99.72 (±0.06)
TGAN 84.27 (±1.04) 95.35 (±0.35) 92.70 (±0.67) 99.73 (±0.05)

letters

DOPING 95.79 (±1.44) 99.35 (±0.48) 99.18 (±0.57) 99.95 (±0.04)
SMOTE 96.11 (±1.48) 99.16 (±0.53) 99.20 (±0.58) 99.95 (±0.05)
CatSW 92.57 (±7.93) 93.82 (±6.99) 98.66 (±2.33) 99.91 (±0.16)
polynom-fit-SMOTE 96.72 (±1.11) 99.28 (±0.29) 99.36 (±0.52) 99.97 (±0.03)
SMOTE-NC 96.11 (±1.48) 99.16 (±0.53) 99.20 (±0.58) 99.95 (±0.05)
CTGAN 96.14 (±1.46) 99.54 (±0.33) 99.21 (±0.76) 99.96 (±0.05)
AE-SMOTE 96.25 (±1.29) 99.50 (±0.37) 99.33 (±0.37) 99.96 (±0.02)
AE-Poly 96.30 (±1.03) 99.61 (±0.26) 99.42 (±0.58) 99.97 (±0.03)
TGAN-Skip 96.24 (±1.44) 99.37 (±0.30) 99.28 (±0.65) 99.96 (±0.03)
TGAN-WGAN 95.96 (±2.22) 99.45 (±0.45) 98.84 (±1.26) 99.90 (±0.13)
TGAN 95.76 (±1.30) 99.49 (±0.29) 98.98 (±0.63) 99.92 (±0.08)

protein homo

DOPING 86.72 (±1.61) 98.27 (±0.73) 90.80 (±1.37) 99.36 (±0.22)
SMOTE 87.43 (±1.85) 95.49 (±1.86) 90.74 (±0.92) 99.29 (±0.19)
CatSW 63.16 (±11.25) 69.85 (±9.84) 88.48 (±1.95) 99.20 (±0.27)
polynom-fit-SMOTE 86.74 (±1.32) 97.27 (±0.62) 90.50 (±1.96) 99.32 (±0.21)
SMOTE-NC 87.43 (±1.85) 95.49 (±1.86) 90.74 (±0.92) 99.29 (±0.19)
CTGAN 86.80 (±1.51) 98.07 (±0.50) 89.78 (±1.88) 99.20 (±0.30)
AE-SMOTE 86.51 (±1.36) 98.24 (±0.54) 88.89 (±1.70) 99.14 (±0.22)
AE-Poly 86.73 (±1.40) 98.38 (±0.44) 89.66 (±2.05) 99.19 (±0.28)
TGAN-Skip 86.44 (±1.11) 97.94 (±0.49) 90.22 (±1.74) 99.34 (±0.20)
TGAN-WGAN 86.84 (±1.62) 98.33 (±0.64) 90.88 (±1.40) 99.45 (±0.15)
TGAN 86.59 (±1.62) 98.23 (±0.36) 90.63 (±1.69) 99.39 (±0.17)

safe drive

DOPING 0.10 (±0.08) 64.52 (±31.53) 6.17 (±0.47) 62.07 (±2.61)
SMOTE 0.09 (±0.07) 70.12 (±47.90) 8.45 (±5.29) 62.97 (±0.80)
CatSW 9.58 (±0.40) 22.55 (±0.56) 6.13 (±0.45) 62.53 (±1.19)
polynom-fit-SMOTE 0.48 (±0.26) 68.09 (±6.01) 18.60 (±17.23) 60.62 (±4.75)
SMOTE-NC 0.09 (±0.07) 70.12 (±47.90) 8.45 (±5.29) 62.97 (±0.80)
CTGAN 0.27 (±0.21) 46.96 (±40.87) 5.90 (±1.19) 60.71 (±4.01)
AE-SMOTE 0.41 (±0.14) 68.25 (±19.31) 6.21 (±0.15) 62.99 (±0.29)
AE-Poly 0.35 (±0.19) 71.91 (±28.02) 18.10 (±20.69) 63.36 (±0.39)
TGAN-Skip 3.89 (±0.76) 24.79 (±5.09) 5.23 (±0.66) 59.40 (±3.86)
TGAN-WGAN 1.21 (±1.66) 33.73 (±29.69) 5.49 (±0.90) 58.35 (±5.40)
TGAN 2.62 (±2.62) 41.99 (±40.01) 5.27 (±1.02) 58.68 (±4.92)

credit default

DOPING 47.69 (±1.43) 75.54 (±0.52) 56.36 (±1.38) 78.46 (±0.83)
SMOTE 53.76 (±1.32) 73.38 (±1.33) 55.16 (±1.12) 77.36 (±0.90)
CatSW 54.54 (±0.97) 65.22 (±0.61) 56.14 (±1.22) 78.34 (±0.71)
polynom-fit-SMOTE 51.55 (±1.08) 74.72 (±0.61) 55.19 (±1.50) 77.11 (±2.53)
SMOTE-NC 53.23 (±1.33) 73.72 (±1.17) 55.79 (±1.50) 77.99 (±0.74)
CTGAN 51.33 (±1.29) 74.32 (±1.29) 54.57 (±3.35) 77.26 (±1.41)
AE-SMOTE 50.90 (±1.34) 74.94 (±1.01) 55.38 (±1.48) 77.82 (±0.85)
AE-Poly 51.14 (±1.10) 75.21 (±0.76) 56.00 (±1.08) 78.15 (±0.80)
TGAN-Skip 50.33 (±2.35) 73.71 (±0.53) 52.16 (±0.80) 74.30 (±1.21)
TGAN-WGAN 48.86 (±1.97) 73.38 (±1.56) 52.87 (±1.77) 74.99 (±2.78)
TGAN 49.35 (±1.81) 73.92 (±2.03) 53.65 (±4.05) 76.91 (±2.85)
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Table 4: Comparison of minority oversampling methods.
Metric

Dataset Method F1 - score G - score PR - AUC ROC - AUC

hiva

DOPING 35.37 (±12.57) 81.41 (±15.92) 40.89 (±13.12) 76.64 (±8.64)
SMOTE 37.65 (±9.28) 81.33 (±13.29) 36.54 (±9.42) 75.90 (±6.95)
CatSW 34.71 (±9.45) 50.81 (±9.48) 35.18 (±10.88) 78.47 (±9.46)
polynom-fit-SMOTE 34.34 (±12.29) 79.49 (±15.19) 40.25 (±12.85) 78.93 (±8.34)
SMOTE-NC - (±−) - (±−) - (±−) - (±−)
CTGAN 36.65 (±11.27) 79.93 (±9.21) 40.48 (±11.69) 76.42 (±6.67)
AE-SMOTE 37.05 (±11.35) 85.87 (±8.49) 42.15 (±13.08) 79.92 (±6.35)
AE-Poly 39.12 (±12.26) 86.33 (±8.65) 41.51 (±13.95) 78.70 (±8.29)
TGAN-Skip - (±−) - (±−) - (±−) - (±−)
TGAN-WGAN - (±−) - (±−) - (±−) - (±−)
TGAN - (±−) - (±−) - (±−) - (±−)

sylva

DOPING 95.00 (±1.84) 96.84 (±1.31) 97.73 (±1.69) 99.90 (±0.05)
SMOTE 95.76 (±1.31) 97.11 (±0.82) 97.91 (±1.11) 99.91 (±0.04)
CatSW 93.82 (±0.88) 94.18 (±0.99) 97.97 (±1.21) 99.91 (±0.05)
polynom-fit-SMOTE 96.15 (±0.92) 97.08 (±1.00) 98.18 (±0.96) 99.92 (±0.05)
SMOTE-NC 95.37 (±1.16) 96.50 (±0.75) 97.58 (±1.11) 99.90 (±0.05)
CTGAN 95.51 (±1.46) 97.27 (±0.95) 97.72 (±1.02) 99.90 (±0.05)
AE-SMOTE 96.12 (±1.03) 97.35 (±1.17) 98.48 (±0.75) 99.93 (±0.03)
AE-Poly 96.34 (±1.06) 97.36 (±0.90) 98.38 (±0.91) 99.92 (±0.04)
TGAN-Skip 95.33 (±1.33) 97.25 (±0.96) 97.79 (±1.17) 99.90 (±0.06)
TGAN-WGAN 95.87 (±1.03) 97.35 (±0.79) 97.63 (±1.19) 99.91 (±0.04)
TGAN 95.50 (±1.35) 97.38 (±0.96) 97.85 (±1.23) 99.91 (±0.05)

satimage

DOPING 69.70 (±1.25) 88.15 (±0.96) 81.18 (±1.51) 96.74 (±0.27)
SMOTE 73.10 (±1.39) 85.98 (±1.61) 81.61 (±2.82) 96.90 (±0.46)
CatSW 58.92 (±4.59) 66.23 (±3.96) 72.85 (±4.16) 95.28 (±0.83)
polynom-fit-SMOTE 70.46 (±2.41) 85.12 (±1.92) 79.43 (±1.65) 96.42 (±0.20)
SMOTE-NC 73.10 (±1.39) 85.98 (±1.61) 81.61 (±2.82) 96.90 (±0.46)
CTGAN 70.04 (±1.72) 87.59 (±1.51) 80.47 (±2.17) 96.65 (±0.41)
AE-SMOTE 73.95 (±1.55) 87.17 (±1.45) 82.52 (±2.20) 96.94 (±0.24)
AE-Poly 72.71 (±2.81) 86.47 (±1.74) 81.20 (±1.36) 96.71 (±0.25)
TGAN-Skip 68.02 (±3.10) 86.69 (±1.85) 79.62 (±2.78) 96.39 (±0.47)
TGAN-WGAN 69.24 (±1.88) 87.10 (±1.24) 80.36 (±1.65) 96.49 (±0.34)
TGAN 69.72 (±1.47) 87.04 (±1.60) 80.64 (±2.19) 96.60 (±0.24)

hypothyroid

DOPING 80.62 (±3.65) 92.19 (±1.96) 87.89 (±4.14) 99.01 (±0.47)
SMOTE 81.52 (±3.63) 89.83 (±2.74) 86.98 (±4.70) 98.97 (±0.39)
CatSW 75.84 (±5.03) 81.70 (±4.84) 84.30 (±6.14) 98.73 (±0.30)
polynom-fit-SMOTE 83.55 (±3.23) 91.74 (±2.53) 86.80 (±5.52) 99.02 (±0.62)
SMOTE-NC 81.52 (±3.63) 89.83 (±2.74) 86.98 (±4.70) 98.97 (±0.39)
CTGAN 80.44 (±3.49) 91.86 (±2.67) 87.34 (±4.56) 99.06 (±0.52)
AE-SMOTE 81.44 (±3.10) 92.25 (±1.61) 87.51 (±3.90) 99.08 (±0.33)
AE-Poly 81.12 (±2.34) 92.21 (±1.70) 87.36 (±3.32) 99.03 (±0.50)
TGAN-Skip 81.52 (±4.77) 90.12 (±2.36) 84.03 (±2.92) 98.78 (±0.46)
TGAN-WGAN 79.28 (±2.26) 89.57 (±1.00) 85.49 (±5.69) 98.93 (±0.42)
TGAN 80.08 (±3.07) 90.47 (±3.43) 87.00 (±5.14) 99.02 (±0.44)

segment0

DOPING 97.55 (±1.58) 99.51 (±0.34) 99.21 (±0.71) 99.77 (±0.30)
SMOTE 97.72 (±0.87) 99.02 (±0.80) 99.81 (±0.20) 99.97 (±0.03)
CatSW 97.97 (±1.55) 98.42 (±1.10) 99.18 (±1.97) 99.78 (±0.55)
polynom-fit-SMOTE 98.47 (±0.85) 99.64 (±0.33) 99.66 (±0.45) 99.93 (±0.10)
SMOTE-NC 97.72 (±0.87) 99.02 (±0.80) 99.81 (±0.20) 99.97 (±0.03)
CTGAN 97.56 (±1.39) 99.41 (±0.51) 99.42 (±0.58) 99.87 (±0.14)
AE-SMOTE 98.70 (±0.73) 99.25 (±0.43) 99.88 (±0.17) 99.98 (±0.03)
AE-Poly 98.24 (±1.10) 99.33 (±0.38) 99.75 (±0.26) 99.95 (±0.06)
TGAN-Skip 97.07 (±1.18) 98.50 (±1.16) 99.54 (±0.47) 99.90 (±0.11)
TGAN-WGAN 97.39 (±1.69) 98.74 (±1.03) 99.65 (±0.30) 99.93 (±0.06)
TGAN 97.92 (±1.07) 99.20 (±0.45) 99.47 (±0.68) 99.85 (±0.21)

poker 8 9 vs 5

DOPING 0.00 (±0.00) 0.00 (±0.00) 19.67 (±10.65) 53.86 (±5.98)
SMOTE 4.76 (±12.60) 14.22 (±37.61) 13.77 (±11.77) 65.44 (±17.64)
CatSW 12.33 (±14.53) 21.91 (±23.09) 11.26 (±12.67) 77.44 (±10.28)
polynom-fit-SMOTE 16.12 (±12.06) 31.96 (±23.00) 14.72 (±9.38) 70.29 (±10.05)
SMOTE-NC - (±−) - (±−) - (±−) - (±−)
CTGAN 1.83 (±1.04) 8.92 (±4.19) 38.03 (±4.88) 55.76 (±7.07)
AE-SMOTE 5.80 (±5.40) 17.60 (±6.82) 23.16 (±6.54) 66.24 (±7.23)
AE-Poly 6.25 (±7.29) 18.33 (±8.08) 22.44 (±8.93) 63.40 (±8.64)
TGAN-Skip 2.20 (±2.74) 7.75 (±7.88) 23.51 (±23.61) 53.30 (±12.48)
TGAN-WGAN 2.72 (±3.99) 9.43 (±6.71) 3.37 (±4.59) 53.86 (±8.67)
TGAN 0.00 (±0.00) 0.00 (±0.00) 16.62 (±19.90) 47.92 (±13.42)

page blocks0

DOPING 87.55 (±2.85) 93.76 (±1.46) 94.45 (±1.33) 99.30 (±0.14)
SMOTE 87.75 (±2.06) 92.46 (±1.66) 94.36 (±1.27) 99.31 (±0.14)
CatSW 84.24 (±3.09) 87.04 (±3.47) 94.44 (±1.48) 99.28 (±0.12)
polynom-fit-SMOTE 88.37 (±2.58) 93.25 (±1.44) 94.48 (±2.17) 99.28 (±0.23)
SMOTE-NC 87.75 (±2.06) 92.46 (±1.66) 94.36 (±1.27) 99.31 (±0.14)
CTGAN 87.64 (±1.78) 93.34 (±2.22) 94.56 (±1.98) 99.29 (±0.22)
AE-SMOTE 88.24 (±2.08) 93.31 (±1.79) 94.73 (±0.97) 99.31 (±0.15)
AE-Poly 88.22 (±2.23) 93.63 (±1.71) 94.66 (±1.89) 99.33 (±0.17)
TGAN-Skip 87.05 (±1.94) 92.90 (±1.63) 93.65 (±1.97) 99.08 (±0.33)
TGAN-WGAN 88.09 (±1.83) 93.42 (±1.37) 93.67 (±2.22) 99.14 (±0.30)
TGAN 87.56 (±2.08) 93.44 (±1.43) 94.00 (±1.91) 99.20 (±0.21)

kddcup buffer overflow vs back

DOPING 95.84 (±7.76) 99.95 (±0.09) 100.00 (±0.00) 100.00 (±0.00)
SMOTE 98.90 (±2.91) 99.95 (±0.09) 100.00 (±0.00) 100.00 (±0.00)
CatSW 87.20 (±9.55) 93.23 (±9.98) 98.00 (±2.71) 99.96 (±0.06)
polynom-fit-SMOTE 98.90 (±2.91) 99.98 (±0.04) 100.00 (±0.00) 100.00 (±0.00)
SMOTE-NC 98.90 (±2.91) 99.95 (±0.09) 100.00 (±0.00) 100.00 (±0.00)
CTGAN 97.40 (±4.44) 99.97 (±0.06) 100.00 (±0.00) 100.00 (±0.00)
AE-SMOTE 100.00 (±0.00) 100.00 (±0.00) 100.00 (±0.00) 100.00 (±0.00)
AE-Poly 100.00 (±0.00) 100.00 (±0.00) 100.00 (±0.00) 100.00 (±0.00)
TGAN-Skip 95.24 (±12.60) 99.95 (±0.13) 100.00 (±0.00) 100.00 (±0.00)
TGAN-WGAN 95.36 (±6.04) 98.05 (±5.05) 97.27 (±3.90) 99.96 (±0.10)
TGAN 97.14 (±7.56) 99.97 (±0.09) 100.00 (±0.00) 100.00 (±0.00)
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Table 5: Comparison of minority oversampling methods.
Metric

Dataset Method F1 - score G - score PR - AUC ROC - AUC

kddcup guess passwd vs satan

DOPING 98.70 (±2.23) 99.96 (±0.08) 99.90 (±0.26) 100.00 (±0.01)
SMOTE 98.64 (±2.32) 99.96 (±0.08) 100.00 (±0.00) 100.00 (±0.00)
CatSW 97.46 (±3.54) 98.10 (±2.38) 99.89 (±0.30) 100.00 (±0.01)
polynom-fit-SMOTE 98.76 (±2.12) 98.78 (±2.08) 99.95 (±0.14) 100.00 (±0.01)
SMOTE-NC 98.64 (±2.32) 99.96 (±0.08) 100.00 (±0.00) 100.00 (±0.00)
CTGAN 100.00 (±0.00) 100.00 (±0.00) 100.00 (±0.00) 100.00 (±0.00)
AE-SMOTE 99.32 (±1.80) 99.98 (±0.06) 99.95 (±0.14) 100.00 (±0.01)
AE-Poly 99.32 (±1.80) 99.98 (±0.06) 99.95 (±0.14) 100.00 (±0.01)
TGAN-Skip 98.08 (±2.40) 98.76 (±2.06) 100.00 (±0.00) 100.00 (±0.00)
TGAN-WGAN 96.59 (±3.72) 99.30 (±1.57) 100.00 (±0.00) 100.00 (±0.00)
TGAN 98.64 (±2.32) 99.96 (±0.08) 99.86 (±0.37) 99.99 (±0.02)

kddcup land vs satan

DOPING 100.00 (±0.00) 100.00 (±0.00) 100.00 (±0.00) 100.00 (±0.00)
SMOTE 95.24 (±12.60) 99.96 (±0.12) 99.64 (±0.94) 99.99 (±0.01)
CatSW 94.84 (±9.68) 96.56 (±5.94) 97.22 (±7.37) 98.19 (±4.78)
polynom-fit-SMOTE 95.92 (±6.97) 99.96 (±0.08) 99.64 (±0.94) 99.99 (±0.01)
SMOTE-NC 95.24 (±12.60) 99.96 (±0.12) 99.64 (±0.94) 99.99 (±0.01)
CTGAN 91.98 (±10.79) 95.43 (±5.60) 97.77 (±4.02) 99.97 (±0.06)
AE-SMOTE 100.00 (±0.00) 100.00 (±0.00) 100.00 (±0.00) 100.00 (±0.00)
AE-Poly 100.00 (±0.00) 100.00 (±0.00) 100.00 (±0.00) 100.00 (±0.00)
TGAN-Skip 95.24 (±5.94) 95.48 (±5.64) 100.00 (±0.00) 100.00 (±0.00)
TGAN-WGAN 95.24 (±5.94) 95.48 (±5.64) 100.00 (±0.00) 100.00 (±0.00)
TGAN 96.83 (±5.42) 96.98 (±5.15) 100.00 (±0.00) 100.00 (±0.00)

kddcup rootkit imap vs back

DOPING 84.35 (±13.67) 99.89 (±0.09) 98.30 (±4.50) 99.67 (±0.87)
SMOTE 97.14 (±7.56) 99.95 (±0.06) 100.00 (±0.00) 100.00 (±0.00)
CatSW 91.34 (±9.91) 91.99 (±8.95) 98.15 (±4.88) 99.98 (±0.04)
polynom-fit-SMOTE 96.37 (±6.26) 99.95 (±0.06) 100.00 (±0.00) 100.00 (±0.00)
SMOTE-NC 97.14 (±7.56) 99.95 (±0.06) 100.00 (±0.00) 100.00 (±0.00)
CTGAN 91.84 (±7.64) 99.94 (±0.09) 99.20 (±2.13) 99.99 (±0.02)
AE-SMOTE 95.92 (±6.97) 99.97 (±0.06) 100.00 (±0.00) 100.00 (±0.00)
AE-Poly 96.37 (±6.26) 99.97 (±0.06) 100.00 (±0.00) 100.00 (±0.00)
TGAN-Skip 92.29 (±7.30) 98.44 (±3.97) 100.00 (±0.00) 100.00 (±0.00)
TGAN-WGAN 90.25 (±6.76) 98.43 (±3.96) 94.70 (±9.63) 99.93 (±0.14)
TGAN 93.20 (±12.85) 99.95 (±0.09) 98.09 (±5.06) 99.97 (±0.09)

ada

DOPING 65.97 (±2.97) 81.18 (±1.49) 77.46 (±2.51) 90.00 (±1.40)
SMOTE 66.77 (±3.40) 78.62 (±2.82) 76.30 (±3.42) 89.57 (±1.72)
CatSW 66.63 (±4.15) 72.46 (±4.26) 75.42 (±4.65) 89.27 (±2.19)
polynom-fit-SMOTE 67.21 (±3.90) 81.21 (±1.80) 77.78 (±2.42) 90.12 (±1.32)
SMOTE-NC 66.77 (±3.40) 78.62 (±2.82) 76.30 (±3.42) 89.57 (±1.72)
CTGAN 65.95 (±2.71) 80.49 (±1.28) 77.38 (±2.64) 90.01 (±1.40)
AE-SMOTE 66.51 (±3.35) 81.01 (±1.90) 77.88 (±2.41) 90.11 (±1.26)
AE-Poly 66.59 (±2.37) 81.18 (±1.24) 77.85 (±2.17) 90.19 (±1.30)
TGAN-Skip 65.22 (±3.58) 78.31 (±2.30) 75.37 (±2.92) 88.74 (±1.83)
TGAN-WGAN 65.12 (±3.14) 79.17 (±1.77) 75.77 (±2.55) 89.22 (±1.58)
TGAN 65.86 (±3.36) 78.25 (±2.27) 75.41 (±3.07) 88.73 (±1.56)

abalone19

DOPING 0.00 (±0.00) 0.00 (±0.00) 1.10 (±0.35) 68.75 (±5.49)
SMOTE 7.97 (±6.12) 21.68 (±14.13) 9.42 (±10.37) 75.18 (±6.57)
CatSW 3.19 (±1.21) 12.61 (±2.70) 3.28 (±3.37) 73.92 (±9.54)
polynom-fit-SMOTE 5.25 (±5.65) 15.99 (±8.24) 3.26 (±6.40) 73.60 (±9.44)
SMOTE-NC 7.97 (±6.12) 21.68 (±14.13) 9.42 (±10.37) 75.18 (±6.57)
CTGAN 2.86 (±7.56) 7.12 (±18.84) 4.52 (±6.64) 66.14 (±8.95)
AE-SMOTE 4.22 (±4.02) 12.21 (±11.52) 12.24 (±9.48) 73.54 (±6.35)
AE-Poly 4.37 (±2.43) 15.09 (±5.13) 11.48 (±18.39) 72.24 (±6.26)
TGAN-Skip 1.36 (±3.60) 3.68 (±9.73) 1.44 (±0.55) 72.97 (±5.81)
TGAN-WGAN 1.36 (±1.99) 5.43 (±7.23) 1.19 (±0.51) 69.73 (±9.53)
TGAN 0.00 (±0.00) 0.00 (±0.00) 1.25 (±0.48) 71.05 (±4.95)

winequality red 4

DOPING 0.00 (±0.00) 0.00 (±0.00) 6.98 (±5.23) 64.04 (±7.16)
SMOTE 18.74 (±12.08) 35.92 (±7.66) 12.19 (±8.28) 73.19 (±11.94)
CatSW 14.04 (±7.77) 26.62 (±13.06) 10.70 (±6.59) 69.44 (±9.54)
polynom-fit-SMOTE 12.11 (±11.34) 25.40 (±12.76) 9.72 (±5.41) 73.28 (±8.32)
SMOTE-NC 18.74 (±12.08) 35.92 (±7.66) 12.19 (±8.28) 73.19 (±11.94)
CTGAN 11.96 (±15.58) 30.94 (±14.33) 10.96 (±12.29) 68.00 (±7.79)
AE-SMOTE 21.28 (±12.44) 44.18 (±4.89) 14.26 (±7.94) 72.55 (±8.70)
AE-Poly 14.48 (±8.27) 36.06 (±28.72) 13.83 (±10.89) 70.85 (±10.77)
TGAN-Skip 8.37 (±5.38) 22.16 (±8.01) 7.46 (±3.04) 68.54 (±8.47)
TGAN-WGAN 10.33 (±5.96) 26.27 (±9.14) 8.86 (±4.80) 69.00 (±6.29)
TGAN 4.64 (±6.10) 16.71 (±22.83) 8.95 (±9.92) 66.99 (±8.58)

fabert

DOPING 98.71 (±0.58) 99.65 (±0.52) 99.33 (±0.52) 99.77 (±0.28)
SMOTE 99.14 (±0.61) 99.78 (±0.24) 99.60 (±0.38) 99.92 (±0.11)
CatSW 98.57 (±0.77) 98.84 (±0.63) 99.74 (±0.23) 99.96 (±0.07)
polynom-fit-SMOTE 98.98 (±0.85) 99.70 (±0.36) 99.73 (±0.28) 99.96 (±0.06)
SMOTE-NC 99.14 (±0.61) 99.78 (±0.24) 99.60 (±0.38) 99.92 (±0.11)
CTGAN 99.07 (±0.65) 99.72 (±0.34) 99.41 (±0.43) 99.75 (±0.26)
AE-SMOTE 99.16 (±0.58) 99.84 (±0.14) 99.50 (±0.31) 99.89 (±0.08)
AE-Poly 99.16 (±0.47) 99.82 (±0.20) 99.47 (±0.32) 99.87 (±0.23)
TGAN-Skip - (±−) - (±−) - (±−) - (±−)
TGAN-WGAN - (±−) - (±−) - (±−) - (±−)
TGAN - (±−) - (±−) - (±−) - (±−)

ads

DOPING 88.79 (±1.62) 96.76 (±1.16) 91.81 (±3.48) 96.29 (±1.09)
SMOTE 88.93 (±1.64) 96.80 (±0.91) 91.27 (±2.72) 95.99 (±1.24)
CatSW 88.01 (±2.55) 93.93 (±2.09) 91.48 (±2.65) 96.69 (±0.88)
polynom-fit-SMOTE 88.56 (±2.00) 96.77 (±1.08) 92.16 (±3.17) 96.45 (±1.09)
SMOTE-NC - (±−) - (±−) - (±−) - (±−)
CTGAN 89.05 (±1.73) 96.76 (±0.73) 92.86 (±1.87) 97.09 (±0.72)
AE-SMOTE 89.05 (±1.70) 97.17 (±0.64) 92.92 (±2.81) 96.91 (±0.86)
AE-Poly 89.20 (±1.98) 97.06 (±0.67) 93.10 (±2.67) 96.91 (±0.72)
TGAN-Skip - (±−) - (±−) - (±−) - (±−)
TGAN-WGAN - (±−) - (±−) - (±−) - (±−)
TGAN 0.00 (±0.00) 0.00 (±0.00) 0.00 (±0.00) 0.00 (±0.00)

14



Under review as a conference paper at ICLR 2021

Table 6: Comparison of minority oversampling methods.
Metric

Dataset Method F1 - score G - score PR - AUC ROC - AUC

sick euthyroid

DOPING 87.70 (±3.85) 92.79 (±2.83) 89.91 (±3.70) 98.47 (±0.59)
SMOTE 87.49 (±4.01) 92.22 (±2.23) 91.13 (±3.61) 98.82 (±0.49)
CatSW 84.56 (±3.16) 88.04 (±2.04) 89.61 (±3.64) 98.55 (±0.50)
polynom-fit-SMOTE 86.93 (±3.51) 91.73 (±3.01) 88.99 (±4.00) 98.65 (±0.43)
SMOTE-NC 87.49 (±4.01) 92.22 (±2.23) 91.13 (±3.61) 98.82 (±0.49)
CTGAN 87.57 (±3.32) 92.61 (±2.65) 89.32 (±3.75) 98.42 (±0.67)
AE-SMOTE 88.70 (±2.65) 93.75 (±3.25) 89.43 (±3.34) 98.44 (±0.86)
AE-Poly 89.08 (±3.30) 93.49 (±2.64) 89.06 (±5.50) 98.64 (±0.78)
TGAN-Skip 86.44 (±1.96) 91.65 (±1.60) 88.20 (±4.64) 97.82 (±0.91)
TGAN-WGAN 87.52 (±3.93) 92.76 (±2.90) 88.03 (±4.36) 98.06 (±0.88)
TGAN 86.61 (±3.33) 91.71 (±2.63) 86.61 (±6.22) 98.02 (±1.03)

ISOLET

DOPING 87.26 (±3.15) 97.44 (±0.68) 96.79 (±0.78) 99.57 (±0.29)
SMOTE 91.38 (±1.52) 97.57 (±0.78) 97.14 (±0.86) 99.59 (±0.25)
CatSW 88.44 (±3.54) 90.39 (±3.38) 96.54 (±1.03) 99.53 (±0.24)
polynom-fit-SMOTE 91.57 (±1.69) 97.30 (±0.81) 97.50 (±0.76) 99.66 (±0.19)
SMOTE-NC 91.38 (±1.52) 97.57 (±0.78) 97.14 (±0.86) 99.59 (±0.25)
CTGAN 88.24 (±1.72) 97.38 (±0.99) 97.05 (±0.71) 99.62 (±0.20)
AE-SMOTE 89.46 (±1.86) 97.51 (±0.65) 97.23 (±0.71) 99.62 (±0.20)
AE-Poly 89.92 (±2.27) 97.66 (±0.90) 97.56 (±0.60) 99.69 (±0.11)
TGAN-Skip 0.00 (±0.00) 0.00 (±0.00) 0.00 (±0.00) 0.00 (±0.00)
TGAN-WGAN 0.00 (±0.00) 0.00 (±0.00) 0.00 (±0.00) 0.00 (±0.00)
TGAN 0.00 (±0.00) 0.00 (±0.00) 0.00 (±0.00) 0.00 (±0.00)

us crime

DOPING 47.69 (±8.13) 81.65 (±8.13) 55.28 (±5.82) 91.12 (±2.59)
SMOTE 55.58 (±6.46) 79.17 (±6.91) 56.72 (±5.39) 90.99 (±2.76)
CatSW 43.49 (±4.07) 54.02 (±3.33) 51.58 (±6.74) 89.87 (±2.78)
polynom-fit-SMOTE 53.54 (±5.75) 77.79 (±3.24) 56.30 (±5.80) 90.67 (±2.74)
SMOTE-NC 55.58 (±6.46) 79.17 (±6.91) 56.72 (±5.39) 90.99 (±2.76)
CTGAN 48.84 (±5.34) 81.45 (±7.92) 57.20 (±5.44) 90.91 (±2.89)
AE-SMOTE 51.94 (±6.02) 82.26 (±7.32) 58.02 (±4.99) 91.46 (±2.80)
AE-Poly 53.30 (±6.14) 83.85 (±5.96) 59.01 (±4.65) 91.56 (±2.31)
TGAN-Skip 51.82 (±6.47) 80.76 (±5.09) 56.60 (±6.25) 90.77 (±3.22)
TGAN-WGAN 50.39 (±6.91) 79.46 (±6.42) 56.66 (±7.31) 90.57 (±2.11)
TGAN 50.16 (±6.15) 80.17 (±5.70) 54.78 (±5.65) 90.63 (±1.75)

yeast ml8

DOPING 0.00 (±0.00) 0.00 (±0.00) 9.00 (±2.33) 54.38 (±5.02)
SMOTE 12.32 (±3.92) 28.14 (±2.47) 10.08 (±2.33) 59.04 (±2.66)
CatSW 14.87 (±1.64) 28.53 (±2.29) 8.57 (±1.45) 53.77 (±4.60)
polynom-fit-SMOTE 11.40 (±4.13) 33.24 (±7.46) 10.55 (±2.34) 58.74 (±6.09)
SMOTE-NC 12.32 (±3.92) 28.14 (±2.47) 10.08 (±2.33) 59.04 (±2.66)
CTGAN 12.52 (±2.01) 33.30 (±4.42) 10.11 (±1.86) 58.08 (±3.66)
AE-SMOTE 15.36 (±3.66) 34.84 (±9.50) 25.24 (±8.93) 59.48 (±4.46)
AE-Poly 11.79 (±6.15) 42.44 (±35.13) 19.03 (±23.72) 57.44 (±4.00)
TGAN-Skip 0.00 (±0.00) 0.00 (±0.00) 0.00 (±0.00) 0.00 (±0.00)
TGAN-WGAN 0.00 (±0.00) 0.00 (±0.00) 0.00 (±0.00) 0.00 (±0.00)
TGAN 0.00 (±0.00) 0.00 (±0.00) 0.00 (±0.00) 0.00 (±0.00)

scene

DOPING 8.25 (±12.14) 57.12 (±40.33) 28.52 (±10.14) 78.62 (±4.32)
SMOTE 30.82 (±5.94) 66.77 (±17.94) 30.33 (±7.35) 79.35 (±3.02)
CatSW 24.06 (±2.59) 38.83 (±1.57) 20.76 (±6.38) 74.12 (±2.93)
polynom-fit-SMOTE 11.41 (±7.94) 57.52 (±45.77) 25.35 (±8.43) 77.63 (±2.12)
SMOTE-NC 30.82 (±5.94) 66.77 (±17.94) 30.33 (±7.35) 79.35 (±3.02)
CTGAN 9.09 (±10.90) 61.19 (±42.97) 29.12 (±8.16) 76.84 (±3.34)
AE-SMOTE 27.71 (±5.89) 73.03 (±10.35) 30.94 (±8.16) 79.90 (±1.98)
AE-Poly 19.77 (±7.86) 76.87 (±23.98) 31.64 (±7.65) 79.40 (±2.37)
TGAN-Skip 0.00 (±0.00) 0.00 (±0.00) 0.00 (±0.00) 0.00 (±0.00)
TGAN-WGAN 0.00 (±0.00) 0.00 (±0.00) 0.00 (±0.00) 0.00 (±0.00)
TGAN 0.00 (±0.00) 0.00 (±0.00) 0.00 (±0.00) 0.00 (±0.00)

thyroid sick

DOPING 87.85 (±4.24) 94.66 (±1.82) 95.01 (±1.65) 99.49 (±0.22)
SMOTE 89.93 (±4.01) 94.70 (±3.31) 95.99 (±2.29) 99.63 (±0.27)
CatSW 83.58 (±6.13) 86.80 (±4.65) 93.30 (±4.08) 99.24 (±0.69)
polynom-fit-SMOTE 87.35 (±3.67) 92.76 (±1.33) 92.68 (±2.82) 99.03 (±0.66)
SMOTE-NC 89.93 (±4.01) 94.70 (±3.31) 95.99 (±2.29) 99.63 (±0.27)
CTGAN 87.24 (±5.07) 94.58 (±2.60) 93.41 (±3.83) 99.20 (±0.57)
AE-SMOTE 89.57 (±4.34) 95.47 (±1.87) 95.57 (±2.43) 99.45 (±0.45)
AE-Poly 89.18 (±4.45) 95.02 (±1.63) 95.33 (±2.59) 99.45 (±0.45)
TGAN-Skip 84.12 (±4.04) 92.00 (±1.91) 92.68 (±5.26) 99.01 (±0.35)
TGAN-WGAN 85.64 (±3.72) 93.09 (±1.51) 92.53 (±5.13) 98.86 (±0.61)
TGAN 86.90 (±4.44) 92.79 (±2.16) 94.33 (±4.09) 99.25 (±0.39)

coil 2000

DOPING 2.96 (±1.89) 55.32 (±40.72) 16.26 (±4.61) 73.61 (±2.49)
SMOTE 20.66 (±1.40) 55.25 (±17.33) 16.07 (±2.22) 73.41 (±1.61)
CatSW 21.02 (±1.35) 34.79 (±1.28) 17.66 (±1.55) 73.89 (±1.86)
polynom-fit-SMOTE 9.43 (±4.23) 54.76 (±12.25) 16.23 (±2.08) 73.71 (±2.03)
SMOTE-NC 20.66 (±1.40) 55.25 (±17.33) 16.07 (±2.22) 73.41 (±1.61)
CTGAN 2.09 (±2.41) 42.25 (±43.88) 20.23 (±14.73) 73.16 (±3.65)
AE-SMOTE 4.81 (±3.86) 58.49 (±24.57) 16.31 (±2.97) 73.36 (±1.49)
AE-Poly 6.53 (±3.11) 64.87 (±16.21) 17.00 (±2.38) 74.64 (±2.43)
TGAN-Skip 9.41 (±3.57) 39.67 (±39.54) 15.07 (±3.61) 69.39 (±9.41)
TGAN-WGAN 12.49 (±4.09) 38.56 (±41.00) 15.16 (±3.65) 72.29 (±4.76)
TGAN 11.71 (±3.00) 39.28 (±13.17) 14.09 (±3.60) 65.86 (±9.75)

solar flare M0

DOPING 6.55 (±9.16) 25.69 (±33.75) 19.77 (±6.55) 79.89 (±4.27)
SMOTE 20.10 (±6.65) 44.72 (±21.54) 18.28 (±6.42) 79.49 (±4.11)
CatSW 19.55 (±4.72) 34.50 (±5.13) 17.29 (±5.37) 75.84 (±8.68)
polynom-fit-SMOTE 20.28 (±7.77) 57.22 (±19.44) 30.19 (±16.31) 70.82 (±12.93)
SMOTE-NC 0.00 (±0.00) 0.00 (±0.00) 0.00 (±0.00) 0.00 (±0.00)
CTGAN 23.65 (±5.60) 48.47 (±36.59) 19.12 (±9.88) 74.63 (±4.89)
AE-SMOTE 27.70 (±5.59) 55.17 (±7.93) 19.11 (±6.77) 78.37 (±5.03)
AE-Poly 26.26 (±9.48) 52.95 (±9.81) 19.75 (±3.25) 77.87 (±5.13)
TGAN-Skip 20.03 (±11.37) 43.50 (±30.35) 20.84 (±10.10) 75.71 (±4.81)
TGAN-WGAN 18.02 (±9.72) 45.10 (±23.88) 18.34 (±6.93) 71.41 (±5.94)
TGAN 9.88 (±9.57) 45.82 (±45.31) 20.25 (±9.68) 73.45 (±6.29)
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Table 7: Comparison of minority oversampling methods.
Metric

Dataset Method F1 - score G - score PR - AUC ROC - AUC

wine quality

DOPING 29.13 (±6.22) 80.57 (±4.87) 33.69 (±4.42) 83.58 (±1.61)
SMOTE 39.00 (±6.01) 68.37 (±10.34) 32.35 (±9.82) 83.20 (±1.98)
CatSW 29.73 (±2.49) 44.31 (±1.93) 26.85 (±5.58) 82.52 (±2.52)
polynom-fit-SMOTE 36.70 (±6.83) 64.53 (±7.64) 28.43 (±7.22) 83.11 (±2.44)
SMOTE-NC 39.00 (±6.01) 68.37 (±10.34) 32.35 (±9.82) 83.20 (±1.98)
CTGAN 32.35 (±5.86) 74.70 (±7.43) 32.14 (±5.52) 83.59 (±3.48)
AE-SMOTE 32.45 (±3.32) 83.81 (±11.56) 33.96 (±7.22) 82.65 (±2.80)
AE-Poly 29.84 (±8.64) 80.67 (±10.60) 32.49 (±6.78) 84.40 (±2.30)
TGAN-Skip 29.96 (±6.28) 66.51 (±9.00) 27.56 (±5.21) 82.54 (±0.86)
TGAN-WGAN 28.81 (±7.51) 71.59 (±10.78) 32.30 (±7.17) 82.63 (±1.92)
TGAN 27.34 (±8.67) 68.84 (±10.88) 27.86 (±6.14) 83.01 (±2.44)

webpage

DOPING 79.70 (±1.64) 94.48 (±1.39) 84.14 (±1.87) 97.80 (±0.45)
SMOTE 79.49 (±1.77) 93.82 (±1.54) 84.42 (±1.79) 98.04 (±0.52)
CatSW 63.41 (±5.35) 70.73 (±4.33) 79.24 (±3.76) 97.82 (±0.62)
polynom-fit-SMOTE 78.88 (±2.42) 94.21 (±2.07) 84.87 (±1.92) 98.14 (±0.52)
SMOTE-NC - (±−) - (±−) - (±−) - (±−)
CTGAN 78.40 (±2.02) 94.03 (±2.01) 83.08 (±2.38) 97.31 (±0.74)
AE-SMOTE 76.35 (±2.06) 88.31 (±2.42) 81.76 (±2.28) 97.78 (±0.66)
AE-Poly 75.68 (±2.77) 86.33 (±2.95) 81.50 (±2.00) 97.80 (±0.43)
TGAN-Skip - (±−) - (±−) - (±−) - (±−)
TGAN-WGAN - (±−) - (±−) - (±−) - (±−)
TGAN - (±−) - (±−) - (±−) - (±−)

ozone level

DOPING 4.72 (±9.02) 19.85 (±37.87) 21.71 (±10.98) 88.25 (±3.00)
SMOTE 37.34 (±11.82) 63.74 (±21.92) 32.05 (±11.46) 91.34 (±2.12)
CatSW 30.41 (±7.37) 44.37 (±6.39) 32.96 (±10.89) 89.27 (±3.28)
polynom-fit-SMOTE 29.38 (±7.63) 54.67 (±13.63) 22.14 (±4.83) 89.18 (±3.49)
SMOTE-NC 37.34 (±11.82) 63.74 (±21.92) 32.05 (±11.46) 91.34 (±2.12)
CTGAN 10.29 (±2.23) 32.81 (±12.89) 21.53 (±11.46) 86.04 (±7.96)
AE-SMOTE 27.35 (±14.95) 72.37 (±18.67) 30.61 (±8.95) 89.06 (±3.19)
AE-Poly 21.15 (±13.19) 59.85 (±34.17) 30.07 (±5.71) 88.82 (±5.30)
TGAN-Skip 6.14 (±5.86) 32.75 (±33.01) 16.54 (±11.97) 80.31 (±3.45)
TGAN-WGAN 12.48 (±7.47) 54.75 (±27.34) 19.90 (±4.86) 87.62 (±3.60)
TGAN 7.60 (±6.43) 24.68 (±18.47) 22.75 (±16.68) 83.35 (±9.37)

kc1

DOPING 40.20 (±8.74) 71.68 (±4.95) 46.41 (±7.18) 81.09 (±2.29)
SMOTE 47.03 (±3.41) 69.57 (±7.91) 45.76 (±5.31) 81.04 (±2.19)
CatSW 43.65 (±2.52) 53.47 (±1.89) 41.43 (±8.37) 79.93 (±3.36)
polynom-fit-SMOTE 45.03 (±6.38) 71.51 (±4.44) 47.09 (±6.94) 81.83 (±2.60)
SMOTE-NC 47.03 (±3.41) 69.57 (±7.91) 45.76 (±5.31) 81.04 (±2.19)
CTGAN 38.96 (±5.29) 72.66 (±4.31) 47.21 (±6.65) 81.84 (±2.93)
AE-SMOTE 43.50 (±2.26) 73.40 (±4.31) 50.55 (±7.63) 82.12 (±2.63)
AE-Poly 43.26 (±5.30) 73.39 (±4.13) 48.42 (±5.72) 82.36 (±2.52)
TGAN-Skip 37.60 (±6.61) 69.44 (±3.43) 42.91 (±4.02) 80.41 (±2.33)
TGAN-WGAN 36.91 (±4.53) 70.09 (±5.25) 43.87 (±4.78) 80.12 (±2.04)
TGAN 42.24 (±6.95) 73.12 (±5.03) 46.55 (±5.95) 81.04 (±2.22)
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C DATASETS

We provide a overview of all the public datasets used for the evaluation of the proposed method.
Links are provided for each dataset in each row Dua & Graff (2017), Alcala-Fdez et al. (2011),
Lemaitre et al. (2016).

ID Dataset Categorical Continuous Imbalance Ratio Num Samples

0 solar flare M0 32 0 1:21 1389

1 winequality red 4 0 11 1:31 1599

2 kddcup land vs satan 0 30 1:78 1610

3 kddcup guess passwd vs satan 0 38 1:32 1642

4 us crime 0 100 1:14 1994

5 poker 8 9 vs 5 25 0 1:84 2075

6 kc1 0 21 1:7 2109

7 kddcup rootkit imap vs back 0 47 1:102 2225

8 kddcup buffer overflow vs back 0 31 1:75 2233

9 segment0 0 23 1:8 2308

10 scene 0 294 1:15 2407

11 yeast ml8 0 103 1:15 2417

12 ozone level 0 72 1:36 2536

13 hypothyroid 0 25 1:22 3163

14 sick euthyroid 36 6 1:12 3163

15 ads 1555 0 1:8 3279

16 thyroid sick 45 7 1:17 3772

17 hiva 1617 0 1:29 3845

18 ada 0 47 1:5 4147

19 abalone19 0 8 1:131 4174

20 wine quality 0 11 1:28 4898

21 page blocks0 0 10 1:11 5472

22 satimage 0 36 1:11 6435

23 ISOLET 0 617 1:14 7797

24 coil 2000 57 28 1:18 9822

25 sylva 172 40 1:17 13086

26 letters 0 16 1:28 19999

27 fabert 0 800 1:17 24711

28 credit default 9 14 1:6 30000

29 webpage 300 0 1:36 34780

30 adult 8 6 1:14 48840

31 protein homo 0 74 1:113 145751

32 fraud 0 29 1:580 284807

33 covtype 44 10 1:48 581011

34 safe drive 14 43 1:28 595212
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https://zenodo.org/record/61452#.X15Ht5NKiHF
https://www.openml.org/d/40691
https://sci2s.ugr.es/keel/dataset.php?cod=1319
https://sci2s.ugr.es/keel/dataset.php?cod=1317
https://zenodo.org/record/61452#.X15Ht5NKiHF
https://sci2s.ugr.es/keel/dataset.php?cod=1338
https://www.openml.org/d/1067
https://sci2s.ugr.es/keel/dataset.php?cod=1320
https://sci2s.ugr.es/keel/dataset.php?cod=1316
https://sci2s.ugr.es/keel/dataset.php?cod=148
https://zenodo.org/record/61452#.X15Ht5NKiHF
https://zenodo.org/record/61452#.X15Ht5NKiHF
https://zenodo.org/record/61452#.X15Ht5NKiHF
https://sci2s.ugr.es/keel/dataset.php?cod=67
https://zenodo.org/record/61452#.X15Ht5NKiHF
https://www.openml.org/data/get_csv/18140371/
https://zenodo.org/record/61452#.X15Ht5NKiHF
http://www.causality.inf.ethz.ch//home.php
https://sci2s.ugr.es/keel/datasets.php
https://archive.ics.uci.edu/ml/datasets/abalone
https://zenodo.org/record/61452#.X15Ht5NKiHF
https://sci2s.ugr.es/keel/dataset.php?cod=104
https://archive.ics.uci.edu/ml/datasets/Statlog+(Landsat+Satellite)
https://zenodo.org/record/61452#.X15Ht5NKiHF
https://zenodo.org/record/61452#.X15Ht5NKiHF
https://www.openml.org/d/1036
https://archive.ics.uci.edu/ml/datasets/Letter+Recognition
http://www.causality.inf.ethz.ch/AutoML
https://archive.ics.uci.edu/ml/datasets/default+of+credit+card+clients
https://zenodo.org/record/61452#.X15Ht5NKiHF
https://archive.ics.uci.edu/ml/datasets/census+income
https://www.kdd.org/kdd-cup/view/kdd-cup-2001
https://www.kaggle.com/mlg-ulb/creditcardfraud
https://archive.ics.uci.edu/ml/datasets/covertype
https://www.kaggle.com/c/porto-seguro-safe-driver-prediction/
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• Letters: This dataset is a multi-class dataset converted into an imbalanced binary dataset
by merging all letters besides the least frequent letter (h) to be labeled as class 0 and h as
class 1.
• Forest Cover Type: This dataset is a multiclass classification problem with 7

clases, we convert this dataset into an imbalanced binary problem by merging
the least frequent classes {4, 5} as class 1 and the rest {1, 2, 3, 6, 7} as class 0.
https://archive.ics.uci.edu/ml/datasets/covertype
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https://archive.ics.uci.edu/ml/datasets/covertype
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D SOFTWARE

To ensure reproducibility, all experiments were run using the same random seed (42) and software
versions.

Table 8: Python dependencies.

Dependency Version

python 3.6.1

pytorch 1.0.0

cuda100 1.0

numpy 1.15.4

pandas 0.24.1

scikit-learn 0.20.1

scipy 1.1.0

tqdm 4.28.1

matplotlib 3.0.1

imbalanced-learn 0.7.0
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