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Abstract.

We consider stochastic optimization when one only has access to biased stochastic oracles of the objective and the gradient, and

obtaining stochastic gradients with low biases comes at high costs. This setting captures various optimization paradigms, such as

conditional stochastic optimization, distributionally robust optimization, shortfall risk optimization, and machine learning paradigms,

such as contrastive learning. We examine a family of multi-level Monte Carlo (MLMC) gradient methods that exploit a delicate

tradeoff among bias, variance, and oracle cost. We systematically study their total sample and computational complexities for

strongly convex, convex, and nonconvex objectives and demonstrate their superiority over the widely used biased stochastic gradient

method. When combined with the variance reduction techniques like SPIDER, these MLMC gradient methods can further reduce

the complexity in the nonconvex regime. Our results imply that a series of stochastic optimization problems with biased oracles,

previously considered to be more challenging, is fundamentally no harder than the classical stochastic optimization with unbiased

oracles. We also delineate the boundary conditions under which these problems become more difficult. Moreover, MLMC gradient

methods significantly improve the best-known complexities in the literature for conditional stochastic optimization and shortfall risk

optimization. Our extensive numerical experiments on distributionally robust optimization, pricing and staffing scheduling problems,

and contrastive learning demonstrate the superior performance of MLMC gradient methods. *

Key words: Multi-level Monte-Carlo, First-Order Methods, Stochastic Optimization, Biased Oracles.

1. Introduction

SGD and its numerous variants are commonly used optimization approaches to address large-scale, data-

driven applications in machine learning and optimization. While vanilla SGD depends crucially on unbiased

gradient oracles, constructing such estimators can be prohibitively expensive or even infeasible for many

emerging machine learning and optimization problems. Examples include distributionally robust optimiza-

tion (Ghosh and Squillante 2020, Levy et al. 2020), conditional stochastic optimization (Hu et al. 2020c),

meta-learning (Fallah et al. 2019, Rajeswaran et al. 2019), contextual optimization (Bertsimas and Kallus

2020, Bertsimas and Koduri 2021), variantional inference (Blei et al. 2017, Fujisawa and Sato 2021), and etc.

* A preliminary version of this manuscript has appeared in a conference proceeding. Please refer to Hu et al. (2021) Y. Hu, X. Chen,

and N. He. On the bias-variance-cost tradeoff of stochastic optimization. Advances in Neural Information Processing Systems, 34.
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As an alternative, one often resorts to some naturally biased gradient estimators. However, existing

literature (Ajalloeian and Stich 2020, Chen and Luss 2018, Demidovich et al. 2024, Hu et al. 2020a, 2016,

Karimi et al. 2019, Liu and Tajbakhsh 2023) usually focus on the iteration complexity given biased stochastic

oracles while ignoring the fact that constructing stochastic oracles with lower bias and variances incurs

higher costs, such as more samples or computation resources.

In this paper, we build a unified framework to study the fundamental tradeoff among bias, variance, and

cost for stochastic optimization with biased gradient oracles. We investigate efficient gradient-based methods

to solve optimization problems of the general form

min
x∈Rd

F (x), (1)

where we assume that one does not have access to an unbiased gradient estimator of F (x) via simple Monte

Carlo sampling. Instead, assume there exists a sequence of approximations of F (x), denoted as {F l(x)}∞l=0

such that the error |F l(x)−F (x)| or ∥∇F l(x)−∇F (x)∥ vanishes as l→∞. Unbiased gradient estimators

of F l are attainable through stochastic oracles SOl, but the cost of querying SOl increases with l, as

sampling from more accurate approximations generally entails higher costs. For simplicity of discussion, we

assume the continuous differentiability of F and F l.

1.1. Motivating Examples

Conditional Stochastic Optimization (CSO). The objective of CSO (Hu et al. 2020b) involves

the expectation of compositions of nonlinear function with another conditional expectation, i.e.,

minxEξ[fξ(Eη|ξgη(x; ξ))]. It is challenging to obtain the unbiased gradient estimator due to the composi-

tion of nonlinear transformation with conditional expectation. To tackle this difficulty, one can construct

a sequence of approximation functions for the CSO objective, where the level l implies that one uses 2l

samples to estimate the conditional expectation. It has been shown in (Hu et al. 2020b, Theorem 4.1) that

the bias of the approximation sequence decreases. As we will discuss in Section 4.1, two widely studied

applications, distributionally robust optimization (DRO) (Levy et al. 2020, Wang et al. 2023) and contrastive

learning (CL) (Chen et al. 2020), are special cases of CSO. For more applications of CSO in reinforcement

learning, variational inference, and others, interested readers may refer to (Hu et al. 2020c).

Pricing and Staffing in Stochastic Systems. The pricing and staffing task in a stochastic system seeks

to optimize the long-run expected profit (Lee and Ward 2014), whose objective involves the expectation

of steady-state distributions, which can be simulated by taking the time limit of a queuing process. Since

the unbiased gradient estimator is difficult to obtain, we resort to an approximate gradient method, where

we build the l-th level approximated objective using the first 2l samples of the trajectory from the queuing

process. As we will discuss in Section 4.2, the bias of the approximate gradient decreases at a linear rate.
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Utility-Based Shortfall Risk (SR) Optimization. SR optimization (Bertsimas et al. 2004) appears

widely in mathematical finance and power system. The gradient of the objective involves (i) a fraction of

two expectations with respect to continuous distributions and (ii) a descriptive statistic that requires a large

number of samples to obtain its accurate estimation, which makes it challenging to obtain an unbiased

gradient estimator. Fortunately, it is feasible to construct an approximate gradient estimate with bias O(2−l)

and O(1) variance using O(2l) samples, which will be discussed in Section 4.3.

1.2. Multilevel Monte Carlo (MLMC) Gradient Estimation

A classical approach to solve (1) is to perform SGD on the approximation function FL(x) with a level L

such that the bias is small and within a target accuracy ϵ. We call such a framework L-SGD. It encapsulates

several existing algorithms under different contexts, such as BSGD (Hu et al. 2020c) in conditional stochastic

optimization, biased gradient method (Levy et al. 2020) in DRO, a variant of LEON for contextual SO (Diao

and Sen 2020), and various double-loop methods for meta-learning and bilevel optimization (Franceschi

et al. 2018, Hu et al. 2023). Despite its simplicity, L-SGD generally fails to achieve the smallest total cost

since it requires expensive stochastic oracles to ensure a small bias.

On the other hand, the multilevel Monte Carlo (MLMC) sampling technique, initially designed for

stochastic simulation (Giles 2008), is amenable to obtain better gradient estimators by exploiting the bias-cost

tradeoff. Consider the following representation of the objective and gradient of FL for a sufficiently large L:

FL(x) =

L∑
l=0

[F l(x)−F l−1(x)]; ∇FL(x) =

L∑
l=0

[∇F l(x)−∇F l−1(x)],

where we denote F−1(x) := 0 and ∇F−1(x) := 0 by convention. Let H l be an estimator of ∇F l −∇F l−1.

Such telescoping sum representation suggests that we can construct estimators of ∇FL by summing up H l

from l= 0 to l=L. As a result, we can use different batches for H l with different l or assign different weights

in a randomized construction. The idea is to query fewer oracles with higher costs and smaller biases (oracles

with large l) and query more oracles with lower costs and larger biases (oracles with small l); thus, the cost

can be effectively reduced. Note that the construction of the estimator H l requires that the estimators of ∇F l

and ∇F l−1 to be correlated so that one can well control the variance of the MLMC estimator, which we will

discuss for various applications in Section 4. In this work, we consider four MLMC gradient constructions.

The vanilla MLMC (denoted as V-MLMC) utilizes sample averages and implements varying mini-batch

sizes for the estimator H l with different levels l. There exist several variations of MLMC with randomization,

including the unbiased MLMC estimator with importance sampling (denoted RU-MLMC), the MLMC

estimator with randomized truncation and importance sampling (denoted as RT-MLMC) (Blanchet and

Glynn 2015), and the Russian roulette estimator (denoted as RR-MLMC) that uses randomized telescope

sum (Kahn 1955).
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Table 1 Summary of (expected) total costs for finding an ϵ-optimal solution for (strongly) convex F or an ϵ-stationary point for

nonconvex F . Here a is the decrease rate in the bias, i.e., |F l(x)−F (x)|=O(2−al) for (strongly) convex case, or the gradient

approximation error ∥∇F l(x)−∇F (x)∥22 =O(2−al) for nonconvex case. b is the decrease rate of the variance of Hl, the

estimator of ∇F l(x)−∇F l−1(x), i.e., Var(Hl) =O(2−bl). c is the increase rate of oracle cost, i.e., the cost to generate Hl is

O(2cl). See more details in Assumptions 1 and 1(I′). Õ(·) represents the order hiding logarithmic factors. N.A. stands for not

applicable, VR stands for variance reduction. Let n1 =max{1, c/a}, n2 =max{1+ (c− b)/a, c/a}.

V-MLMC RT-MLMC
RU-MLMC L-SGD

Conditions of F , F l

RR-MLMC (existing biased methods)

Unbiasedness Biased Biased Unbiased Biased

Requires Mini-batch Yes No No No

Total Cost if c < b

Õ(ϵ−n1) O(ϵ−1) O(ϵ−1) O(ϵ−1−c/a) Strongly Convex

O(ϵ−1−n1)∗ O(ϵ−2) O(ϵ−2) O(ϵ−2−c/a) Convex

O(ϵ−2−2n1) O(ϵ−4) O(ϵ−4) O(ϵ−4−2c/a) Nonconvex

Total Cost if c≥ b

Õ(ϵ−n2) Õ(ϵ−1−(c−b)/a) N.A. O(ϵ−1−c/a) Strongly Convex

Õ(ϵ−1−n2)∗ Õ(ϵ−2−(c−b)/a) N.A. O(ϵ−2−c/a) Convex

Õ(ϵ−2−2n2) Õ(ϵ−4−2(c−b)/a) N.A. O(ϵ−4−2c/a) Nonconvex

Total Cost of VR when c < b O(ϵ−1−2n1) O(ϵ−3) O(ϵ−3) O(ϵ−3−2c/a)
Nonconvex

Total Cost of VR when c≥ b O(ϵ−1−2n2) Õ(ϵ−3−2(c−b)/a) N.A. O(ϵ−3−2c/a)

∗: if the approximation function F l is only Lipschitz continuous, i.e., Assumption 2(II) holds, then n1 = n2 = 1+ c/a.

Total cost of VR denotes the total costs of variance-reduced methods using the corresponding gradient estimators.

Although the technique of MLMC could also be used to construct function value estimators or solution

estimators (Blanchet et al. 2019, Frikha 2016), these two methods have their disadvantages in optimization,

respectively. An MLMC function value estimator, unlike sample average approximation, is usually nonconvex

even if the original objective possesses (strong) convexity since it uses estimators of F l(x)−F l−1(x) as

building blocks. Thus, it would be difficult to find the global optimal solution. On the other hand, using

MLMC to build solution estimators requires the empirical objective to be strongly or strictly convex so

that the optimal empirical solution is unique. Otherwise, there is no guarantee of the quality of the MLMC

solution estimator. In addition, it requires solving multiple empirical problems. We discuss further details in

Section 4.4. Note that MLMC gradient methods overcome these disadvantages.

1.3. Our Contributions

In this paper, we systematically compare these MLMC techniques when combined with stochastic gradient

descent and variance reduction methods. Our primary focus is on the analysis of their total sampling and

computation cost for achieving an ϵ-optimal solution for (strongly) convex problems and an ϵ-stationary

point for nonconvex problems, which is largely missing in the literature. We also highlight the importance of

using MLMC for gradient estimation rather than function value or solution estimation.
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Non-asymptotic analysis of MLMC gradient methods. We analyze the non-asymptotic performances

and computation complexities of L-SGD and four MLMC gradient methods, i.e., V-MLMC, RT-MLMC,

RU-MLMC, and RR-MLMC, under the general stochastic optimization with biased oracle framework in

various regime, e.g., different convexity assumptions. We particularly consider different combinations of

setup for the estimator H l, i.e., the estimator of ∇F l(x)−∇F l−1(x). We discuss how the decrease rate of

bias (with respect to a), the decrease rate of variance (with respect to b), and the increase rate of costs (with

respect to c) as stated in Assumption 1 affect the total costs. Our main results are summarized in Table 1. In

contrast, previous results either focus on specific applications (Blanchet et al. 2017, Levy et al. 2020) or only

asymptotic behaviors (Beatson and Adams 2019) in restricted regimes.

Variance reduced MLMC gradient methods. In the nonconvex smooth case, we combine MLMC

gradient estimators with variance reduction methods (Wang et al. 2019) to further reduce the (expected) total

cost. When b > c, VR RT-MLMC, VR RU-MLMC, and VR RR-MLMC can achieve O(ϵ−3) expected total

cost that matches the lower bounds for classical stochastic nonconvex optimization under the average smooth

condition (Arjevani et al. 2023). When b≤ c, VR RU-MLMC and VR RR-MLMC are no longer applicable,

while VR RT-MLMC is still better than VR L-SGD. As for VR V-MLMC, similar to the V-MLMC in the

SGD framework, it needs large mini-batches and can only achieve reduced total cost when b≥max{a, c}.

Our result provides a general variance reduction algorithmic framework for stochastic optimization with

biased oracles. Note that MLMC gradient estimators can combine with other optimization techniques, such

as acceleration.

Theoretical comparisons and new insights. Our comparative study of different MLMC techniques

yields several interesting findings: (1) When b > c, i.e., the variance decays faster than the increase of the cost,

V-MLMC (only when a≥ c) and all three randomized MLMC gradient methods nearly match the iteration

complexity of classical unbiased SGD, implying that the problem is no harder than classical stochastic

optimization, regardless of the bias. (2) When b≤ c, the unbiased MLMC constructions, RU-MLMC and RR-

MLMC, are no longer applicable since either the expected per-iteration cost or the variance of the gradient

estimator goes to infinity. In this regime, RT-MLMC and V-MLMC are still applicable, yet RT-MLMC does

not require any mini-batch. (3) In all regimes with 0 < a <∞ (i.e., bias exists), using the naive biased

gradient method L-SGD is strictly sub-optimal in terms of the total cost, demonstrating the importance of

the exploitation of the bias-variance-cost tradeoff in stochastic optimization with biased oracles. (4) Due

to potential rounding issues for finding optimal mini-batches, V-MLMC can only achieve a reduced cost

comparing to L-SGD when the following conditions holds: using large mini-batches, F l is smooth, and

a≥max{b, c}, implying limited applicability comparing to RT-MLMC.
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MLMC for practical applications. We demonstrate that MLMC gradient methods and their vari-

ance reduction counterparts significantly improve the sample and computational complexity over existing

approaches for conditional stochastic optimization, including DRO and constrastive learning, pricing and

staffing problem, and shortfall risk optimization in Section 4. We further validate the efficiency of MLMC

gradient methods over the L-SGD method using a series of experiments with real and synthetic datasets in

Section 5. For pricing and staffing problems, the number of samples needed for MLMC is about 10 times

smaller than that of L-SGD. For contrastive learning, on the CIFAR-100 dataset, the MLMC method takes

about 3 hours while L-SGD takes about 24 hours to achieve the same test accuracy.

1.4. Related Literature

Stochastic Gradient Descent and Variance Reduction Methods. SGD and its variants form one of the

most important optimization methods in machine learning and deep learning (Bottou et al. 2018, Nemirovski

et al. 2009). The iteration complexity of SGD for achieving an ϵ-optimal solution is O(ϵ−1) for strongly

convex objectives and O(ϵ−2) for convex objectives. Agarwal et al. (2009) demonstrated matching lower

bounds, implying that SGD is optimal in the (strongly) convex regime. In the nonconvex smooth setting,

the iteration complexity of SGD for achieving an ϵ-stationary point is O(ϵ−4) (Ghadimi and Lan 2013).

Recently, several variance reduction methods (Cutkosky and Orabona 2019, Li et al. 2021, Nguyen et al.

2017, Wang et al. 2019) improve the iteration complexity to O(ϵ−3) for nonconvex stochastic optimization

under an additional average smooth assumption (Arjevani et al. 2023). These bounds are tight as Arjevani

et al. (2023) demonstrated matching lower bounds on the iteration complexity for nonconvex stochastic

optimization with or without the average smooth condition.

The major distinctions between existing studies and our work lie in two aspects. First, they assume access

to unbiased stochastic gradient estimators, while we consider only biased ones. Second, they do not consider

the expenses of querying stochastic oracles. In contrast, our framework accounts for the costs related to

querying low-bias oracles and focuses on optimizing the overall costs for seeking an ϵ-optimal solution or

ϵ-stationary point.

Biased Gradient Methods. Two primary approaches have emerged for constructing (possibly) biased

gradient estimators. The first focuses on constructing estimators with small biases at each iteration, which

aligns more with our work. However, existing references usually ignore the cost of querying the biased oracle

but focus on iteration complexity only (Ajalloeian and Stich 2020, Chen and Luss 2018, Hu et al. 2020a,

2016, Karimi et al. 2019). Various biased gradient methods can be categorized under the proposed L-SGD

framework for specific applications. Notable examples include the BSGD mentioned above for CSO (Hu

et al. 2020c), biased gradient method for ϕ-divergence DRO (Levy et al. 2020), and learning enabled

optimization with non-parametric estimators (LEON) for contextual SO (Diao and Sen 2020), multi-step
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Model-Agnostic Meta-Learning (MAML) (Ji et al. 2022), and double-loop algorithms for min-max/bilevel

optimization (Ghadimi and Wang 2018, Jin et al. 2020). In this paper, we first elucidate the total costs of

L-SGD and propose to use more efficient MLMC gradient methods.

Another approach leverages the special problem structure to design algorithms that adaptively reduce

the gradient bias, relying largely on a case-by-case analysis. For instance, Chen et al. (2021) proposed

an alternating stochastic gradient method for stochastic nested/min-max/ bilevel optimization, and Yang

et al. (2022) proposed a smoothed stochastic Gradient Descent Ascent (GDA) for stochastic min-max

optimization. Demidovich et al. (2024) and Ajalloeian and Stich (2020) summarized biased gradient methods

from zeroth-order optimization and gradient compression problems.

MLMC Techniques. MLMC techniques have received recent attention in various optimization contexts.

Notably, Blanchet and Glynn (2015) combined the MLMC idea with sample average approximation to solve

stochastic optimization. Dereich and Müller-Gronbach (2019) integrated V-MLMC with Robbins-Monro and

Polyak-Ruppert stochastic approximation schemes and provided their convergence guarantees. RT-MLMC

was applied in stochastic compositional optimization with strongly convex objectives (Blanchet et al. 2017)

and ϕ-divergence DRO (Ghosh and Squillante 2020, Levy et al. 2020). Beatson and Adams (2019) studied

the asymptotic behaviors of SGD with RT-MLMC or RR-MLMC estimators. Asi et al. (2021) and Carmon

et al. (2022) use RT-MLMC for efficient computation of proximal operator and finite-sum and max-structured

minimization, respectively. Dorfman and Levy (2022) use MLMC to reduce dependence on mixing time

for stochastic optimization with Markovian data. Hu et al. (2023) use MLMC for a contextual bilevel

optimization problem. Alacaoglu et al. (2024) use MLMC for min-max optimization. The purpose of our

paper is to provide a systematic study and comparison of MLMC gradient methods in a general stochastic

optimization with biased oracles framework and demonstrate how to use them in a more principled way for

different applications that can be modeled under the framework. In addition, we are the first to investigate

the variance-reduced MLMC gradient methods.

1.5. Notations

A function f : Rd → R is L-Lipschitz continuous if |f(x)− f(y)| ≤ L∥x− y∥2 holds for any x, y ∈ Rd.

A function f is S-smooth if it is continuously differentiable and ∥∇f(x) −∇f(y)∥2 ≤ S∥x − y∥2 for

any x, y. A function f is µ-strongly convex if f(x)− f(y)−∇f(y)⊤(x− y)≥ µ
2
∥x− y∥22, for any x, y.

Let x∗ ∈ argminxF (x). A point x is an ϵ-optimal solution if it holds that F (x)− F (x∗)≤ ϵ, and x is an

ϵ-stationary point of F if ∥∇F (x)∥22 ≤ ϵ2. Polyak-Łojasiewicz (PL) condition (Karimi et al. 2016) is a

generalization of strong convexity such that ∥∇F (x)∥22 ≥ 2µ(F (x)− F (x∗)) for µ > 0. Throughout the

paper, we assume that the desired accuracy ϵ > 0 is small enough so that ϵ−1 ≫ log(ϵ−1)≥ 1. We use O(·)

to denote the order in terms of ϵ and Õ(·) to denote the order hiding the logarithmic dependency on ϵ. For

N ∈N+, denote [N ] as the set {1,2, . . . ,N}.
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1.6. Organizations

In Section 2, we discuss the construction of L-SGD and four MLMC gradient estimators, together with their

variance reduction counterparts. In Section 3, we discuss the sample complexity of these methods. In Section

4, we demonstrate three applications of MLMC estimators and further discuss the advantages of MLMC

gradient methods over MLMC function value estimator and solution estimator in Section 4.4 . Section 5

demonstrates numerical results.

2. MLMC Gradient Methods

In this section, we first formally restate the setting for the biased oracles we use throughout the paper. Next,

we demonstrate constructions of different biased gradient estimators via either L-SGD or MLMC methods.

Lastly, we discuss the bias, variance, and cost properties of these gradient estimators.

2.1. Biased Oracle Setting

We first define the stochastic oracle. In particular, we assume access to the following black box stochastic

oracle, which independently generates desired stochastic first-order information upon each query.

ASSUMPTION 1. There exist constants a, b, c,Ma,Mb,Mc, σ > 0 such that for any x∈Rd and l ∈N, the

following conditions hold.

(I) The function value approximation error is bounded: |F l(x)−F (x)| ≤Bl :=Ma2
−al.

(II) There exits a stochastic oracle, SOl, that for given x returns stochastic estimators hl(x, ζ l) and

H l(x, ζ l) such that

Ehl(x, ζ l) =∇F l(x), Var(hl(x, ζ l))≤ σ2, (2)

EH l(x, ζ l) =∇F l(x)−∇F l−1(x), Var(H l(x, ζ l))≤ Vl :=Mb2
−bl. (3)

(III) The cost to query SOl is bounded: Cl ≤Mc2
cl.

Assumption 1 characterizes the requirement of the stochastic oracle. Assumptions 1(I) and (III) imply

that obtaining an unbiased gradient estimator of more accurate approximation functions F l (namely smaller

bias from the true gradient) requires higher cost. The variance decay of the difference estimator H l(x, ζ l) in

Assumption 1(II) is the key assumption for MLMC methods. Intuitively, since ∇F l(x)−∇F l−1(x) becomes

very small for large l, constructing highly correlated estimators of ∇F l(x) and ∇F l−1(x) using the same

samples ζ l will likely yield small variance of their difference. This is akin to building variance reduction in

statistical estimation. We give several examples of constructing H l(x) for various optimization and machine

learning applications in Section 4.

Although we format the assumptions in terms of exponential decay in the bias and exponential increase

in the costs, in various applications, there exist approximations {Fk(x)}k with a polynomial decaying
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bias at a polynomial increasing cost k, e.g., |Fk(x)−F (x)| ≤ k−1. In such circumstances, one can pick a

subsequence {F l(x)}l, such that F l(x) := F2l(x), to ensure that |F l(x)−F (x)| ≤ 2−l and that the costs

increases exponentially. We consider exponential growth in bias, variance, and costs as it simplifies the

analysis and holds in various applications.

In the nonconvex setting, since we care about ϵ-stationarity points rather than ϵ-optimal function values,

we use the following assumption on the approximation error of the gradient to replace Assumption 1(I).

ASSUMPTION 1(I′). There exists Ma > 0 such that for any l ∈N, ∥∇F l(x)−∇F (x)∥22 ≤Bl :=Ma2
−al.

REMARK 1 (RELATIONSHIP BETWEEN ASSUMPTIONS 1(I) AND 1(I′)). Our main results in the

strongly convex case can extend to the PL condition (Karimi et al. 2016) easily, under which Assumptions

1(I) and 1(I′) are exchangeable for biased gradient-based methods to achieve the same convergence and

total cost results. See detailed discussions in Appendix B.1. In general, Assumptions 1(I) and 1(I′) do

not imply each other but reflect two ways of constructing approximations. Constructing uniform function

approximation first and then taking the gradient is more suitable for a problem when the form of the true

gradient is unknown. On the other hand, directly constructing gradient approximations is more suitable when

one knows the form of the true gradient and the approximated gradient does not have an easily computable

objective function.

Besides, we make the following standard assumptions on the objective function and its approximations.

ASSUMPTION 2. Either of the following conditions holds:

(I) The objective F and its approximation F l are SF -smooth for any l ∈N.

(II) The objective F and its approximation F l are LF -Lipschitz continuous for any l ∈N.

2.2. SGD with MLMC Gradient Estimators

In the sequel, we construct a direct biased gradient estimator and four different MLMC gradient estimators

based on the oracle SOl. They will be fed into the generic SGD framework in Algorithm 1. These gradient

estimators are as follows: L-SGD estimator: at a query point x, query oracle SOL for nL times to obtain

{hL(x, ζLi )}
nL
i=1, and then construct

vL-SGD(x) := 1
nL

∑nL
i=1h

L(x, ζLi ). (4a)

V-MLMC estimator: at a query point x, query the oracle SOl for nl times to obtain {H l(x, ζ li)}
nl
i=1 for

l= 0, ...,L, and then construct

vV-MLMC(x) :=
∑L

l=0
1
nl

∑nl
i=1H

l(x, ζ li). (4b)
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Algorithm 1 SGD Framework

Input: Number of iterations T , stepsizes {γt}Tt=1, initialization point x1.

1: for t= 1 to T do

2: Construct a gradient estimator v(xt) of ∇F (xt).

3: Update xt+1 = xt − γtv(xt).

4: end for

Output: xT if F (·) is strongly convex; otherwise, x̂T selected uniformly at random from {xt}Tt=1.

RT-MLMC estimator: at a query point x, first sample a random level ι according to the probability

distribution Q1 = {ql}Ll=0 with P (ι= l) = ql, where
∑L

l=0 ql = 1, and then query the oracle SOι once to

obtains H ι(x, ζι).

vRT-MLMC(x) := q−1
ι H ι(x, ζι). (4c)

RU-MLMC estimator: at a query point x, first sample a random level ι according to the probability

distribution Q2 = {ql}∞l=0 with P (ι= l) = ql, where
∑∞

l=0 ql = 1, and then query the oracle SOι once to

obtains H ι(x, ζι).

vRU-MLMC(x) := q−1
ι H ι(x, ζι). (4d)

RR-MLMC estimator: at a query point x, first sample a random level L according to the probability

distribution Q2 = {ql}∞l=0 with P (L = l) = ql, where
∑∞

l=0 ql = 1, and then query oracle SOl once for

l= 0, ..,L to obtain {H l(x, ζ l)}Ll=0.

vRR-MLMC(x) :=
∑L

l=0 plH
l(x, ζ l), (4e)

where pl = (1−
∑l−1

l′=0 ql′)
−1, and

∑−1

l′=0 ql′ := 0.

Both RU-MLMC and RR-MLMC are unbiased gradient estimators of F , whereas the other three estimators

are biased. As a result, combining the SGD algorithm with L-SGD estimator, V-MLMC estimator, and

RT-MLMC estimator only leads to an approximate optimal point (approximate stationarity in the nonconvex

case) of the approximation function FL(x).

For ease of notation, let x̂AT denote the output of SGD using estimator A after T iterations for A ∈

{L-SGD,V-MLMC,RT-MLMC,RU-MLMC,RR-MLMC}. Under Assumption 1, we have the decomposi-

tion of errors in the (strongly) convex case:

E
[
F (x̂AT )−F (x∗)︸ ︷︷ ︸

Error of Algorithm A on F

]
=E
[
F (x̂AT )−FL(x̂AT )︸ ︷︷ ︸

Approximation error ≤ BL

+FL(x̂AT )−FL(xL)︸ ︷︷ ︸
Error of SGD on FL

]
+FL(xL)−FL(x∗)︸ ︷︷ ︸

≤ 0 by optimality of xL

+ FL(x∗)−F (x∗)︸ ︷︷ ︸
Approximation error ≤ BL

,
(5)
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where xL is a minimizer of FL(x). The decomposition (5) suggests that when the level L is large enough, e.g.,

L= ⌈a−1 log(4Maϵ
−1)⌉ such that 2BL ≤ ϵ/2, and number of iterations T is large enough such that expected

error of SGD on FL is smaller than ϵ/2, these methods return an ϵ-optimal solution in the convex case. Let

CA
iter and Var(vA) denote the expected computation cost and variance of the estimator A, respectively.

REMARK 2 (INTUITION ON THE SUPERIORITY OF MLMC GRADIENT OVER L-SGD). By the analy-

sis of SGD (see Appendix A), the number of iterations T ∝Var(vA(x)). Then, the total cost of the gradient

method A is T · cAiter ∝Var(vA(x)) · cAiter, where ∝ denotes proportional to. It is noteworthy from Table 2 that

L-SGD has the larger value of Var(vA(x)) · cAiter over all four MLMC gradient methods. Next we discuss

why L-SGD admits a larger Var(vA(x)) · cAiter using RT-MLMC for illustration. The major bottleneck of

L-SGD is that it requires querying the expensive stochastic oracle SOL at each iteration. Notice that the

RT-MLMC gradient estimator is an unbiased estimator of L-SGD. Thus, their bias levels towards ∇F (x)

remain the same. However, RT-MLMC queries SOl with small l with a high probability and queries SOl

with large l with a low probability. Thus, the expected costs to query the oracle are greatly reduced from CL

to
∑L

l=0 qlCl. One may question that for large l, ql is small, and RT-MLMC divides ql, which may introduce

a large variance. In fact, since H l(x) admits an exponentially decreasing variance, which mitigates the

increase of variance introduced by dividing ql.

We summarize the bias, variance, and (expected) computation cost in Table 2 when x∈Rd is independent

from vA. See Lemmas 5 and 6 for a detailed discussion on parameter selection and the corresponding bias,

variance, and cost.

Table 2 Bias, Variance, and Cost of Gradient Estimators.

Estimators A Expectation EvA(x) Variance Var(vA(x)) Cost CA
iter Var(vA(x)) × CA

iter when b > c

L-SGD ∇FL(x) n−1
L σ2 nLCL O(ϵ−c/a)

V-MLMC ∇FL(x)
∑L

l=0n
−1
l Vl

∑L
l=0nlCl O(1)

RT-MLMC ∇FL(x)
∑L

l=0q
−1
l Vl

∑L
l=0qlCl O(1)

RU-MLMC ∇F (x)
∑∞

l=0q
−1
l Vl

∑∞
l=0qlCl O(1)

RR-MLMC ∇F (x)
∑∞

L=0 qL
(∑L

l=0 p
2
l Vl

) ∑∞
L=0 qL

(∑L
l=0Cl

)
O(1)

2.3. Variance Reduced Methods with MLMC Gradient Estimators

In the nonconvex smooth regime with unbiased oracles, variance reduction methods, such as SPIDER (Fang

et al. 2018, Wang et al. 2019), SARAH (Nguyen et al. 2017), STORM (Cutkosky and Orabona 2019),

and PAGE (Li et al. 2021), can reduce the complexity for finding approximate stationary points. We adopt

the algorithm idea from SPIDER to develop variance-reduced algorithms using biased oracles and further

demonstrate their (expected) total costs to achieve ϵ-stationary points. We use the prefix VR to denote

variance reduction methods using gradient estimators L-SGD, V-MLMC, RT-MLMC, RU-MLMC, and
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RR-MLMC. Algorithm 2 is the variance-reduced algorithmic framework. Note that the variance reduction

effect uses the control variate technique: vk(xt, ξtk) and vk(xt−1, ξtk) are built from the same samples in the

gradient estimator construction.

Algorithm 2 Variance Reduction Counterpart of SGD Framework
Input: Number of iterations T , stepsizes γ, initialization point x1, batch size D1, D2, epoch length QE .

1: for t= 1 to T do

2: Construct the recursive gradient estimator

mt(xt) =

{
1
D1

∑D1

k=1 vk(xt, ξtk), if t≡ 0(mod QE),

mt−1(xt−1)− 1
D2

∑D2

k=1 vk(xt−1, ξtk)+
1
D2

∑D2

k=1 vk(xt, ξtk), otherwise,
(6)

where {vk(xt, ξtk)}Dk=1 are i.i.d gradient estimators of ∇F (xt) and {vk(xt−1, ξtk)}Dk=1 are i.i.d gradi-

ent estimators of ∇F (xt−1).

3: Update xt+1 = xt − γmt(xt).

4: end for

Output: x̂T uniformly selected from {xt}Tt=1.

We use VR RT-MLMC to demonstrate how we construct mt(xt). Let {vk(x, ξk)}Dk=1 be independent

RT-MLMC gradient estimators constructed via independently generating level lk ∈ {0, ...,L} following the

distribution Q for k= 1, ...,D, obtaining {H lk(x, ζ lk)}Dk=1 by querying SOl1 , . . . ,SOlD and constructing

1

D

D∑
k=1

vk(x, ξk) =
1

D

D∑
k=1

q−1
lk

H lk(x; ζ lk),

where D refers to D1 or D2 depending on the iteration t. Then mt(x) is constructed by Algorithm 2. As

discussed earlier, the variance reduction effect is important to ensure exponential decaying variance of H lk .

Note that the variance reduction in Algorithm 2 is achieved via a control variate in vk(xt, ξtk)− vk(xt−1, ξtk)

in (6). Thus the VR RT-MLMC methods in fact leverages the control variate technique twice, one in

estimation of ∇F l(x)−∇F l−1(x) and one in the construction of the recursive gradient estimator. The

effect are also different, where the former aims to reduce the oracle costs for building low-cost low variance

gradient estimators and the latter aims to reduce the number of oracle queries needed.

3. (Expected) Total Cost Analysis

In this section, we demonstrate the (expected) total cost of gradient estimators in (4) under different convexity

conditions, different smoothness conditions, and different combinations of a, b, c. We further discuss the

applicability of MLMC methods. We define the following notations for the simplicity of the presentation. Let

x̂AT be selected uniformly from {xAt }Tt=1 for A∈ {L-SGD,V-MLMC,RT-MLMC,RU-MLMC,RR-MLMC}.

Recall that CA
iter denotes the expected computation cost associated with the estimator A. Let T A denote the
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iteration complexity of A for achieving ϵ-optimality or ϵ-stationarity, and C := T ACA
iter denote the (expected)

total cost. Denote the upper bounds on Var(vA(x)) as V(vA).

3.1. Total Cost of L-SGD

In this subsection, we derive the total cost of the L-SGD method, which covers the biased gradient methods

in various applications. We first show the variance and the cost of the L-SGD gradient estimator.

LEMMA 1 (Variance and Per-Iteration Cost of L-SGD). Under Assumption 1, for any x ∈Rd, the vari-

ance and per-iteration cost of L-SGD estimator vL-SGD(x) with batch size nL satisfy

Var(vL-SGD(x))≤ σ2

nL

; CL-SGD
iter ≤ nLMc2

cL.

In the (strongly) convex case, we set L= ⌈a−1 log(4Maϵ
−1)⌉ so that 2BL ≤ ϵ/2. Without loss of generality,

consider the mini-batch size nL = 1. Then the cost of L-SGD estimator is Mc2
cL = O(ϵ−c/a) and the

variance is of order O(1). The total cost C = T ·CL-SGD
iter . From the analysis of SGD (See Theorem 4 in

Appendix A), to ensure ϵ-optimality, the iteration T =O(ϵ−1) when FL is strongly convex, and T =O(ϵ−2)

when FL is convex. Therefore, the total costs for L-SGD to achieve an ϵ-optimal solution are O(ϵ−1−c/a)

and O(ϵ−2−c/a) in the strongly convex and convex settings, respectively. The following theorem formally

describes the complexity bound, whose proof is in Appendix D.1.1.

THEOREM 1 (Total cost of L-SGD). For L-SGD with batch size nL = 1,with properly chosen hyper-

parameters as in Table 3, we have the following results.

(I) Suppose FL is µ-strongly convex and SF -smooth and Assumption 1 holds, the total cost of L-SGD

for finding an ϵ-optimal solution of F is O(ϵ−1−c/a).

(II) Suppose FL is convex and Assumptions 1 holds, under either Assumption 2(I) or 2(II), the total cost

of L-SGD for finding an ϵ-optimal solution of F is O(ϵ−2−c/a).

(III) Suppose FL is SF -smooth, and Assumptions 1(II)(III) and 1(I′) hold, the total cost of L-SGD for

finding an ϵ-stationary point of F is O(ϵ−4−2c/a).

Table 3 Hyper-parameters of L-SGD in Theorem 1

Assumptions on FL Level L Step Size γt Iteration T

µ-strongly convex
and SF -smooth ⌈ log(4Maϵ

−1)

a
⌉

[
t+S2

F /µ
2
]−1

O(ϵ−1)

convex ⌈ log(4Maϵ
−1)

a
⌉


[
Tσ2

]−1/2

, under Assumption 2(I)[
T (σ2 +L2

f )
]−1/2

, under Assumption 2(II)
O(ϵ−2)

SF -smooth ⌈ log(4Maϵ
−2)

a
⌉

[
Tσ2

]−1/2

O(ϵ−4)
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3.2. Expected Total Cost of RT-MLMC

RT-MLMC is an unbiased estimator of L-SGD using randomization, and thus, RT-MLMC is unbiased for

∇FL(x). We obtain the bias of RT-MLMC directly through Assumption 1(I) or 1(I′). For α∈R, denote

RL(α) :=
L∑

l=0

2αl =
1− 2α(L+1)

1− 2α
for α ̸= 0; R∞(α) := lim

L→∞
RL(α) = (1− 2α)−1 for α< 0. (7)

LEMMA 2 (Variance and Per-Iteration Cost of RT-MLMC). Under Assumption 1, construct a distribu-

tion Q= {ql}ll=0 with the probability mass value ql = 2−(b+c)l/2RL(− b+c
2
)−1 and

∑L

l=0 ql = 1. The variance

and the expected per-iteration cost of RT-MLMC satisfy:

If c ̸= b: Var(vRT-MLMC(x))≤MbR
L
(c− b

2

)
RL
(
− b+ c

2

)
, CRT-MLMC

iter ≤McR
L
(c− b

2

)
RL
(
− b+ c

2

)−1
,

If c= b: Var(vRT-MLMC(x))≤Mb(L+1)RL
(
− b+ c

2

)
, CRT-MLMC

iter ≤Mc(L+1)RL
(
− b+ c

2

)−1
.

To ensure that the bias is of order O(ϵ), the lemma implies that Var(vRT-MLMC(x)) and CRT−MLMC
iter are

of order O(1) when b > c, and O(log(ϵ−1)) when b= c. When L-SGD picks the mini-batch nL = 1, the

variance of RT-MLMC and L-SGD is of the same scale, yet the cost to build RT-MLMC gradient estimator

reduces from O(ϵ−c/a) for L-SGD to O(1).

REMARK 3 (CONSTRUCTION OF THE DISTRIBUTION Q := {ql}Ll=0). We use RT-MLMC for convex

objectives as an example to explain how Q is constructed. To minimize the (expected) total cost for achieving

ϵ-optimality, conceptually, we solve the following optimization problem:

min
Q

{
TRT-MLMCCRT-MLMC

iter :

L∑
l=0

ql = 1, ql ≥ 0,∀l= 0, . . . ,L
}
, (8)

where the constraints are to make sure Q is a well-defined probability mass vector. Although Problem (8) is

nonconvex and intractable to solve, we can show that under properly selected stepsizes,

TRT-MLMCCRT-MLMC
iter ∝Var(vRT-MLMC)CRT-MLMC

iter =

(
L∑

l=0

qlCl

)(
L∑

l=0

Vl/ql

)
. (9)

To ensure small bias, we take L=O(log(ϵ−1)). Optimizing the right-hand-side of (9) over Q gives ql ∝

2−(b+c)l/2. Although it might not be the optimal solution of (8), we show that such a choice of ql can

significantly reduce the expected total cost compared to L-SGD. As we will show later, when b > c,

the expected total cost of RU-MLMC and RT-MLMC reaches the lower bounds of unbiased stochastic

optimization, implying the distribution Q is an optimal choice in terms of the dependence on the accuracy ϵ.

THEOREM 2 (Expected Total cost of RT-MLMC). For RT-MLMC with a distribution Q= {ql}Ll=0 such

that ql ∝ 2−(b+c)l/2, with properly chosen hyper-parameters as in Table 4,
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(I) Suppose FL is µ-strongly convex and SF -smooth and Assumption 1 holds, the total cost of RT-MLMC

for finding an ϵ-optimal solution of F is

O(ϵ−1), if c < b; O(ϵ−1 log2(1/ϵ)), if c= b; O(ϵ−1−(c−b)/a), if c > b.

(II) Suppose FL is convex and Assumption 1 holds, under either Assumption 2(I) or 2(II), the total cost of

RT-MLMC for finding an ϵ-optimal solution of F is

O(ϵ−2), if c < b; O(ϵ−2 log2(1/ϵ)), if c= b; O(ϵ−2−(c−b)/a), if c > b.

(III) Suppose FL is SF -smooth and Assumptions 1(II)(III) and 1(I′) hold, the total cost of RT-MLMC for

finding an ϵ-stationarity point of F is

O(ϵ−4), if c < b; O(ϵ−4 log2(1/ϵ)), if c= b; O(ϵ−4−2(c−b)/a), if c > b.

Table 4 Hyper-parameters of RT-MLMC in Theorem 2

Assumptions on FL Level L Step Size γt Iteration T

µ-strongly convex
and SF -smooth ⌈ log(4Maϵ

−1)

a
⌉

[
t+S2

F /µ
2
]−1

O(ϵ−1)

convex ⌈ log(4Maϵ
−1)

a
⌉


[
V(vRT−MLMC)T

]−1/2

, under Assumption 2(I)[
(V(vRT−MLMC)+L2

F )T
]−1/2

, under Assumption 2(II)
O(ϵ−2)

SF -smooth ⌈ log(4Maϵ
−2)

a
⌉

[
V(vRT−MLMC)T

]−1/2

O(ϵ−4)

The proof of Theorem 2 is in Appendix D.1.2. When b > c, RT-MLMC achieves an O(1) expected per-

iteration cost and O(1) variance, and thus the total cost of RT-MLMC is the same as the costs for classical

SGD with unbiased oracles, i.e., RT-MLMC reaches the lower bounds for first-order methods for stochastic

optimization with unbiased oracles. Compared to L-SGD, RT-MLMC is always Õ(ϵ−c/a) better in terms of

complexity bounds in the (strongly) convex case no matter what is the relationship of a, b, and c.

3.3. Total Cost of V-MLMC

We show that V-MLMC achieves a reduced total cost compared to L-SGD under some additional assumptions

on the relationship between a, b, c and large mini-batch size. In the main context, we only demonstrate the

case when b≥ c (See Theorem 3). The full version and its formal proof are in Appendix D.1.3. As usual, we

first demonstrate the variance and the per-iteration cost of V-MLMC.

LEMMA 3 (Variance and Per-Iteration Cost of V-MLMC). Under Assumption 1 and setting the batch

size nl = ⌈2−(b+c)l/2N⌉, l= 0, . . . ,L for a constant N > 0, the variance and per-iteration cost satisfy

If c ̸= b: Var(vV-MLMC(x))≤MbR
L
(c− b

2

)
N−1, CV-MLMC

iter ≤McR
L
(c− b

2

)
N +McR

L(c),

If c= b: Var(vV-MLMC(x))≤Mb(L+1)N−1, CV-MLMC
iter ≤Mc(L+1)N +McR

L(c).
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Similar to RT-MLMC, the optimal selection of {nl}Ll=0 can be obtained via solving the V-MLMC counterpart

of (8). However, it would become an integer program since one needs to ensure that the batch sizes {nl}Ll=0

are integers. Here we consider a relaxation by setting nl = ql ·N , where
∑L

l=0 ql = 1 and ql ≥ 0. As a result,

we have nl ∝ 2−(b+c)l/2N . Given that nl is the mini-batch size, we set nl = ⌈2−(b+c)l/2N⌉. Unfortunately,

rounding the optimal selection 2−(b+c)l/2N to integers would incur extra costs, i.e., the term McR
L(c) in

Lemma 3. We show later that the extra cost would lead to extra requirements on a, b, c, and N for V-MLMC

to achieve a reduced total cost as other MLMC methods compared to the L-SGD method.

THEOREM 3 (Total cost for V-MLMC when b≥ c). For V-MLMC with batch sizes nl = ⌈2−(b+c)l/2N⌉

for some N > 0, with properly chosen hyper-parameters as in Table 5,

(I) Suppose FL is µ-strongly convex and SF -smooth and Assumption 1 holds, the total cost of V-MLMC

for finding an ϵ-optimal solution of F is Õ(ϵ−max{1,c/a}).

(II) Suppose FL is convex and SF -smooth, and Assumptions 1 holds, the total cost of V-MLMC for finding

an ϵ-optimal solution of F is Õ(ϵ−1−max{1,c/a}).

(III) Suppose FL is SF -smooth, and Assumptions 1(II)(III) and 1(I′) hold, the total cost of V-MLMC for

finding an ϵ-stationarity point of F is Õ(ϵ−2−2max{1,c/a}).

Table 5 Hyper-parameters of V-MLMC in Theorem 3

Assumptions on FL Level L Step Size γt
Multiplicative Factor
N of Batch Sizes Iteration T

µ-strongly convex
and SF -smooth ⌈ log(4Maϵ

−1)

a
⌉ 1/SF Õ(ϵ−1) O(log 1

ϵ
)

convex ⌈ log(4Maϵ
−1)

a
⌉ 1/(2SF ) Õ(ϵ−1) O(ϵ−1)

SF -smooth ⌈ log(4Maϵ
−2)

a
⌉ 1/SF Õ(ϵ−2) O(ϵ−2)

REMARK 4 (WHY V-MLMC REQUIRES A LARGE MINI-BATCH SIZE). According to Lemma 3 and the

expression of nl, the per-iteration cost of V-MLMC satisfies

CV-MLMC
iter ≤

L∑
l=0

2(c−b)l/2N +

L∑
l=0

2cl
(if b>c)
= O(N)+O(ϵ−c/a). (10)

where L= ⌈1/a log(4Maϵ
−1)⌉ as specified in Theorem 3. The first term on the right-hand side (RHS) in (10)

denotes the desired balanced per-iteration cost of MLMC, while the second term denotes the cost incurred by

rounding the batch size to an integer. When c < b and N =O(1), the second term dominates the per-iteration

cost. At the same time, since the variance of V-MLMC is O(N−1) =O(1), the iteration complexity and

per-iteration cost of V-MLMC are the same as L-SGD. Therefore, the total costs of V-MLMC are the same

as the total cost of L-SGD when N =O(1).

To handle the high complexity bound caused by the rounding issue, we use a large N =O(ϵ−1) to reduce

the variance of V-MLMC to O(ϵ). Thus, V-MLMC gradient method behaves like deterministic gradient
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descent. The iteration complexity of V-MLMC reduces from O(ϵ−1) to logarithmic level in the strongly

convex case and from O(ϵ−2) to O(ϵ−1) in the convex case, and the total cost becomes Õ(ϵ−max{1,c/a}) and

O(ϵ−1−max{1,c/a}), respectively. In such a case, V-MLMC is always better than L-SGD in terms of the total

cost by O(ϵ−min{1,c/a}). The drawback is that V-MLMC has to use very large N and thus large mini-batches

nl for small l. In contrast, L-SGD cannot use large batch to reduce the total cost as VL−SGDCL−SGD
iter =

O(ϵ−c/a) for any nL > 0. For b < c, please refer to the proof of Theorem 3 in Appendix D.1.3.

REMARK 5 (V-MLMC CANNOT REDUCE TOTAL COST UNDER LIPSCHITZ CONTINUITY CONDITION).

Note that smoothness is the key for V-MLMC to outperform L-SGD. As the total cost is proportional to

Var(vA)CA
iter, the large mini batches ensures that Var(vV−MLMC) is of order O(ϵ) and Var(vA)CA

iter =O(1).

However, in the Lipschitz continuous case, the total cost is proportional to (Var(vA)+L2
F )C

A
iter, and even if

using a large mini-batch size N =O(ϵ−1), the term Var(vA)+L2
F cannot be reduced. As a result, V-MLMC

cannot outperform L-SGD in the Lipschitz continuous setting. On the contrary, RT-MLMC does not require

a mini-batch and can still outperform L-SGD even if the objective is only Lipschitz continuous.

3.4. Expected Total Cost of RU-MLMC and RR-MLMC

For two unbiased MLMC methods, i.e., RU-MLMC and RR-MLMC, we derive their variance and per-

iteration cost following similar steps as in Lemma 2 and let L→∞. However, when b≤ c, either the variance

or the expected per-iteration cost of them is unbounded for any selection of the distribution Q. Hence, the

total expected costs of these two unbiased MLMC estimators are unbounded for any selection of Q where

b≤ c, implying that they are not theoretically applicable unless with stronger assumptions.

Given these, we focus on the case when b > c, and we show that the variance and the per-iteration cost of

RU-MLMC and RR-MLMC are both O(1). The expected total costs of these two methods follow from the

analysis of unbiased SGD (see, e.g., Ghadimi and Lan (2013), Nemirovski et al. (2009)). We summarize the

result in Theorem 4 with the proof in Appendix D.2.

THEOREM 4 (Expected Total cost of RU-MLMC and RR-MLMC). Let Assumption 1(II)(III) hold with

b > c and Assumption 1(I′) hold, and define ql = 2−(b+c)l/2(1 − 2−(b+c)/2) when using RU-MLMC or

RR-MLMC estimator. With properly chosen hyper-parameters as in Table 6,

(I) Suppose F is µ-strongly convex and SF -smooth, the expected total cost of RU-MLMC or RR-MLMC

for finding an ϵ-optimal solution of F is O(ϵ−1).

(II) Suppose F is convex and either Assumption 2(I) or 2(II) holds, the expected total cost of RU-MLMC

or RR-MLMC for finding an ϵ-optimal solution of F is O(ϵ−2).

(III) Suppose F is SF -smooth (i.e., Assumption 2(I) holds), the expected total cost of RU-MLMC or

RR-MLMC for finding an ϵ-stationarity point of F is O(ϵ−4).
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Table 6 Hyper-parameters of RU-MLMC and RR-MLMC in Theorem 3. The notation A refers to RU-MLMC or RR-MLMC.

Assumptions on F Step Size γt Iteration T

µ-strongly convex
and SF -smooth µ−1(t+2SF /µ

2)−1 O(ϵ−1)

convex


[
V(vA)T

]−1/2

, under Assumption 2(I)[
(V(vA)+L2

F )T
]−1/2

, under Assumption 2(II)
O(ϵ−2)

SF -smooth
[
V(vA)T

]−1/2

O(ϵ−4)

3.5. Total Cost of Variance Reduction Methods

To demonstrate the convergence of the variance reduction gradient MLMC methods, we require an additional

assumption on the stochastic oracle SOl, called average smooth condition (Arjevani et al. 2023).

ASSUMPTION 3. For any given x, the output of the stochastic oracle SOl satisfies the average smooth

condition, i.e., there exist constants Sh, SH > 0 such that Eζl∥hl(x, ζ l)− hl(y, ζ l)∥2 ≤ Sh∥x− y∥2 and

Eζl∥H l(x, ζ l)−H l(y, ζ l)∥2 ≤ SH∥x− y∥2.

With this additional assumption, Theorem 5 shows the (expected) total costs of variance reduction counter-

parts of MLMC gradient methods, with the proof provided in Appendix E.

THEOREM 5 ((Expected) Total Costs of Variance Reduction Methods). Under Assumptions 1(II)(III),

1(I′), 2(I) and 3, setting D1 =O(ϵ−2), D2 =O(ϵ−1), QE =O(ϵ−1), γ ≤ 1/(3SF ), to find an ϵ-stationary

point for nonconvex smooth objective F , with properly chosen hyper-parameters as in Table 7,

(I) The total cost of VR L-SGD is O(ϵ−3−2c/a).

(II) When b > c, the (expected) total costs of VR RT-MLMC and VR V-MLMC are O(ϵ−3) and

O(ϵ−1−2max{1+(c−b)/a,c/a}), respectively; when b = c, the (expected) total costs are Õ(ϵ−3)

and Õ(ϵ−1−2max{1,c/a}); and when b < c, the (expected) total costs are O(ϵ−3−2(c−b)/a) and

O(ϵ−1−2max{1,c/a}).
(III) When b > c, the expected total cost of VR RU-MLMC or VR RR-MLMC is O(ϵ−3).

Table 7 Hyper-parameters of various gradient estimators in Theorem 5.

Gradient Estimators Hyper-parameters

VR L-SGD L= ⌈1/a log(4Maϵ
−2)⌉, nL = 1

VR RT-MLMC L= ⌈1/a log(4Maϵ
−2)⌉, ql = 2−(b+c)l/2( 1−2−(b+c)(L+1)/2

1−2−(b+c)/2 )−1

VR V-MLMC L= ⌈1/a log(4Maϵ
−2)⌉, nl = ⌈2−(b+c)l/2N⌉, N = Õ(ϵ−2)

VR RU-MLMC or VR RR-MLMC ql = 2−(b+c)l/2(1− 2−(b+c)/2)−1

It is worth noting that in Theorem 5, we specify D1, D2, QE , and γ following the same setup as in

SPIDERBoost (Wang et al. 2019). One may combine our proposed gradient estimators with other variants of

variance reduction methods to obtain similar sample complexity results in the nonconvex smooth case.
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When b > c, intuitively, one may interpret RU-MLMC and RR-MLMC as a way to generate unbiased

gradient estimators of F at O(1) costs. Thus, VR RU-MLMC and VR RR-MLMC should achieve a total

cost of O(ϵ−3), since the total number of unbiased gradient estimators needed by variance reduced method

is O(ϵ−3). RT-MLMC is more versatile regarding a, b, c, but it introduces bias. As long as the bias can be

well controlled, VR RT-MLMC could further reduce the complexity bounds from O(ϵ−4) to O(ϵ−3) when

compared to RT-MLMC. These observations further imply that MLMC gradient estimators can be easily

integrated with other optimization techniques previously developed for stochastic optimization with unbiased

oracles. It would greatly enhance the applicability of MLMC gradients in the optimization and machine

learning problems. For example, it is an interesting open question to consider Nesterov’s accelerated MLMC

for certain applications with biased oracles, which we leave for future investigation.

3.6. Comparison of Different MLMC Gradient Methods

When b > c, RU-MLMC and RR-MLMC are the most favorable among the four MLMC methods since they

have unbiased gradient estimators and do not need to specify L in advance. When b≤ c, in theory, only

RT-MLMC and V-MLMC are applicable as RU-MLMC and RR-MLMC either admit unbounded variance

or unbounded expected per-iteration costs. Since RT-MLMC can be treated as imposing a deterministic

truncation on RU-MLMC, RT-MLMC, in fact, introduces bias to avoid the high computation cost. It further

reflects the importance of balancing bias, variance, and cost tradeoffs.

RT-MLMC is the most versatile algorithm among the four MLMC methods since it has no restrictions

on a, b, c and does not need any mini-batch. It suits situations when the per-iteration budget is limited, e.g.,

when one only has limited samples or computation power. V-MLMC requires large mini-batches that lead to

a very small variance, and thus a constant stepsize O(1) is sufficient to guarantee convergence.

4. Applications

In this section, we demonstrate how to perform MLMC gradient methods on CSO for DRO and constrastive

learning problems, pricing and staffing in stochastic systems, and UBSR optimization. We further establish

the complexity bounds of the MLMC gradient methods by analyzing the a, b, c parameters for these problems.

4.1. Conditional Stochastic Optimization

Conditional stochastic optimization appears widely in applications from machine learning, including the

optimal control in linearly-solvable Markov decision process (Dai et al. 2017), policy evaluation and control

in reinforcement learning (Dai et al. 2017, 2018, Nachum and Dai 2020), meta-learning (Hu et al. 2020c),

instrumental variable regression (Muandet et al. 2020). Previously, Hu et al. (2020c) considered biased SGD

and its variance reduction counterpart using SPIDER (Fang et al. 2018). These methods are special cases of

L-SGD or VR L-SGD proposed in this manuscript.
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In the following, we show that MLMC methods can significantly reduce the sample complexity and

achieve better results than previous biased variance reduction methods proposed in (Hu et al. 2020c). The

CSO problem and its approximation function F l(x) admit the following form:

min
x∈Rd

F (x) :=Eξfξ(Eη|ξgη(x, ξ)), F l(x) =EξlE{ηl
j
}2l
j=1

|ξl

[
fξl
( 1

2l

2l∑
j=1

gηl
j
(x, ξl)

)]
, (11)

where ξl ∼ P(ξ) and {ηl
j}2

l

j=1 ∼ P(η|ξli). Denote the collection of random samples as ζ l = (ξl,{ηl
j}2

l

j=1) and

take ĝn1:n2
(x, ζ l) = (n2 −n1 +1)−1

∑n2
j=n1

gηl
j
(x, ξl) for some 1≤ n1 ≤ n2. For each query point x, SOl

returns (hl(x, ζ l),H l(x, ζ l)) such that hl(x, ζ l) =∇xfξl(ĝ1:2l(x, ζ
l)), and

H l(x, ζ l) =∇x

[
fξl(ĝ1:2l(x, ζ

l))− 1

2
[fξl(ĝ1:2l−1(x, ζ l))+ fξl(ĝ1+2l−1:2l(x, ζ

l))]
]
. (12)

Under appropriate conditions, it can be shown that Assumptions 1 and 1(I′) hold with the parameter a=

b= c= 1 (see Proposition 2 in Appendix F.1). Since b= c, RU-MLMC and RR-MLMC are not applicable.

Leveraging previous results on MLMC gradient methods (i..e, Theorems 2, 3, and 5), we derive the sample

complexity of V-MLMC and RT-MLMC for solving CSO and summarize it in Theorem 6.

THEOREM 6 (Sample Complexity for Solving CSO). Under mild assumptions (see Assumption 4 in

Appendix F.1), for strongly convex F (x), the sample complexity of V-MLMC and RT-MLMC for finding

ϵ-optimal solution is Õ(ϵ−1); for convex F (x), the sample complexity of V-MLMC and RT-MLMC is Õ(ϵ−2);

for nonconvex smooth F (x), the sample complexity of V-MLMC and RT-MLMC for finding ϵ-stationary point

is Õ(ϵ−4), which reduces to Õ(ϵ−3) when using VR V-MLMC and VR RT-MLMC.

The BSGD in Hu et al. (2020c) achieved Õ(ϵ−2), O(ϵ−3), and O(ϵ−6) sample complexity in the strongly

convex, convex and nonconvex smooth setting, respectively. Since BSGD is a special case of the L-SGD

framework in our paper, we directly recover the corresponding sample complexity when plugging a= b=

c= 1 into Theorem 1. Hu et al. (2020c) further investigated variance reduction techniques in the nonconvex

smooth setting and achieved O(ϵ−5) sample complexity, albeit inferior to the sample complexity of V-MLMC

and RT-MLMC methods and the corresponding variance-reduced counterparts. In Appendix F.1.1, we further

show that when gη is linear in x, we have a= c= 1 and b= 2. In such cases, RU-MLMC and RR-MLMC

are applicable and have theoretical guarantees. Table 8 summarizes the complexity bounds of CSO problems.

REMARK 6 (COMPARISON WITH LOWER BOUNDS FOR CSO IN HU ET AL. (2020C)). Notably, the

lower bounds on sample complexities in Hu et al. (2020c) do not apply to our results. The reason is that

RT-MLMC and V-MLMC use a low-cost white-box oracle rather than a high-cost black-box oracle defined

in the aforementioned reference. It further highlights the importance of considering the oracle cost when

studying the complexity of biased oracle models.
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Table 8 Comparison of Algorithms on CSO

Condition on F V-MLMC RT-MLMC RU-MLMC/RR-MLMC * BSGD (L-SGD) (Hu et al. 2020c)
Strongly Convex Õ(ϵ−1) Õ(ϵ−1) O(ϵ−1) Õ(ϵ−2)

Convex Õ(ϵ−2) Õ(ϵ−2) O(ϵ−2) O(ϵ−3)

Nonconvex Õ(ϵ−4) Õ(ϵ−4) O(ϵ−4) O(ϵ−6)

Individual Smoothness Õ(ϵ−3) Õ(ϵ−3) O(ϵ−3) O(ϵ−5)

* RU-MLMC and RR-MLMC are only applicable under the special case when gη(x, ξ) is linear (Assumption 5).

4.1.1. Applications of CSO in DRO. DRO has shown promise to address the challenge of decision-

making under uncertainty, especially in high-stake environments. Given a reference distribution P0 of ξ that

usually takes the form of an empirical distribution, DRO proposes to solve

min
x

max
P: D(P,P0)≤ρ

{
Eξ∼P[ℓ(x; ξ)]

}
, (13)

where l(x; ξ) is the loss function dependent on the decision x and the random variable ξ, and the constraint

D(P,P0)≤ ρ allows to take into account all distributions near P0 up to ρ-radius ball using a pre-specified

divergence D(·, ·) (such as ϕ-divergence and regularized Wasserstein distance). Levy et al. (2020) utilized

MLMC gradient methods to solve ϕ-divergence DRO. When specifying the ϕ-divergence as the Kullback-

Leibler (KL) divergence, the corresponding DRO is a special CSO (11) with fξ(x) as a log function and

the conditional distribution P(η | ξ) as the reference distribution (Qi et al. 2022). In the context of the KL-

divergence regularized 2-Wasserstein DRO model (also known as the Sinkhorn DRO model, see references

Azizian et al. (2023), Blanchet and Kang (2020), Wang et al. (2023)), by taking the strong dual reformulation

of (13) and fixing the Lagrangian multiplier associated with the divergence ball constraint, the goal is to

solve the problem

min
x

Eξ

[
λ logEη|ξ

[
eℓ(x;η)/λ

] ]
, (14)

where ξ ∈Rdξ follows the reference distribution P0(ξ), η | ξ follows the conditional distribution N (ξ, τ 2Idξ),

and λ, τ 2 > 0 are problem coefficients. Here, ℓ(x;η) denotes the loss function dependent on the decision

variable x and random data η. This formulation can also be viewed as a special CSO problem (11) with

fξ(·) = λ log(·) and gη(·, ξ) = eℓ(·;η)/λ. Following the assumption in (Wang et al. 2023, Assumption 2) that ℓ

is B-uniformly bounded, Lℓ-Lipschitz continuous, and Sℓ-smooth, one can see that Assumption 4 holds with

σ2 =B2, Sf =Lℓ = λ,Lg = eB/λLℓ/λ,Sg = eB/λ(Sℓ +L2
ℓ)/λ. Therefore, the sample complexity results of

MLMC gradient methods in Theorem 6 can directly apply to solving KL regularized 2-Wasserstein DRO, i.e.,

the Sinkhorn DRO. We present a comprehensive numerical study in Section 5.1 to validate the performance

of various gradient methods for solving this problem.

4.1.2. Applications of CSO in CL. CL is a popular unsupervised learning technique, aiming to learn

representations such that similar instances are close while dissimilar instances are far apart in the representa-

tion space (Chopra et al. 2005, Oord et al. 2018, Wang and Isola 2020). In detail, let x be an input batch

of N samples. We augment these samples and treat two augmented samples from the same sample in x as
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similar and otherwise dissimilar. For k= 1, . . . ,N , let x̃[2k− 1] and x̃[2k] denote two augmented samples

from the k-th sample from x. Let z[i], i= 1, . . . ,2N denote the neural network outputs of x̃[i], i= 1, . . . ,2N .

CL aims to train the neural network model such that (i) the (cosine) similarity between distinct samples

i, j, denoted as si,j ≜
z[i]⊤z[j]

∥z[i]∥∥z[j]∥ , is minimized; and (ii) the similarity between different data augmentations

x̃[2k− 1], x̃[2k] of the same sample k, denoted as s2k−1,2k ≜
z[2k−1]⊤z[2k]

∥z[2k−1]∥∥z[2k]∥ , is maximized. The well-known

simple framework for contrastive learning of visual representations (SimCLR) (Chen et al. 2020) solves the

CL task based on

min
θ

LSimCLR(θ)≜Ex

[∑
k∈[N ] ℓ2k−1,2k + ℓ2k,2k−1

2N

]
, where ℓi,j =− log

exp(si,j/τ)∑
k∈[2N ] 1k ̸=i exp(si,k/τ)

.

Here the variable θ corresponds to the weight of the neural network for the data-to-representation mapping.

It is worth noting that the SimCLR objective is a special case of CSO (Qiu et al. 2023):

LSimCLR(θ) =Ex,i∼Uni([N ])

[
f
(
Ekgk(θ; i)

)
− s2i,2i−1/τ

]
+Constant,

where the index i follows uniform distribution over [N ] (denoted as i∼Uni([N ])), the outer loss function

f : R2
+ →R is defined as f(y1, y2) = 1

2
log(y1y2), the inner loss function gk(θ, i) = (es2i−1,k1/τ, es2i,k2/τ),

and the random vector k= (k1, k2) satisfies k1 ∼Uni([2N ] \ {2i− 1}), k2 ∼Uni([2N ] \ {2i}).

Chen et al. (2020) has highlighted the effectiveness of employing a large batch size N for achieving

satisfactory performance in CL. Nevertheless, a notable drawback of this approach lies in the escalated

computational and memory costs. In this context, the MLMC gradient methods can substantially alleviate

these computational and memory burdens, whereas the L-SGD corresponds to the vanilla training procedure

in the existing literature. We will demonstrate the empirical superior performance of MLMC methods over

the baseline in Section 5.2 for a moderately large batch size.

4.2. Pricing and Staffing in Stochastic Systems

Consider the joint pricing and staffing task for a stochastic system (Lee and Ward 2014), where the service

provider’s goal is to seek the optimal service fee and service capacity such that the long-run expected

profit (the service revenue minus the staffing cost and customer delay penalty) is maximized, leading to the

following stochastic optimization problem:

min
µ,p

{
F (µ,p) := h0E[Q∞(µ,p)] + c(µ)− pλ(p)

}
. (15)

In the problem above, Q∞(µ,p) denotes the steady-state queue length of customers under the price p and

capacity µ, and h0 denotes the holding cost coefficient; c(µ) denotes the cost incurred from providing service

capacity µ; λ(p) denotes the rate of demand when the customers are charged with service fee p.

We consider the stochastic system to be a GI/GI/1 queue, i.e., the interarrival time of customers and the

service time both follow a general i.i.d. distribution. Unfortunately, the gradient of the objective function
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cannot be numerically simulated exactly, particularly for the gradient estimator of E[Q∞(µ,p)]. By (Chen

et al. 2023, Lemma 5), the gradient of the objective is

∇F (µ,p) =

(
∂F (µ,p)

∂p
∂F (µ,p)

∂µ

)
=

−λ(p)− pλ′(p)+h0λ
′(p)
(
E[W∞(µ,p)+X∞(µ,p)] + 1

µ

)
c′(µ)−h0

λ(p)

µ

(
E[W∞(µ,p)+X∞(µ,p)] + 1

µ

)  ,

where W∞(µ,p) and X∞(µ,p) denotes the steady-state customer waiting time and service’s busy time under

price p and capacity µ, respectively. Note that W∞(µ,p) and X∞(µ,p) are the limits of processes {Wn}n
and {Xn}n, which can be simulated using the recursive relation (Lindley 1952)

Wn(µ,p) =
(
Wn−1(µ,p)+

Vn

µ
− Un

λ(p)

)+

, Xn(µ,p) = 1{Wn(µ,p)>0} ·
(
Xn−1(µ,p)+

Un

λ(p)

)
,

with W0(µ,p) =X0(µ,p) = 0, and {Un}n,{Vn}n being i.i.d. random variables of (normalized) customer

interarrival time and service time, respectively. They are normalized to ensure E[Un] =E[Vn] = 1.

We simulate the gradient in the following way. Denote x= (µ,p), the collection of random parameters

ζ lx = {Wn(x),Xn(x)}2
l

n=1 for l ∈N and the function ĝ−n1:n2
(x, ζ l) = 1

n1

∑n2
j=n2−n1+1(Wj(x)+Xj(x)) for

some 1≤ n1 ≤ n2. We construct the approximate gradient with negligible bias as

∇F l(x) =
[
−λ(p)− pλ′(p)+h0λ

′(p)
(
E[ĝ−m:2l(x, ζ

l)] + 1
µ

)
c′(µ)−h0

λ(p)

µ

(
E[ĝ−m:2l(x, ζ

l)] + 1
µ

)]T
,

(16)

where m∈N+ denotes the mini-batch size of samples. Note that this gradient does not have a corresponding

function F l. For each query on a query point x, SOl returns (hl(x, ζ l),H l(x, ζ l)) such that

hl(x, ζ l) =
[
−λ(p)− pλ′(p)+h0λ

′(p)
(
ĝ−m:2l(x, ζ

l)+ 1
µ

)
c′(µ)−h0

λ(p)

µ

(
ĝ−m:2l(x, ζ

l)+ 1
µ

)]T
,

H l(x, ζ l) =
[
h0λ

′(p)
(
ĝ−m:2l(x, ζ

l)− ĝ−m:2l−1(x, ζ l)
)

−h0
λ(p)

µ

(
ĝ−m:2l(x, ζ

l)− ĝ−m:2l−1(x, ζ l)
)]T

.

(17)

Using this oracle, one can efficiently simulate the unbiased estimator of (16). According to the technical

assumption in (Chen et al. 2023, Section 3.1) and Proposition 4, the bias and variance of H l(x, ζ l) decrease

in exponential of exponential rate. In this case, the sample complexity of L-SGD and RT-MLMC methods

will be the same, i.e., they achieve complexity Õ(ϵ−1) to find ϵ-optimal solution for PL objective and

Õ(ϵ−4) to find ϵ-stationary point for Lipschitz continuous and smooth objective. However, the exponential

of exponential decay rate in the bias and variance, O(e−0.25c2l), has an exponent c that is very small in

practice. In such a case, e−0.25c2l ≈O(2−l) for a moderate l. It motivates us to consider the more conservative

polynomial decay rate of the bias and variance for practical applications, under which this oracle satisfies

Assumptions 1(II)(III) and 1(I′) with a= b= c= 1. From the numerical results in Section 5.3, we observe

that the algorithms can successfully find the global optimal solution despite nonconvexity. This fact motivates

us to present the complexity analysis for the case where the smooth F (·) satisfies PL condition in the

following Theorem 7. See Remark 1 and Karimi et al. (2016) for further details about PL condition.



24

THEOREM 7 (Sample Complexity for Pricing and Staffing). Under appropriate conditions (see Assump-

tion 6 in Appendix F.2), for smooth F (·) satisfying PL condition, the sample complexity of RT-MLMC for

finding ϵ-optimal solution is Õ(ϵ−1), whereas that of L-SGD is O(ϵ−2); for smooth and Lipschitz continuous

F (·), the sample complexity of RT-MLMC for finding ϵ-stationary point is Õ(ϵ−4), whereas that of L-SGD is

O(ϵ−6).

It is noteworthy that our previous analysis on MLMC methods (i.e., Theorems 1 and 2) assumes that the

approximate objective F l satisfies the smoothness condition, which does not hold in this application. In

contrast, Theorem 7 imposes technical assumptions on the ground truth objective F only. By adopting a

variant of Theorems 1 and 2, we still obtain the sample complexity of L-SGD and RT-MLMC methods. We

numerically validate their performance in Section 5.3 and show that MLMC gradient method indeed achieves

a significant acceleration. We leave verifying the PL condition for future studies as it goes beyond the scope

of the current work.

4.3. Utility-Based Shortfall Risk (UBSR) Optimization

UBSR has gained wide applications in financial engineering (Delage et al. 2022, Föllmer and Schied

2002, Giesecke et al. 2008, Hu and Dali 2016), aiming to balance the trade-off of controlling the risk and

maximizing the return. Hegde et al. (2021) proposed to find the optimal decision in terms of UBSR:

min
θ

{
SRλ(θ) := inf

t: E[ℓ(−X(θ)−t)]≤λ
t
}
, (UBSR-O)

where λ is a pre-specified risk level, ℓ(·) is a given convex loss, and X(θ) is a random variable that is

dependent on the decision variable θ. By (Hegde et al. 2021, Section 5.1), the gradient of UBSR equals

∇SRλ(θ) =−
EX(θ)

[
ℓ′
(
−X(θ)−SRλ(θ)

)
X ′(θ)

]
EX(θ)

[
ℓ′
(
−X(θ)−SRλ(θ)

)] . (18)

In practice, the distribution of X(θ) is not given in explicit form, whereas i.i.d. samples of X(θ) (and

correspondingly X ′(θ)) are available. Although obtaining the unbiased stochastic estimator of (18) is

challenging, one can apply MLMC methods to simulate the gradient estimator with negligible bias efficiently.

Denote the random parameter ζ l(θ) = ({Xi(θ)}2
l

i=1,{X̃i(θ)}2
l

i=1), where Xi(θ), X̃i(θ) are i.i.d. copies of

X(θ). Let tl({X̃i(θ)}2
l

i=1) be a stochastic estimator of SRλ(θ) adopted from (Hegde et al. 2021, Section 4)

using samples {X̃i(θ)}2
l

i=1. As have shown in (Hegde et al. 2021, Theorem 1), this estimator has low bias

O(2−l). Next, define the approximation gradient

∇SRl
λ(θ) =−

Eζl(θ)

[
1

2l

∑2l

i=1 ℓ
′
(
−Xi(θ)− tl({X̃i(θ)}2

l

i=1)
)
X ′

i(θ)
]

Eζl(θ)

[
1

2l

∑2l

i=1 ℓ
′
(
−Xi(θ)− tl({X̃i(θ)}2li=1)

)] . (19)
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One can apply MLMC methods to obtain sample estimates of ∇SRl
λ(θ). Define

ĝn1:n2
(θ, ζ l) =−

(n2 −n1 +1)−1
∑n2

j=n1
ℓ′
(
−Xj(θ)− tl({X̃i(θ)}n2

i=n1
)
)
X ′

j(θ)

(n2 −n1 +1)−1
∑n2

j=n1
ℓ′
(
−Xj(θ)− tl({X̃i(θ)}n2

i=n1
)
) .

For each query on point θ, we construct the oracle SOl to return (hl(θ, ζ l),H l(θ, ζ l)) with

hl(θ, ζ l) = ĝ1:2l(θ, ζ
l), H l(θ, ζ l) = ĝ1:2l(θ, ζ

l)− 1

2
[ĝ1:2l−1(θ, ζ l)+ ĝ2l−1+1:2l(θ, ζ

l)]. (20)

By Proposition 5 in Appendix F.3, this oracle satisfies Assumptions 1(II)(III) and 1(I′) with a= b= c= 1.

Following a similar proof procedure as in Theorem 7, we obtain the sample complexity results of V-MLMC

and RT-MLMC for solving (UBSR-O).

THEOREM 8 (Sample Complexity for UBSR-O). Under technical conditions in (Hegde et al. 2021,

Assumptions 1 to 9), for smooth SRλ(θ) satisfying PL condition, the sample complexity of V-MLMC and

RT-MLMC for finding ϵ-optimal solution is Õ(ϵ−1); for smooth and Lipschitz continuous SRλ(θ), the sample

complexity of V-MLMC and RT-MLMC for finding ϵ-stationary point is Õ(ϵ−4).

The state-of-the-art algorithm in Hegde et al. (2021) is a special case of L-SGD in our framework, which has

a complexity Õ(ϵ−2) in the strongly convex case (a special case of the PL case). We improve the rate for this

case to Õ(ϵ−1). For the nonconvex case, we present the first sample complexity results, where nonconvex

case is common when adapting a complicated loss function.

4.4. Comparison of MLMC Gradient Methods against MLMC on Function Value or Solution

In this subsection, we discuss the benefits of MLMC gradient methods over MLMC function value methods

and solution methods in optimization. We use the CSO problem as an example but the implications hold for

general stochastic optimization with biased oracles.

MLMC Function Value Estimator. Consider the CSO problem in the form of (11). A natural idea to use

the nested sample average approximation (SAA) and solve the empirical counterpart

F̂n,m(x) :=
1

n

n∑
i=1

fξi

( 1

m

m∑
j=1

gηi,j (x, ξi)
)
.

Similar to the L-SGD methods, such a nested SAA methods suffers from high sample complexity (Hu et al.

2020b). We show how to use MLMC to construct a function value estimator with a better sample complexity.

For a maximum level L∈N+ and mini-batch sizes ml = 2l−1, at each level l= 0, . . . ,L, generate nl i.i.d.

samples {ξli}
nl
i=1 from P(ξ), and conditioned on each ξli, generate ml i.i.d. samples {ηl

ij}
ml
j=1 from P(η|ξli).

Denote the random parameters as ζ li = (ξli,{ηl
ij}

ml
j=1). Finally, construct MLMC function value estimator

F̂ (x) =
L∑

l=0

1

nl

nl∑
i=1

V l(x, ζ li), V
l(x, ζ li) := fξl

i
(ĝ1:ml

(x, ζ li))−
fξl

i
(ĝ1:ml−1

(x, ζ li))+ fξl
i
(ĝml−1+1:ml

(x, ζ li))

2
.
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Unfortunately, even if the population objective and the empirical objective in (11) are convex, the MLMC

function value estimator is not necessarily convex since the estimator V l involves the difference of convex

functions. As a result, the empirical MLMC function value estimator cannot readily be solved to global

optimality. In fact, the MLMC function value estimator is more suitable when estimating the true objective

for a given x, i.e., in statistical inference settings, instead of in optimization. For completeness, we establish

the improved sample complexity to ensure the uniform convergence between F̂ and F under the same

assumptions in Hu et al. (2020b) for CSO problem.

THEOREM 9. Suppose Assumption 7 holds, then for any ϵ̄ > 0 and α∈ (0,1), there exists ϵ1 > 0 such that

for any ϵ∈ (0, ϵ1), the total cost to ensure P
(
supx∈X |F (x)− F̂ (x)| ≥ ϵ

)
≤ α is Õ(dϵ−2).

One may also refer to (Blanchet et al. 2019) for discussions on RU-MLMC function value estimator.

MLMC Solution Estimator. To overcome the nonconvexity issue brought in by the MLMC function

value estimator, one could use V-MLMC or RU-MLMC to build solution estimators (Blanchet et al. 2019,

Frikha 2016). We demonstrate the idea via a novel RT-MLMC solution estimator. Assuming that the empirical

problem F̂n,m(x) is strongly convex, we repeat the following procedure for K independent trials: for

k= 1, ...,K, solve the following to obtain x̂(k).

x̂l := argmin
x∈X

1

n

n∑
i=1

fξi
(
ĝ1:ml

(x, ζ li)
)
, x̂l

a := argmin
x∈X

1

n

n∑
i=1

fξi
(
ĝ1:ml−1

(x, ζ li)
)
,

x̂l
b := argmin

x∈X

1

n

n∑
i=1

fξi
(
ĝ1+ml−1:ml

(x, ζ li)
)
, x̂(k) :=

1

pl

(
x̂l − 1

2
(x̂l

a + x̂l
b)
)
.

The MLMC solution estimator is x̂ := 1
K

∑K

k=1 x̂(k). Such an estimator requires solving multiple empirical

problems to optimality, while MLMC gradient methods only solve once. Secondly, it requires these nested

SAA problems to be strongly/strictly convex to admit a unique solution. Recall that the essence of the MLMC

method is to ensure a variance reduction effect, i.e., Var(x̂l− 1
2
(x̂l

a+ x̂l
b)) should be small. Unfortunately, for

convex problems that admit multiple optimal solutions, the variance reduction effect is not easily achievable.

For nonconvex problems, it is hard to find optimal solutions and multiple stationary points could exist.

In summary, both MLMC function value and solution estimator are not suitable for optimization due to

some limitation. Instead, the studied MLMC gradient method do not have such limitations and can be easily

combined with existing first-order algorithms and are effective under various structural assumptions.

5. Numerical Experiments

In this section, we test our MLMC gradient methods in three examples: DRO, CL, and pricing and capacity

sizing for stochastic systems. Experiments are conducted on Google Colab with an Nvidia Tesla V100-

SXM2-16GB GPU.
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5.1. Synthetic Problem with Biased Oracles

Consider the Sinkhorn DRO problem in (14) with parameters (σ2, λ) = (0.1,20). For the formulation therein,

we specify ξ := (a, b) to follow an empirical distribution from feature-label data {(ai, bi)}ni=1; the feature of

the data η (denoted as z) to follow N(a,σ2Id) whereas its label equal b; and ℓ(x;η) = (fx(z)− b)2.

We evaluate the performance of our proposed optimization algorithms for this problem in both convex and

nonconvex setups. In the convex setup, we take data points {(ai, bi)}ni=1 from three real-world LIBSVM (Lin

2023) datasets (housing, mg, and mpg), and fx(z) as a linear predictor; in the nonconvex setup, we take data

points {(ai, bi)}ni=1 from two additional real-world UCI (Dheeru and Karra Taniskidou 2017) datasets that

are more intricate in terms of sample size and data dimension (Gas and bike), and fx(z) as a neural network.

Figure 1 reports the performance of various gradient algorithms in the convex setting. The x-axis cor-

responds to the number of generated samples, and the y-axis corresponds to the objective value. The plot

clearly shows that V-MLMC and RT-MLMC algorithms consistently have faster convergence rates than

other algorithms, which aligns with the fact that their theoretical sample complexity rate is optimal. In

contrast, the RR-MLMC and RU-MLMC algorithms have large variances throughout the training process,

as suggested by the large shaded error bars depicted on the plot. Although those two types of algorithms

do not have convergence guarantees for this CSO problem as the theoretical variance of these two gradient

estimators is unbounded, in practice, we observe in some scenarios that they also have relatively good

performance: for the housing dataset, their performance is worse than RT-MLMC/V-MLMC method but

better than L-SGD; in other cases, they have slightly worse performance than L-SGD. We do not recommend

using RR-MLMC/RU-MLMC algorithms for CSO problems due to their unstable performance.
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Figure 1 Comparison results of L-SGD, V-MLMC, RT-MLMC, RU-MLMC, and RR-MLMC methods when fx(z) is convex.

The x-axes represent the number of generated samples, and y-axes represent objective values. The results are averaged

with error bars based on 10 independent runs.

In each subplot of Figure 2, we compare the performance of specific gradient algorithms and their

corresponding variance reduction counterparts in the nonconvex setting. These subplots indicate that the

variance reduction techniques further accelerate the convergence of MLMC. Note that while we are unable

to provide theoretical convergence guarantees for RU-MLMC/RR-MLMC and their variance reduction
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(b) Results for bike Dataset

Figure 2 Comparison results of various gradient methods versus their variance reduction counterparts when fx(z) is nonconvex.
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Figure 3 Left: comparison results of L-SGD, V-MLMC, RT-MLMC, RU-MLMC, and RR-MLMC methods when fx(z) is

nonconvex; Right: comparison results of variance reduction counterparts of MLMC gradient estimators.

counterparts for solving the CSO problem, empirical observation demonstrates their convergence in this

numerical example, with enhanced performance through variance reduction methods.

In each subplot of Figure 3, we show the objective values of various gradient algorithms when their

generated number of samples has reached 1e4,1e5,1e6,1e7, respectively. The left plots correspond to

five MLMC gradient methods, whereas the right plots correspond to their variance reduction counterparts.

From these plots, we find, in general, V-MLMC/RT-MLMC (and their corresponding variance reduction

adaptations) outperform the L-SGD (or VR L-SGD) estimator. Besides, RU-MLMC/RR-MLMC and their

variance reduction counterparts also exhibit satisfactory performance. Providing theoretical guarantees for

these unbiased gradient estimators for solving the CSO problem remains an open challenge. It is plausible that,

under more stringent theoretical assumptions, these gradient estimators lead to sharper sample complexities.

5.2. Contrastive Learning

Next, we examine the performance of L-SGD and VR RT-MLMC gradient estimators in contrastive learn-

ing (See Section 4.1.2) using three large-scale datasets: CIFAR10 (Krizhevsky 2009), CIFAR100 (Krizhevsky

2009), and SVHN (Goodfellow et al. 2013). We train at batch size N = 512 (corresponding to L= 9) for
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100 epochs, where each epoch means we pass through all the training data points once. We examine the

performance at each 0.5 epoch interval. Experiment results are in Figure 4, and other details regarding

datasets, training, and testing procedure are in Table 9. Implementation details are provided in Appendix G.3.
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Figure 4 Comparison results of L-SGD and VR RT-MLMC methods on contrastive learning with CIFAR-10, CIFAR-100, and

SVHN datasets.

Figure 4 shows that the VR MLMC method accomplishes training with a substantially lower number

of generated samples within the same 100-epoch timeframe while maintaining comparable classification

accuracy to the L-SGD baseline. Notably, the L-SGD method typically demands a significantly larger number

of samples to attain an equivalent level of accuracy as the VR RT-MLMC method. The plots also reveal that

optimal performance is not attained within 100 epochs. From Table 9, we note that the L-SGD method takes

an average of 25 hours to complete 100-epoch training, whereas the VR RT-MLMC method accomplishes

the same in only 3 hours. Despite this time discrepancy, both methods yield reasonably good classification

accuracy, enabling fair and efficient comparisons between those two methods.

Table 9 Details regarding datasets, training, and testing procedure for CL

Dataset L-SGD VR RT-MLMC Training/Testing
Sample Size

Number of
LabelsTesting

Accuracy
Training

Time
Testing

Accuracy
Training

Time
CIFAR-10 72.50% 23h50m 75.12% 2h51m 50000/10000 10

CIFAR-100 18.88% 23h50m 19.90% 2h51m 50000/10000 100

SVHN 57.72% 27h34m 56.52% 3h22m 50257/49032 10

5.3. Pricing and Capacity Sizing for Stochastic Systems

Finally, we validate the performance of L-SGD and VR RT-MLMC estimator for the joint pricing and

staffing problem (15) based on the approximate gradient in (16) with maximum level L= 18. In this case,

the L-SGD estimator requires O(2L)≈O(105) operations to construct a single gradient, which is a costly

choice. We follow the setup in Chen et al. (2023) to perform the numerical study. We model (normalized)

inter-arrival time Un to follow the exponential distribution and the (normalized) service time Vn to follow the

Erlang, exponential, or hyper-exponential distribution.
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Figure 5 reports the performance of L-SGD and VR RT-MLMC gradient estimators under three different

service time distributions. The x-axis corresponds to the number of generated samples, the y-axis corresponds

to either the estimated price or service capacity and the shaded areas correspond to the error bars generated

using 10 independent trials. For those three special instances, we have a closed-form reformulation of the

objective function. We use an exhaustive search to obtain the ground-truth optimal choices of price and

capacity parameters, which are the green dashed lines in those plots.
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(a) Erlang distribution
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(b) Exponential distribution
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Figure 5 Comparison results of L-SGD and VR RT-MLMC estimators for the joint pricing and staffing task in a stochastic

system with various service time distributions. The results are averaged with error bars based on 10 independent runs.

Despite the non-convexity of the objective functions, we find these gradient methods converge to the

global optimum solution in practice, which aligns with the observation in Chen et al. (2023), and its global

convergence analysis remains an interesting theoretical question for future investigation. From those plots,

we also find that the VR RT-MLMC method obtains the optimal solution with a significantly smaller number

of generated samples, which indicates it is a powerful choice for the joint pricing and staffing task.

6. Conclusion

This paper systematically studies the bias-variance-cost tradeoff of several MLMC gradient methods for

stochastic optimization under a generic biased oracle model, shedding light on their superiority and limitations

under different situations. We further incorporate variance reduction methods to reduce the (expected) total

cost in the nonconvex smooth case. We demonstrate the significant benefits of MLMC gradient methods for

various applications in theory and numerical study. Several open questions remain for future work. First, it

is promising to design gradient estimators using MLMC that adaptively reduce the bias when the iteration

increases. Second, it remains interesting to understand if b < c, i.e., the increase rate of the costs is higher

than the decrease rate of the variance, what are the fundamental limits on the total costs, and if it is possible

to develop more efficient algorithms.
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Online Appendices
Appendix A: Preliminaries on SGD

In this section, we show the convergence property of the SGD framework when the gradient estimator v(x) is

unbiased and has bounded variance. Similar results appear in Bottou et al. (2018), Nemirovski et al. (2009),

Rakhlin et al. (2012). Lemma 4 gives a summary of the results that we in this paper.

Note that L-SGD, V-MLMC, and RT-MLMC are biased gradient estimators for optimizing F but unbiased

estimators for optimizing FL. We use Lemma 4 together with Assumption 1(I) and relation (5) to derive the

global convergence of biased methods on F in the PL condition or convex case; with Assumption 1(I′) and

relation (34) to derive the stationary convergence of biased methods on F in the nonconvex smooth case.

Notably, µ-strong convexity is a sufficient condition of PL condition with parameter µ (Karimi et al. 2016).

LEMMA 4 (Convergence of SGD). Let {xt}Tt=1 be the updating trajectory of Algorithm 1, x∗ be a minimizer

of F (x) on Rd, and x̂T be selected uniformly randomly from {xt}Tt=1. Suppose that there exists a constant

V > 0 such that Ev(x) =∇F (x),Var(v(x))≤V, where expectations are taken with respect to (w.r.t.) the

randomness in v. If F (x) is SF -smooth, the following results hold.

(I-a) If F (x) satisfies PL condition with parameter µ, for fixed stepsizes γt = γ ∈ (0, 1
SF

], we have

E[F (xT )−F (x∗)]≤ (1− γµ)T−1[F (x1)−F (x∗)] +
SFγV

2µ
.

(I-b) If F (x) satisfies PL condition with parameter µ, for time-varying stepsizes γt = 2
µ(t+2SF /µ−1)

, we

have

E[F (xT )−F (x∗)]≤ 2max{SFV,2µSF (F (x1)−F (x∗))}
µ2(T +2SF/µ− 1)

.

(II) If F (x) is convex, for stepsizes γt = γ ∈ (0, 1
2SF

], we have

E[F (x̂T )−F (x∗)]≤ γV+
∥x1 −x∗∥22

γT
.

(III) If F (x) is nonconvex, for fixed stepsizes γt = γ ∈ (0, 1
SF

], we have

E∥∇F (x̂T )∥22 ≤
2(F (x1)−F (x∗))

γT
+SFγV.

(IV) If F (x) is convex and LF -Lipschitz continuous, it holds that

E[F (x̂T )−F (x∗)]≤ ∥x1 −x∗∥22
2γT

+
γ(L2

F +V)

2
.

Note that we do not specify the stepsizes in cases (I-a), (I-b), (III), and (IV). When the variance of v(x)

is of order O(ϵ), one can use stepsizes that are independent of ϵ to guarantee ϵ-optimality or ϵ-stationarity.

The algorithm would behave similarly to gradient descent. On the other hand, when the variance of v(x)

is of order O(1) or even larger, one should use stepsizes γt =O(1/t) in the strongly convex setting and

γt =O(1/
√
T ) in the convex or nonconvex smooth setting.

Proof of Lemma 4. We divide the proof into the smooth and the Lipschitz continuous cases.

Part I: Smooth Case. Since x∗ is a minimizer of F over Rd, we have ∇F (x∗) = 0.
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PL condition and smooth case (I-a). By smoothness, it holds that

F (xt+1)−F (xt)≤∇F (xt)
⊤(xt+1 −xt)+

SF

2
∥xt+1 −xt∥22 =−γt∇F (xt)

⊤v(xt)+
SFγ

2
t

2
∥v(xt)∥22.

Taking expectation conditioned on xt on both side, since E[v(xt)|xt] =∇F (xt) it holds that

E[F (xt+1)−F (xt)|xt]≤− γt∥∇F (xt)∥22 +
SFγ

2
t

2
E[∥v(xt)∥22|xt]

=− γt∥∇F (xt)∥22 +
SFγ

2
t

2
∥∇F (xt)∥22 +

SFγ
2
t

2
Var(∥v(xt)∥22|xt)

=−
(
γt −

SFγ
2
t

2

)
∥∇F (xt)∥22 +

SFγ
2
t

2
Var(∥v(xt)∥22|xt)

=−
(
1− SFγt

2

)
γt∥∇F (xt)∥22 +

SFγ
2
t

2
Var(∥v(xt)∥22|xt)

≤− γt
2
∥∇F (xt)∥22 +

SFγ
2
t

2
Var(∥v(xt)∥22|xt)

≤− γtµ(F (xt)−F (x∗))+
SFγ

2
t

2
Var(∥v(xt)∥22|xt),

(21)

where the second to last inequality uses the assumption that γt ≤ 1
SF

, the last inequality uses PL condition.

Subtracting F (x∗) on both sides of (21) and taking full expectation, we have

E[F (xt+1)−F (x∗)]≤(1− γtµ)E[F (xt)−F (x∗)] +
SFγ

2
t

2
Var(∥v(xt)∥22)

≤(1− γtµ)E[F (xt)−F (x∗)] +
SFγ

2
t

2
V.

(22)

For fixed γt = γ ≤ 1
SF

, by induction, it is easy to see

E[F (xT )−F (x∗)]≤ (1− γµ)T−1[F (x1)−F (x∗)] +
SFγV

2µ
.

PL condition and smooth case (I-b). Starting from (22) and substituting γt =
2

µ(t+a)
with a := 2SF/µ−1

such that γt ∈ (0,1/SF ], by induction, it is easy to see

E[F (xT )−F (x∗)]≤ 2max{SFV, µ2(1+ a)(F (x1)−F (x∗))}
µ2(T + a)

.

Convex smooth Case (II). Denote at =
1
2
E||xt −x∗||22, then it holds that

at+1 =
1

2
E||xt − γtv(xt)−x∗||22 = at +

1

2
γ2
tE||v(xt)||22 − γtEv(xt)

⊤(xt −x∗). (23)

Dividing γt on both sides of (23), it holds that

Ev(xt)
⊤(xt −x∗)≤ at − at+1

γt
+

1

2
γtE||v(xt)||22.

Since F (x) is convex and v(xt) is an unbiased gradient estimator of F (xt) conditioned on xt, we have

−Ev(xt)
⊤(xt −x∗) =−∇F (xt)

⊤(xt −x∗)≤ F (x∗)−F (xt).



38

Summing up the two inequalities above and rearranging, it holds that conditioned on xt,

F (xt)−F (x∗)≤ at − at+1

γt
+

1

2
γtE||v(xt)||22 ≤

at − at+1

γt
+

1

2
γtVar(v(xt))+

1

2
γt∥∇F (xt)∥22

=
at − at+1

γt
+

1

2
γtVar(v(xt))+

1

2
γt∥∇F (xt)−∇F (x∗)∥22

≤at − at+1

γt
+

1

2
γtVar(v(xt))+ γtSF [F (xt)−F (x∗)],

where the last inequality holds as F is convex and SF -smooth. It further implies

E[F (xt)−F (x∗)]≤ 1

1− γtSF

[at − at+1

γt
+

1

2
γtVar(v(xt))

]
.

For γt ≤ 1
2SF

, it holds that 1
1−γtSF

≤ 2. By definition of x̂T , Jensen’s inequality, and convexity of F ,

E[F (x̂T )−F (x∗)]≤ 1

T

T∑
t=1

E[F (xt)−F (x∗)]

≤ 1

T

T∑
t=1

γtVar(v(xt))+
1

T

T∑
t=2

∥xt −x∗∥22
(

1

γt
− 1

γt−1

)
+

1

γ1T
∥x1 −x∗∥22 ≤ γV+

∥x1 −x∗∥22
γT

.

(24)

where the last inequality holds as γt = γ.

Nonconvex smooth case (III). Since F (x) is SF -smooth, it holds that

F (xt+1)−F (xt)≤∇F (xt)
⊤(xt+1 −xt)+

SF

2
∥xt+1 −xt∥22 =−∇F (xt)

⊤γtv(xt)+
SFγ

2
t

2
∥v(xt)∥22.

Taking expectations on both sides, it holds that

E[F (xt+1)−F (xt)]≤−γtE∥∇F (xt)∥22 +
SFγ

2
t

2
E∥v(xt)∥22

=
(
− γt +

SFγ
2
t

2

)
E∥∇F (xt)∥22 +

SFγ
2
t

2
Var(v(xt)).

Summing up from t= 1 to t= T , taking full expectation, and setting γt = γ ≤ 1/SF , we have

E[F (xT+1)−F (x1)]≤
(
− γ+

SFγ
2

2

) T∑
t=1

E∥∇F (xt)∥22 +
T−1∑
t=0

SFγ
2

2
Var(v(xt))

≤− γ

2

T∑
t=1

E∥∇F (xt)∥22 +
T∑

t=1

SFγ
2

2
Var(v(xt)).

As a result,

E∥∇F (x̂T )∥22 ≤
1

T

T∑
t=1

E∥∇F (xt)∥22 ≤
2E(F (x1)−F (xT+1))

γT
+SFγV≤ 2(F (x1)−F (x∗))

γT
+SFγV.

Part II: Lipschitz Continuous Case. If F is LF -Lipschitz continuous, the second moment of the gradient

estimator v is upper bounded:

E∥v(x)∥22 =Var(v(x))+ ∥Ev(x)∥22 =Var(v(x))+ ∥∇F (x)∥22 ≤L2
F +V.
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Convex Lipschitz continuous case (IV). Dividing γt on both sides of (23), it holds that

Ev(xt)
⊤(xt −x∗)≤ at − at+1

γt
+

1

2
γtE||v(xt)||22.

By convexity and upper bounds on the second moment, we have

E[F (xt)−F (x∗)]≤ at − at+1

γt
+

1

2
γt(L

2
F +V).

Summing up from t= 1 to t= T and setting γt = γ, we have

E[F (x̂T )−F (x∗)]≤E
1

T

T∑
t=1

[F (xt)−F (x∗)]≤ ∥x1 −x∗∥22
2γT

+
γ(L2

F +V)

2
. □

Appendix B: Discussion on Assumptions

Since the PL condition is a generalization of strong convexity, the (expected) total cost of L-SGD, V-MLMC,

RT-MLMC, RU-MLMC, and RR-MLMC under PL condition provides an upper bound on the (expected)

total cost achieved under the strong convexity assumption. For a more detailed discussion on PL condition

and strong convexity, see Karimi et al. (2016).

B.1. Substituteable Bias Assumption under PL Condition

Recall that Assumption 1(I) assumes that the bias of the function value estimator is uniformly upper-bounded.

In contrast, Assumption 1(I′) assumes that the bias of the gradient estimator is uniformly upper-bounded.

In this part, we show Assumptions 1(I) and 1(I′) are substitutable under PL condition (strong convexity)

setting in the sense that the (expected) total cost of L-SGD, V-MLMC, and RT-MLMC would remain the

same under either assumption. However, Assumption 1(I′) cannot replace Assumption 1(I) for convex case.

See Remark 7 for a counter-example.

Let xAT denote the T -th iteration of the algorithm using A ∈ {L-SGD, V-MLMC, RT-MLMC}. The key

step of such replacement is to show that under Assumption 1(I′), the expected error of the algorithm using A,

i.e., E[F (xAT )−F (x∗)], has a similar error decomposition like (5).

PROPOSITION 1. Suppose that F is SF -smooth and satisfies the PL condition with parameter µ, under

Assumptions 1(II)(III) and Assumption 1(I′) and take a= 2SF/µ− 1, then the following results hold.

(I) When using fixed stepsizes γt = γ ∈ (0,1/SF ],

E[F (xAT )−F (x∗)]≤ (1− γµ)T−1[F (x1)−F (x∗)] +
1

2µ
Ma2

−aL +
SFγ

2µ
V(vA). (25)

(II) When using time-varying stepsizes γt = 2
µ(t+a)

, we have

E[F (xAT )−F (x∗)]≤ 2max{SFV(vA), µ2(1+ a)(F (x1)−F (x∗))}
µ2(T + a)

+
1

2µ
Ma2

−aL. (26)
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Proof of Proposition 1. By smoothness of F and taking expectation conditioned on xt, we have

EF (xA
t+1)≤F (xA

t )+∇F (xA
t )

⊤E(xA
t+1 −xA

t )+
SF

2
E∥xA

t+1 −xA
t ∥22

=F (xA
t )+∇F (xA

t )
⊤E(xA

t+1 −xA
t )+

SFγ
2
t

2
E∥v(xA

t )∥22

=F (xA
t )−

γt
2
(2∇F (xA

t )
⊤Ev(xA

t ))+
SFγ

2
t

2
∥Ev(xA

t )∥22 +
SFγ

2
t

2
Var(v(xA

t ))

≤F (xA
t )+

γt
2
(−2∇F (xA

t )
⊤Ev(xA

t )+ ∥Ev(xA
t )∥22)+

SFγ
2
t

2
Var(v(xA

t ))

=F (xA
t )+

γt
2
(−∥∇F (xA

t )∥22 + ∥Ev(xA
t )−∇F (xA

t )∥22)+
SFγ

2
t

2
Var(v(xA

t ))

≤F (xA
t )−

γt
2
∥∇F (xA

t )∥22 +
γt
2
BL +

SFγ
2
t

2
V(vA),

where the first inequality uses smoothness, the second inequality uses γt ≤ 1/SF , the third inequality uses

Assumption 1(I′), the last equality uses ∥a− b∥22 = ∥a∥22 − 2a⊤b+ ∥b∥22. Using PL condition and taking full

expectation, we have

E[F (xAt+1)−F (x∗)]≤E[F (xAt )−F (x∗)]− γt
2
2µE(F (xAt )−F (x∗))+

γt
2
BL +

SFγ
2
t

2
V(vA)

=(1− γtµ)E(F (xAt )−F (x∗))+
γt
2
BL +

SFγ
2
t

2
V(vA).

(27)

• If using fixed stepsizes, plugging in γt = γ ∈ (0,1/SF ], by induction, we have

E[F (xAT )−F (x∗)]≤ (1− γµ)T−1[F (x1)−F (x∗)] +
1

2µ
BL +

SFγ

2µ
V(vA).

• If using time-varying stepsizes, plugging γt =
2

µ(t+a)
∈ (0,1/SF ] into (27), by induction, we have

E[F (xAT )−F (x∗)]≤ 2max{SFV(vA), µ2(1+ a)(F (x1)−F (x∗))}
µ2(T + a)

+
1

2µ
BL.

Substituting BL =Ma2
−aL gives the desired results. □

In the previous analysis of L-SGD and RT-MLMC, we used time-varying stepsizes and Assumption 1(I).

The key is the following relation:

E[F (xAT )−F (x∗)]≤ 2Ma2
−aL +

2max{SFV(vA),2µSF (F (x1)−F (x∗))}
µ2(T +2SF/µ− 1)

. (28)

Comparing (26) and (28), the only differences are in the constants, which do not affect the rate of the total

cost.

In the previous analysis of V-MLMC, we used fixed stepsizes and Assumption 1(I). The key is via

E[F (xAT )−F (x∗)]≤ 2Ma2
−aL +(1− γµ)T−1[FL(x1)−FL(xL)] +

SFγV(vA)

2µ
. (29)

Also, we find (25) and (29) lead to the same error bound but with different constants, which do not affect the

rate of the total cost.
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REMARK 7. Unlike Assumption 1(I), Assumption 1(I′) is not sufficient for obtaining a global optimality gap

when solving unconstrained optimization with convex objective F using biased gradient methods. Suppose

that Assumption 1(I′) holds and that one finds an ϵ/4-stationarity point of FL via some biased methods. The

point is an ϵ-stationarity point of F by Assumption 1(I′) for certain L. However, there is no link between the

gradient norm of the point and the optimality gap for unconstrained optimization with convex objectives. In

fact, one can show that for any ϵ∈ (0,1), there exists a convex smooth function F :Rd →R and a point x0

such that ∥∇F (x0)∥22 = ϵ2 and F (x0)− infxF (x)> 1. One example is the Huber function defined in the

following, and x0 ∈Rd is such that ∥x0∥2 = 2/ϵ > ϵ.

FHuber(x) =

{
1
2
∥x∥22 if ∥x∥2 < ϵ,

ϵ(∥x∥2 − ϵ
2
) if ∥x∥2 ≥ ϵ.

One can easily see ∥∇F (x0)∥22 = ϵ2 but F (x0)− infxF (x) = 2− ϵ2

2
> 1. When encountering such functions,

the biased gradient methods do not guarantee to converge to an ϵ-optimal solution under Assumption 1(I′).

Appendix C: Bias, Variance, and Cost of Gradient Estimators

This section demonstrates the bias, variance, and (expected) per-iteration cost of the L-SGD and the MLMC-

based gradient estimators. The main manuscript in Table 2 has simplified results. The following lemma

formally characterizes the expectation of L-SGD and MLMC-based gradient estimators, demonstrating that

RU-MLMC and RR-MLMC are unbiased gradient estimators while the others are biased.

LEMMA 5 (Bias). For any x∈Rd, it holds that

EvL-SGD(x) =EvV-MLMC(x) =EvRT-MLMC(x) =∇FL(x).

If additionally Assumption 1(I′) holds,

EvRU-MLMC(x) =EvRR-MLMC(x) =∇F (x).

Proof of Lemma 5. The proof for L-SGD is straightforward. For V-MLMC, it holds that

EvV-MLMC(x) =E
[ L∑

l=0

1

nl

nl∑
i=1

H l(x, ζ li)

]
=

L∑
l=0

[∇F l(x)−∇F l−1(x)] =∇FL(x).

For RT-MLMC, we have

EvRT-MLMC(x) =E
[
H l(x, ζ l)

ql

]
=

L∑
l=0

ql
∇F l(x)−∇F l−1(x)

ql
=∇FL(x).

For RU-MLMC, letting L→∞, we have

EvRU-MLMC(x) =E
[
H l(x, ζ l)

ql

]
=

∞∑
l=0

ql
∇F l(x)−∇F l−1(x)

ql
= lim

L→∞
∇FL(x) =∇F (x),
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where the last equality uses Assumption 1(I′). As for the RR-MLMC estimator, we have

EvRR-MLMC =E
L∑

l=0

plH
l(x, ζ l) =EL

L∑
l=0

pl[∇F l(x)−∇F l−1(x)]

=

∞∑
L=0

qL

( L∑
l=0

pl[∇F l(x)−∇F l−1(x)]

)
=

∞∑
L=0

L∑
l=0

qLpl[∇F l(x)−∇F l−1(x)]I{l≤L}

=

∞∑
l=0

[∇F l(x)−∇F l−1(x)]
∞∑
L=l

qLpl =
∞∑
l=0

[∇F l(x)−∇F l−1(x)]

∑∞
L=l qL

1−
∑l−1

l′=0 ql′

=

∞∑
l=0

[∇F l(x)−∇F l−1(x)] = lim
L→∞

∇FL(x) =∇F (x).

By convention, we let
∑−1

l′=0 ql′ = 0 and ∇F−1(x) = 0. Similarly, the last equality is by Assumption 1(I′).

□

In the following, we demonstrate the variance and per-iteration cost of these estimators. Recall that A

refers to either of L-SGD, V-MLMC, RT-MLMC, RU-MLMC, and RR-MLMC; CA
iter denotes the (expected)

per-iteration cost of A; Var(vA) denotes the variance of the gradient estimator using A; T A denotes the

iteration complexity of A for achieving ϵ-optimality or ϵ-stationarity; and C = T ACA
iter denotes the (expected)

total cost.

Note that the (expected) per-iteration cost CA
iter depends on different gradient constructions. By Lemma 4,

the iteration complexity T A depends on the desired accuracy ϵ and Var(vA). To upper bound the (expected)

total cost C, we first provide upper bounds on variance Var(vA) and (expected) per-iteration cost CA
iter. The

following summarizes Lemmas 1, 2, 3 and includes results for RU-MLMC/RR-MLMC estimators.

LEMMA 6 (Variance and (Expected) Per-Iteration Cost). Under Assumption 1, for any x ∈ Rd, the fol-

lowing results hold.

• For vL-SGD with batch size nL,

Var
(
vL-SGD(x)

)
≤ σ2

nL

, CL-SGD
iter ≤ nLMc2

cL.

• For vRT-MLMC(x), suppose we take ql = 2−(b+c)l/2RL(− b+c
2
)−1, then

If c ̸= b: Var(vRT-MLMC(x))≤MbR
L
(c− b

2

)
RL
(
− b+ c

2

)
, CRT-MLMC

iter ≤McR
L
(c− b

2

)
RL
(
− b+ c

2

)−1
,

If c= b: Var(vRT-MLMC(x))≤Mb(L+1)RL
(
− b+ c

2

)
, CRT-MLMC

iter ≤Mc(L+1)RL
(
− b+ c

2

)−1
.

• For vV-MLMC(x), suppose we take nl = ⌈2−(b+c)l/2N⌉ for a constant N > 0, then

If c ̸= b: Var(vV-MLMC(x))≤MbR
L
(c− b

2

)
N−1, CV-MLMC

iter ≤McR
L
(c− b

2

)
N +McR

L(c),

If c= b: Var(vV-MLMC(x))≤Mb(L+1)N−1, CV-MLMC
iter ≤Mc(L+1)N +McR

L(c).
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• For vRU-MLMC(x) and vRR-MLMC(x), when c≥ b, either its expected per-iteration cost or its variance is

unbounded for any distribution Q= {ql}∞l=0. When c < b, setting ql = 2−(b+c)l/2R∞(− b+c
2
)−1, then

Var(vRU-MLMC(x))≤MbR
∞(c− b

2

)
R∞(− b+ c

2

)
, CRU-MLMC

iter ≤McR
∞(c− b

2

)
R∞(− c+ b

2

)−1
,

Var(vRR-MLMC(x))≤MbR
∞(c− b

2

)
, CRR-MLMC

iter ≤ Mc2
c

2c − 1
R∞(c− b

2

)
R∞(− c+ b

2

)−1
.

Proof of Lemma 6. Recall the definition of RL and R∞ in (7), then it holds that

RL(α) =
L∑

l=0

2αl =
1− 2α(L+1)

1− 2α
for α ̸= 0; R∞(α) = (1− 2α)−1 for α< 0. (30)

In the following, we show the variance and per-iteration cost for all gradient estimators.

L-SGD. The result follows directly by Assumption 1 and the fact that {∇hL(x, ζLi )}
nL
i=1 are independent

for any given L.

V-MLMC. Notice that {H l(x, ζ li)}
nl
i=1 are independent for any given l and H l(x, ζ li) with different l are

independently generated. Using (30) and the fact that nl is an integer between 2−(b+c)l/2N and 2−(b+c)l/2N +

1, we derive

Var(vV-MLMC(x))≤
L∑

l=0

Vl

nl

≤Mb

[
L∑

l=0

2−bl

2−(b+c)l/2

]
N−1

and

CV-MLMC
iter =

L∑
l=0

nlCl ≤Mc

[
L∑

l=0

2cl2−(b+c)l/2

]
N +Mc

L∑
l=0

2cl.

Moreover, one can simplify these expressions by considering cases c= b or c ̸= b.

RT-MLMC. The result follows by simplifying

Var(vRT-MLMC(x))≤
L∑

l=0

Vl

ql
, CRT-MLMC

iter =

L∑
l=0

Clql

and using the relation (30).

RU-MLMC. By direct calculation,

Var(vRU-MLMC(x))≤
∞∑
l=0

Vl

ql
, CRU-MLMC

iter =

∞∑
l=0

Clql. (31)

To ensure Var(vRU-MLMC(x))<∞, it requires ql > 2−bl. To ensure CRU-MLMC
iter <∞, it requires ql < 2−cl.

Combining those relations, we find the per-iteration cost, and its variance is bounded only if b > c. In such

case, we substitute the expression of ql, Vl,Cl into (31) and utilize (30) to obtain the desired result.
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RR-MLMC. The expected cost to generate such an estimator is

CRR-MLMC
iter =EL

L∑
l=0

Cl =

∞∑
L=0

qL

L∑
l=0

Cl ≤
∞∑

L=0

qL

L∑
l=0

Mc2
cl =Mc

∞∑
L=0

qL
2c(L+1) − 1

2c − 1
. (32)

To ensure CRR-MLMC
iter is finite, it requires qL < 2−cL. Without loss of generality, we assume that ql =

2αl(1−2α) for a constant 0<α<−c and l ∈N so that
∑∞

l=0 ql = 1. As a result, we have
∑l−1

l′=0 ql′ = 1−2αl.

The variance of the estimator is

Var(vRR-MLMC(x))≤
∞∑

L=0

qL

( L∑
l=0

p2l Vl

)
=

∞∑
L=0

qL

( L∑
l=0

1

(1−
∑l−1

l′=0 ql′)
2
I{l≤L}Vl

)
=

∞∑
L=0

L∑
l=0

qL
1

(1−
∑l−1

l′=0 ql′)
2
I{l≤L}Vl =

∞∑
l=0

Vl

∑∞
L=l qL

(1−
∑l−1

l′=0 ql′)
2
=

∞∑
l=0

Vl

1−
∑l−1

l′=0 ql′
.

(33)

For the relation above, we abuse the use of notation to denote
∑l−1

l′=0 ql′ = 0 when l= 0. To obtain a bounded

variance, it requires that

2−bl

1−
∑l−1

l′=0 ql′
< 1,

which equivalently requires α>−b. Therefore, to ensure both the expected per-iteration cost and the variance

are finite, it requires c < b. In this case, we substitute ql ∝ 2−(b+c)l/2 into (32) and (33) to obtain the desired

results. □

Appendix D: Total Cost Analysis

This section discusses the (expected) total cost of L-SGD, V-MLMC, RT-MLMC, RU-MLMC, and RR-

MLMC with SGD framework in Algorithm 1.

For the convex objective, we only show the proof of the smooth case, which essentially relies on Lemma

4(II). We find the convergence results in Lemma 4(II) (smooth case) only differ from Lemma 4(IV) (Lipsc-

thiz continuous case) up to some constants. Thereby, one can analyze the convex and Lipscthiz continuous

case by replacing 4(II) with Lemma 4(IV) to obtain similar results. We will see that V-MLMC requires

a large mini-batch to achieve a reduced total cost in a smooth setting. For the Lipschitz continuous case,

V-MLMC cannot achieve a reduced total cost compared to L-SGD.

D.1. (Expected) Total Costs of Biased Gradient Methods

In this subsection, let A refer to the L-SGD, V-MLMC, or RT-MLMC estimator. Recall that V(vA) denotes

the upper bound on the variance of the gradient estimator A, and x̂AT denotes the output uniformly selected

from {xA1, ..., xAT}, where xAt refers to the t-iteration point of SGD framework using estiamtor A. Sometimes,

we omit the dependence on the notation A for simplicity of presentation.

In the (strongly) convex case, recall from the decomposition (5) that we shall take L= ⌈1/a log(4Ma/ϵ)⌉.

It remains to apply Lemma 4 in Appendix A to show EFL(x̂AT )−FL(xL)≤ ϵ/2. In the nonconvex smooth

case, by Assumption 1(I′), we have the decomposition

E∥∇F (x̂AT )∥22 ≤2E∥∇FL(x̂AT )∥22 +2E∥∇F (x̂AT )−∇FL(x̂AT )∥22 ≤ 2E∥∇FL(x̂AT )∥22 +2Ma2
−aL. (34)
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Therefore, we take L = ⌈1/a log(4Ma/ϵ
2)⌉ so that 2Ma2

−aL ≤ ϵ2/2. To ensure E∥∇F (x̂AT )∥22 ≤ ϵ2, it

remains to apply Lemma 4(III) to show E∥∇FL(x̂AT )∥22 ≤ ϵ2/4.

When the variance of the gradient estimator is O(1) or even larger, the following lemma shows the

relationship between the variance of the gradient estimator, the (expected) cost to construct the gradient

estimator, and the (expected) total cost for achieving ϵ-optimality in the (strongly) convex case and ϵ-

stationarity in the nonconvex smooth case, respectively.

LEMMA 7. Suppose V(vA) ≥ ρ0, with ρ0 > 0 being a constant independent of the precision ϵ > 0. With

properly selected hyper-parameters as in Table 10, the following results hold.

(I) Suppose Assumption 1 holds and FL is µ-strongly convex, and let xAT be the estimated solution. The

(expected) total cost of A for finding an ϵ-optimal solution satisfies

C ≤ 4CA
iterSF max{V(vA), µ2(1+ 2S2

F/µ
2)∥x1 −xL∥22}µ−2ϵ−1.

(II) Suppose Assumption 1 holds, and FL is convex and smooth. Let x̂AT be the estimated solution. The

(expected) total cost of A for finding an ϵ-optimal solution satisfies

C ≤ 8CA
iterV(vA)(1+ ∥x1 −xL∥22)2ϵ−2.

(III) Suppose Assumptions 1(II)(III) and 1(I′) hold and FL is SF -smooth. Let x̂AT be the estimated solution.

The (expected) total cost of A for finding an ϵ-stationary point satisfies

C ≤ 32CA
iterV(vA)(2(FL(x1)−FL(xL))+SF )

2ϵ−4.

Table 10 Hyper-parameters used in Lemma 7.

Level L Step Size γt Iteration T

Case (I) ⌈1/a log(4Ma/ϵ)⌉ 1
µ(t+2S2

F
/µ2)

⌈
2SF max{V(vA),µ2(1+2S2

F
/µ2)∥x1−xL∥2

2
}

µ2ϵ

⌉
Case (II) ⌈1/a log(4Ma/ϵ)⌉ 1√

TV(vA)

⌈
4V(vA)(1+ ∥x1 −xL∥22)2ϵ−2

⌉
Case (III) ⌈1/a log(4Ma/ϵ

2)⌉ 1√
TV(vA)

⌈
16V(vA)(2(FL(x1)−FL(xL))+SF )

2ϵ−4
⌉

This lemma applies to L-SGD and RT-MLMC since the variance of these estimators are both O(1) or

higher. On the contrary, V-MLMC has to use large mini-batches. Thus its variance is very small and is

Õ(ϵ) or Õ(ϵ2). When showing Lemma 7, we implicitly assumes the step size γt ≤ 1/(2SF ) in case (II) and

γt ≤ 1/SF in case (III). Those requirements automatically hold since the precision ϵ is sufficiently small.

Proof of Lemma 7 We prove this lemma in three separate cases.
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Strongly convex case. By Lemma 4(I-b), it holds that

E[FL(xAT )−FL(xL)]≤ SF max{V(vA), µ2(1+ 2S2
F/µ

2)∥x1 −xL∥22}
µ2(T +2S2

F/µ
2)

.

Based on the previous argument, it remains to ensure E[FL(xA
T )−FL(xL)]≤ ϵ/2. Thus, we take T to be

the smallest integer such that

T ≥ T̂ := 2SF max{V (vA), µ2(1+ 2S2
F/µ

2)∥x1 −xL∥22}µ−2ϵ−1.

Correspondingly, the total cost C = TCA
iter ≤ 2T̂CA

iter.

Convex case. By Lemma 4(II), it holds that

E[FL(xAT )−FL(xL)]≤
√

V(vA)(1+ ∥x1 −xL∥22)√
T

.

To ensure E[FL(xAT )−FL(xL)]≤ ϵ/2, we take T to be the smallest integer such that

T ≥ T̂ := 4V(vA)(1+ ∥x1 −xL∥22)2ϵ−2.

Correspondingly, the total cost C = TCA
iter ≤ 2T̂CA

iter.

Nonconvex smooth case. By Lemma 4(III), it holds that

E∥∇FL(x̂AT )∥22 ≤
√
V(vA)(2(FL(x1)−FL(xL))+SF )√

T
.

Based on the previous argument, it remains to ensure E∥∇FL(x̂AT )∥22 ≤ ϵ2/4. Thus, we take T to be the

smallest integer such that

T ≥ T̂ := 16V(vA)(2(FL(x1)−FL(xL))+SF )
2ϵ−4.

Correspondingly, the total cost C = TCA
iter ≤ 2T̂CA

iter. □

D.1.1. Total Cost of L-SGD In this subsection, we show the total cost of L-SGD when the batch size

nL = 1 using Lemma 7. For (strongly) convex case, we take L= ⌈1/a log(4Ma/ϵ)⌉, which implies

CL-SGD
iter ≤Mc2

cL =O(ϵ−c/a).

For nonconvex case, we take L= ⌈1/a log(4Ma/ϵ
2)⌉, which implies CL-SGD

iter =O(ϵ−2c/a). The total cost in

Theorem 1 can be derived by substituting the expressions of CL-SGD
iter and V(vL-SGD) into Lemma 6.

REMARK 8. As mentioned in Remark 4, L-SGD cannot use large mini-batch sizes, i.e., nL =O(ϵ−1), to

reduce the total cost as V-MLMC does. We use the convex case for demonstration. If nL =O(ϵ−1), then

V (vL−SGD) =O(ϵ). Using Lemma 4(III) with stepsizes γt = 1/(2SF ), we know that

EFL(x̂L-SGD
T )−FL(xL)≤O(ϵ)+

2SF∥x1 −xL∥22
T

.

Therefore the iteration complexity T = O(ϵ−1). The total cost would be TnLCL = O(ϵ−2−c/a), which

remains the same compared to without using batch size, i.e., nL = 1. The reason is that using large batch sizes

for L-SGD only reduces the iteration complexity, while using large batch sizes for V-MLMC simultaneously

reduces the iteration complexity and the per-iteration cost.
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D.1.2. Expected Total Cost of RT-MLMC According to Lemma 2, one can check that V(vRT-MLMC)

is at least O(1), indicating Lemma 7 is applicable. After calculating upper bounds of CRT-MLMC
iter and

V (vRT-MLMC) by specifying L in Table 4, it holds that

CRT-MLMC
iter V(vRT-MLMC) =



O(1) if c < b;

O(log2(1/ϵ)) if c= b;

O(ϵ−(c−b)/a) if c > b and L= ⌈ log(4Maϵ
−1)

a
⌉;

O(ϵ−2(c−b)/a) if c > b and L= ⌈ log(4Maϵ
−2)

a
⌉.

(35)

Hence, the total cost in Theorem 2 can be derived by substituting the expressions of CRT-MLMC
iter V(vRT-MLMC)

into Lemma 6.

D.1.3. Total Cost of V-MLMC In this part, we consider the total cost of V-MLMC.

THEOREM 10 (Full version of Theorem 3). For V-MLMC with nl = ⌈2−(b+c)l/2N⌉ for some N > 0, with

properly chosen hyper-parameters as in Table 11, the following results hold.

(I) Suppose FL is µ-strongly convex and SF -smooth, and Assumption 1 holds, and let xV-MLMC
T as the

estimated solution. The total cost for finding ϵ-optimal solution of F is
O(log(ϵ−1)ϵ−max{1,c/a}), if c < b,

O(log3(ϵ−1)ϵ−max{1,c/a}), if c= b,

O(log(ϵ−1)ϵ−max{1+(c−b)/a,c/a}), if c > b.

(II) Suppose FL is convex and SF -smooth, and Assumption 1 holds, and let x̂V-MLMC
T as the estimated

solution. The total cost for finding ϵ-optimal solution of F is
O(ϵ−1−max{1,c/a}), if c < b,

O(log2(ϵ−1)ϵ−1−max{1,c/a}), if c= b,

O(ϵ−1−max{1+(c−b)/a,c/a}), if c > b.

(III) Suppose FL is SF -smooth, and Assumptions 11(II)(III) and 1(I′) hold. Let x̂V-MLMC
T as the estimated

solution, then the total cost for finding ϵ-stationary point of F is
O(ϵ−2−2max{1,c/a}), if c < b,

O(log2(ϵ−1)ϵ−2−2max{1,c/a}), if c= b,

O(ϵ−2−2max{1+(c−b)/a,c/a}), if c > b.
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Table 11 Hyper-parameters of V-MLMC in Theorem 3

Level L Step Size γt ≡ γ
Multiplicative Factor
N of Batch Sizes Iteration T

Case (I) ⌈ log(4Maϵ
−1)

a
⌉ 1/SF


O(ϵ−1), if c < b

O((L+1)ϵ−1), if c= b

O(2−(b−c)(L+1)/2ϵ−1), if c > b

⌈
2 log(4[F L(x1)−F L(xL)]ϵ−1)

log(SF/(SF−µ))

⌉

Case (II) ⌈ log(4Maϵ
−1)

a
⌉ 1/(2SF )


O(ϵ−1), if c < b

O((L+1)ϵ−1), if c= b

O(2−(b−c)(L+1)/2ϵ−1), if c > b

⌈
8SF ∥x1 −xL∥22ϵ−1

⌉

Case (III) ⌈ log(4Maϵ
−2)

a
⌉ 1/SF


O(ϵ−2), if c < b

O((L+1)ϵ−2), if c= b

O(2−(b−c)(L+1)/2ϵ−2), if c > b

⌈
16SF (F

L(x1)−FL(xL))ϵ−2

⌉

REMARK 9. When a ≥ min{b, c}, it holds that max{1, c/a} = 1 when c < b, and max{1 + (c −

b)/a, c/a}= 1 when c > b. As a result, when this additional condition holds, the total cost of V-MLMC is

the same as that of RT-MLMC.

Proof of Theorem 3. Recall the discussion from the beginning of Appendix D.1, we need to specify

L= ⌈ log(4Maϵ
−1)

a
⌉ in (strongly) convex case and L= ⌈ log(4Maϵ

−2)

a
⌉ in nonconvex case.

Strongly convex case. By Lemma 4(I-a), it holds that

EFL(xT )−FL(xL)≤ (1− γµ)T−1[FL(x1)−FL(xL)] +
SFγV(vV-MLMC)

2µ
.

To ensure EFL(xT )−FL(xL)≤ ϵ/2, it suffices to make sure that (1− γµ)T−1[FL(x1)−FL(xL)]≤ ϵ/4

and SF γV(vV-MLMC)

2µ
≤ ϵ/4. We take step size γ = 1/SF , then it suffices to ensure

V(vV-MLMC)≤ ϵµ

2
, T ≥ T̂ :=

2 log(4[FL(x1)−FL(xL)]ϵ−1)

log(SF/(SF −µ))
.

Since T ∈N, we specify T = ⌈T̂ ⌉. Now it remains to specify N such that the variance bound provided in

Lemma 6 satisfies the requirement, and one can also bound the per-iteration cost by Lemma 6.

• When c < b, it holds that

V(vV-MLMC) =Mb

1− 2−(b−c)(L+1)/2

1− 2−(b−c)/2
N−1 ≤ ϵµ

2
,

and it suffices to take N = 2Mb(1− 2−(b−c)/2)−1ϵ−1µ−1 =O(ϵ−1). In this case, the per-iteration cost

CV-MLMC
iter =O(ϵ−max{1,c/a}) and total cost

C ≤ TCV-MLMC
iter =O(log(ϵ−1)ϵ−max{1,c/a}).
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• When c= b, it suffices to take N = 2Mb(L+1)ϵ−1µ−1 =O(log(ϵ−1)ϵ−1) to ensure V(vV-MLMC)≤ ϵµ
2

.

Then, the per-iteration cost CV-MLMC
iter =O(log2(ϵ−1)ϵ−1 + ϵ−c/a) and total cost

C ≤ TCV-MLMC
iter =O(log3(ϵ−1)ϵ−1 + log(ϵ−1)ϵ−c/a) =O(log3(ϵ−1)ϵ−max{1,c/a}).

• When c > b, it suffices to take N = 2Mb2
−(b−c)(L+1)/2(2−(b−c)/2 − 1)−1µ−1ϵ−1 =O(ϵ−1ϵ−(c−b)/(2a))

to ensure V(vV-MLMC)≤ ϵµ
2

. Then, the per-iteration cost CV-MLMC
iter =O(ϵ−1−(c−b)/a + ϵ−c/a) and total

cost

C ≤ TCV-MLMC
iter =O(log(ϵ−1)ϵ−max{1+(c−b)/a,c/a}).

Convex case. By Lemma 4(II), with stepsizes γt ≡ γ = 1
2SF

, it holds that

E[FL(x̂T )−FL(xL)]≤ V(vV-MLMC)

2SF

+
2SF∥x1 −xL∥22

T
.

To ensure E[FL(x̂T )−FL(xL)]≤ ϵ/2, it suffices to take

T ≥ T̂ := 8SF∥x1 −xL∥22ϵ−1; V(vV-MLMC)≤ ϵSF

2
.

We specify T = ⌈T̂ ⌉. By a similar argument as in the strongly convex case, we specify

N =


2Mb(1− 2−(b−c)/2)−1ϵ−1S−1

F =O(ϵ−1), if c < b,

2Mb(L+1)ϵ−1S−1
F =O(log(ϵ−1)ϵ−1), if c= b,

2Mb2
−(b−c)(L+1)/2(2−(b−c)/2 − 1)−1ϵ−1S−1

F =O(ϵ−1−(c−b)/(2a)), if c > b.

Consequently, CV−MLMC
iter is bounded by

O(ϵ−max{1,c/a}), if c < b; O(ϵ−max{1,c/a}) log2(ϵ−1)), if c= b; O(ϵ−max{1+(c−b)/a,c/a}), if c > b.

and one can bound the total cost by TCV−MLMC
iter to obtain the desired result.

Nonconvex smooth case. By Lemma 4(IV), with stepsizes γt ≡ γ = 1
SF

, it holds that

E∥∇FL(x̂T )∥22 ≤
2SF (F

L(x1)−FL(xL))

T
+V(vV-MLMC)≤ ϵ2

4
.

To ensure E∥∇FL(x̂T )∥22 ≤ ϵ2

4
, it suffices to have

T ≥ T̂ := 16SF (F
L(x1)−FL(xL))ϵ−2, V(vV-MLMC)≤ ϵ2

8
.

We specify T = ⌈T̂ ⌉. By a similar argument as in the strongly convex case, we specify

N =


8Mb(1− 2−(b−c)/2)−1ϵ−2 =O(ϵ−2), if c < b,

8Mb(L+1)ϵ−2 =O(ϵ−2 log(ϵ−1)), if c= b,

8Mb2
−(b−c)(L+1)/2(2−(b−c)/2 − 1)−1ϵ−2 =O(ϵ−2−(b−c)/(a)), if c > b.
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Consequently, CV-MLMC
iter is bounded by

O(ϵ−2max{1,c/a}), if c < b; O(ϵ−2max{1,c/a}) log2(ϵ−1)), if c= b; O(ϵ−2max{1+(c−b)/a,c/a}), if c > b.

and one can bound the total cost by TCV-MLMC
iter to obtain the desired result.

□

D.2. Expected Total Cost of Unbiased Gradient Methods: RU-MLMC and RR-MLMC

In this subsection, we derive the expected total cost of RU-MLMC (see (4d)) and RR-MLMC (see (4e)). The

upper bounds on the variance and per-iteration cost of these two estimators are in Lemma 6. Both estimators

are unbiased and are applicable only when c < b, namely, the increase rate of the cost to generate a gradient

estimator per level is strictly smaller than the decrease rate of the variance of ∇H l(x, ζ l).

Proof of Theorem 4. Since the gradient estimator A∈ {RU-MLMC, RR-MLMC} is unbiased, Lemma 4

can be applied directly.

Strongly convex case. By Lemma 4(I-b), to ensure that xAT is an ϵ-optimal solution, it suffices to take T as

the smallest integer that satisfies

T ≥ T̂ := SF max{V(vA), µ2(1+ 2S2
F/µ

2)∥x1 −x∗∥22)}µ−2ϵ−1.

Therefore, the expected total cost

C = T ∗CA
iter ≤ 2T̂CA

iter =O(ϵ−1),

where the last equality is based on Lemma 6 so that CA
iter =O(1) and V(vA) =O(1).

Convex case. To apply Lemma 4(II), it requires that γt = 1√
V(vA)T

≤ 1
2SF

. Recall that V(vA) =O(1), and

therefore the requirement is satisfied for large enough T . By Lemma 4(II), to ensure that x̂AT is an ϵ-optimal

solution, it suffices to take T as the smallest integer that satisfies

T ≥ T̂ := ϵ−2V(vA)(1+ ∥x1 −x∗∥22)2.

Therefore, the expected total cost C = T ∗CA
iter ≤ 2T̂CA

iter = O(ϵ−2), where the last equality is because

CA
iter =O(1) and V(vA) =O(1).

Nonconvex smooth case. Similar to the convex case, one can verify that the stepsizes satisfy the require-

ment of Lemma 4(III) for large enough T . To ensure that x̂AT is an ϵ-stationary point, it suffices to take T as

the smallest integer that satisfies

T ≥ T̂ :=V(vA)(2(F (x1)−F (x∗))+SF )
2ϵ−4.

Therefore, the expected total cost C = T ∗CA
iter ≤ 2T̂CA

iter = O(ϵ−4), where the last equality is because

CA
iter =O(1) and V(vA) =O(1). □
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Appendix E: (Expected) Total Cost of Variance Reduced Methods

In this section, we demonstrate the proof of Theorem 5.

Proof of Theorem 5. Recall that the variance of L-SGD with nL = 1, RT-MLMC, RU-MLMC, and

RR-MLMC remains O(1) when b > c. Thus vL−SGD(x), vRT-MLMC(x), vRU−MLMC(x), and vRR−MLMC(x)

satisfies the variance assumption of classical variance reduction methods.

As VR RU-MLMC and VR RR-MLMC have unbiased gradient estimators of F , the expected total cost of

VR RU-MLMC and VR RR-MLMC equals the oracle complexity of classical variance reduction methods

for finding approximate stationary point of F , which is O(ϵ−3) (Wang et al. 2019), times the expected cost

to query the stochastic oracle, which is O(1). Thus, the expected total cost of VR RU-MLMC and VR

RR-MLMC turns out to be O(ϵ−3) when b > c.

As for L-SGD and RT-MLMC, since they construct unbiased gradient estimators of FL, we have

E∥∇F (x̂T ))∥22 ≤ 2E∥∇FL(x̂T ))∥22 +2E∥∇F (x̂T ))−FL(x̂T )∥22.

Similar to the analysis in Appendix D, we bound the second term via Assumption 1(I′) with properly selected

truncation levels L= ⌈1/a log(4Ma/ϵ
2)⌉. As for the first term, by a similar argument of VR RU-MLMC

and VR RR-MLMC, the (expected) total cost of RT-MLMC is O(ϵ−3) when b > c and the total cost of VR

L-SGD is O(ϵ−3 × ϵ−2c/a) =O(ϵ−3−2c/a).

Next, we demonstrate the (expected) total cost of RT-MLMC when b≤ c and V-MLMC.

By Zhang (2021), for γ ≤ 1/(3SF ), it holds that

1

T

T∑
t=1

E∥∇FL(xt)∥22 ≤
2(FL(x0)−FL(xL))

γT
− 2

3T

T∑
t=1

E∥mt∥22 +
2

T

T∑
t=1

E∥mt −∇FL(xt)∥22.

and
1

T

T∑
t=1

E∥mt −∇FL(xt)∥22 ≤
V

D1

+
S2
FQEγ

2

D2

2

3T

T∑
t=1

E∥mt∥22,

where V is the upper bound on the variance of vk(x) for any x and k. After T iteration, the total copies

of the gradient estimator v used is O(2TD2 +TD1/QE). It turns out that when γ =O(1), D1 =O(V T ),

QE = D2 = O(
√
T ), it guarantees that E∥∇F (x̂T )∥22 ≤ O(T−1). Therefore, to make sure that x̂T is an

ϵ-stationary point, the total copies of v used is O(V T 3/2) =O(V ϵ−3). Thus the (expected) total cost of a

method A is the cost to construct v times the total copies of v required, which is O(V (vA)CA
iterϵ

−3).

Therefore, the expected total cost of VR RT-MLMC is O(ϵ−3 log2(ϵ−1)) for b= c and O(ϵ−3−2c/a) for

b < c.

For VR V-MLMC, to guarantee that each nl is an integer, we still set N as we did in Theorem 3. Plugging

in V V−MLMCCV−MLMC
iter , the total cost of VR V-MLMC becomes

C =


O(ϵ−1−2max{1,c/a}) if b < c;

Õ(ϵ−1−2max{1,c/a}) if b= c;

O(ϵ−1−2max{1+(c−b)/a,c/a}) if b > c.

□



52

Appendix F: Proofs of Technical Results in Section 4

F.1. Conditional Stochastic Optimization

Inspired by Hu et al. (2020c), we make the following assumption on CSO. Next, we derive the bias and

variance error bounds of the oracle SOl for CSO.

ASSUMPTION 4. Suppose that σ2
g := supx∈Rd,ξEη|ξ||gη(x, ξ)−Eη|ξgη(x, ξ)||22 <+∞; fξ(·) is Sf -smooth

and Lf -Lipschitz continuous; and gη(·, ξ) is Sg-smooth and Lg-Lipschitz continuous.

PROPOSITION 2 (Bias and Variance of the Oracle SOl for CSO). Suppose Assumption 4 holds, then

• The functions F and F l are (SgLf +SfL
2
g)-smooth for any l ∈N. In addition,

∥∇F l(x)−∇F (x)∥22 ≤L2
gS

2
fσ

2
g2

−l, |F l(x)−F (x)| ≤ Sfσ
2
g2

−l. (36)

• The variance of the oracle SOl satisfies

Var(hl(x, ζ l))≤L2
fL

2
g, Var(H l(x, ζ l))≤L2

gS
2
fσ

2
g2

−l. (37)

Proof of Proposition 2. Note that Hu et al. (2020c) has shown that F and F l are (SgLf +SfL
2
g)-smooth

and that (36) holds. We first show the variance of hl(x, ζ l).

Var(hl(x, ζ l))≤E∥hl(x, ζ l)∥22 =E∥∇ĝ1:2l(x, ζ
l)⊤∇fξl(ĝ1:2l(x, ζ

l))∥22
≤E[∥∇ĝ1:2l(x, ζ

l)∥22∥∇fξl(ĝ1:2l(x, ζ
l))∥22]≤L2

fL
2
g.

Next, we show the variance of H l(x, ζ l).

Var(H l(x, ζ l))≤E∥H l(x, ζ l)∥22

=E
∥∥∥∇ĝl

1:2l
(x, ξl)⊤∇fξl(ĝ

l
1:2l

(x, ξl))− 1

2
∇ĝl

1:2l−1(x, ξ
l)⊤∇fξl

i
(ĝl

1:2l−1(x, ξ
l))

− 1

2
∇ĝl

2l−1+1:2l
(x, ξl)⊤∇fξl

i
(ĝl

2l−1+1:2l
(x, ξl))

∥∥∥2
2

=E
∥∥∥1
2
∇ĝl

1:2l−1(x, ξ
l)⊤
[
∇fξl(ĝ

l
1:2l

(x, ξl))−∇fξl(ĝ
l
1:2l−1(x, ξ

l))
]

+
1

2
∇ĝl

2l−1+1:2l
(x, ξl)⊤

[
∇fξl(ĝ

l
1:2l

(x, ξl))−∇fξl(ĝ
l
2l−1+1:2l

(x, ξl))
]∥∥∥2

2

≤
L2

g

2
E
∥∥∥∇fξl

i
(ĝl

1:2l
(x, ξl))−∇fξl

i
(ĝl

1:2l−1(x, ξ
l))
∥∥∥2
2

+
L2

g

2
E
∥∥∥∇fξl(ĝ

l
1:2l

(x, ξl))−∇fξl(ĝ
l
2l−1+1:2l

(x, ξl))
∥∥∥2
2

≤
L2

gS
2
f

2

[
E
∥∥∥ĝl1:2l(x, ξl)− ĝl

1:2l−1(x, ξ
l)
∥∥∥2
2
+E

∥∥∥ĝl1:2l(x, ξl)− ĝl
2l−1+1:2l

(x, ξl)
∥∥∥2
2

]
=
L2

gS
2
f

4
E
∥∥∥ĝl2l−1+1:2l

(x, ξl)− ĝl
1:2l−1(x, ξ

l)
∥∥∥2
2
≤

L2
gS

2
f

4

2σ2
g

2l−1
=

L2
gS

2
fσ

2
g

2l
,

where the second equality holds as ĝl
1:2l

(x, ξl) = 1
2

[
ĝl
1:2l−1(x, ξ

l)+ ĝl
1+2l−1:2l

(x, ξl)
]
, the second inequality

holds by Lipschitz continuity of gη(·, ξ), the third inequality holds by Lipschitz smoothness of fξ, and the

last inequality uses the fact that ĝl
2l−1+1:2l

(x, ξl) and ĝl
1:2l−1(x, ξ

l) are independently identical distributed for

a given ξl. The other inequalities hold by definition. □
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F.1.1. Special Case: Invariant Learning against Linear Transformation. In this part, we demonstrate a

special case of CSO problems when gη(x, ξ) is linear in x for any realization of η and ξ. Such special cases

cover the invariant learning problems with linear transformation mentioned in Hu et al. (2020c). For such

special cases, the parameters of H l are a= 1, b= 2, c= 1 so that the unbiased MLMC methods, RU-MLMC

and RR-MLMC, are applicable. The following assumption formally characterizes the special setting.

ASSUMPTION 5. Suppose that the outer function fξ is Sf smooth and its gradient ∇fξ is S∇ smooth; the

inner function gη(·, ξ) is linear in x for any given η and ξ and ∥∇gη(x, ξ)∥2 ≤ Lg for any x, η, ξ; and the

inner function gη(x, ξ) is sub-Gaussian with proxy σ2
g for any given ξ and x.

We still construct hl and H l as we did in (12). Following a similar argument, it is obvious that F and

F l are LgSf -smooth, |F (x)− F l(x)| ≤ Sfσ
2
g2

−l, and that Var(hl(x, ζ l)) ≤ L2
fL

2
g. The next proposition

demonstrates the variance of H l.

PROPOSITION 3. Under Assumption 5, the variance of H l satisfies Var(H l(x, ζ l))≤ 24L2
gS∇σ4

22(l−1) .

Proof of Proposition 3. Here,

Var(H l(x, ζ l))≤E∥H l(x, ζ l)∥22

=E
∥∥∥∇ĝl

1:2l
(x, ξl)⊤∇fξl(ĝ

l
1:2l

(x, ξl))− 1

2
∇ĝl

1:2l−1(x, ξ
l)⊤∇fξl

i
(ĝl

1:2l−1(x, ξ
l))

−1

2
∇ĝl

2l−1+1:2l
(x, ξl)⊤∇fξl

i
(ĝl

2l−1+1:2l
(x, ξl))

∥∥∥2
2

=E
∥∥∥1
2
∇ĝl

1:2l−1(x, ξ
l)⊤
[
∇fξl(ĝ

l
1:2l−1(x, ξ

l))−∇fξl(ĝ
l
1:2l

(x, ξl))

−∇2fξl(ĝ
l
1:2l

(x, ξl)⊤(ĝl
1:2l−1(x, ξ

l)− ĝl
1:2l

(x, ξl))
]

+
1

2
∇ĝl

2l−1+1:2l
(x, ξl)⊤

[
∇fξl(ĝ

l
2l−1+1:2l

(x, ξl))−∇fξl(ĝ
l
1:2l

(x, ξl))

−∇2fξl(ĝ
l
1:2l

(x, ξl)⊤(ĝl
1+2l−1:2l

(x, ξl)− ĝl
1:2l

(x, ξl))
]

+
1

2
∇ĝl

1:2l−1(x, ξ
l)⊤∇2fξl(ĝ

l
1:2l

(x, ξl)⊤(ĝl
1:2l−1(x, ξ

l)− ĝl
1:2l

(x, ξl))

+
1

2
∇ĝl

2l−1+1:2l
(x, ξl)⊤∇2fξl(ĝ

l
1:2l

(x, ξl)⊤(ĝl
1+2l−1:2l

(x, ξl)− ĝl
1:2l

(x, ξl))
∥∥∥2
2

≤3E
[∥∥∥1

2
∇ĝl

1:2l−1(x, ξ
l)∥2S∇

2
∥ĝl

1:2l−1(x, ξ
l)− ĝl

1:2l
(x, ξl))

∥∥∥4
2

]
+3E

[∥∥∥1
2
∇ĝl

1:2l−1(x, ξ
l)∥2S∇

2
∥ĝl

1+2l−1:2l
(x, ξl)− ĝl

1:2l
(x, ξl))

∥∥∥4
2

]
+3E

∥∥∥1
4
(∇ĝl

1:2l−1(x, ξ
l)−∇ĝl

2l−1+1:2l
(x, ξl))⊤∇2fξl(ĝ

l
1:2l

(x, ξl)⊤(ĝl
1+2l−1:2l

(x, ξl)− ĝl
1:2l−1(x, ξ

l))
∥∥∥2
2

≤
3L2

g

4

S∇

2

2

4
E∥ĝl

1+2l−1:2l
(x, ξl)− ĝl

1:2l−1(x, ξ
l))∥42

≤
3L2

g

4

S∇

2

2

4
2(4E∥ĝl

1+2l−1:2l
(x, ξl)− ĝl

1:2l−1(x, ξ
l))∥22)2

≤6L2
gS∇

4σ4

22(l−1)
.



54

The first inequality uses Cauchy-Schwarz inequality and the definition of ĝl
1:2l

(x, ξl). The second inequality

uses linearity of gη(·, ξ), which naturally implies that g is Lipschitz continuous. The third inequality holds as

ĝl
1+2l−1:2l

(x, ξl)− ĝl
1:2l−1(x, ξ

l)) is a zero-mean sub-Gaussian random variable and the moment definition

of sub-Gaussian random variable. (X is a zero-mean sub-Gaussian random variable if it holds E[X2q]≤
q!(4Var(X))q for any q ∈N, see Rivasplata (2012) for details). □

The proposition implies that CSO problems with linear sub-Gaussian inner function have b = 2 under

Assumption 5. As c = 1, it holds that b > c. Therefore, the unbiased MLMC methods (RU-MLMC and

RR-MLMC) are applicable, and we summarize the sample complexity in the following corollary. Note that

the sample complexity of L-SGD stays the same as in Corollary 6 since the additional linearity assumption

does not affect the approximation error and the cost. Such a result further motivates (Goda and Kitade 2023)

to study other situations when one can obtain b > c for CSO problems after the preliminary version of the

manuscript is released.

COROLLARY 1 (Sample Complexity for Solving CSO for linear gη(x, ξ)). Under Assumption 5, the

sample complexity of V-MLMC, RT-MLMC, RU-MLMC, and RR-MLMC for finding ϵ-optimal solution is

O(ϵ−1) for strongly convex CSO problems and O(ϵ−2) for convex CSO problems; the sample complex-

ity for finding ϵ-stationary point of these methods is O(ϵ−4) for nonconvex smooth CSO problems. The

corresponding VR MLMC methods achieve O(ϵ−3) sample complexity for nonconvex smooth CSO problems.

F.2. Joint Pricing and Staffing in Stochastic Systems

Inspired by (Chen et al. 2023, Assumptions 1 and 2), we consider the following assumptions for Problem (17).

ASSUMPTION 6. (I) The arrival rate λ(p) is continuously differentiable and non-increasing in p.

(II) The staffing cost c(µ) is continuously differentiable and non-decreasing in µ.

(III) The domain of (17) is B= [µ,µ]× [p, p], where the lower bounds µ and p satisfy that λ(p)<µ.

(IV) Let ϕV (θ) = logE[exp(θVn)] and ϕU(θ) = logE[exp(θUn)] be the cummulant generating func-

tions of V and U , respectively. There exists a sufficiently small constant η > 0 such that ϕV (η)<

∞, ϕU(η)<∞. In addition, there exist constants θ ∈ (0, η/(2µ)), b ∈ (0,
µ−λ(p)

µ+λ(p)
), and c> 0 such

that ϕU(−θ)<−(1− b)θ− c and ϕV (θ)< (1+ b)θ− c.

The proof in this section largely relies on the following technical lemma with its analysis adopted from (Chen

et al. 2023, Lemmas 2 and 6).

LEMMA 8. Under Assumption 6, it holds that∣∣∣E[Wn(µ,p)−W∞(µ,p)]
∣∣∣≤A · e−cn,

∣∣∣E[Xn(µ,p)−X∞(µ,p)]
∣∣∣≤A · e−0.25cn,

and

E[Wn(µ,p)−W∞(µ,p)]2 ≤A · e−cn, E[Xn(µ,p)−X∞(µ,p)]2 ≤A · e−0.25cn,

where A> 0 is a constant depending on η, θ,b, c, µ,µ, p, p only.
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PROPOSITION 4 (Bias and Variance of the Oracle SOl in (17)). Under Assumption 6, the bias and vari-

ance of the oracle SOl satisfy

∥∇F l(x)−∇F (x)∥22 ≤O(e−0.25c·2l). (38)

and

Var(hl(x, ζ l)) =O(1), Var(H l(x, ζ l)) =O(e−0.125c·2l). (39)

where O(·) hides constants depending on η, θ,b, c, µ,µ, p, p only.

Although the bias in (38) and the variance Var(H l(x, ζ l)) decays in exponential of exponential rate, as

discussed in (Chen et al. 2023, Section 3.1), the exponent c is a sufficiently small number such that, in

practice, the decaying rate is not observed to be fast if the level l is not chosen to be too large. Inspired by

this observation, we use a conservative error bound on bias and variance:

∥∇F l(x)−∇F (x)∥22 ≤M1 · 2−l, Var(H l(x, ζ l))≤M1 · 2−l, (40)

where M1 > 0 is a constant independent of l. We are ready to show Corollary 7.

Proof of Corollary 7. For the case where F (·) is SF -smooth and satisfies PL condition with parameter

µ, recall from (26) that if we take step size γt =
2

µ(t+2SF /µ−1)
, it holds that

E[F (xT )−F (x∗)]≤
2max

{
SF V(vA), µ2(1+ a)(F (x1)−F (x∗))

}
µ2(t+ a)

+
O(2−L)

2µ
.

In order to reach ϵ-optimal solution, it suffices to take L=O(log 1
ϵ
). Moreover, we take T =O(ϵ−1) for

L-SGD and T = Õ(ϵ−1) for RT-MLMC.

For the case where F (·) is SF -smooth and LF -Lipschitz continuous, suppose we take step size γt ∈

(0,1/(2SF )], by (Hu et al. 2023, Lemma 1), it holds that

E∥∇F (xT )∥2 ≤
2(F (x1)−F (x∗))

γT
+

2

T

T∑
t=1

[
LF

∥∥∥∇FL(xt)−∇F (θt)
∥∥∥+SFγE∥v(θt)−∇F (xt)∥2

]
≤ 2(F (x1)−F (x∗))

γT
+2LF · O(2−L/2)+ 2SFγ · (2O(2−L)+ 2V(vA)),

where the last inequality is because of (43) and the relation

E∥v(xt)−∇F (xt)∥2 ≤ 2∥Ev(xt)−∇F (xt)∥2 +2E∥Ev(θt)− v(θt)∥2 = 2O(2−L)+ 2V(vA).

In order to reach ϵ-optimal solution, it suffices to take L=O(log 1
ϵ2
). For L-SGD, we take γ =O(T−1/2)

and T =O(ϵ−4). For RT-MLMC, we take γ =O(T−1/2) and T = Õ(ϵ−4). □
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Proof of Proposition 4. For the bias bound, one can check that∣∣∣∣∂F∂µ (x)− ∂F l

∂µ
(x)

∣∣∣∣2 = (h0λ
′(p)
)2[E[ĝ−m:2l(x, ζ

l)]−E[W∞(µ,p)+X∞(µ,p)]
]2

≤
(
h0λ

′(p)
)2

m

∑
j∈[2l−m:2l]

(
|E[Wj(µ,p)−W∞(µ,p)]|+ |E[Xj(µ,p)−X∞(µ,p)]|

)2

≤
2
(
h0λ

′(p)
)2

m

∑
j∈[2l−m:2l]

(
|E[Wj(µ,p)−W∞(µ,p)]|2 + |E[Xj(µ,p)−X∞(µ,p)]|2

)
≤
[
2
(
h0λ

′(p)
)2 ·A · ecm

]
e−c·2l +

[
2
(
h0λ

′(p)
)2 ·A · e0.25cm

]
e−0.25c·2l ≤ 4

(
h0λ

′(p)
)2
Aecme−0.25c·2l ,

where the third inequality is by Lemma 8. Similarly,∣∣∣∣∂F∂µ (x)− ∂F l

∂µ
(x)

∣∣∣∣2 = (h0

λ(p)

µ

)2[E[ĝ−m:2l(x, ζ
l)]−E[W∞(µ,p)+X∞(µ,p)]

]2
≤ 4
(
h0

λ(p)

µ

)2
Aecme−0.25c·2l .

Therefore, it holds that ∥∇F l(µ,p)−∇F (µ,p)∥22 ≤A′ · e−0.25γ·2l , where the constant

A′ = 4Aecm · max
(µ,p)∈B

{(
h0λ

′(p)
)2

+
(
h0

λ(p)

µ

)2}
. (41)

For the variance bound, it is easy to show

Var(hl(x, ζ l))≤E∥hl(x, ζ l)∥22 ≤B0 +4A′E[ĝ−m:2l(x, ζ
l)2]

where the constants

B0 = max
(µ,p)∈B

{
2
[
(λ(p)+ pλ′(p))2 +(c′(µ))2

]
+

4

µ

[
(h0λ

′(p))2 +(
h0λ(p)

µ
)2
]}

.

Denote by Ŵj(µ,p) and X̂j(µ,p) the waiting and busy time of the stochastic system with the steady-state

initial state, which turns out to be time-stationary. Then we have

E[ĝ−m:2l(x, ζ
l)2] =

1

m2
E

 ∑
n∈[2l−m:2l]

Wj(µ,p)+Xj(µ,p)

2

≤ 1

m2
E

 ∑
n∈[2l−m:2l]

Ŵj(µ,p)+
λ(p)

λ(p)
X̂j(µ,p)

2

≤ 2

m2
E

 ∑
n∈[2l−m:2l]

Ŵj(µ,p)

2

+
2

m2
E

 ∑
n∈[2l−m:2l]

λ(p)

λ(p)
X̂j(µ,p)

2

≤ 2E[Ŵ0(µ,p)
2] + 2E[(

λ(p)

λ(p)
X̂0(µ,p))

2]≤ 4B1,
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where the first inequality is because Ŵj(µ,p) and λ(p)

λ(p)
X̂j(µ,p) dominates Wj(µ,p) and Xj(µ,p), respec-

tively (Chen et al. 2023, Lemma 1), and the constant

B1 = max
(µ,p)∈B

{
max{E[W∞(µ,p)2],E[

λ(p)2

λ(p)2
X∞(µ,p)2]}

}
(42)

Finally, we find

Var(H l(x, ζ l))≤E∥H l(x, ζ l)∥22 ≤B2E[ĝ−m:2l(x, ζ
l)− ĝ−m:2l−1(x, ζ l)]2

≤2B2

{
E[ĝ−m:2l(x, ζ

l)−E[W∞(µ,p)+X∞(µ,p)]]2 +E[ĝ−m:2l−1(x, ζ l)−E[W∞(µ,p)+X∞(µ,p)]]2
}
,

in which for the second inequality, we take B2 =max(µ,p)∈B

{(
h0λ

′(p)
)2

+
(
h0

λ(p)

µ

)2}
. In detail,

E[ĝ−m:2l(x, ζ
l)−E[W∞(µ,p)+X∞(µ,p)]]2

≤ 2

m

∑
n∈[2l−m]

(
E[Xn(µ,p)−X∞(µ,p)]2 +E[Wn(µ,p)−W∞(µ,p)]2

)
≤ 4Aecm · e−0.25c·2l .

and similarly, E[ĝ−m:2l−1(x, ζ l) − E[W∞(µ,p) + X∞(µ,p)]]2 ≤ 4Aecm · e−0.25c·2l−1
. Combining those

results, we obtain the desired bound on Var(H l(x, ζ l)). □

F.3. UBSR Optimization

We adopt the technical conditions in (Hegde et al. 2021, Assumptions 1 to 9) to consider UBSR optimization

in Corollary 8. Lemma 1 in Hegde et al. (2021) provided the bias and the mean-square error regarding the

estimator (20):

E
∣∣hl(θ, ζ l)−∇SRλ(θ)

∣∣=O(2−l/2), E
∣∣hl(θ, ζ l)−∇SRλ(θ)

∣∣2 =O(2−l),

based on which we obtain the bias and variance of the oracle SOl in (20).

PROPOSITION 5 (Bias and Variance of the Oracle SOl in (20)). Under the technical conditions in

(Hegde et al. 2021, Assumptions 1 to 9), the bias and variance of the oracle SOl satisfy

|∇SRl
λ(θ)−∇SRλ(θ)|2 =O(2−l) (43)

and

Var(hl(θ, ζ l)) =O(1), Var(H l(θ, ζ l)) =O(2−ℓ). (44)

Proof of Proposition 5 By Jensen’s inequality,

|∇SRl
λ(θ)−∇SRλ(θ)|= |Ehl(θ, ζ l)−∇SRλ(θ)| ≤E|hl(θ, ζ l)−∇SRλ(θ)|=O(2−l/2),

which implies the relation (38). Next, one can see

Var(hl(θ, ζ l))≤E|hl(θ, ζ l)|2 ≤ 2E
∣∣hl(θ, ζ l)−∇SRλ(θ)

∣∣2 +2 |∇SRλ(θ)|2 =O(1),
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and

Var(H l(x, ζ l))≤E|H l(x, ζ l)|2 =E
∣∣∣1
2
(ĝ1:2l(θ, ξ

l)− ĝ1:2l−1(θ, ξl))+
1

2
(ĝ1:2l(θ, ξ

l)− ĝ2l−1+1:2l(θ, ξ
l))
∣∣∣2

≤ 1

2
E
∣∣∣ĝ1:2l(θ, ξl)− ĝ1:2l−1(θ, ξl)

∣∣∣2 + 1

2
E
∣∣∣ĝ1:2l(θ, ξl)− ĝ2l−1+1:2l(θ, ξ

l)
∣∣∣2.

Specifically, we find

E
∣∣∣ĝ1:2l(θ, ξl)− ĝ1:2l−1(θ, ξl)

∣∣∣2 ≤ 2E
∣∣∣ĝ1:2l(θ, ξl)−∇SRλ(θ)

∣∣∣2 +2E
∣∣∣ĝ1:2l−1(θ, ξl)−∇SRλ(θ)

∣∣∣2
≤2E

∣∣∣hl(θ, ζ l)−∇SRλ(θ)
∣∣∣2 +2E

∣∣∣hl−1(θ, ζ l)−∇SRλ(θ)
∣∣∣2 = 2O(2−l)+ 2O(2−l−1) =O(2−l),

and the term E
∣∣∣ĝ1:2l(θ, ξl)− ĝ2l−1+1:2l(θ, ξ

l)
∣∣∣2 can be bounded using the similar manner. Thus, we conclude

the relation (44) also holds. □

COROLLARY 2 (Full Version of Corollary 8.). Let A ∈ {V-MLMC,RT-MLMC} and a = 2SF/µ − 1.

Under technical conditions in (Hegde et al. 2021, Assumptions 1 to 9), with properly chosen hyper-parameters,

it holds that

(I) Suppose SRλ(θ) is SF -smooth and satisfies PL condition with parameter µ, then the total cost of A

for finding ϵ-optimal solution is Õ(ϵ−1).

(II) Suppose SRλ(θ) is SF -smooth, then the total cost of A for finding ϵ-stationary point is Õ(ϵ−4).

Proof of Corollary 8. For the case where SRλ(θ) is SF -smooth and satisfies PL condition with parameter

µ, recall from (26) that if we take step size γt =
2

µ(t+2SF /µ−1)
, it holds that

E[SRλ(θT )−SRλ(θ
∗)]≤

2max
{
SF V(vA), µ2(1+ a)(SRλ(θ1)−SRλ(θ

∗))
}

µ2(t+ a)
+

O(2−L)

2µ
.

In order to reach ϵ-optimal solution, it suffices to take L=O(log 1
ϵ
) and T = Õ(ϵ−1).

For the case where SRλ(θ) is SF -smooth and LF -Lipschitz continuous, suppose we take step size

γt ∈ (0,1/(2SF )], by (Hu et al. 2023, Lemma 1), it holds that

E|∇SRλ(θT )|2 ≤
2(SRλ(θ1)−SRλ(θ

∗))

γT

+
2

T

T∑
t=1

[
L
∣∣∣∇SRL

λ(θt)−∇SRλ(θt)
∣∣∣+SγE|v(θt)−∇SRλ(θt)|2

]
≤ 2(SRλ(θ1)−SRλ(θ

∗))

γT
+2LF · O(2−L/2)+ 2SFγ · (2O(2−L)+ 2V(vA)),

where the last inequality is because of (43) and the relation

E|v(θt)−∇SRλ(θt)|2 ≤ 2|Ev(θt)−∇SRλ(θ)|2 +2|Ev(θt)− v(θt)|2 = 2O(2−L)+ 2V(vA).

In order to reach ϵ-optimal solution, it suffices to take L=O(log 1
ϵ2
). For RT-MLMC, we take γ =O(T−1/2)

and T = Õ(ϵ−4). For V-MLMC, we take γ = 1/(2SF ) and T = Õ(ϵ−2). □
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F.4. Proof of Technical Results in Section 4.4

ASSUMPTION 7. The decision set X ⊆ Rd has a finite diameter; the functions fξ(·) and gη(·, ξ) are

Lipschitz continuous; and σ2 :=maxx∈X Eη|ξ∥gη(x, ξ)−Eη|ξgη(x, ξ)∥22 <∞.

Proof of Theorem 9. To make the statement precise, denote by DX the diameter of X , Lf the Lipschitz

continuous constant of fξ(·), and Lg the Lipschitz continuous constant of gξ(·, ξ). Take an υ-net on X , which

is denoted as {xk}Jk=1, to ensure

P
(
sup
x∈X

|F̂ (x)−F (x)| ≥ ϵ
)
≤

J∑
k=1

P
(
|F̂ (xk)−F (xk)| ≥

ϵ

2

)
. (45)

We follow the similar argument as in (Hu et al. 2020b, Theorem 4.1), and the fact that F̂ is 2(L+1)LfLg

Lipschitz continuous. In this case,

J ≤O(1) ·
(
8DXLfLg(L+1)

ϵ

)d

.

It suffices to provide an upper bound on J ·P(|F̂ (x)−F (x)| ≥ ϵ
2
) for any x∈X . Define the random variable

Zli(x) = V l(x, ζ li), where V l(x, ζ li) is defined in (4.4). Assume one can ensure∣∣∣∣∣E
L∑

l=0

1

nl

nl∑
i=1

Zli(x)−F (x)

∣∣∣∣∣≤ ϵ

4
, (46)

then

J ·P(|F̂ (x)−F (x)| ≥ ϵ

2
) = J ·P

(∣∣∣∣∣
L∑

l=0

1

nl

nl∑
i=1

Zli(x)−F (x)

∣∣∣∣∣≥ ϵ

2

)

=J ·P

(∣∣∣∣∣
L∑

l=0

1

nl

nl∑
i=1

Zli(x)−E
L∑

l=0

1

nl

nl∑
i=1

Zli(x)+E
L∑

l=0

1

nl

nl∑
i=1

Zli(x)−F (x)

∣∣∣∣∣≥ ϵ

2

)

≤J ·P

(∣∣∣∣∣
L∑

l=0

1

nl

nl∑
i=1

Zli(x)−E
L∑

l=0

1

nl

nl∑
i=1

Zli(x)

∣∣∣∣∣≥ ϵ

4

)

≤J ·P

(
L∑

l=0

∣∣∣∣∣ 1nl

nl∑
i=1

Zli(x)−EZli(x)

∣∣∣∣∣≥ ϵ

4

)

≤J ·
L∑

l=0

P

(∣∣∣∣∣ 1nl

nl∑
i=1

Zli(x)−EZli(x)

∣∣∣∣∣≥ ϵ

4(L+1)

)

≤2J ·
L∑

l=0

exp
(
− nlϵ

2

16(2+ ϵ̄)Vl(L+1)2

)
,

(47)

where the last inequality uses Cramer’s large deviation Theorem, and the fact that Zli(x) is sub-Gaussian and

Vl is the variance of Zli(x). Consequently, we take nl to ensure exp
(
− nlϵ

2

16(2+ϵ̄)Vl(L+1)2

)
≤ α

2J(L+1)
, i.e.,

nl =

⌈
16(2+ ϵ̄)Vl(L+1)2

ϵ2

(
d log

(8DXLfLg(L+1)

ϵ

)
+ log

(2(L+1)

α

)
+O(1)

)⌉
.

To finish the proof, it remains to
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(I) Obtain an upper bound on the Vl:

Vl ≤E|Zli|22 ≤E
∣∣∣1
2
fξl

i

(
ĝ1:ml

(x, ζ li)
)
− 1

2
fξl

i

(
ĝ1:ml−1

(x, ζ li)
)

+
1

2
fξl

i

(
ĝ1:ml

(x, ζ li)
)
− 1

2
fξl

i

(
ĝml−1+1:ml

(x, ζ li)
)∣∣∣2

≤
L2

f

8
E
∣∣∣ 1

ml−1

ml−1∑
j=1

gηl
ij
(x, ξli)−

1

ml−1

ml∑
j=1+ml−1

gηl
ij
(x, ξli)

∣∣∣2
2
=

L2
fσ

2

4ml−1

.

(48)

(II) Ensure (46): it suffices to make mL ≥
16L2

fσ
2

ϵ2
since

|E
L∑

l=0

1

nl

nl∑
i=1

Zli(x)−F (x)| ≤ Lfσ√
mL

≤ ϵ

4
.

(III) Select appropriate L, nl, ml and compute total cost: we take ml = 2l, l = 0, . . . ,L, with L =

⌈log(16L2
fσ

2/ϵ2)⌉, then
L∑

l=0

nlml

=

L∑
l=0

⌈
32(2+ ϵ̄)(L+1)2L2

fσ
2

ϵ2

(
d log

(8DXLfLg(L+1)

ϵ

)
+ log

(2(L+1)

α

)
+O(1)

)⌉
≤
32(2+ ϵ̄)(log(16L2

fσ
2/ϵ2)+ 2)3L2

fσ
2

ϵ2

(
d log

(8DXLfLg(log(16L
2
fσ

2/ϵ2)+ 2)

ϵ

)
+ log

(2(log(16L2
fσ

2/ϵ2)+ 2)

α

)
+O(1)

)
=Õ(dϵ−2).

It completes the proof. □

Appendix G: Experiment Implementation Details

G.1. Synthetic Problem with Biased Oracles

We specify the optimal choice of hyperparameters for various gradient methods using grid search. Specifically,

for three biased gradient methods (L-SGD, V-MLMC, RT-MLMC), we consider the level L∈ {0, . . . ,10}.

We stop the optimization process if the number of generated samples exceeds the total budget 4e+4. The

mini-batch size for V-MLMC is chosen as nl = 2L−l to avoid additional costs from rounding to integer

numbers. The stepsize γ is selected from the set {1e-1,1e-2,1e-3,5e-4,1e-4}. We evaluate the

performance of the various gradient methods by comparing the ground truth objective value of (14) to the

number of generated samples and produce an error bar based on 10 independent trials.

G.2. Joint Pricing and Staffing

We specify λ(p) = χ · ea−p/(1 + ea−p) with a= 0.1, χ= 10, c(µ) = c0µ
2 with c0 = 0.1, and h0 = 1; The

initial guess is specified as µ= 9, p= 9. One can apply the Pollaczek–Khinchine formula (Haigh and Haigh

2002) to obtain the closed-form reformulation of the objective function:

F (µ,p) = h0

[
(λ(p)/µ)+

(λ(p)/µ)2(1+Var(Un))

2(1−λ(p)/µ)

]
+ c(µ)− pλ(p).
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We model (normalized) inter-arrival time Un to follow the exponential distribution, and the (normalized)

service time Vn to follow the Erlang distribution (with variance 0.1), exponential distribution, or hyper-

exponential distribution (i.e., a mixture of 10 equal-weight exponential distributions with rate parameter

i2 · 0.155).

G.3. Contrastive Learning

The widely adopted linear evaluation protocol is employed to examine the performance of obtained repre-

sentation: we train a linear classifier based on neural network outputs and use the classification accuracy on

testing data as a proxy for representation quality. For the data augmentation step, we use a similar setup as in

Chen et al. (2020) that uses random flip (i.e., random horizontal/left-to-right flip with 0.5 probability), color

jittering, and color dropping. The chosen neural network architecture is ResNet-18 (He et al. 2016) followed

by a two-layer ReLU neural network.
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