
Published in Transactions on Machine Learning Research (12/2025)

CREW-Wildfire: Benchmarking Agentic Multi-Agent Collab-
orations at Scale

Jonathan Hyun1, Nicholas R Waytowich2, Boyuan Chen1
1Duke University, 2Army Research Laboratory
http://www.generalroboticslab.com/CREW-Wildfire

Reviewed on OpenReview: https://openreview.net/pdf?id=8mr27qFzKR

Abstract

Despite rapid progress in large language model (LLM)-based multi-agent systems, current
benchmarks fall short in evaluating their scalability, robustness, and coordination capabilities
in complex, dynamic, real-world tasks. Existing environments typically focus on small-scale,
fully observable, or low-complexity domains, limiting their utility for developing and assessing
next-generation multi-agent Agentic AI frameworks. We introduce CREW-Wildfire, an
open-source benchmark designed to close this gap. Built atop the human-AI teaming CREW
simulation platform, CREW-Wildfire offers procedurally generated wildfire response sce-
narios featuring large maps, heterogeneous agents, partial observability, stochastic dynamics,
and long-horizon planning objectives. The environment supports both low-level control and
high-level natural language interactions through modular Perception and Execution
modules. We implement and evaluate several state-of-the-art LLM-based multi-agent Agen-
tic AI frameworks, uncovering significant performance gaps that highlight the unsolved
challenges in large-scale coordination, communication, spatial reasoning, and long-horizon
planning under uncertainty. By providing more realistic complexity, scalable architecture,
and behavioral evaluation metrics, CREW-Wildfire establishes a critical foundation for
advancing research in scalable multi-agent Agentic intelligence. All code, environments, data,
and baselines will be released to support future research in this emerging domain.

1 Introduction

Coordinating multiple agents to solve complex, dynamic, and high-stakes tasks is a long-standing challenge
in artificial intelligence (AI) (OroojlooyJadid & Hajinezhad, 2021; Ismail et al., 2018; Buşoniu et al., 2010).
Real-world scenarios such as disaster response (Drew, 2021; Kashyap et al., 2025), autonomous infrastructure
maintenance (Ismail et al., 2018; Krnjaic et al., 2024), workflow optimization (Krnjaic et al., 2024), or
planetary exploration (Huang et al., 2020; Qin et al., 2025b;a) often require teams of agents with diverse
capabilities to operate under uncertainty, partial observability, and real-time constraints. Among these,
wildfire response (Seraj et al., 2021; Siedler, 2025) stands out as a prototypical example: a setting that
demands scalable collaboration, heterogeneous roles, and adaptive decision-making over extended time
horizons. As interest grows in generalist and open-ended AI systems (Ahn et al., 2022), there is a strong need
to evaluate whether today’s Agentic AI frameworks can meet the demands of such real-world complexity.

Traditionally, multi-agent systems have been studied through the lens of multi-agent reinforcement learning
(MARL) (Buşoniu et al., 2010), decentralized control (Zhang et al., 2018), or classical robotics coordination
(Perez et al., 2018). These approaches have yielded impressive capabilities in domains such as warehouse
logistics (Krnjaic et al., 2024), robotic swarms (Huang et al., 2020), and cooperative manipulation (Chen et al.,
2022). However, they typically rely on rigid communication protocols, domain-specific policies, or centralized
planners (OroojlooyJadid & Hajinezhad, 2021) that limit generalization and flexibility. Moreover, these
systems often struggle to scale in the number of agents or in the complexity of their operating environments

1

http://www.generalroboticslab.com/CREW-Wildfire
https://openreview.net/pdf?id=8mr27qFzKR


Published in Transactions on Machine Learning Research (12/2025)

Figure 1: CREW-Wildfire features procedurally generated environments, an LLM-compatible multi-agent
framework, and heterogeneous agents designed to evaluate Agentic collaborations at scale.

due to their inherent limitations in communication, commonly done through exchanging gradients (Buşoniu
et al., 2010), observations (Foerster et al., 2016), or intentions (Kim et al., 2020). It becomes particularly
challenging when coordination must emerge from high-level reasoning over extended periods of time rather
than low-level behaviors.

Recent advances in large language models (LLMs) have opened a new frontier in Agentic AI (Wang et al., 2024;
Zhang et al., 2024a; Park et al., 2023). LLM-based agents can communicate in natural languages, perform
in-context reasoning, and dynamically coordinate using structured dialogue or shared goals. Early frameworks
have demonstrated promising behaviors such as delegation, consensus-building, and role assignment, often
in open-ended tasks like programming (Qian et al., 2024), board games (Chen et al., 2024a), or virtual
social environments (Kaiya et al., 2023). However, these demonstrations largely operate in limited settings:
they assume fully observable worlds, involve a small number of agents, and lack real-time embodiment or
environmental complexity. As a result, it remains unclear whether existing multi-agent LLM frameworks can
scale to realistic, physically grounded, long-horizon problems that demand both strategic coordination and
low-level execution.

In this work, we introduce CREW-Wildfire (Fig. 1), an open-source benchmark specifically designed to
evaluate Agentic multi-agent LLM systems under conditions of real-world scale and complexity. Built atop
the human-AI teaming CREW Zhang et al. (2024c;d) simulation framework, CREW-Wildfire features
procedurally generated wildfire environments with heterogeneous agents (e.g., drones, helicopters, bulldozers,
and firefighters), partial observability, stochastic environments, and complex objectives such as civilian rescue,
fire detection and suppression. It provides flexible observation and action spaces, ranging from low-level
vectors to natural language commands, and includes built-in Perception and Execution modules to
interface with both low-level control primitives and LLM-based agents. To support rigorous evaluation,
we propose a suite of task environments and behavioral goals, enabling both quantitative and qualitative
assessment of multi-agent LLM frameworks on scalability, coordination, adaptability, and communication.

We implement and benchmark several recent LLM-based multi-agent Agentic frameworks in
CREW-Wildfire. Our results reveal significant performance gaps and highlight open challenges. Our
experiments show that while these systems exhibit emergent collaboration in simple tasks, they often fail to
generalize to environments that require precise real-time coordination, spatial understanding, plan adaptation
under uncertainty, and objective prioritization. By surfacing these limitations and offering a standardized
evaluation platform, CREW-Wildfire provides a critical foundation for accelerating progress in large-scale
Agentic intelligence.

2



Published in Transactions on Machine Learning Research (12/2025)

Table 1: Feature comparison across different multi-agent embodied control environments.

Environment Maximum
Agents

Heterogenous
Agents Low-Level Actions Low-Level Observations Partial

Observability
Complex Long-
Horizon Tasks

Stochastic
Dynamics

Generative
Environments

Lyfe Game (Kaiya et al., 2023) 8 ✘ ✘
(Only discrete,
high-level text)

✘
(Only dialogues, text

descriptions)

✘ ✔ ✘ ✘

VirtualHome (Puig et al., 2018) 7 ✘ ✔
(Discrete action

tensors)

✔
(Images)

✘ ✔ ✘ ✘

PettingZoo (Terry et al., 2021) 6 ✘ ✔
(Discrete + continuous

action tensors)

✔
(Low-level state vectors)

✘ ✘ ✘ ✔

CUISINEWORLD (Gong et al., 2024) 4 ✘ ✘
(Only discrete,
high-level text)

✘
(Only text descriptions)

✘ ✔ ✘ ✘

PARTNR (Chang et al., 2024) 2 ✔
(2 agents)

✔
(Continuous action

tensors)

✔
(Images)

✔ ✔ ✘ ✔

CREW-Wildfire (ours) 2000+ ✔
(4 agents)

✔
(Discrete + continuous

action tensors)

✔
(Images, ASCII, low-level

states)

✔ ✔ ✔ ✔

In summary, our main contributions are:

• A new open-source benchmark for evaluating LLM-based multi-agent Agentic systems in procedurally
generated, physically grounded, and high-stakes disaster response environments.

• A suite of sub-environments and behavioral goals, enabling fine-grained evaluation of collaboration,
spatial reasoning, task delegation, and plan adaptation at scale.

• Comprehensive benchmarking of state-of-the-art frameworks, revealing performance gaps and
providing open challenges for future research in scalable coordination and Agentic AI.

2 Related Works

Benchmarks for Multi-Agent Embodied Environments. A wide range of simulation environments
have been developed to benchmark multi-agent systems, spanning symbolic games, strategy simulations, and
embodied tasks. Hanabi Bard et al. (2020) has served as a canonical benchmark for emergent communication
and theory of mind under partial observability, but it is entirely symbolic and turn-based, lacking physical
embodiment or dynamic interaction. StarCraft II Vinyals et al. (2017), in contrast, provides rich spatial
dynamics and partial observability and has served as a challenging environment for micromanagement and
tactical coordination. However, its use in multi-agent evaluation typically emphasizes unit-level control and
scripted tasks, rather than open-ended planning in heterogeneous teams.

Environments such as Overcooked Carroll et al. (2019), PettingZoo Terry et al. (2021), Visual Hide and Seek
Chen et al. (2020; 2021); Ji et al. (2025) introduce complex behaviors and embodiments but are limited in
scale, environmental realism, and agent diversity. More recent efforts like MineDojo Fan et al. (2022) and
VirtualHome Puig et al. (2018) explore open-ended tasks and embodiment, but primarily focus on single-agent
settings or symbolic role-play scenarios.

Several simulation frameworks have also been adapted for real-world domains, including traffic control and
disaster response. Notably, platforms like FireCommander Seraj et al. (2021) and Hivex Siedler (2025) simulate
wildfire scenarios using multi-agent systems for resource management and disaster relief. While domain-
relevant and complex, these environments often lack the architectural support for large-scale coordination
and LLM-based agents. They do not support flexible agent communication protocols and high agent counts,
making them unsuitable for evaluating the scalability of emerging Agentic AI frameworks.

CREW-Wildfire bridges these gaps by offering a fully open-source, embodied, and highly scalable environ-
ment centered on evaluating and benchmarking LLM-based multi-agent Agentic AI frameworks. It supports
heterogeneous agents, complex and dynamic terrain, and realistic objectives under partial observability and
stochastic conditions. By combining these features with support for low-level control and high-level language
reasoning, CREW-Wildfire provides a unique testbed for evaluating large-scale collaboration, perception,
and planning in Agentic multi-agent systems.

3



Published in Transactions on Machine Learning Research (12/2025)

Figure 2: An overview of the CREW Wildfire Framework. (a) Environments are procedurally generated
through a combination of Perlin noise textures modeling vegetation, elevation, moisture, settlement, and wind
vector maps. (b) CREW-Wildfire supports template infrastructure generalized from existing LLM agent
frameworks, including Perception and Execution modules, built for easy implementation of multi-agent
Agentic frameworks.

Agentic AI and Multi-Agent Language-Based Frameworks. The rise of LLMs has catalyzed a new
wave of research in language-enabled Agentic AI. Methods such as CAMEL Li et al. (2023), ChatDev Qian
et al. (2024), Lyfe Agents Kaiya et al. (2023), and Generative Agents Park et al. (2023) demonstrate that LLMs
can coordinate in multi-agent settings through natural language communication, role assignment, and iterative
planning. These systems have shown promising emergent behaviors such as delegation, consensus formation,
and memory sharing. However, the vast majority of these demonstrations are under relatively constrained
environments or purely symbolic domains, such as collaborative software development, dialogue-based games,
single-agent tasks, or simplified simulations. They lack embodied complexity, team size scalability, continuous
dynamics, and low-level control interfaces found in real-world systems.

CREW-Wildfire complements and extends these prior efforts by providing a scalable, grounded, and
embodied benchmark specifically designed for LLM-based multi-agent tasks. It includes Perception and
Execution modules that enable language-based agents to interpret sensory information and generate
executable actions, thereby supporting both high-level planning and low-level interaction. Furthermore,
CREW-Wildfire introduces structured sub-environments and behavioral goals to facilitate rigorous evalua-
tion of Agentic competencies such as task allocation, spatial reasoning, observation sharing, and adaptive
planning—capabilities that are underexplored in current benchmarks.

3 The CREW-Wildfire Environment

3.1 Preliminaries

One natural path in designing a benchmark for large-scale LLM-based multi-agent systems is to adapt
existing multi-agent reinforcement learning environments, such as StarCraft II or FireCommander, to support
LLM-based agents. While this approach would enable direct usage of prior MARL benchmarks, it constrains
the integration of flexible communication structures and high-level Agentic reasoning capabilities of language

4



Published in Transactions on Machine Learning Research (12/2025)

Figure 3: The Cellular Automata Fire Propagation Model

models. Another strategy is to extend current multi-agent LLM frameworks to handle larger, heterogeneous
teams. However, these frameworks are typically built around simplified domains, and scaling agent count
alone does not inherently introduce the strategic complexity or environmental diversity needed to challenge
scalable Agentic intelligence.

Therefore, we chose to build CREW-Wildfire from the ground up. This approach allowed us to make
principled design decisions tailored to evaluating Agentic intelligence at scale, including the development of
heterogeneous agents, real-time coordination challenges, and long-horizon planning in dynamic environments.

CREW Platform. CREW-Wildfire is built on the CREW platform Zhang et al. (2024c), a scalable
human-AI teaming simulation infrastructure using the Unity engine. Unity provides a visually rich and
customizable development environment, while CREW provides flexible modules for rapid prototyping of
complex game dynamics and AI-ready programming interfaces.

3.2 Environment Design

Procedural Map Generation. A distinctive feature of CREW-Wildfire is its scalable generative
map capability. Each scenario is procedurally generated using Perlin noise to produce continuous terrain
features (i.e., elevation, wind, moisture) and discrete land types (i.e., forest, brush, rock, water). Human
settlements are also randomly placed controlled by seeds. These variables influence fire spread, visibility, and
mission-critical decisions, ensuring each run presents unique and uncertain challenges. Visual illustrations
of such procedure is shown in Appendix A.1 and Fig. 8.

Wildfire Simulation. We simulate fire dynamics using an advanced cellular automata model (Fig. 3)
that incorporates slope, wind, vegetation type, moisture, and terrain features. This model creates realistic
and unpredictable fire spread, forcing agents to adapt and exploit environmental features such as firebreaks.
Specifically, we model the local fire spread probability pspread from a source cell to a neighboring target cell as:

pspread = f(slope) · moisture
moisture_constant ·

(
w⃗

∥w⃗∥
· ∆x⃗

∥∆x⃗∥
+ 1

)
where the slope factor f(slope) accounts for uphill versus downhill fire spread dynamics:

f(slope) =


e−k·slope

2e−k·slope − 1 , if slope < 0,

ek·slope, if slope ≥ 0.

Here, w⃗ denotes the wind vector and ∆x⃗ is the direction vector pointing from the source cell to the target cell.
The magnitude ∥∆x⃗∥ represents the distance between cells: 1 for adjacent cells,

√
2 for diagonal cells. The

slope factor f(slope) scales the influence based on terrain steepness, increasing spread probability uphill and
decreasing it downhill. The moisture ratio is continuous, but ignition outcomes are binary (a cell either ignites
or does not based on comparing pspread against a threshold). The moisture ratio attenuates the likelihood of
ignition in wetter regions. The dot product modulates the alignment of wind and spread direction, increasing

5



Published in Transactions on Machine Learning Research (12/2025)

Figure 4: The Four Heterogenous Agent Types: Firefighters, Bulldozers, Drones, and Helicopters

fire spread probability when aligned and decreasing it when opposing. The propagation speed is determined
by the game update frequency, which is user-configurable. This computed value pspread is then compared
against a threshold to determine whether the target cell ignites in the next simulation step.

3.3 Agent Design

We include four heterogeneous agent types (Fig. 4) abstracted from real wildfire operations:

• Firefighters are generalist agents capable of cutting trees to create firelines, spraying water to extinguish
fires or reduce flammability, and rescuing civilians.

• Bulldozers quickly clear flammable vegetation. However, they have limited speed and cannot directly
extinguish or rescue civilians, requiring support from firefighter agents.

• Drones perform wide-area reconnaissance but lack physical intervention capabilities.

• Helicopters transport agents and civilians and deliver water. With large enough maps, helicopters play
an indispensable role in transporting firefighters over distances too far to travel on foot.

These roles are designed to: 1) simplify but sufficiently represent real-world fire crew specializations, 2) span
diverse skill sets that require cooperative execution, and 3) necessitate non-trivial coordination strategies due
to inter-agent dependencies.

These agent types have complementary capabilities requiring coordination: 1) helicopters can transport
firefighters over long distances but cannot rescue civilians independently, requiring helicopter-firefighter
coordination, 2) drones can spot fires from afar while ground teams cannot, but drones cannot cut trees
or extinguish fires, necessitating drone-ground coordination, 3) bulldozers can cut firebreaks efficiently but
cannot rescue civilians, requiring coordination with firefighters.

CREW-Wildfire supports a large range of observation and action spaces, encompassing both low- and
high-level control: Observations support direct mini-map encoding, third-person agent image data, textual
descriptions of the observable environment, or ground-truth agent data vectors. Actions support a 3-
dimensional discrete or continuous action tensor, textual descriptions of an action, or high-level primitives
involving multi-step actions.

3.3.1 Perception and Execution Modules

Our Perception and Execution modules are frequently found in and designed to be compatible with
modern LLM-based multi-agent Agentic AI frameworks.

Perception module CREW-Wildfire provides various types of observations, such as ground-truth data
tensors and raw images. However, LLMs still struggle with processing high-dimensional sensor data such

6



Published in Transactions on Machine Learning Research (12/2025)

as images, and VLMs struggle with reasoning capabilities. Therefore, many multi-agent-LLM frameworks
employ a Perception module that serves to bridge this gap. Our Perception module is made up of two
components that first transform the raw tensor data into ASCII representations and then into high-level
text summaries. The prompts for the Perception module can be found at Appendix A.2 along with some
examples. We have observed that our Perception module can provide accurate and reliable observational
information to the LLM agents, so that the agentic LLM framework can focus on team planning.

Execution module Consistent with related work (Zhang et al., 2024b), we found that while LLMs can
succeed at high-level control, low-level control remains challenging for LLMs as of today. To address this
limitation, many LLM-based agentic frameworks employ “execution modules” that serve as a middle layer
between high-level planning and low-level control. Given that our core environment requires precise, discrete
and continuous control, we developed our own built-in Execution module to support these preexisting
LLM-based frameworks while leaving additional flexibility for low-level control.

Our Execution module uses LLMs to translate natural language commands into a series of one or more
executable action codes. These action codes give all the necessary information to activate the associated
low-level primitive functions (e.g., cutting a tree, spray water at a location, or pick up a civilian) within the
simulation environment to control the agents. For information on these primitive functions, please refer to
Appendix A.3. We also provide the prompts of the Execution in Appendix A.4.

3.4 Pillars of CREW-Wildfire Design

Beyond the individual features described, CREW-Wildfire’s strength lies in the combination of its properties,
which together create a unique and challenging benchmark aimed at tackling the inherent challenges that
a large and complex cooperative task, such as wildfire fighting, creates. We define the following pillars
as essential to create a complex yet flexible environment that facilitates high-level cooperation: 1) High
scalability: CREW-Wildfire can support a large number of agents (2000+ agents and 1 million+ cell maps
on a desktop with 16GB GPU + 16GB RAM + 16GB GPU. Computational performance data up to 2000
agents and 1 million cells can be found in Appendix A.16.); 2) Task complexity: Due to the map randomness,
fire simulation, and multiple map-dependent objectives, CREW-Wildfire does not always have a clear best
solution that fits every case. As the task progresses, dynamics may change, which requires continual plan
revision and adaptation; 3) Heterogeneous agents: Role heterogeneity demands coordination through
complementary capabilities; 4) Flexible observations and actions: CREW-Wildfire accommodates a
wide range of learning paradigms via modular observation and action layers.

These strengths make CREW-Wildfire a particularly challenging and comprehensive benchmark, where
success would demonstrate a framework’s ability to handle large-scale cooperation, partial observability, and
long-term strategy all at once.

4 CREW-Wildfire Benchmarking Suite

Robust benchmarking in complex environments requires more than tracking cumulative rewards. It demands
tools to diagnose where an algorithm is conceptually challenged (as revealed through behavioral competency
analysis in Section 5.3), not just how well it scores. To address this, CREW-Wildfire Benchmarking Suite
provides infrastructure for systematic evaluation, testing, and behavioral analysis.

Procedurally Generated Task Levels. We define 12 distinct task levels (Table 2), four of which have
both small and large size variants, resulting in 16 total benchmark configurations. Levels vary in team
composition, map size, objectives, and difficulty. We measure the performance via task success, damage
minimization, and agent/civilian safety. We also assign high-level behavioral goals to each level to evaluate
a variety of high-level behaviors.

Behavioral Goals. We designed 7 behavioral competencies, ranging from simple task designation to
complex objective prioritization. Since each level is marked with behavior goals, we can use them to pinpoint

7



Published in Transactions on Machine Learning Research (12/2025)

Table 2: Twelve Benchmark Levels (with size variants for four levels). F: Firefighters, B: Bulldozers,
D: Drones, H: Helicopters

Name Objective Agents Map Size Max Score Behaviors
Cut Trees Scoring Function: Trees cut in labeled cells/lines
Sparse (small) Cut all trees in labeled cells 3 F 30 18 TD
Sparse (large) Cut all trees in labeled cells 10 F 60 75 TD
Lines (small) Cut all the labeled lines of trees 2 F, 1 B 30 30 TD, AC
Lines (large) Cut all the labeled lines of trees 4 F, 3 B 60 105 TD, AC
Scout Fire Scoring Function: Drones over the fire, max of two
(small) Scout and confirm a fire within the map 3 D 100 2 TD, SR, OS
(large) Scout and confirm a fire within the map 5 D 250 2 TD, SR, OS
Transport Firefighters Scoring Function: Firefighters at target locations
(small) Transport all firefighters to a target location 6 F, 1 H 100 6 AC, SR, RC
(large) Transport all firefighters to a target location 12 F, 2 H 250 12 AC, SR, RC
Rescue Civilians Scoring Function: Civilians at target location
Known Location (small) Rescue all civilians to a target location 3 F 40 3 TD, SR, PA
Known Location (large) Rescue all civilians to a target location 3 F 40 9 TD, SR, PA
Search and Rescue Locate and rescue all civilians to a target location 5 F, 2 D 100 5 TD, SR, OS, PA
Search + Rescue + Transport Locate and rescue all civilians to a target location 10 F, 2 D, 2 H 150 10 TD, AC, SR, OS, RC, PA
Suppress Fire Scoring Function: Trees Destroyed + 20×Agents Lost
Extinguish Extinguish the fire at a known location with water 8 F 60 N/A TD, SR, PA
Contain Contain the fire at a known location without water 5 F, 1 B 60 N/A TD, AC, SR, PA
Locate and Suppress Suppress the fire at an unknown location 5 F, 1 B, 2 D 100 N/A TD, AC, OS, SR, PA
Locate + Deploy + Suppress Suppress the fire at an unknown location 10 F, 2 D, 2 H 150 N/A TD, AC, OS, SR, RC, PA
Full Environment Scoring Function: Trees Destroyed + 20×Agents Lost + 100×Civilians Lost
Full Environment Locate and Suppress the fire while rescuing civilians 10 F, 1 B, 2 D, 2 H 200 N/A All

emerging collaborative behaviors. For instance, the Cut Trees levels require Task Designation for agents
to split up the trees to cut.

The behavioral goals include: 1) Task Designation (TD): the ability to divide tasks among agents; 2)
Agent Capitalization (AC): the ability to recognize and capitalize on the strengths and weaknesses
in heterogeneous teams; 3) Spatial Reasoning (SR): The ability to reason and plan accordingly with
spatial information; 4) Observation Sharing (OS): the ability to communicate useful observations when
necessary; 5) Realtime Coordination (RC): the ability to communicate and rely on other agents to
perform synchronized tasks; 6) Plan Adaptation (PA): the ability to adapt and revise plans; 7) Objective
Prioritization (OP): the ability to rank competing goals contextually. More information is available in
Appendix.8

5 Benchmark Experiments

5.1 Experiment Setup

Our goal is to assess how well current LLM-based multi-agent Agentic frameworks scale and generalize in
realistic, embodied, and partially observable environments. We selected four representative frameworks from
recent literature that span approaches ranging from fully decentralized to hybrid centralized-decentralized
systems:

CAMON Wu et al. (2024) employs a hybrid coordination scheme with a dynamic leader who issues task
assignments and global updates. Leadership transfers occur through agent-initiated interactions.

COELA Zhang et al. (2024b) is a decentralized structure where each agent independently proposes information,
evaluates the necessity of communication, and performs actions based on its generated plans.

Embodied Guo et al. (2024) follows a decentralized structure with no leader agent. Agents alternate
communication rounds, allowing message broadcasting or targeted exchanges, followed by independent action
planning.

HMAS-2 Chen et al. (2024b) adopts a hybrid coordination scheme, using a centralized planner to propose
actions refined through distributed agent feedback until consensus is reached.

8



Published in Transactions on Machine Learning Research (12/2025)

Table 3: Scores across All Baseline on Twelve Levels (mean ± standard deviation).

Max Score CAMON COELA Embodied HMAS-2 Do Nothing
Cut Trees: Sparse (Small) 18 18.00±0.00 14.00±4.18 14.60±2.07 17.40±0.89 0.00±0.00
Cut Trees: Sparse (Large) 75 72.00±4.00 57.67±25.00 50.33±9.00 56.33±13.00 0.00±0.00
Cut Trees: Lines (Small) 30 30.00±0.00 30.00±0.00 30.00±0.00 28.00±2.65 0.00±0.00
Cut Trees: Lines (Large) 105 94.33±7.00 83.67±24.00 90.33±1.00 90.33±6.00 0.00±0.00
Scout Fire (Small) 2 1.60±0.89 0.00±0.00 0.80±0.84 1.20±1.10 0.00±0.00
Scout Fire (Large) 2 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00
Transport Firefighters (Small) 6 6.00±0.00 3.00±5.00 4.60±4.00 4.40±5.00 0.00±0.00
Transport Firefighters (Large) 12 10.00±0.00 8.33±5.00 9.33±2.00 8.33±5.00 0.00±0.00
Rescue Civilians: Known Location (Small) 3 3.00±0.00 0.67±0.58 2.67±0.58 2.33±0.58 0.00±0.00
Rescue Civilians: Known Location (Large) 9 4.00±5.00 0.00±0.00 4.33±3.00 4.00±2.00 0.00±0.00
Rescue Civilians: Search and Rescue 5 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00
Rescue Civilians: Search + Rescue + Transport 10 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00
Suppress Fire: Extinguish 0 –593.33±196.51 –635.00±189.65 –636.33±193.67 –624.33±196.92 –519.67±174.91
Suppress Fire: Contain 0 –736.67±200.04 –751.33±202.60 –757.33±177.42 –739.00±199.96 –660.67±184.50
Suppress Fire: Locate and Suppress 0 –1062.67±248.61 –1062.67±248.61 –1062.67±248.61 –1062.67±248.61 –1062.67±248.61
Suppress Fire: Locate + Transport + Suppress 0 –729.67±387.07 –729.67±387.07 –729.67±387.07 –729.67±387.07 –729.67±387.07
Full Environment 0 –5571.67±3347.06 –5516.00±3348.81 –5539.33±3381.69 –5522.67±3358.20 –5502.67±3330.02

Do Nothing is introduced as a naive baseline where no agent intervenes in the environment.

All baselines are fully zero-shot, LLM-based multi-agent frameworks with no learning during inference. These
implementations follow their original published designs without training or fine-tuning.

Evaluation Protocol. To ensure consistency across these frameworks, we implemented compatible
Perception and Execution modules to enable uniform testing.

We use GPT-4o as the underlying model, with temperature set to 0 for deterministic results and a single
completion per decision step. Experiments were conducted on a laptop with a 3.0 GHz CPU, RTX 3060
GPU, and 16GB RAM. We ran between 3-10 random seeds on all 16 level configurations for a total of 410
trajectories. Seeds and other hyper-parameters are located in A.19. We measured task success, task duration,
API call frequency, and input/output token usage. Results are in Tab.3.

We used GPT-4o due to its superior performance on spatial reasoning and task planning among popular
benchmarks at the time of experiments. Therefore, we chose to use it to benchmark all baselines with the
same LLM backbone. Moreover, our focus is not on language model capabilities in the baselines, but instead,
on different multi-agent LLM planning architectures and workflows and their performance on complex and
large-scale environments. Finally, GPT-4o was also used by the original implementations in the baseline
studies, hence our choice here for the benchmark. We leave the exploration of different LLM models as future
work.

5.2 Results and Findings

Current frameworks handle simple tasks but falter at scale. Most frameworks, especially CAMON,
performed well on Cut Trees tasks, showcasing effective task designation and asynchronous execution. In
smaller maps, most frameworks successfully divided the work, as seen in (Fig.5). However, in larger instances,
decentralized systems such as COELA and Embodied performed worse due to task overlap, with multiple
agents redundantly cutting the same tree due to the lack of shared global knowledge.

Coordination breaks down on complex and large-scale tasks. In tasks such as Suppress Fire and
Search and Rescue, performance across all frameworks was poor, often worse than the Do Nothing baseline
due to penalties from agent loss. Centralized and hybrid systems like CAMON and HMAS-2 with leader
agents struggled to assign roles effectively in complex scenarios, often issuing overlapping or redundant plans.
While leader agents could successfully coordinate low-level tasks, such as cutting lines of trees (Tab. 3), they
failed to perform the same level of task decomposition in complex scenarios. In Fig. 6(a), multiple agents
were directed to cut the same tree without further decomposing the broader firebreak construction plan,
showing that leader agents struggle to make complex multi-level tasks.

9



Published in Transactions on Machine Learning Research (12/2025)

Figure 5: Sample Multi-Agent Trajectories for the Cut Trees: Sparse(small) level. Each highlighted
section represents the correct tree being cut by that agent. Horizontal direction denotes time progression
from left to right.

Figure 6: Common Failure Cases. (a) Overlapping actions in CAMON due to failed subtask decomposition
by the leader during firebreak creation. (b) Repetitive and vague messaging in Embodied.

Figure 7: API calls, input tokens, and output tokens per timestep across agent counts. These metrics show
algorithm-side operations only; the CREW-Wildfire environment itself has zero API cost as it is entirely
self-contained.

Meanwhile, decentralized frameworks such as COELA and Embodied faced noise and repetition. As seen in
Fig. 6(b), agents issued vague, overlapping instructions and failed to converge on a detailed strategy. Agents
all wanted to take charge of the entire plan ending up in a rigid loop without adaptation.

10



Published in Transactions on Machine Learning Research (12/2025)

Table 4: Behavior Competency Scores (BCS) per algorithm. Objective Prioritization is omitted from
our competency analysis because no baseline encountered both the active fire front and endangered civilians
within the full-environment level across our recorded trajectories.

Behavior CAMON COELA Embodied HMAS-2
Task Designation (TD) 0.454 0.279 0.381 0.399
Agent Capitalization (AC) 0.474 0.391 0.435 0.418
Spatial Reasoning (SR) 0.368 0.156 0.301 0.301
Observation Sharing (OS) 0.180 0.067 0.124 0.153
Realtime Coordination (RC) 0.430 0.305 0.374 0.352
Plan Adaptation (PA) 0.239 0.093 0.219 0.209

Communication costs scale with agent count. As shown in Fig. 7, token usage scales with agent
population. API calls and output tokens increase roughly linearly. However, input token usage in HMAS-2
grows quadratically, due to its shared observation vector that scales with the number of agents and partial
observability. In a fully observable environment with a small size, it is feasible to provide each agent all the
environment information. However, in large environments like ours (1000× 1000 cells), this makes universal
context sharing inefficient. These results highlight the need for scalable architectures, e.g., decentralized or
hierarchical approaches, that avoid token blow-up through more structured information routing.

5.3 Behavioral Analysis

To better evaluate the competency of current multi-agent agentic systems beyond task completion, we
introduce the Behavior-Competency Score (BCS), which captures the average normalized success across
all tasks associated with a given high-level behavioral goal. With BCS, we can extract more interpretable
and quantifiable insights into how the structures of different architectures facilitate different behaviors and
where, on a behavior level, they succeed or fail.

Step 1: Level Normalization. The range of raw scores across different task levels is different due to
different scoring functions. Therefore, we must first normalize our scores across all tasks types.

Finite (reward) tasks are tasks such as Cut Trees, where the team receives positive scores, such as for
every correct tree cut. Open-ended (penalty) tasks are tasks such as Suppress Fire, where the team
receives open-ended negative scores, such as for every tree burned.

To normalize task ℓ, we first find the baseline (Bℓ) or the worst possible score on a task (0 for finite tasks
and the Do-Nothing score + the penalty for losing all agents for open-ended tasks). Then we find the target
(Tℓ) or the best possible score on a task (max reward for finite tasks and 0 for open-ended tasks). Then, we
normalize the algorithm’s raw score (sa,ℓ) by subtracting the baseline and dividing by the range. Lastly, we
logarithmically scale scores for open-ended tasks to amplify the smaller improvements over the baseline score.

NSa,ℓ =


sa,ℓ −Bℓ

Tℓ −Bℓ
, for finite (reward) tasks;

log
(

1 + sa,ℓ−Bℓ

Tℓ−Bℓ

)
log 2 , for open-ended (penalty) tasks.

Step 2: Behavioral Aggregation. Since each benchmark task is associated with a set of behavioral goals,
each behavioral goal g also has a set of tasks Tg that possess it as a behavior. Therefore, the BCSa,g for a
given behavioral goal g and algorithm a is the mean of the normalized scores of that set.

BCSa,g = 1
|Tg|

∑
ℓ∈Tg

NSa,ℓ

11



Published in Transactions on Machine Learning Research (12/2025)

BCS Results and Findings Overall, as shown in Tab. 4 and Fig. 10, current methods perform well
at Realtime Coordination (RC), Task Designation (TD), and Agent Capitalization (AC), with CAMON
particularly standing out across all behaviors. However, while all methods score comparably in behaviors
such as Realtime Coordination (RC) and Agent Capitalization (AC), their performance varies much more
in others, including Observation Sharing (OS), where the decentralized COELA scores significantly lower
than the rest. Perhaps this implies that although dynamic communication may help planning and real-time
coordination, periodic communication phases, such as those in Embodied and HMAS-2, are better suited for
regular observation sharing.

The Plan Adaptation (PA) BCS also remains low across all baselines. PA is tested most extensively in
Suppress Fire tasks, where fire shifts unpredictably. In these levels, instead of adapting when circumstances
change, teams often reaffirm early decisions and plans, fixing agents to an outdated course of action. For
instance, if fire lines breached an established boundary, most agents persisted in their outdated trajectories,
which often resulted in them being destroyed by the new danger.

5.4 Outlook

Our study reveals that while existing multi-agent LLM frameworks demonstrate promising behaviors in simple,
structured tasks, they struggle to generalize to complex, large-scale environments that demand dynamic
coordination, role specialization, hierarchy, and real-time adaptation. These findings point to several critical
directions for future research:

Scalable Architectures and Efficient Algorithms: More scalable communication architectures are
needed to manage information flow as agent populations grow, such as hierarchical or attention-based routing.
Our benchmark reveals efficiency challenges in current algorithms when scaled to complex tasks, inspiring
algorithm development that prioritizes both scalability and computational efficiency.

Adaptive Planning and Reasoning: Effective abstraction and modularity in task planning may enable
agents to better decompose and assign sub-goals in evolving scenarios. Future systems should integrate
uncertainty-aware reasoning and adaptive leadership to respond flexibly to noisy or incomplete observations.

Evaluation and Human-AI Teaming: Developing systematic methods to measure communication
efficiency, redundancy, and coordination-specific metrics for large-scale multi-agent problems remains an open
challenge. We will open-source all recorded observations, actions, and agent communications to enable deeper
trajectory analysis. Additionally, while our environment supports low-level human control, studying human
performance requires investigating complex human teaming dynamics with 10+ agents in large-scale dynamic
tasks, which we plan to explore in future work.

6 Limitations

We note several aspects of CREW-Wildfire that can be further improved. First, despite heavy referencing
to real-world heterogeneous setups of multi-agent collaborations and coordination applications, our abstraction
of agent roles is not yet a one-to-one mapping of real-world wildfire complexity and agent ability, potentially
limiting direct generalizability and deployment in real-world wildfire responses. The low-level control is also
abstracted, excluding the real-world physics and actuator simulation in robotics simulators. We intentionally
simplify these aspects for our initial developments to focus on the planning components. This design choice
also allows controlled and repeatable benchmark efforts targeting current LLM-based Agentic frameworks.
CREW-Wildfire still remains the state-of-the-art scale and complexity in LLM-based multi-agent Agentic
benchmarks. We plan to incorporate real-world embodied agents into CREW-Wildfire in our future
iterations.

Second, despite the large number of experiments across multiple random seeds, baselines, and task levels,
more runs on different prompt variations can provide further insights on the subtle but important system
designs. Our current experiments are limited by the relatively high costs associated with LLM token usage.
For example, in algorithms where agents are given a global-state vector (the combination of each agent’s
perceptions), the input token cost for that step scales on the order of N2. With the cost of LLM-query

12



Published in Transactions on Machine Learning Research (12/2025)

becoming more affordable, CREW-Wildfire will provide a promising evaluation platform to study more
detailed algorithm designs.

Moreover, the above limitations are not a result of the CREW-Wildfire as a benchmark, but rather the
current algorithmic token inefficiencies that limit the extent of realistic scalability testing. The lack of baseline
data with the full capabilities of CREW-Wildfire [2, 000+ agents and 1, 000, 000+ cell map size] is due to the
infeasibility resulting from the existing algorithm constraints, as indicated by our extensive quantitative and
qualitative experiments. We include computational performance data up to 2000 agents and 1 million cells in
Appendix A.16.

7 Conclusion

We introduced CREW-Wildfire, an open-source benchmark designed to evaluate the scalability and
robustness of multi-agent systems powered by LLMs. Through procedurally generated environments including
heterogeneous agents, partial observability, and long-horizon coordination, the benchmark exposes the
limitations of current frameworks in handling complex, real-time, and high-agent-count tasks. Our experiments
reveal critical performance gaps in role assignment, communication efficiency, and adaptive planning. While
there are limitations in our scope and baseline data, by releasing the environment, sub-tasks, and baseline
implementations, we aim to provide a foundation for the community to develop and compare next-generation
Agentic systems. While the deployment of autonomous LLM agents presents positive opportunities for
decision-making efficiency, it also carries significant ethical risks, necessitating robust frameworks and
monitoring via open-source oversight to prevent misuse and ensure accountability.

13



Published in Transactions on Machine Learning Research (12/2025)

References
Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, Byron David, Chelsea Finn,

Chuyuan Fu, Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Daniel Ho, Jasmine Hsu, Julian
Ibarz, Brian Ichter, Alex Irpan, Eric Jang, Rosario Jauregui Ruano, Kyle Jeffrey, Sally Jesmonth, Nikhil J
Joshi, Ryan Julian, Dmitry Kalashnikov, Yuheng Kuang, Kuang-Huei Lee, Sergey Levine, Yao Lu, Linda
Luu, Carolina Parada, Peter Pastor, Jornell Quiambao, Kanishka Rao, Jarek Rettinghouse, Diego Reyes,
Pierre Sermanet, Nicolas Sievers, Clayton Tan, Alexander Toshev, Vincent Vanhoucke, Fei Xia, Ted Xiao,
Peng Xu, Sichun Xu, Mengyuan Yan, and Andy Zeng. Do as i can, not as i say: Grounding language in
robotic affordances, 2022. URL https://arxiv.org/abs/2204.01691.

Nolan Bard, Jakob N Foerster, Sarath Chandar, Neil Burch, Marc Lanctot, H Francis Song, Emilio Parisotto,
Vincent Dumoulin, Subhodeep Moitra, Edward Hughes, et al. The hanabi challenge: A new frontier for ai
research. Artificial Intelligence, 280:103216, 2020.

Lucian Buşoniu, Robert Babuška, and Bart De Schutter. Multi-agent reinforcement learning: An overview.
Innovations in multi-agent systems and applications-1, pp. 183–221, 2010.

Micah Carroll, Rohin Shah, Mark K Ho, Tom Griffiths, Sanjit Seshia, Pieter Abbeel, and Anca Dragan. On
the utility of learning about humans for human-ai coordination. Advances in neural information processing
systems, 32, 2019.

Matthew Chang, Gunjan Chhablani, Alexander Clegg, Mikael Dallaire Cote, Ruta Desai, Michal Hlavac,
Vladimir Karashchuk, Jacob Krantz, Roozbeh Mottaghi, Priyam Parashar, Siddharth Patki, Ishita Prasad,
Xavier Puig, Akshara Rai, Ram Ramrakhya, Daniel Tran, Joanne Truong, John M. Turner, Eric Under-
sander, and Tsung-Yen Yang. Partnr: A benchmark for planning and reasoning in embodied multi-agent
tasks, 2024. URL https://arxiv.org/abs/2411.00081.

Boyuan Chen, Shuran Song, Hod Lipson, and Carl Vondrick. Visual hide and seek. In Artificial Life
Conference Proceedings 32, pp. 645–655. MIT Press One Rogers Street, Cambridge, MA 02142-1209, USA
journals-info . . . , 2020.

Boyuan Chen, Yuhang Hu, Robert Kwiatkowski, Shuran Song, and Hod Lipson. Visual perspective taking
for opponent behavior modeling. In 2021 IEEE International Conference on Robotics and Automation
(ICRA), pp. 13678–13685. IEEE, 2021.

Junzhe Chen, Xuming Hu, Shuodi Liu, Shiyu Huang, Wei-Wei Tu, Zhaofeng He, and Lijie Wen. Llmarena:
Assessing capabilities of large language models in dynamic multi-agent environments, 2024a. URL
https://arxiv.org/abs/2402.16499.

Yongchao Chen, Jacob Arkin, Yang Zhang, Nicholas Roy, and Chuchu Fan. Scalable multi-robot collaboration
with large language models: Centralized or decentralized systems? In 2024 IEEE International Conference
on Robotics and Automation (ICRA), pp. 4311–4317. IEEE, 2024b.

Yuanpei Chen, Tianhao Wu, Shengjie Wang, Xidong Feng, Jiechuan Jiang, Zongqing Lu, Stephen McAleer,
Hao Dong, Song-Chun Zhu, and Yaodong Yang. Towards human-level bimanual dexterous manipulation
with reinforcement learning. Advances in Neural Information Processing Systems, 35:5150–5163, 2022.

Daniel S Drew. Multi-agent systems for search and rescue applications. Current Robotics Reports, 2:189–200,
2021.

Linxi Fan, Guanzhi Wang, Yunfan Jiang, Ajay Mandlekar, Yuncong Yang, Haoyi Zhu, Andrew Tang, De-An
Huang, Yuke Zhu, and Anima Anandkumar. Minedojo: Building open-ended embodied agents with
internet-scale knowledge. Advances in Neural Information Processing Systems, 35:18343–18362, 2022.

Jakob Foerster, Ioannis Alexandros Assael, Nando De Freitas, and Shimon Whiteson. Learning to communicate
with deep multi-agent reinforcement learning. Advances in neural information processing systems, 29, 2016.

14

https://arxiv.org/abs/2204.01691
https://arxiv.org/abs/2411.00081
https://arxiv.org/abs/2402.16499


Published in Transactions on Machine Learning Research (12/2025)

Ran Gong, Qiuyuan Huang, Xiaojian Ma, Yusuke Noda, Zane Durante, Zilong Zheng, Demetri Terzopoulos,
Li Fei-Fei, Jianfeng Gao, and Hoi Vo. Mindagent: Emergent gaming interaction. In Findings of the
Association for Computational Linguistics: NAACL 2024, pp. 3154–3183, 2024.

Xudong Guo, Kaixuan Huang, Jiale Liu, Wenhui Fan, Natalia Vélez, Qingyun Wu, Huazheng Wang, Thomas L.
Griffiths, and Mengdi Wang. Embodied LLM agents learn to cooperate in organized teams. In Language
Gamification - NeurIPS 2024 Workshop, 2024. URL https://openreview.net/forum?id=VKlrzygQlT.

Yixin Huang, Shufan Wu, Zhongcheng Mu, Xiangyu Long, Sunhao Chu, and Guohong Zhao. A multi-agent
reinforcement learning method for swarm robots in space collaborative exploration. In 2020 6th international
conference on control, automation and robotics (ICCAR), pp. 139–144. IEEE, 2020.

Zool Hilmi Ismail, Nohaidda Sariff, and E Gorrostieta Hurtado. A survey and analysis of cooperative
multi-agent robot systems: challenges and directions. Applications of Mobile Robots, 5:8–14, 2018.

Zhengran Ji, Lingyu Zhang, Paul Sajda, and Boyuan Chen. Enabling multi-robot collaboration from
single-human guidance. In 2025 IEEE International Conference on Robotics and Automation (ICRA), pp.
4272–4279. IEEE, 2025.

Zhao Kaiya, Michelangelo Naim, Jovana Kondic, Manuel Cortes, Jiaxin Ge, Shuying Luo, Guangyu Robert
Yang, and Andrew Ahn. Lyfe agents: Generative agents for low-cost real-time social interactions. arXiv
preprint arXiv:2310.02172, 2023.

Gautam Siddharth Kashyap, Deepkashi Mahajan, Orchid Chetia Phukan, Ankit Kumar, Alexander EI
Brownlee, and Jiechao Gao. From simulations to reality: enhancing multi-robot exploration for urban
search and rescue. International Journal of Information Technology, pp. 1–12, 2025.

Woojun Kim, Jongeui Park, and Youngchul Sung. Communication in multi-agent reinforcement learning:
Intention sharing. In International conference on learning representations, 2020.

Aleksandar Krnjaic, Raul D Steleac, Jonathan D Thomas, Georgios Papoudakis, Lukas Schäfer, Andrew
Wing Keung To, Kuan-Ho Lao, Murat Cubuktepe, Matthew Haley, Peter Börsting, et al. Scalable multi-
agent reinforcement learning for warehouse logistics with robotic and human co-workers. In 2024 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pp. 677–684. IEEE, 2024.

Guohao Li, Hasan Hammoud, Hani Itani, Dmitrii Khizbullin, and Bernard Ghanem. Camel: Communicative
agents for" mind" exploration of large language model society. Advances in Neural Information Processing
Systems, 36:51991–52008, 2023.

Afshin OroojlooyJadid and Davood Hajinezhad. A review of cooperative multi-agent deep reinforcement
learning, 2021. URL https://arxiv.org/abs/1908.03963.

Joon Sung Park, Joseph O’Brien, Carrie Jun Cai, Meredith Ringel Morris, Percy Liang, and Michael S
Bernstein. Generative agents: Interactive simulacra of human behavior. In Proceedings of the 36th annual
acm symposium on user interface software and technology, pp. 1–22, 2023.

Javier Andreu Perez, Fani Deligianni, Daniele Ravi, Guang-Zhong Yang, et al. Artificial intelligence and
robotics. arXiv preprint arXiv:1803.10813, 147:2–44, 2018.

Xavier Puig, Kevin Ra, Marko Boben, Jiaman Li, Tingwu Wang, Sanja Fidler, and Antonio Torralba.
Virtualhome: Simulating household activities via programs. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 8494–8502, 2018.

Chen Qian, Wei Liu, Hongzhang Liu, Nuo Chen, Yufan Dang, Jiahao Li, Cheng Yang, Weize Chen, Yusheng
Su, Xin Cong, et al. Chatdev: Communicative agents for software development. In Proceedings of the
62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp.
15174–15186, 2024.

15

https://openreview.net/forum?id=VKlrzygQlT
https://arxiv.org/abs/1908.03963


Published in Transactions on Machine Learning Research (12/2025)

Yinuo Qin, Richard T Lee, and Paul Sajda. Perception of an ai teammate in an embodied control task affects
team performance, reflected in human teammates’ behaviors and physiological responses. arXiv preprint
arXiv:2501.15332, 2025a.

Yinuo Qin, Richard T. Lee, Weijia Zhang, Xiaoxiao Sun, and Paul Sajda. Physiologically informed pre-
dictability of a teammate’s future actions forecasts team performance. iScience, 28(5), May 2025b. ISSN
2589-0042. doi: 10.1016/j.isci.2025.112429. URL https://doi.org/10.1016/j.isci.2025.112429.

Esmaeil Seraj, Xiyang Wu, and Matthew Gombolay. Firecommander: An interactive, probabilistic multi-agent
environment for heterogeneous robot teams, 2021. URL https://arxiv.org/abs/2011.00165.

Philipp Dominic Siedler. Hivex: A high-impact environment suite for multi-agent research (extended version).
arXiv preprint arXiv:2501.04180, 2025.

Jordan Terry, Benjamin Black, Nathaniel Grammel, Mario Jayakumar, Ananth Hari, Ryan Sullivan, Luis S
Santos, Clemens Dieffendahl, Caroline Horsch, Rodrigo Perez-Vicente, et al. Pettingzoo: Gym for multi-
agent reinforcement learning. Advances in Neural Information Processing Systems, 34:15032–15043, 2021.

Oriol Vinyals, Timo Ewalds, Sergey Bartunov, Petko Georgiev, Alexander Sasha Vezhnevets, Michelle Yeo,
Alireza Makhzani, Heinrich Küttler, John Agapiou, Julian Schrittwieser, et al. Starcraft ii: A new challenge
for reinforcement learning. arXiv preprint arXiv:1708.04782, 2017.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan, and Anima
Anandkumar. Voyager: An open-ended embodied agent with large language models. Transactions
on Machine Learning Research, 2024. ISSN 2835-8856. URL https://openreview.net/forum?id=
ehfRiF0R3a.

Pengying Wu, Yao Mu, Kangjie Zhou, Ji Ma, Junting Chen, and Chang Liu. Camon: Cooperative agents for
multi-object navigation with llm-based conversations. arXiv preprint arXiv:2407.00632, 2024.

Bin Zhang, Hangyu Mao, Jingqing Ruan, Ying Wen, Yang Li, Shao Zhang, Zhiwei Xu, Dapeng Li, Ziyue
Li, Rui Zhao, Lijuan Li, and Guoliang Fan. Controlling large language model-based agents for large-scale
decision-making: An actor-critic approach, 2024a. URL https://arxiv.org/abs/2311.13884.

Hongxin Zhang, Weihua Du, Jiaming Shan, Qinhong Zhou, Yilun Du, Joshua B. Tenenbaum, Tianmin Shu,
and Chuang Gan. Building cooperative embodied agents modularly with large language models. In The
Twelfth International Conference on Learning Representations, 2024b. URL https://openreview.net/
forum?id=EnXJfQqy0K.

Kaiqing Zhang, Zhuoran Yang, Han Liu, Tong Zhang, and Tamer Basar. Fully decentralized multi-agent
reinforcement learning with networked agents. In International conference on machine learning, pp.
5872–5881. PMLR, 2018.

Lingyu Zhang, Zhengran Ji, and Boyuan Chen. CREW: Facilitating human-AI teaming research. Transactions
on Machine Learning Research, 2024c. ISSN 2835-8856. URL https://openreview.net/forum?id=
ZRXwHRXm8i.

Lingyu Zhang, Zhengran Ji, Nicholas R Waytowich, and Boyuan Chen. GUIDE: Real-time human-shaped
agents. Advances in Neural Information Processing Systems, 38, 2024d.

16

https://doi.org/10.1016/j.isci.2025.112429
https://arxiv.org/abs/2011.00165
https://openreview.net/forum?id=ehfRiF0R3a
https://openreview.net/forum?id=ehfRiF0R3a
https://arxiv.org/abs/2311.13884
https://openreview.net/forum?id=EnXJfQqy0K
https://openreview.net/forum?id=EnXJfQqy0K
https://openreview.net/forum?id=ZRXwHRXm8i
https://openreview.net/forum?id=ZRXwHRXm8i


Published in Transactions on Machine Learning Research (12/2025)

Appendix

A.1 Map Generation and Evaluation Process

[h!]

Figure 8: Map generation and Evaluation process. Given the chosen level and level size, the Level Generator
creates 5 distinct Perlin Noise textures for each generation seed: one for Ground Type, Elevation, Moisture,
Settlement, and Wind X + Y vectors. After scaling or clamping them into appropriate maps, they are put
together as the generated environments. The Task Evaluator then repeatedly checks their state vectors to
return a score depending on task type.

17



Published in Transactions on Machine Learning Research (12/2025)

A.2 Perception Module

The following prompt summarizes the ASCII representation.

Prompt for Perception Module

You are AGENT X, and your current location is POSITION, and thus your minimap view will be the
range X : [x0 − x1], Y : [y0 − y1], where x0 = x− range/2 and x1 = x + range/2 (and similarly for y
coordinates), centering the minimap on the agent’s location, with the top corner of the map being (0,0).

This is your minimap view:

[ASCII ENCODED MINIMAP]

Each cell is represented by a character corresponding to the type of terrain:
0: brush (no trees)
1: light forest (1 tree)
2: medium forest (2 trees)
3: dense forest (3 trees)
i: Ignited
f: On Fire
e: Extinguishing
x: Fully Extinguished
w: Water Source Cell (no trees)
B: building (no trees)

IGNORE ALL “-”. Those are unrevealed cells. They will reveal themselves when you get closer to them.

The cells in single quotations are wet cells. ’C’ cells are civilians.

The bolded cell is the current cell you are in. It is a X cell at POSITION. There are other nearby
agents at:

[OTHER AGENT LOCATIONS]

Your job is to process and understand your surroundings. Do not directly report explicit information
from the minimap, but rather spatially understand your surroundings. Do not refer to character
representations of the minimap, only what they actually represent. Report general observations in
general directions. Also report if there are specific cells of interest, such as fires, civilians, water, etc. If
there are any, calculate their exact locations by explicitly counting cells. You should return a detailed
but concise text summary paragraph of all relevant information, including location, surroundings, and
presence of important cells.

18



Published in Transactions on Machine Learning Research (12/2025)

1. For example, the following raw observations input:

[{’location’: (33,93), "trees": 2, "civilians": false, "status": burnable},
{’location’: (34,93), "trees": 3, "civilians": false, "status": burnable},
{’location’: (35,93), "trees": 3, "civilians": false, "status": burnable},
... (397 more items)]

2. Is transformed into:

2,3,3,3,3,3,3,3,3,2,2,2,2,2,2,3,3,2,2,2,3,
2,3,3,3,3,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,
2,2,3,3,3,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,
2,2,3,3,2,2,2,2,2,2,2,2,2,2,2,2,3,3,2,2,3,
2,2,2,3,2,2,2,2,2,2,1,1,1,2,2,2,2,3,3,2,2,
2,2,2,2,2,2,2,2,2,1,1,1,1,1,2,2,2,2,2,2,2,
2,2,2,2,2,2,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,
2,2,2,2,2,2,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,
2,2,2,2,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,
2,2,2,2,1,1,1,1,1,1,1,1,2,1,1,1,1,1,1,1,1,
2,2,2,2,2,1,1,1,1,1,*1*,1,1,1,1,1,1,1,1,1,1,
2,2,2,2,2,1,1,1,1,1,1,2,1,1,1,1,1,1,1,1,1,
1,2,2,1,1,1,1,1,1,1,1,2,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0,0,
1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,1,1,1,1,1,0,0,0,0,0,0,0,C,0,0,0,0,0,0,0,
0,1,1,1,1,1,1,0,0,0,C,0,C,0,0,0,0,0,0,0,0,
0,1,1,1,1,1,1,0,0,0,0,0,0,0,0,C,0,0,0,0,0,
1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,
1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,

3. Which is summarized into:

I am currently positioned at (43, 103) within a light forest area. My immediate surroundings
are predominantly light forest, with a mix of medium and dense forest areas to the north
and northwest. To the north and northwest, there are patches of medium and dense forest,
indicating a potentially challenging terrain for movement and visibility. The southern and
southeastern areas transition into brush and open spaces. Significantly, there are civilians
present in the southern region of my view. One civilian is located at (43, 110), and three
more are at (45, 110), (46, 109), and (48, 111). These civilians are in an area transitioning
from light forest to brush. There are no immediate signs of fire or ignited areas within my
visible range.

19



Published in Transactions on Machine Learning Research (12/2025)

A.3 Primitives

Primitive functions serve as a simplified way to control our agents’ low-level behavior within the environment.
Although it is possible to control each agent’s movement or rotation manually at each step, these primitives
allow agents to focus on high-level planning instead of struggling with tedious low-level control. This is
especially useful, since LLMs are proven to struggle with low-level control.

For example, the primitive ‘move to location’ may involve a multi-step sequence of movement and rotation
actions to move the agent to the desired location.

Here is the list of all primitive methods agents can use within the environment:

Table 5: Primitives + Actions for All Agent Types

Primitive Name Parameters Description
Firefighter Primitives
Move to Location <1, x coord, y coord> Continually move in the direction of the loca-

tion until it reaches there
Cut X Trees in current cell <2, # of trees, 0> Cut a single tree X times
Cut All Trees in current cell <3, 0, 0> Cut a single tree until there are 0 trees left
Pick Up Civilian <4, 0, 0> Pick up closest civilian
Drop Off Civilian <5, 0, 0> Unload carried civilian to current cell
Spray Water Cone toward target <6, x coord, y coord> Aim at target, spray water in a wide cone
Refill Water <7, 0, 0> Refill water supply if over a water source
Bulldozer Primitives
Drive to Location (No Cut) <1, x coord, y coord> Continually move in the direction of the loca-

tion without the plow lowered until it reaches
there

Drive to Location (Clear Path) <2, x coord, y coord> Continually move in the direction of the lo-
cation with the plow lowered until it reaches
there

Drone Primitives
Fly to Location <1, x coord, y coord> Continually fly in the direction of the location

until it reaches there
Helicopter Primitives
Fly to Location <1, x coord, y coord> Continually fly in the direction of the location

until it reaches there
Pick Up Firefighters <2, 0, 0> Load nearby firefighter agents
Drop Off Firefighters <3, 0, 0> Unload all carried firefighters to current cell
Refill Water <4, 0, 0> Replenish water tank if over a water source
Drop Water <5, 0, 0> Deploy one water payload at current location

20



Published in Transactions on Machine Learning Research (12/2025)

A.4 Execution Module

Prompt for Execution Module

You are the controller of a highly trained agent within a grid forest world. Your job is to convert a
single text action into a structured format for robotic control.

Here is the action we want to perform: [ACTION]

Your job is to convert the action into an executable format. Do not change the actions, just translate
them.

This is the executable action format:

Action{
int “type”: type of action being performed
int “param 1”: parameter 1 of action if applicable
int “param 2”: parameter 2 of action if applicable
string “description”: description of action
}

You have X distinct types of actions. You MUST choose one of them:

1. Move to any coordinate location in one step regardless of distance:

“type”: 1
“param 1”: x coordinate of location
“param 2”: y coordinate of location
“description”: description of action

Example Action:
[1, 500, 500, “move to coordinate location of (500, 500)”]

[OTHER PRIMITIVES]

21



Published in Transactions on Machine Learning Research (12/2025)

22



Published in Transactions on Machine Learning Research (12/2025)

A.5 Prompts of CAMON Generate Plan

Prompt for CAMON: Generate Plan

You are AGENT X, an AGENT-TYPE Agent, currently acting as the leader in a cooperative
multi-agent robotic task. This is your team composition, (including yourself):

TEAM COMPOSITION
—

Your team’s current task is:

CURRENT TASK
—

Your past actions were:

PAST ACTIONS
—

This is your chat history with agents in your team:

CHAT HISTORY
—

This is your team’s (including you) collective observations, locations, current actions, and past actions
of all agents.

GLOBAL DATA
—

Now your job is to provide the next best action for yourself, and OPTIONALLY: the next best
action for any other agents. Remember, you are AGENT X an AGENT-TYPE Agent, located at
POSITION.

These are all the possible actions for each type of agent. This is a comprehensive list, so the action
MUST be one of these types. NO other responses are allowed.

LIST OF AGENT ABILITIES ON TEAM

Provide your output in the following format:

<reasoning>(any reasoning or calculations)</reasoning>

<action>’MY NEXT ACTION’</action>

OPTIONAL-for other agents:

<AGENT ID-action>(AGENT ID’S NEXT ACTION)<AGENT ID-action>
<AGENT ID-message>(message to AGENT ID)<AGENT ID-message>

For example:
<AGENT A-action>’action’<AGENT A-action>
<AGENT A-message>’action’<AGENT A-message>

23



Published in Transactions on Machine Learning Research (12/2025)

A.6 Prompts of CAMON Propose Plan

Prompt for CAMON: Propose Plan

You are AGENT X, an embodied AGENT-TYPE agent within a X by Y forest grid world and part of
a collaborative team of N Agents.
This is your team’s composition (including yourself):

TEAM COMPOSITION
—

These are your current observations:

PERCEPTION
—

This is your team’s overall task:

CURRENT TASK
—

Your past actions were:

ACTION HISTORY
—

This is your chat history with agents in your team:

CHAT HISTORY
—

Your job is to propose your next action. These are your possible actions:

AGENT ABILITIES

This is a comprehensive list, so your action MUST be one of these types. NO other responses are
allowed.

Provide your output in the following format:

<reasoning>(any reasoning or calculations)</reasoning>
<action>’MY NEXT ACTION’</action>

24



Published in Transactions on Machine Learning Research (12/2025)

A.7 Prompts of CAMON Review Plan

Prompt for CAMON: Review Plan

You are AGENT X, currently acting as the leader in a cooperative multi-agent robotic task.

This is your team composition (including yourself):

TEAM COMPOSITION
—

Your team’s current task is:

CURRENT TASK
—

This is your teams’(including you) collective observations, locations, current actions, and past actions
of all agents. Only you have all of this data.

GLOBAL DATA
—

Your teammate AGENT Y, an AGENT-TYPE Agent, is proposing a new action for itself:

PROPOSED ACTION
—

Your job is to review this action and ACCEPT or REJECT it.

Then provide the next best action for AGENT Y, choosing a better one if REJECT or repeat-
ing/rewriting the proposed one if ACCEPT. Also send a message to AGENT Y describing your choice.

Additionally, you may announce information to other agents in your team with information. You
may also choose to override actions for other agents as well. You must send a message to that
agent if you do so. This interrupts their action, so only do this if you want to change their current action.

These are all the possible actions for each type of agent. This is a comprehensive list, so the action
MUST be one of these types. NO other responses are allowed.

LIST OF AGENT ABILITIES ON TEAM

Provide your output in the following format:
<reasoning>(any reasoning or calculations)</reasoning>
<decision> ACCEPT OR REJECT </decision>
<action> AGENT Y’s next action </action>
<message> message to AGENT Y</message>

OPTIONAL-for other agents:
<AGENT ID-action>(AGENTID’S NEXT ACTION)<AGENT ID-action>
<AGENT ID-message>(message to AGENTID)<AGENT ID-message>

For example: <AGENT A-action>’action’</AGENT A-action>

25



Published in Transactions on Machine Learning Research (12/2025)

A.8 Prompts of COELA: Propose Message

Prompt for COELA: Propose Message

You are the communicator module of Agent X, a AGENT-TYPE Agent in a cooperative multi-agent
robotic task.

This is your team composition, including you:

TEAM COMPOSITION
—

Your team’s task is:
CURRENT TASK

—

Your status and observations:

PERCEPTION
—

Your chat history:

CHAT HISTORY
—

Your past actions:

ACTION HISTORY
—

Your job is to propose a message to send to the chat/groupchat.

Provide your output in the following format:

<reasoning>(any reasoning or calculations)</reasoning>

<message>’MESSAGE’</message>

Note: The generated message should be accurate, helpful, and brief. Do not generate repetitive
messages

26



Published in Transactions on Machine Learning Research (12/2025)

A.9 Prompts of COELA: Choose Action

Prompt for COELA: Choose Action

You are Agent X, an AGENT-TYPE Agent in a cooperative multi-agent robotic task.

This is your team composition, including you:

TEAM COMPOSITION
—

Your team’s task is:

CURRENT TASK
—

Your status and observations:

PERCEPTION
—

Your chat history:

CHAT HISTORY
—

Your past actions:

ACTION HISTORY
—

Now your job is to provide the next best action for yourself. Remember, you are Agent X an
AGENT-TYPE Agent, located at POSITION.

These are all the possible actions for each type of agent. This is a comprehensive list, so the action
MUST be one of these types. NO other responses are allowed. Note that sending messages has a cost
so think about the necessity of it.

- [send message to groupchat] PPROPOSED MESSAGE
- OTHER ABILITIES

Provide your output in the following format:

<reasoning>(any reasoning or calculations)</reasoning>

<action>’MY NEXT ACTION’</action>

Include ’SEND MESSAGE’ in all caps like so, if and only if your action is to send the message. For
example:

<action>SEND MESSAGE ’proposed message’</action>

27



Published in Transactions on Machine Learning Research (12/2025)

A.10 Prompts of Embodied: Generate Communications

Prompt for Embodied: Generate Communications

You are AGENT X, a AGENT-TYPE Agent in a cooperative multi-agent robotic task.

Given your shared goal, chat history, and your progress and previous actions, please generate a list of
short messages to members of your team in order to achieve the goal as possible.

This is your team composition, including you:

TEAM COMPOSITION
—

Your team’s task is:

CURRENT TASK
—

Your status and observations:

PERCEPTION
—

Your past actions:

ACTION HISTORY
—

Your chats:

CHAT HISTORY
—

You may send messages to individual agents or in a global channel. Think about the necessity of
sending a message. There are costs to send messages. Provide your output in the following format.
All names should be in all caps:

<reasoning>(any reasoning or calculations)</reasoning>

<RECIPIENT>’MESSAGE’</RECIPIENT>
<GLOBAL>’MESSAGE’</GLOBAL>

For Example:

<AGENT A>message</AGENT A>,
<AGENT C>message</AGENT C>,
<GLOBAL>message</GLOBAL>

28



Published in Transactions on Machine Learning Research (12/2025)

A.11 Prompts of Embodied: Generate Actions

Prompt for Embodied: Generate Action

You are AGENT X, an AGENT-TYPE Agent in a cooperative multi-agent robotic task.

Your team’s task is:

CURRENT TASK
—

Your status and observations:

PERCEPTION
—

Your chat history:

CHAT HISTORY
—

Your past actions:

ACTION HISTORY
—

Now your job is to provide the next best action for yourself. Remember, you are AGENT X an
AGENT-TYPE Agent, located at POSITION.

These are all the possible actions for each type of agent. This is a comprehensive list, so the action
MUST be ONE and only ONE of these types. NO other responses are allowed.

AGENT ABILITIES

Provide your output in the following format:

<reasoning>(any reasoning or calculations)</reasoning>

<action>’MY NEXT ACTION’</action>

Make sure you include enough details in your action such as explicit target coordinate locations. For
example:

<action>Move towards (500,500)</action>

29



Published in Transactions on Machine Learning Research (12/2025)

A.12 Prompts of HMAS-2: Central Planner

Prompt for HMAS-2: Central Planner

You are central planner directing agents in a cooperative multi-agent robotic task.

Your team’s task is:

CURRENT TASK
—

Your team’s previous state action pairs at each step are:

STEP HISTORY
—

Your team’s current state and available actions are:

GLOBAL STATE
—

Now your job is to provide the next best action for each agent. You must provide a single action for
each agent. These actions must be exactly ONE of the agent’s available actions, including the ’do
nothing’ action. Do not propose multiple actions per agent.

Specify your action plan in the following format with agent names in all caps:

<reasoning>(any reasoning or calculations)</reasoning>

<AGENT>’MY NEXT ACTION’</AGENT>

For example:

<AGENT A>’action’</AGENT A>
<AGENT B>’action’</AGENT B>

Make sure you include enough details in each action such as explicit target coordinate locations.

30



Published in Transactions on Machine Learning Research (12/2025)

A.13 Prompts of HMAS-2: Feedback

Prompt for HMAS-2: Feedback

You are AGENT X, an AGENT-TYPE Agent in a cooperative multi-agent robotic task.

Your team’s task is:

CURRENT TASK
—

Your team’s previous state action pairs at each step are:

STEP HISTORY
—

Your team’s current state and available actions are:

GLOBAL STATE
—

The initial action plan from the central planner is:

INITIAL PLAN
—

Now your job is to provide feedback to the action plan specifically regarding your agent. If the plan is
satisfactory, the feedback should only be ’ACCEPT’.

Remember, you are AGENT X an AGENT-TYPE Agent, located at POSITION.

<reasoning>(any reasoning or calculations)</reasoning>

<feedback>’feedback’</feedback>

31



Published in Transactions on Machine Learning Research (12/2025)

A.14 Baseline Pseudo Codes

A.14.1 CAMON Algorithm

Algorithm 1: CAMON Implementation
Data: Agent set A, environment env, time limit Tmax, target score MaxScore, task task

1 Leader← A[0];
2 state← env.reset();
3 for t← 1 to Tmax do
4 GlobalData← {};

/* Parsing Observations and Generating Perceptions */
5 foreach a ∈ A do
6 oa ← GetObservationa(state);
7 pa ← LLM_GeneratePerceptiona(oa);
8 agentDataa ← (pa, actiona, Ha);
9 append agentDataa to GlobalData;

/* Generating Plan */
10 foreach a ∈ A do
11 if actiona ̸= None then
12 continue;
13 if a = Leader then
14 plan← LLM_GeneratePlana(task, A, GlobalData, Ma);
15 else
16 proposal← LLM_ProposePlana(task, pa, Ha, Ma);
17 plan← LLM_LeaderResponseleader(proposal, task, Ma, GlobalData);
18 Leader← a

/* Assigning tasks to agents */
19 foreach taska ∈ plan do
20 actiona ← LLM_TranslateAction(taska);

21 E ← {};
/* Executing Actions */

22 foreach a ∈ A do
23 ea ← ExecuteAction(actiona);
24 if action is complete then
25 append actiona to Ha;
26 actiona = None;
27 E[a]← ea;
28 (state, score)← env.step(E);
29 if score ≥ MaxScore then
30 break;

In our CAMON Implementation, a leader agent is initially chosen as shown in line 1. Then, for each
timestep, each agent parses their observations(oa) from the environment states, and then generates a text
perception (pa) given those observations through the Perception module (A.2). This perception (pa) is
combined with the agent’s current action (actiona) and its action history (Ha) to create agentDataa, which
is then appended to the GlobalData.

Then, each agent checks their current action (actiona). If it is still active (meaning it is multi-step and not
complete), the agent will do nothing, as seen in line 12.

If not, and the agent is the leader agent, it will independently generate a new team plan through
LLM_GeneratePlana (A.5) in line 14. If the agent is not the leader agent, instead it will propose a

32



Published in Transactions on Machine Learning Research (12/2025)

plan through LLM_ProposePlana(A.6), in line 16. This plan will then be reviewed by the leader agent
through LLM_ReviewPlanleader(A.7)in line 17. Then the agent will become the new leader agent.

Next, the finalized plan will be parsed into tasks for each agent and translated into a standardized action
format through LLM_TranslateActiona (A.4) in line 20. This action (actiona) will be each agent’s active
action.

Now since all agents have an active action, each agent will generate an executable vector (ea) through our
Execution Module in line 23. If the current action (actiona) is complete or single-step, it will then be set
to None and appended to the agent’s action history.

Lastly, all executable tensors will be combined and executed within the Wildfire Environment in line 28. If
the max score has been reached, the algorithm ends.

33



Published in Transactions on Machine Learning Research (12/2025)

A.14.2 COELA Algorithm

Algorithm 2: COELA Implementation
Data: Agent set A, environment env, time limit Tmax, target score MaxScore, task task

1 state← env.reset();
2 M← {}
3 for t← 1 to Tmax do

/* Parsing Observations and Generating Perceptions */
4 foreach a ∈ A do
5 oa ← GetObservationa(state);
6 pa ← LLM_GeneratePerceptiona(oa);

/* Proposing Message and Choosing Action */
7 foreach a ∈ A do
8 if actiona ̸= None then
9 continue;

10 proposedMessage← LLM_ProposeMessagea(task, pa,Ha,M);
11 chosenAction← LLM_ChooseActiona(task, proposedMessage, pa,Ha,M);
12 if chosenAction = proposedMessage then
13 append proposedMessage to M
14 actiona ← NoAction
15 else
16 actiona ← LLM_TranslateAction(chosenAction);

17 E ← {};
/* Executing Actions */

18 foreach a ∈ A do
19 ea ← ExecuteAction(actiona);
20 if action is complete then
21 append actiona to Ha;
22 actiona = None;
23 E[a]← ea;
24 (state, score)← env.step(E);
25 if score ≥ MaxScore then
26 break;

In our COELA Implementation, our message history (M) is initially empty in line 2. Then, for each timestep,
each agent parses their observations(oa) from the environment states, and then generates a text perception
(pa) given those observations through the Perception module (A.2).

Then, each agent checks their current action (actiona). If it is still active (meaning it is multi-step and not
complete), the agent will do nothing, as seen in line 9.

However, if not, each agent proposes a message to send through LLM_ProposeMessagea (A.8) given the team’s
task, the agent’s perception (pa), the agent’s action history (Ha), and the team’s chat history (M).

Then, given the proposed message, through LLM_ChooseActiona (A.9), the agent chooses to execute an action
or to send the proposed message.

If the agent chooses to send the proposed message, then that message is appended to the message history
(M) and No Action is chosen in lines 13-14.

However, if the agent chooses a different action, that action is translated into a standardized action format
through LLM_TranslateActiona (A.4) in line 16. This action (actiona) will be each agent’s active action.

34



Published in Transactions on Machine Learning Research (12/2025)

Now since all agents have an active action (including No Action), each agent will generate an executable
vector (ea) through our Execution Module in line 19. If the current action (actiona) is complete or
single-step, it will then be set to None and appended to the agent’s action history.

Lastly, all executable tensors will be combined and executed within the Wildfire Environment in line 24. If
the max score has been reached, the algorithm ends.

35



Published in Transactions on Machine Learning Research (12/2025)

A.14.3 Embodied Algorithm

Algorithm 3: Embodied Implementation
Data: Agent set A, environment env, time limit Tmax, task task, communication rounds C

1 state← env.reset();
2 for t← 1 to Tmax do

/* Parsing Observations and Generating Perceptions */
3 foreach a ∈ A do
4 oa ← GetObservation(a, state);
5 pa ← LLM_GeneratePerception(a, oa);

/* Communication Rounds */
6 for c← 1 to C do
7 foreach a ∈ A do
8 messagesa ← LLM_GenerateMessages(task, pa, Ha, Ma);
9 foreach (recipient, msg) ∈ messagesa do

10 append msg to Ma;
11 append msg to Mrecipient;

/* Generating Actions */
12 foreach a ∈ A do
13 generatedAction← LLM_GenerateActiona(task, pa, Ha, Ma);
14 actiona ← LLM_TranslateAction(generatedAction)
15 E ← {};

/* Executing Actions */
16 foreach a ∈ A do
17 ea ← ExecuteAction(actiona);
18 if action is complete then
19 append actiona to Ha;
20 actiona = None;
21 E[a]← ea;
22 (state, score)← env.step(actions);
23 if score ≥ MaxScore then
24 break;

In our Embodied Implementation, we start each timestep with all agents parsing their observations (oa) from
the environment state in line 4, and then generating a text perception (pa) given those observations through
the Perception module (A.2) in line 5.

Then, for c communication rounds, each agent generates messages for any recipient agent through
LLM_GenerateMessagesa (A.10) in line 8, given the team’s task, the agent’s perception, action history
((Ha), and message history (Ma). These messages are then parsed and added to the corresponding agents’
message histories ((Mrecipient) in line 11.

Then after all communication rounds, each agent generates their next action with LLM_GenerateMessagesa

(A.11) in line 13, given the team’s task, the agent’s perception, action history (Ha), and message history (Ma).
This generated action is then translated into a standardized action format through LLM_TranslateActiona

(A.4) in line 14. This action (actiona) will be each agent’s active action.

Now since all agents have an active action (including No Action), each agent will generate an executable
vector (ea) through our Execution Module in line 17. If the current action (actiona) is complete or
single-step, it will then be set to None and appended to the agent’s action history.

Lastly, all executable tensors will be combined and executed within the Wildfire Environment in line 22. If
the max score has been reached, the algorithm ends.

36



Published in Transactions on Machine Learning Research (12/2025)

A.14.4 HMAS-2 Algorithm

Algorithm 4: HMAS Implementation
Data: Agent set A, environment env, time limit Tmax, task task

1 Leader← A[0];
2 GlobalState← {};
3 StepHistory← {};
4 state← env.reset();
5 for t← 1 to Tmax do

/* Parsing Observations and Generating Perceptions */
6 foreach a ∈ A do
7 oa ← GetObservation(a, state);
8 pa ← LLM_GeneratePerception(a, oa);
9 append pa to GlobalState[a];

/* Iterating Plans */
10 valid← False
11 while valid = False do
12 valid← True
13 plan← LLM_GeneratePlanleader(task, GlobalState, StepHistory, Review);

/* Reviewing Plan */
14 Review = {}
15 foreach a ∈ A do
16 feedbacka ← LLM_ReviewPlana(plan, GlobalState, Step History);
17 if feedbacka is REJECT then
18 append feedbacka to Review;
19 valid← False;

20 foreach taska ∈ plan do
21 actiona ← LLM_TranslateAction(taska)

/* Executing Actions */
22 actions← {};
23 foreach a ∈ A do
24 ea ← ExecuteAction(actiona);
25 if action is complete then
26 append actiona to Ha;
27 actiona = None;
28 E[a]← ea;
29 append (GlobalState, actions) to StepHistory;
30 (state, score)← env.step(actions);
31 if score ≥ MaxScore then
32 break;

In our HMAS-2 Implementation, a leader agent initially is chosen shown in line 1. Then, for each timestep,
each agent parses their observations(oa) from the environment states, and then generates a text perception
(pa) given those observations through the Perception module (A.2). This perception(pa) is then appended
to the GlobalState.

Then, the leader agent generates a plan for the team through LLM_GeneratePlanleader (A.12) given the
team’s task, the Global State, the Step History, and reviews from other agents in line 13. This will provide
the leader agent with all agents’ current perceptions and past perceptions and actions.

37



Published in Transactions on Machine Learning Research (12/2025)

Then each agent will review the plan and provide feedback through LLM_ReviewPlana (A.13) in line 16. If
the feedback is to reject the plan, the feedback will be appended to Review and valid will be set to False.
This will cause lines 12-19 to be repeated, reiterating the plan.

When the plan does not have any rejection, the finalized plan will be parsed into tasks for each agent and
translated into a standardized action format through LLM_TranslateActiona (A.4) in line 20. This action
(actiona) will be each agent’s active action.

Now, since all agents have an active action, each agent will generate an executable vector (ea) through our
Execution Module in line 23. If the current action (actiona) is complete or single-step, it will then be set
to None and appended to the agent’s action history.

Lastly, all executable tensors will be combined and executed within the Wildfire Environment in line 28. If
the max score has been reached, the algorithm ends.

38



Published in Transactions on Machine Learning Research (12/2025)

A.15 VLM vs. Perception Module Ablation Study

We conducted an evaluation to assess the accuracy of our perception module versus the GPT4o VLM on 100
sample observations. Given the same game frames, the perception module received the associated minimap
ASCII representation while the VLM received the image directly. Both were prompted by the same perception
prompt (see Appendix A.2), with slight adjustments where the VLM was given a color key instead of an
ASCII key.

An unbiased JudgeLLM (GPT4o) judged both perception summaries against the ground truth data with
respect to accuracy in locating features such as fires and civilians. The prompt for the Judge LLM is as
follows:

JudgeLLM Evaluation Prompt

Ground Truth Data (extracted from the environment): {ground_truth_json}
Perception Text to Evaluate: "{perception_text}"
Evaluate this perception text and provide:

1. Fire Detection Score (0-10): How accurately did it identify fires (ignited, on fire, extinguishing
cells)?

2. Civilian Detection Score (0-10): How accurately did it identify civilians?

Respond using this format:
<fire_score>NUMBER</fire_score> <civilian_score>NUMBER</civilian_score> <explanation>
Brief explanation of your scoring </explanation>

Figure 9: Behavior Competency Scores (BCS) by algorithm.

These figures demonstrate that the perception module is more accurate in our setting and does not significantly
lag in terms of speed or cost.

39



Published in Transactions on Machine Learning Research (12/2025)

A.16 Computational Performance

Table 6: Resource usage with 20 agents across different map sizes.

Map Length (cells) CPU Usage (%) RAM Usage
250 (62,500) 27.2 206 MB
400 (160,000) 30.1 262 MB
600 (360,000) 25.5 353 MB
800 (640,000) 26.8 482 MB
1000 (1,000,000) 36.4 604 MB

Table 7: Resource usage with different agent counts on a 100-size map.

Agent Count CPU Usage (%) RAM Usage
20 Agents 25.4 182 MB
100 Agents 27.5 266 MB
500 Agents 20.0 1034 MB
1000 Agents 21.6 1990 MB
2000 Agents 25.3 3835 MB

40



Published in Transactions on Machine Learning Research (12/2025)

A.17 Emergent behaviors observed in dialogues

Table 8: Examples each CREW-Wildfire Behavioral Goals

Behavioral Goal Explanations Examples of dialogue snippets that
reflect such behaviors

Task Designation (TD) Agents explicitly split tree-
cutting targets so no effort
overlaps.

We should divide the target locations...
– AGENT_1 → (11, 16) to cut trees.
– AGENT_2 → (13, 16) to cut trees.
– AGENT_3 → (11, 3) to cut trees.

Agent Capitalization (AC) Firefighter delegates tree-line
task to Bulldozer with superior
cutting.

AGENT_1: “Since you have exceptional
tree-cutting abilities, could you focus on the
line from (26, 6) to (26, 10)? AGENT_2
and I will support you as needed.”
AGENT_3: “Confirmed, I will focus on
cutting trees from (26, 6) to (26, 10). Cur-
rently moving towards the target area.”

Spatial Reasoning (SR) Uses relative offsets to locate
and frame the fire zone spa-
tially.

“AGENT_3 at (130, 200). Fire roughly
12 E / 11 S. Requesting confirmation assis-
tance.”

Observation Sharing (OS) Broadcasts civilian position
and hazard status for rescue
action.

“AGENT_5: Four civilians at (230, 124).
No fires. Request Firefighters to escort to
safe zone.”

Realtime Coordination (RC) Synchronizes boarding with he-
licopter arrival.

AGENT_1: “All agents, prepare for
transport by AGENT_7. We will move
towards the target location [92.0, 11.0]”
AGENT_5: “Ready for transport.
AGENT_7, please initiate pick-up and
transport operation as planned”
AGENT_7: “Initiating pick-up and
transport operation”
AGENT_7: “Confirming all Firefighter
Agents are on board. Departing now”

Plan Adaptation (PA) Detects new fire spread; re-
quests aerial support, altering
strategy.

“AGENT_12: Fire spreading north at (238,
198). Need aerial backup from Helicopter
13 ASAP.”

Objective Prioritization (OP) Balances search mission with
stand-by evacuation planning.

“AGENT_2 now searching for civilians
ahead of fire at (520, 565). Helicopter 10,
stay ready to assist evacuation.”

41



Published in Transactions on Machine Learning Research (12/2025)

A.17.1 Example Calculation of BCS for CAMON (algorithm) and Realtime Communication
(behavioral goal)

Level ℓ Raw score sa,ℓ Target Tℓ Baseline Bℓ NSa,ℓ

Transport FF (S) 6.00 6 0 1.000
Transport FF (L) 10.00 12 0 0.833
Rescue S + R + T 0.00 10 0 0.000
Suppress L + T + S −729.67 0 −929.67 0.281
Full Environment −5571.67 0 −5722.67 0.038

BCSCAMON,RC = 1.000 + 0.833 + 0.000 + 0.281 + 0.038
5 ≈ 0.430.

A.18 Behavior Competency Scores (BCS) Radar Chart

Figure 10: Behavior Competency Scores (BCS) by algorithm.

42



Published in Transactions on Machine Learning Research (12/2025)

A.19 Random Seeds and Other Hyperparameters

For all the LLMs, we set the temperature to 0 to achieve deterministic results and a single completion per
decision step. All experiments used GPT-4o (model ID: gpt-4o-2024-08-06) with a context window of 128,000
tokens.

Baseline-specific hyperparameters were set as follows:

• Embodied Implementation:

– Communication Rounds per Timestep: 2
– Message Lifespan: 3 timesteps

• COELA:

– Max Messages: 30 messages per chat history

Note: COELA uses a maximum message count while Embodied uses message lifespan because COELA
maintains a single continuous chat while Embodied uses independent chats that are synchronized.

The generation seeds for the tasks are listed in Tab. 9.

Table 9: Seeds Used Across All Levels

Level Seeds Used
Cut Trees: Sparse (Small) 375, 483, 43, 6370, 9964, 2097, 25808, 83248, 48320, 94510
Cut Trees: Sparse (Large) 212, 981, 1530, 5382, 9405
Cut Trees: Lines (Small) 9259, 4881, 8456, 59497, 66768, 78914
Cut Trees: Lines (Large) 820, 5406, 6503
Scout Fire (Small) 4651, 6841, 7593, 1012, 8528, 29751, 36346, 42589, 43846, 62563
Scout Fire (Large) 5324, 3603, 8592, 43126, 70576
Transport Firefighters (Small) 283, 2461, 2478, 7622, 7647
Transport Firefighters (Large) 741, 7305, 9528, 8079, 6232
Rescue Civilians: Known Location (Small) 9502, 3972, 6545, 5884, 8491, 7723, 30743, 51358
Rescue Civilians: Known Location (Large) 7979, 1539, 2269, 7152, 5226
Rescue Civilians: Search and Rescue 966, 7377, 7285
Rescue Civilians: Search + Rescue + Transport 8208, 150, 2577
Suppress Fire: Extinguish 2994, 4936, 4847
Suppress Fire: Contain 733, 7765, 8049
Suppress Fire: Locate and Suppress 5280, 2142, 2628
Suppress Fire: Locate + Transport + Suppress 6309, 3821, 6117
Full Environment 6434, 9424, 9500

43


	Introduction
	Related Works
	The CREW-Wildfire Environment
	Preliminaries
	Environment Design
	Agent Design
	Perception and Execution Modules

	Pillars of CREW-Wildfire Design

	CREW-Wildfire Benchmarking Suite
	Benchmark Experiments
	Experiment Setup
	Results and Findings
	Behavioral Analysis
	Outlook

	Limitations
	Conclusion
	Appendix
	Map Generation and Evaluation Process
	Perception Module
	Primitives
	Execution Module
	Prompts of CAMON Generate Plan
	Prompts of CAMON Propose Plan
	Prompts of CAMON Review Plan
	Prompts of COELA: Propose Message
	Prompts of COELA: Choose Action
	Prompts of Embodied: Generate Communications
	Prompts of Embodied: Generate Actions
	Prompts of HMAS-2: Central Planner
	Prompts of HMAS-2: Feedback
	Baseline Pseudo Codes
	CAMON Algorithm
	COELA Algorithm
	Embodied Algorithm
	HMAS-2 Algorithm

	VLM vs. Perception Module Ablation Study
	Computational Performance
	Emergent behaviors observed in dialogues
	Example Calculation of BCS for CAMON (algorithm) and Realtime Communication (behavioral goal)

	Behavior Competency Scores (BCS) Radar Chart
	Random Seeds and Other Hyperparameters


