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Abstract

Semantic Textual Similarity (STS) constitutes a001
critical research direction in computational lin-002
guistics and serves as a key indicator of the003
encoding capabilities of embedding models.004
Driven by advances in pre-trained language005
models and contrastive learning techniques,006
leading sentence representation methods can007
already achieved average Spearman’s correla-008
tion scores of approximately 86 across seven009
STS benchmarks in SentEval. However, fur-010
ther improvements have become increasingly011
marginal, with no existing method attaining an012
average score higher than 87 on these tasks.013
This paper conducts an in-depth analysis of014
this phenomenon and concludes that the up-015
per limit for Spearman’s correlation scores us-016
ing contrastive learning is 87.5. To transcend017
this ceiling, we propose an innovative approach018
termed Pcc-tuning, which employs Pearson’s019
correlation coefficient as a loss function to020
refine model performance beyond contrastive021
learning. Experimental results demonstrate that022
Pcc-tuning markedly surpasses previous state-023
of-the-art strategies, raising the Spearman’s cor-024
relation score to above 90. 1025

1 Introduction026

As a fundamental task within Natural Language027

Processing (NLP), Semantic Textual Similarity028

(STS) is not only widely applied across various029

real-world scenarios including text clustering, in-030

formation retrieval, and dialogue systems, but also031

serves as a principal means for evaluating sentence032

embeddings (Gao et al., 2021).033

Sentence embeddings are vector encodings that034

encapsulate the semantic essence of original texts.035

Owing to their capacity to facilitate offline com-036

putation as well as their pivotal role in realizing037

retrieval-augmented generation (Zhao et al., 2024),038

1Our code and checkpoints are available at https://
anonymous.4open.science/r/Pcc-tuning.

research in this area has garnered considerable at- 039

tention from numerous institutions and scholars in 040

recent years. 041

The quality of sentence embeddings is typically 042

assessed via the SentEval (Conneau and Kiela, 043

2018) toolkit, which measures models based on 044

their average Spearman correlation across seven 045

STS benchmarks. With the continuous advance- 046

ment of pre-trained language models (PLMs), con- 047

trastive learning, and prompt engineering, cutting- 048

edge work in this field has elevated the scores 049

on the leaderboard from an initial 60 (Pennington 050

et al., 2014) to about 86 (Jiang et al., 2023b). As a 051

result, the "PLM + contrastive learning" framework 052

has become the mainstream paradigm in sentence 053

representation research. 054

However, as illustrated in Table 1, models’ 055

performance on standard STS tasks in SentE- 056

val appears to have hit a significant bottleneck. 057

Whether utilizing classical discriminative PLMs 058

such as BERT (Devlin et al., 2019) or emerging 059

generative PLMs like LLaMA2 (Touvron et al., 060

2023b) and Mistral (Jiang et al., 2023a), contempo- 061

rary state-of-the-art (SOTA) strategies are unable 062

to achieve Spearman’s correlation scores higher 063

than 87. Moreover, despite variations in training 064

datasets, contrastive learning loss functions, and 065

model architectures, the final scores are generally 066

similar if the same type of PLM is selected. 067

In this regard, Li and Li (2023b) posit that 068

PLMs may have reached their performance limits 069

in STS tasks. However, this paper will demonstrate 070

through rigorous mathematical derivation that the 071

core factor causing this performance ceiling is not 072

the inadequacy of PLMs, but the inherent flaws in 073

contrastive learning loss functions. Specifically, 074

contrastive learning only distinguishes between 075

two categories: similar and dissimilar, in determin- 076

ing the semantic relationships between text pairs. 077

This binary classification strategy restricts its max- 078

imum achievable Spearman’s correlation score to 079
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Methods PLMs Spearman

SimCSE BERT110m 81.57
PromptBERT BERT110m 81.97

PromCSE BERT110m 82.13
SuCLSE BERT110m 82.17

SimCSE ♢ LLaMA27b 85.24
PromptEOL ♠ LLaMA27b 85.40
PromCSE ♢ LLaMA27b 85.70

AngIE ♢ LLaMA27b 85.96
DeeLM ♢ LLaMA27b 86.01

PromptEOL ♠ Mistral7b 85.50
PromptSTH ♠ Mistral7b 85.66
PromptSUM ♠ Mistral7b 85.83

Table 1: Average Spearman’s correlation scores ob-
tained by SOTA methods on the seven STS benchmarks
collected in SentEval. ♢: results from (Li and Li,
2023b). ♠: results from (Zhang et al., 2024).

87.5, even under optimal conditions.080

Following this proof, we introduce Pcc-tuning,081

a novel approach that employs a two-stage train-082

ing process. This method enhances models’ se-083

mantic discrimination capabilities by utilizing a084

small amount of fine-grained annotated data post085

contrastive learning. With the same 7B-scale gen-086

erative PLM, Pcc-tuning can achieve an average087

Spearman’s correlation score exceeding 90 on the088

aforementioned seven STS tasks, significantly sur-089

passing previous best results.090

The main contributions of this study are outlined091

as follows:092

• By analyzing the theoretical limits of binary093

classifiers in STS tasks, we demonstrate that094

the upper bound of Spearman’s correlation095

scores using contrastive learning methods is096

87.5. This finding effectively explains the097

performance bottlenecks encountered by prior098

sentence representation strategies.099

• Building upon this, we propose Pcc-tuning,100

a method capable of taking full advantage of101

fine-grained labeled data with Pearson corre-102

lation as its loss function. After fine-tuning103

PLMs with contrastive learning, we only need104

to introduce annotated text pairs amounting105

to 3.7% of the original training set to bring106

notable performance improvements.107

• We extensively validate the effectiveness of108

Pcc-tuning across internationally recognized109

STS benchmarks and seven transfer tasks. Ex- 110

perimental results show that Pcc-tuning signif- 111

icantly outperforms previous SOTA methods 112

across different PLMs and prompts. 113

2 Understanding the Performance Upper 114

Bound of Contrastive Learning 115

2.1 Contrastive Learning and Binary 116

Classifiers 117

Currently, leading approaches for sentence repre- 118

sentation predominantly center around contrastive 119

learning, with InfoNCE Loss (Oord et al., 2018) 120

being the most commonly adopted loss function. 121

Given an input text xi, InfoNCE Loss computes the 122

similarity between this sample and its positive ex- 123

ample x+i in the numerator, and contrasts it with the 124

similarity calculations between xi and other texts 125

within the same batch in the denominator. This 126

formulation aims to bring similar instances closer 127

while pushing dissimilar ones apart. The mathe- 128

matical expression for InfoNCE Loss is presented 129

in Equation 1, where f(·) denotes the encoding 130

method, N represents the batch size, and τ signi- 131

fies a temperature hyperparameter. 132

ℓi = −log
ecos(f(xi),f(x

+
i ))/τ∑N

j=1 e
cos(f(xi),f(x

+
j ))/τ

(1) 133

Equation 1 reveals that contrastive learning loss 134

functions, exemplified by InfoNCE Loss, essen- 135

tially classify sentence pairs into two distinct 136

classes: similar and dissimilar. However, no further 137

distinctions are made within these two categories. 138

In other words, as long as xi is semantically dif- 139

ferent from xj or xk, InfoNCE Loss treats both 140

(xi, xj) and (xi, xk) as negative sample pairs. As 141

for which of (xi, xj) and (xi, xk) exhibits a lower 142

degree of similarity, contrastive learning neither 143

concerns itself with this information nor can it read- 144

ily leverage such details. Indeed, for the majority of 145

embedding models, their training sets are specially 146

adjusted to provide coarse-grained categorical an- 147

notations, so as to better align with the contrastive 148

learning framework (Gao et al., 2021). 149

Therefore, for a set of text pairs {(xi, x?i )}n1 , the 150

optimal scenario for contrastive learning methods 151

is to classify the k most similar pairs as positive and 152

the remaining n− k pairs as negative. This setup 153

ensures that there are no inversions in the predicted 154

scores provided by the model. Such an ideal state 155

for contrastive learning models functions similarly 156
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to an optimal binary classifier, as illustrated in Fig-157

ure 1. This classifier segments the dataset into two158

groups based on a threshold k, assigning a positive159

label to all samples above the threshold and a neg-160

ative label to those below. Analyzing the efficacy161

of this binary classifier reveals the performance162

boundary of contrastive learning.

Figure 1: Illustration of the operation of an optimal
binary classifier in handling STS tasks. Although the
actual similarity scores of the text pairs are a series
of floating-point numbers, the binary classifier focuses
solely on categorizing them into two classes: similar
and dissimilar, without modeling the variability within
each category.

163

2.2 Spearman’s Correlation Coefficient164

Before deriving the performance upper bound of165

contrastive learning methods on STS tasks, it is166

essential to introduce Spearman’s correlation coef-167

ficient, the primary evaluation metric in this field.168

This statistic measures the ordinal consistency be-169

tween the cosine similarity of embeddings and hu-170

man ratings, as defined by Equation 2:171

ρ = 1− 6
∑

d2i
n(n2 − 1)

(2)172

In this formula, n represents the number of data173

points, and di is the difference between the rank174

of the i-th sentence pair’s cosine similarity after 175

encoding into embeddings and its human-judged 176

similarity rank. Particularly, when multiple entries 177

share the same rating, their ranks are substituted 178

with their mean rank during the computation of 179

Equation 2. 180

Spearman’s correlation coefficient, ranging from 181

[−1, 1], indicates stronger consistency between 182

model outputs and human evaluations as it ap- 183

proaches 1. Typically, the coefficient is multiplied 184

by 100 to yield a percentage score, facilitating more 185

straightforward comparisons of encoding effective- 186

ness across different models. 187

2.3 The Spearman Correlation Upper Limit 188

of Contrastive Learning Methods 189

As discussed in Section 2.1, contrastive learning 190

differentiates texts based on binary semantic rela- 191

tions: similar and dissimilar. Thus, its effectiveness 192

parallels that of a binary classifier. This section de- 193

rives the optimal Spearman correlation achievable 194

by a binary classifier in STS tasks, thereby eluci- 195

dating the performance upper bound of contrastive 196

learning methods. 197

Given a collection of text pairs X = {(xi, x?i )}n1 198

comprising n samples, we initially arrange the 199

elements of X in descending order according to 200

manually annotated semantic similarity, yielding 201

the sorted set Y = {(yi, y?i )}n1 . Assume that 202

cos(yk, y
?
k) > cos(yk+1, y

?
k+1),∀k ∈ [1, n − 1]. 203

Then, for any binary classifier, its performance 204

reaches the optimum only when it categorizes the 205

first k sample pairs of Y as positive examples and 206

the remaining n−k sample pairs as negatives. Oth- 207

erwise, it indicates at least one misclassification. 208

Since this binary classifier is solely responsible 209

for constructing an optimal classification boundary 210

between the two categories of similarity and dissim- 211

ilarity (i.e., distinguishing only whether two texts 212

are semantically akin), its predicted score for the 213

first k samples is consistently identical (assumed 214

to be 1), and likewise for the last n − k samples 215

(assumed to be 0). By the definition of Spearman’s 216

correlation coefficient, the difference in rankings 217

between predictions and true values, di, alongside 218∑
d2i , can be represented as: 219

di = i− k + 1

2
, i = 1, 2, . . . , k

di = i− k + n+ 1

2
, i = k + 1, k + 2, . . . , n

(3) 220
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221 ∑
d2i =

k∑
i=1

(i−k + 1

2
)2+

n∑
i=k+1

(i−k + n+ 1

2
)2

(4)222

These equations showcase that
∑

d2i can be223

viewed as a function of k. Upon rearranging, we224

derive: (more details can be found in Appendix C.)225

∑
d2i =

k∑
i=1

(i− k + 1

2
)2 +

n∑
i=k+1

(i− k + n+ 1

2
)2

=

k∑
i=1

(i− k + 1

2
)2 +

n∑
i=k+1

(
(i− k + 1

2
)− n

2

)2

=

n∑
i=1

(i− k + 1

2
)2 + (n− k)

n2

4
− n

n∑
i=k+1

(i− k + 1

2
)

=

n∑
i=1

i2 +
n(k + 1)2

4
− n(n+ 1)(k + 1)

2
− n2(n− k)

4

=
n(n+ 1)(2n+ 1)

6
+

n

4

(
k2 − nk − (n+ 1)2

)
(5)226

In Equation 5, n remains constant, thus
∑

d2i is227

contingent on f(k) = k2 − nk − (n+ 1)2. When228

k = n
2 , i.e., when the model deems the first 50%229

of sample pairs as positives and the latter 50% as230

negatives, f(k) attains its minimum. Therefore,231

the minimum value of
∑

d2i is:232

min
(
k2 − nk − (n+ 1)2

)
=− 5n2

4
− 2n− 1

min(
∑

d2i ) =
n(n+ 1)(2n+ 1)

6
− n

4
(
5n2

4
+ 2n+ 1)

(6)233

Subsequently, by substituting min(
∑

d2i ) into234

the expression for Spearman’s correlation coeffi-235

cient (Equation 2), the maximum Spearman corre-236

lation achievable by this binary classifier is 0.875.237

This indicates that the optimal performance of con-238

trastive learning in STS tasks will not exceed 0.875.239

max(ρ) = 1− n2 − 4

8(n2 − 1)
=

7n2 − 4

8(n2 − 1)

lim
n→∞

max(ρ) = lim
n→∞

7n2 − 4

8(n2 − 1)
=

7

8
= 0.875

(7)240

Apart from the original InfoNCE Loss, an ex-241

tended contrastive learning loss function tailored242

for NLI datasets (Bowman et al., 2015; Williams243

et al., 2018), as shown in Formula 8, is frequently244

utilized in sentence representation research (Gao245

et al., 2021; Zhang et al., 2023). The incorporation246

of hard negative example x−j in the denominator,247

equivalent to enlarging the batch size, does not248

affect the correctness of our derivation. 249

−log ecos(f(xi),f(x
+
i

))/τ∑N
j=1

(
e
cos(f(xi),f(x

+
j

))/τ
+e

cos(f(xi),f(x
−
j

))/τ
)

(8) 250

It should be noted that the above conclusion has 251

been validated through numerous experiments. To 252

date, embedding derivation schemes based on con- 253

trastive learning have not achieved a Spearman’s 254

correlation score above 87. This theoretical anal- 255

ysis provides clear guidance for this empirical ob- 256

servation. 257

3 Proposed Method 258

This section introduces Pcc-tuning, an innovative 259

solution for STS tasks. Pcc-tuning employs a two- 260

stage training pipeline and is designed to surpass 261

the 87.5 performance upper bound of contrastive 262

learning methods. 263

The anisotropy of PLMs’ semantic space (Etha- 264

yarajh, 2019) presents a longstanding challenge 265

in sentence representation research. Contrastive 266

learning has proven effective in stabilizing embed- 267

ding distances among semantically similar texts 268

while ensuring a more uniform distribution of vec- 269

tor encodings (Gao et al., 2021), thereby markedly 270

enhancing the semantic space properties of PLMs. 271

Consequently, leveraging contrastive learning to 272

refine the initial state of pre-trained models has 273

emerged as a prevalent strategy within the NLP 274

community (Wang et al., 2022; Li et al., 2023). 275

Following this established practice, we initially 276

conduct supervised fine-tuning of the PLM using 277

the NLI dataset constructed by SimCSE (Gao et al., 278

2021). This dataset comprises 275,602 text pairs 279

in triplet form, providing a robust source of coarse- 280

grained labeled information for the model. Our im- 281

plementation in the first stage closely aligns with 282

that of PromptEOL (Jiang et al., 2023b), where we 283

load the original PLM checkpoint and fine-tune the 284

model with the extended InfoNCE Loss depicted 285

in Equation 8, combined with QLoRA (Dettmers 286

et al., 2024). A unique feature of our methodology 287

is the adoption of the PromptSTH template pro- 288

posed by Zhang et al. (2024): "This sentence : 289

‘[X]’ means something", which encapsulates the 290

input sentence [X] and extracts the encoding of the 291

final token as the sentence embedding. Later sec- 292

tions will examine the performance of Pcc-tuning 293

under various prompts. 294

After the contrastive learning phase, the seman- 295

tic space of the PLM will be adjusted to a superior 296
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Fun for adults and children.

Fun for both adults and children.

You can see that on television, as well.

Fun for only children.

well you see that on television also

You could never see that on TV.

It has been very intriguing.

well it's been very interesting

It hasn't been interesting.

T E

T

E

T E

some men are fighting.

two men are fighting.

a man is smoking.

a man is skating.

a woman is eating something.

a woman is eating meat.

loadsame

Figure 2: The overall architecture of Pcc-tuning. By default, we use "This sentence : ‘[X]’ means something"
(Zhang et al., 2024) as the manual template for both stages. In the diagram, hi denotes the embedding of sentence si
after model encoding, cosi represents the cosine similarity between hi and h?

i , while scorei is the human-annotated
similarity score for si and s?i .

encoding state, capable of generating high-quality297

embeddings. However, the inability of InfoNCE298

Loss to harness fine-grained annotation information299

leads to a pronounced performance bottleneck for300

contrastive learning methods in STS tasks. To miti-301

gate this issue, a finer distinction is required within302

the two categories of similarity and dissimilarity,303

along with introducing the ordinal relationships of304

text pairs in terms of semantic similarity.305

The optimal strategy is to incorporate fine-306

grained annotated data in the second stage and307

guide the model’s training process via Spearman’s308

correlation coefficient. This ensures maximum con-309

sistency between the model’s behavior during train-310

ing and testing phases. However, as Spearman cor-311

relation is non-differentiable and thus incompatible312

with backpropagation, we opt for Pearson’s correla-313

tion coefficient to update model parameters, which314

also serves as the inspiration for the name Pcc-315

tuning. Pearson correlation and our loss function316

in the second stage are shown in Equation 9, where317

X represents the cosine similarity between model-318

derived embeddings, and Y denotes the human-319

annotated scores for the text pairs. 320

r =
cov(X,Y)
σXσY

ℓp = −r + 1 ∈ [0, 2]

(9) 321

Concretely, for a batch of text pairs {(xi, x?i )}N1 , 322

we first invoke the PLM to encode xi and x?i , ob- 323

taining f(xi) and f(x?i ). Then, we directly com- 324

pute their cosine similarity and store the result in 325

X = {cos(f(xi), f(x?i ))}N1 . Subsequently, we in- 326

put X and the true similarity scores Y = {yi}N1 327

into Equation 9 to calculate the loss. 328

Employing Pearson coefficient as the loss func- 329

tion enables effective utilization of fine-grained an- 330

notation information and supports diverse combina- 331

tions with a small volume of data. For instance, the 332

tuning dataset in our second stage consists of the 333

training sets of STS-B (Cer et al., 2017) and SICK- 334

R (Marelli et al., 2014), which together contain 335

10,249 text pairs. This number merely represents 336

3.7% of the first-stage training dataset, yet their 337

combination varieties reach up to CN
10249. There- 338

fore, even with multiple epochs of training, the 339
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similarity ranking of samples in each batch is un-340

likely to repeat.341

Figure 2 provides a detailed illustration of Pcc-342

tuning’s training process. In the first stage, we343

fine-tune the model using contrastive learning and344

the NLI dataset. In the second stage, we introduce345

a small amount of fine-grained annotated data and346

load the checkpoint from the first phase to further347

update the model parameters via Pearson’s correla-348

tion coefficient.349

4 Experiments350

This section presents the experimental results of351

Pcc-tuning. Initially, in subsection 4.1, we elabo-352

rate on our experimental setup, including evalua-353

tion methods, datasets, and the selection of base-354

lines. Subsequently, in subsection 4.2, we compare355

the performance of Pcc-tuning with contemporary356

SOTA text representation strategies on internation-357

ally recognized STS benchmarks. Finally, in sub-358

section 4.3, we validate the efficacy of Pcc-tuning359

under diverse prompts.360

4.1 Implementation Details361

In line with prior studies (Gao et al., 2021; Jiang362

et al., 2022, 2023b), we utilize the SentEval (Con-363

neau and Kiela, 2018) toolkit to assess our model364

across seven STS tasks, with Spearman’s correla-365

tion coefficient as the core metric.366

As outlined in Section 3, Pcc-tuning incorpo-367

rates a two-stage training pipeline. The respective368

training sets originate from the NLI dataset orga-369

nized by SimCSE (Gao et al., 2021), containing370

275,602 text pairs, and a mixed dataset composed371

of the training sets from STS-B and SICK-R, total-372

ing 10,249 text pairs. In all experiments, only dur-373

ing the testing phase can models access data from374

the evaluation benchmarks. It is noteworthy that375

although Pcc-tuning requires specific corpora at376

both stages, the total data volume employed is only377

285,851 entries. In contrast, the publicly available378

training data for the current SOTA method, DeeLM379

(Li and Li, 2023b), includes 480,862 triplet text380

pairs, with additional data remaining inaccessible.381

Our experiments are conducted using sev-382

eral widely adopted 7B-scale generative PLMs:383

OPT6.7b (Zhang et al., 2022), LLaMA7b (Tou-384

vron et al., 2023a), LLaMA27b, and Mistral7b. To385

clearly demonstrate the superiority of Pcc-tuning,386

we primarily compare it against current SOTA387

strategies. Specifically, among our selected base-388

lines, PromptEOL (Jiang et al., 2023b), Prompt- 389

STH (Zhang et al., 2024), AngIE (Li and Li, 390

2023a), and DeeLM (Li and Li, 2023b) are leading 391

generative PLM sentence representation methods, 392

which significantly outperform BERT-based ap- 393

proaches on STS benchmarks. Meanwhile, openai- 394

ada-002, jina-base-v2 (Günther et al., 2023), and 395

nomic-embed-v1 (Nussbaum et al., 2024) represent 396

the most advanced contrastive learning pre-trained 397

models at present. 398

4.2 Main Results 399

Table 2 summarizes the results of the above ex- 400

periments. Under all tested PLMs, Pcc-tuning 401

consistently transcends the 87.5 Spearman correla- 402

tion upper bound of contrastive learning methods, 403

achieving an impressive average score of approx- 404

imately 90. Notably, when employing Mistral7b 405

as the backbone, Pcc-tuning attains a Spearman’s 406

correlation score of 90.61, substantially surpass- 407

ing the previous record of 86.01 set by DeeLM. 408

Moreover, Pcc-tuning excels beyond prior SOTA 409

methods in each of the seven STS tasks aggregated 410

within SentEval, manifestly affirming its efficacy. 411

These outcomes collectively underscore the crucial 412

role of modeling fine-grained annotated informa- 413

tion in STS tasks. 414

Furthermore, since Pcc-tuning’s first-stage im- 415

plementation mirrors that of PromptSTH, the com- 416

parison between Pcc-tuning and PromptSTH in 417

Table 2 also functions as an ablation study. It 418

reveals that, constrained by the coarse granular- 419

ity of contrastive learning, whether adopting the 420

earlier released OPT model or the newly open- 421

sourced Mistral model, the Spearman’s correla- 422

tion scores for PromptSTH are confined between 423

85.3 to 85.7, showing limited progress. In con- 424

trast, Pcc-tuning provides improvements of about 425

5 percentage points, reaffirming the mathematical 426

derivations discussed in Section 2. 427

In addition to challenges in fully harnessing fine- 428

grained annotated data, another significant draw- 429

back of contrastive learning is the need for large 430

batch sizes to prevent model collapse, which con- 431

sumes substantial computational resources (Jiang 432

et al., 2023b; Zhang et al., 2024). To explore the im- 433

pact of batch size on Pcc-tuning’s performance, we 434

conduct experiments detailed in Appendix A. The 435

findings indicate that Pcc-tuning exhibits strong 436

robustness to varying batch sizes. Additionally, we 437

also assess Pcc-tuning on seven transfer tasks, with 438

outcomes recorded in Appendix B. 439
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Methods STS-12 STS-13 STS-14 STS-15 STS-16 STS-B SICK-R Avg.

Pre-trained Embedding Models

openai-ada-002 § 69.80 83.27 76.09 86.12 85.96 83.17 80.60 80.72
jina-base-v2 ‡ 74.28 84.18 78.81 87.55 85.35 84.85 78.98 82.00

nomic-embed-v1 ‡ 65.19 81.67 74.00 83.58 81.87 76.43 75.41 76.88

Fine-tuning Strategies

Previous SOTA methods. Implementation on LLaMA27b
SimCSE ♢ 78.39 89.95 84.80 88.50 86.04 87.86 81.11 85.24

PromptEOL 79.24 90.31 84.74 88.72 86.01 87.87 80.94 85.40
AnglE ♢ 79.00 90.56 85.79 89.43 87.00 88.97 80.94 85.96
DeeLM ♢ 79.01 90.32 85.84 89.47 87.18 89.15 81.08 86.01

Implementation on OPT6.7b

PromptSTH 79.30 89.59 84.69 89.17 85.96 88.36 81.51 85.51
Pcc-tuning 82.83 93.30 92.66 93.09 87.44 90.34 86.24 89.41

Implementation on LLaMA7b

PromptSTH 78.48 90.09 85.10 88.71 85.93 88.51 80.95 85.40
Pcc-tuning 84.40 94.40 93.15 93.49 88.62 90.86 87.08 90.29

Implementation on LLaMA27b
PromptSTH 79.12 89.94 84.54 88.57 86.05 87.82 81.10 85.31
Pcc-tuning 84.22 94.37 93.49 93.49 88.62 90.95 87.22 90.34

Implementation on Mistral7b
PromptSTH 79.19 89.70 85.07 88.88 86.65 88.20 81.95 85.66
Pcc-tuning 85.77 93.79 93.78 94.02 89.07 90.73 87.14 90.61

Table 2: Spearman’s correlation scores across seven STS benchmarks for different methods. This table highlights
Pcc-tuning’s comprehensive two-stage training strategy in comparison with PromptSTH, which corresponds to the
first stage of Pcc-tuning. §: results from (Muennighoff et al., 2022). ‡: results from Zhang and Li (2024). ♢: results
from (Li and Li, 2023b).

4.3 Pcc-tuning under Various Prompts440

In a pioneering effort to employ generative PLMs441

for embedding derivation, the Explicit One-word442

Limitation (EOL) format of the manual template,443

proposed by PromptEOL (Jiang et al., 2023b), has444

become the most widely adopted prompt in sen-445

tence representation research. Recently, Zhang446

et al. (2024) introduced two templates that deviate447

from the EOL structure, namely PromptSTH and448

PromptSUM. They demonstrated that adherence to449

the EOL format is not necessary for effective PLM450

fine-tuning. The specific forms of these prompts451

are depicted in Table 3, where [X] represents the452

input text, and the parts highlighted in red signify453

the positions from which the model extracts em-454

beddings.455

To further validate the versatility of our ap-456

proach, we assess the average Spearman’s corre-457

lation scores across seven STS tasks using these 458

prompts as the templates for both stages of Pcc- 459

tuning. The corresponding results are delineated 460

in Table 4. It can be seen that regardless of the 461

PromptEOL
This sentence : "[X]" means in one word:"

PromptSUM
This sentence : "[X]" can be summarized as

PromptSTH
This sentence : "[X]" means something

Table 3: Manual templates employed by PromptEOL,
PromptSUM, and PromptSTH. Apart from the differ-
ences in prompts, the implementations of these three
methods are completely identical.
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chosen prompt, Pcc-tuning consistently enhances462

the model’s performance from approximately 85463

to around 90, with minimal impact from the differ-464

ent templates on the final outcomes. This finding465

suggests when applying Pcc-tuning to downstream466

tasks, there is little need for laborious prompt467

searches, thereby offering significant application468

potential.

PLMs Templates Stage-1 Stage-2

OPT6.7b

PromptEOL 85.52 89.29
PromptSUM 85.57 89.39
PromptSTH 85.51 89.41

LLaMA7b

PromptEOL 85.48 90.38
PromptSUM 85.47 90.13
PromptSTH 85.40 90.29

LLaMA27b
PromptEOL 85.40 90.32
PromptSUM 85.53 90.31
PromptSTH 85.31 90.34

Mistral7b
PromptEOL 85.50 90.39
PromptSUM 85.83 90.57
PromptSTH 85.66 90.61

Table 4: Average Spearman’s correlation scores ob-
tained by Pcc-tuning on seven STS benchmarks using
different PLMs and manual templates. The settings for
stage-1 and stage-2 are consistent with the descriptions
in Section 4.1.

469

5 Related Work470

Contrastive learning is currently the principal strat-471

egy employed by the NLP community for address-472

ing STS tasks, and our method, Pcc-tuning, is473

specifically designed to overcome the inherent lim-474

itations of contrastive learning, particularly its in-475

ability to fully leverage the fine-grained annotated476

information in text pairs.477

Prior to the rise of contrastive learning-based478

text representation schemes, Sentence-BERT had479

already proposed enhancing the semantic encod-480

ing capabilities of PLMs using the STS-B training481

set (Reimers and Gurevych, 2019). However, sub-482

sequent contrastive learning approaches such as483

SimCSE (Gao et al., 2021), PromptBERT (Jiang484

et al., 2022), and CoT-BERT (Zhang et al., 2023)485

have demonstrated superior performance across486

the seven STS benchmarks collected in SentEval,487

thereby making them the focal point of current aca-488

demic research and development.489

Among these efforts, RankCSE (Liu et al., 2023)490

also recognized that contrastive learning fails to 491

capture the fine-grained ordinal relationships be- 492

tween texts and advocated for the use of Jensen- 493

Shannon divergence to ensure rank consistency of 494

embeddings derived under different dropout masks. 495

However, this technique is only applicable in un- 496

supervised scenarios. Supervised STS solutions, 497

such as PromptEOL (Jiang et al., 2023b), still pre- 498

dominantly employ InfoNCE Loss to update model 499

parameters, thus falling into the performance bot- 500

tlenecks discussed in this paper. 501

To the best of our knowledge, this study is the 502

first to propose and substantiate the performance 503

upper bound of contrastive learning methods. Ad- 504

ditionally, Pcc-tuning is the inaugural method ca- 505

pable of achieving Spearman’s correlation scores 506

above 87 on standard STS tasks, marking a signifi- 507

cant advancement in the field. 508

6 Conclusion 509

In this paper, we first analyze the structure of con- 510

trastive learning loss functions, highlighting that 511

their coarse-grained categorization of semantic re- 512

lationships between text pairs renders contrastive 513

learning akin to a binary classifier. Building on this 514

insight, we rigorously derive the optimal Spear- 515

man correlation achievable by a binary classifier 516

in STS tasks, demonstrating that the upper bound 517

for the Spearman’s correlation score of contrastive 518

learning methods is 87.5. This finding effectively 519

explains the performance bottlenecks encountered 520

by current sentence representation methods in STS 521

tasks. 522

To achieve further breakthroughs, we introduce 523

Pcc-tuning, a strategy that effectively harnesses 524

fine-grained annotated information. Pcc-tuning 525

leverages a two-stage training pipeline and utilizes 526

Pearson’s correlation coefficient as the loss func- 527

tion in the second stage to fully exploit the ordinal 528

relationships between text pairs. Extensive experi- 529

mental results demonstrate that Pcc-tuning signif- 530

icantly enhances the quality of the generated em- 531

beddings, and this improvement is consistently ob- 532

served across different PLMs, prompts, and batch 533

sizes. 534

Limitations 535

In preparing the training dataset for the second 536

stage of Pcc-tuning, we employ a mixed corpus 537

composed of the training sets from STS-B and 538

SICK-R. However, the label scales of these two 539

8



datasets are not completely congruent. Specifi-540

cally, the STS-B training set contains 5,749 text541

pairs with similarity scores spanning from 0 to 5,542

whereas the SICK-R training set includes 4,500543

text pairs with similarity scores ranging from 1 to544

5. To unify their annotation scales, we transform545

each label in the SICK-R training set using the for-546

mula 5× label−1
4 , thereby converting the labels to547

the [0, 5] range. Given that this transformation is a548

simple linear mapping, it is likely that some vital549

manually annotated information is lost, potentially550

hindering Pcc-tuning from reaching its optimal per-551

formance on the evaluation benchmarks.552
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A Pcc-tuning under Different Batch Sizes 713

PLMs Batch Size Spearman

OPT6.7b

192 89.34
216 89.41
224 89.38
256 89.35

LLaMA7b

192 90.26
224 90.28
232 90.29
256 90.25

LLaMA27b

192 90.34
200 90.32
216 90.30
256 90.32

Mistral7b

192 90.54
224 90.61
232 90.60
256 90.54

Table 5: Average Spearman’s correlation scores
achieved by Pcc-tuning on seven STS benchmarks at
different batch sizes.

Here, we explore the impact of batch size on 714

the performance of Pcc-tuning. In line with previ- 715

ous sections, we employ four 7B-scale generative 716

PLMs as backbones and report the average Spear- 717

man’s correlation scores of Pcc-tuning across seven 718

STS tasks in SentEval under various parameter con- 719

figurations. We continue to utilize PromptSTH as 720

the manual template for encapsulating input sen- 721

tences, which is also the default setting for Pcc- 722

tuning. 723

Table 5 presents the results from these experi- 724

ments. Despite the significant differences between 725

batch sizes of 192 and 256, the resulting Spear- 726

man’s correlation scores are remarkably similar, 727

with both maintaining high performance levels. 728

This observation indicates that Pcc-tuning is not 729
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Model MR CR SUBJ MPQA SST2 TREC MRPC Avg.

GloVe † 77.25 78.30 91.17 87.85 80.18 83.00 72.87 81.52
Skip-thought ‡ 76.50 80.10 93.60 87.10 82.00 92.20 73.00 83.50

Avg. BERT † 78.66 86.25 94.37 88.66 84.40 92.80 69.45 84.94
BERT-CLS † 78.68 84.85 94.21 88.23 84.13 91.40 71.13 84.66
IS-BERT ‡ 81.09 87.18 94.96 88.75 85.96 88.64 74.24 85.83

SimCSE-BERT ⋆ 81.18 86.46 94.45 88.88 85.50 89.80 74.43 85.81
PromptBERT ⋆ 80.74 85.49 93.65 89.32 84.95 88.20 76.06 85.49

Implementation on OPT6.7b

Pcc-tuning 89.40 92.77 95.95 91.29 94.34 95.80 76.00 90.79

Implementation on LLaMA7b

Pcc-tuning 89.59 92.74 95.63 90.19 94.12 95.00 77.62 90.70

Implementation on LLaMA27b
Pcc-tuning 89.72 93.51 95.95 90.75 94.34 94.60 76.12 90.71

Implementation on Mistral7b
Pcc-tuning 88.78 92.21 95.77 89.45 93.74 95.80 74.09 89.98

Table 6: Performance of different methods on seven transfer tasks collected in SentEval. †: results from (Reimers
and Gurevych, 2019). ‡: results from (Zhang et al., 2020). ⋆: results from (Jiang et al., 2022).

sensitive to batch size. Further combined with the730

findings from Section 4.3, where Pcc-tuning ex-731

hibits minimal performance fluctuations under dif-732

ferent prompts, it can be concluded that Pcc-tuning733

possesses exceptional robustness and can easily734

adapt to a variety of hyperparameter configurations.735

B Transfer Tasks736

In addition to the standard STS benchmarks, we737

also evaluate Pcc-tuning on several transfer tasks,738

including MR, CR, SUBJ, MPQA, SST2, TREC,739

and MRPC. The results, displayed in Table 6,740

demonstrate that Pcc-tuning consistently outper-741

forms the baselines across all datasets. Notably,742

its average score exceeds those of SimCSE and743

PromptBERT by 4 to 5 percentage points, under-744

scoring the ability of Pcc-tuning to generate high-745

quality embeddings applicable across a broad range746

of scenarios.747

C Derivation Details748

Due to space constraints, some steps in the calcula-749

tion are abbreviated when rearranging Equation 5750

in Section 2.3. Here, we provide the complete751

derivation process: 752
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