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Abstract

Semantic Textual Similarity (STS) constitutes a
critical research direction in computational lin-
guistics and serves as a key indicator of the
encoding capabilities of embedding models.
Driven by advances in pre-trained language
models and contrastive learning techniques,
leading sentence representation methods can
already achieved average Spearman’s correla-
tion scores of approximately 86 across seven
STS benchmarks in SentEval. However, fur-
ther improvements have become increasingly
marginal, with no existing method attaining an
average score higher than 87 on these tasks.
This paper conducts an in-depth analysis of
this phenomenon and concludes that the up-
per limit for Spearman’s correlation scores us-
ing contrastive learning is 87.5. To transcend
this ceiling, we propose an innovative approach
termed Pcc-tuning, which employs Pearson’s
correlation coefficient as a loss function to
refine model performance beyond contrastive
learning. Experimental results demonstrate that
Pcc-tuning markedly surpasses previous state-
of-the-art strategies, raising the Spearman’s cor-
relation score to above 90. !

1 Introduction

As a fundamental task within Natural Language
Processing (NLP), Semantic Textual Similarity
(STS) is not only widely applied across various
real-world scenarios including text clustering, in-
formation retrieval, and dialogue systems, but also
serves as a principal means for evaluating sentence
embeddings (Gao et al., 2021).

Sentence embeddings are vector encodings that
encapsulate the semantic essence of original texts.
Owing to their capacity to facilitate offline com-
putation as well as their pivotal role in realizing
retrieval-augmented generation (Zhao et al., 2024),

'Our code and checkpoints are available at https://
anonymous. 4open.science/r/Pcc-tuning.

research in this area has garnered considerable at-
tention from numerous institutions and scholars in
recent years.

The quality of sentence embeddings is typically
assessed via the SentEval (Conneau and Kiela,
2018) toolkit, which measures models based on
their average Spearman correlation across seven
STS benchmarks. With the continuous advance-
ment of pre-trained language models (PLMs), con-
trastive learning, and prompt engineering, cutting-
edge work in this field has elevated the scores
on the leaderboard from an initial 60 (Pennington
et al., 2014) to about 86 (Jiang et al., 2023b). As a
result, the "PLM + contrastive learning" framework
has become the mainstream paradigm in sentence
representation research.

However, as illustrated in Table 1, models’
performance on standard STS tasks in SentE-
val appears to have hit a significant bottleneck.
Whether utilizing classical discriminative PLMs
such as BERT (Devlin et al., 2019) or emerging
generative PLMs like LLaMA2 (Touvron et al.,
2023b) and Mistral (Jiang et al., 2023a), contempo-
rary state-of-the-art (SOTA) strategies are unable
to achieve Spearman’s correlation scores higher
than 87. Moreover, despite variations in training
datasets, contrastive learning loss functions, and
model architectures, the final scores are generally
similar if the same type of PLM is selected.

In this regard, Li and Li (2023b) posit that
PLMs may have reached their performance limits
in STS tasks. However, this paper will demonstrate
through rigorous mathematical derivation that the
core factor causing this performance ceiling is not
the inadequacy of PLMs, but the inherent flaws in
contrastive learning loss functions. Specifically,
contrastive learning only distinguishes between
two categories: similar and dissimilar, in determin-
ing the semantic relationships between text pairs.
This binary classification strategy restricts its max-
imum achievable Spearman’s correlation score to
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Methods PLMs Spearman
SimCSE BERTHOm 81.57
PromptBERT  BERTi10pm 81.97
PromCSE BERTllom 82.13
SuCLSE BERT110m 82.17
SimCSE ¢ LLaMA27, 85.24
PromptEOL # LLaMA2, 85.40
PromCSE ¢ LLaMA27, 85.70
AnglE ¢ LLaMA2, 85.96
DeelLM © LLaMA2, 86.01
PromptEOL . Mistralry, 85.50
PromptSTH 4 Mistralry, 85.66
PromptSUM ®  Mistraly, 85.83

Table 1: Average Spearman’s correlation scores ob-
tained by SOTA methods on the seven STS benchmarks
collected in SentEval. <: results from (Li and Li,
2023b). #: results from (Zhang et al., 2024).

87.5, even under optimal conditions.

Following this proof, we introduce Pcc-tuning,
a novel approach that employs a two-stage train-
ing process. This method enhances models’ se-
mantic discrimination capabilities by utilizing a
small amount of fine-grained annotated data post
contrastive learning. With the same 7B-scale gen-
erative PLM, Pcc-tuning can achieve an average
Spearman’s correlation score exceeding 90 on the
aforementioned seven STS tasks, significantly sur-
passing previous best results.

The main contributions of this study are outlined
as follows:

* By analyzing the theoretical limits of binary
classifiers in STS tasks, we demonstrate that
the upper bound of Spearman’s correlation
scores using contrastive learning methods is
87.5. This finding effectively explains the
performance bottlenecks encountered by prior
sentence representation strategies.

* Building upon this, we propose Pcc-tuning,
a method capable of taking full advantage of
fine-grained labeled data with Pearson corre-
lation as its loss function. After fine-tuning
PLMs with contrastive learning, we only need
to introduce annotated text pairs amounting
to 3.7% of the original training set to bring
notable performance improvements.

* We extensively validate the effectiveness of
Pcc-tuning across internationally recognized

STS benchmarks and seven transfer tasks. Ex-
perimental results show that Pcc-tuning signif-
icantly outperforms previous SOTA methods
across different PLMs and prompts.

2 Understanding the Performance Upper
Bound of Contrastive Learning

2.1 Contrastive Learning and Binary
Classifiers

Currently, leading approaches for sentence repre-
sentation predominantly center around contrastive
learning, with InfoNCE Loss (Oord et al., 2018)
being the most commonly adopted loss function.
Given an input text x;, InfoNCE Loss computes the
similarity between this sample and its positive ex-
ample a:f in the numerator, and contrasts it with the
similarity calculations between x; and other texts
within the same batch in the denominator. This
formulation aims to bring similar instances closer
while pushing dissimilar ones apart. The mathe-
matical expression for InfoNCE Loss is presented
in Equation 1, where f(-) denotes the encoding
method, /V represents the batch size, and 7 signi-
fies a temperature hyperparameter.
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Equation 1 reveals that contrastive learning loss
functions, exemplified by InfoNCE Loss, essen-
tially classify sentence pairs into two distinct
classes: similar and dissimilar. However, no further
distinctions are made within these two categories.
In other words, as long as z; is semantically dif-
ferent from x; or xy, InfoNCE Loss treats both
(xi, ;) and (x;, x)) as negative sample pairs. As
for which of (z;, z;) and (z;, z,) exhibits a lower
degree of similarity, contrastive learning neither
concerns itself with this information nor can it read-
ily leverage such details. Indeed, for the majority of
embedding models, their training sets are specially
adjusted to provide coarse-grained categorical an-
notations, so as to better align with the contrastive
learning framework (Gao et al., 2021).

Therefore, for a set of text pairs {(z;, x;)}7}, the
optimal scenario for contrastive learning methods
is to classify the k£ most similar pairs as positive and
the remaining n — k pairs as negative. This setup
ensures that there are no inversions in the predicted
scores provided by the model. Such an ideal state
for contrastive learning models functions similarly

)
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to an optimal binary classifier, as illustrated in Fig-
ure 1. This classifier segments the dataset into two
groups based on a threshold k, assigning a positive
label to all samples above the threshold and a neg-
ative label to those below. Analyzing the efficacy
of this binary classifier reveals the performance
boundary of contrastive learning.
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Figure 1: Illustration of the operation of an optimal
binary classifier in handling STS tasks. Although the
actual similarity scores of the text pairs are a series
of floating-point numbers, the binary classifier focuses
solely on categorizing them into two classes: similar
and dissimilar, without modeling the variability within
each category.

2.2 Spearman’s Correlation Coefficient

Before deriving the performance upper bound of
contrastive learning methods on STS tasks, it is
essential to introduce Spearman’s correlation coef-
ficient, the primary evaluation metric in this field.
This statistic measures the ordinal consistency be-
tween the cosine similarity of embeddings and hu-
man ratings, as defined by Equation 2:

6> d;
n(n? —1)

In this formula, n represents the number of data
points, and d; is the difference between the rank

p=1- 2

of the -th sentence pair’s cosine similarity after
encoding into embeddings and its human-judged
similarity rank. Particularly, when multiple entries
share the same rating, their ranks are substituted
with their mean rank during the computation of
Equation 2.

Spearman’s correlation coefficient, ranging from
[—1, 1], indicates stronger consistency between
model outputs and human evaluations as it ap-
proaches 1. Typically, the coefficient is multiplied
by 100 to yield a percentage score, facilitating more
straightforward comparisons of encoding effective-
ness across different models.

2.3 The Spearman Correlation Upper Limit
of Contrastive Learning Methods

As discussed in Section 2.1, contrastive learning
differentiates texts based on binary semantic rela-
tions: similar and dissimilar. Thus, its effectiveness
parallels that of a binary classifier. This section de-
rives the optimal Spearman correlation achievable
by a binary classifier in STS tasks, thereby eluci-
dating the performance upper bound of contrastive
learning methods.

Given a collection of text pairs X = {(z;, z})}}
comprising n samples, we initially arrange the
elements of X in descending order according to
manually annotated semantic similarity, yielding
the sorted set Y = {(vi,y;)}}. Assume that
cos(Yr, yp) > coS(Yrt1,Yp41), Yk € [Lin —1].
Then, for any binary classifier, its performance
reaches the optimum only when it categorizes the
first k£ sample pairs of Y as positive examples and
the remaining n — k sample pairs as negatives. Oth-
erwise, it indicates at least one misclassification.

Since this binary classifier is solely responsible
for constructing an optimal classification boundary
between the two categories of similarity and dissim-
ilarity (i.e., distinguishing only whether two texts
are semantically akin), its predicted score for the
first £ samples is consistently identical (assumed
to be 1), and likewise for the last n — &k samples
(assumed to be 0). By the definition of Spearman’s
correlation coefficient, the difference in rankings
between predictions and true values, d;, alongside
>~ d2, can be represented as:

k+1
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These equations showcase that Y d? can be
viewed as a function of k. Upon rearranging, we
derive: (more details can be found in Appendix C.)
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In Equation 5, n remains constant, thus > d7 is

contingent on f(k) = k* —nk — (n + 1)%. When

k = %, i.e., when the model deems the first 50%

of sample pairs as positives and the latter 50% as

negatives, f(k) attains its minimum. Therefore,
the minimum value of }_ d? is:

2
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Subsequently, by substituting min(}_ d?) into
the expression for Spearman’s correlation coeffi-
cient (Equation 2), the maximum Spearman corre-
lation achievable by this binary classifier is 0.875.
This indicates that the optimal performance of con-

trastive learning in STS tasks will not exceed 0.875.
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Apart from the original InfoNCE Loss, an ex-
tended contrastive learning loss function tailored
for NLI datasets (Bowman et al., 2015; Williams
et al., 2018), as shown in Formula 8, is frequently
utilized in sentence representation research (Gao
et al., 2021; Zhang et al., 2023). The incorporation
of hard negative example x; in the denominator,
equivalent to enlarging the batch size, does not

affect the correctness of our derivation.

ceos(f (@) f(a))/m
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It should be noted that the above conclusion has
been validated through numerous experiments. To
date, embedding derivation schemes based on con-
trastive learning have not achieved a Spearman’s
correlation score above 87. This theoretical anal-
ysis provides clear guidance for this empirical ob-
servation.

—log

3 Proposed Method

This section introduces Pcc-tuning, an innovative
solution for STS tasks. Pcc-tuning employs a two-
stage training pipeline and is designed to surpass
the 87.5 performance upper bound of contrastive
learning methods.

The anisotropy of PLMs’ semantic space (Etha-
yarajh, 2019) presents a longstanding challenge
in sentence representation research. Contrastive
learning has proven effective in stabilizing embed-
ding distances among semantically similar texts
while ensuring a more uniform distribution of vec-
tor encodings (Gao et al., 2021), thereby markedly
enhancing the semantic space properties of PLMs.
Consequently, leveraging contrastive learning to
refine the initial state of pre-trained models has
emerged as a prevalent strategy within the NLP
community (Wang et al., 2022; Li et al., 2023).

Following this established practice, we initially
conduct supervised fine-tuning of the PLM using
the NLI dataset constructed by SimCSE (Gao et al.,
2021). This dataset comprises 275,602 text pairs
in triplet form, providing a robust source of coarse-
grained labeled information for the model. Our im-
plementation in the first stage closely aligns with
that of PromptEOL (Jiang et al., 2023b), where we
load the original PLM checkpoint and fine-tune the
model with the extended InfoNCE Loss depicted
in Equation 8, combined with QLoRA (Dettmers
et al., 2024). A unique feature of our methodology
is the adoption of the PromptSTH template pro-
posed by Zhang et al. (2024): "This sentence :
‘[X]’ means something", which encapsulates the
input sentence [X] and extracts the encoding of the
final token as the sentence embedding. Later sec-
tions will examine the performance of Pcc-tuning
under various prompts.

After the contrastive learning phase, the seman-
tic space of the PLM will be adjusted to a superior



{ well it's been very interesting

T: template

It has been very intriguing.

{ It hasn't been interesting.
Fun for adults and children.
Fun for both adults and children.
Fun for only children.
well you see that on television also !/
You can see that on television, as well. ‘ ------ } [ ------ ‘
You could never see that on TV. same| E: enCOdeI_‘ load

some men are fighting.

two men are fighting.

aman is .\'ﬂl\)klll‘:‘.

a man is skating.
a woman is eating something.

a woman is eating meat.

Figure 2: The overall architecture of Pcc-tuning. By default, we use "This sentence :
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‘[X]’ means something"

(Zhang et al., 2024) as the manual template for both stages. In the diagram, h; denotes the embedding of sentence s;
after model encoding, cos; represents the cosine similarity between h; and hz, while score; is the human-annotated

L 7
similarity score for s; and s;.

encoding state, capable of generating high-quality
embeddings. However, the inability of InfoNCE
Loss to harness fine-grained annotation information
leads to a pronounced performance bottleneck for
contrastive learning methods in STS tasks. To miti-
gate this issue, a finer distinction is required within
the two categories of similarity and dissimilarity,
along with introducing the ordinal relationships of
text pairs in terms of semantic similarity.

The optimal strategy is to incorporate fine-
grained annotated data in the second stage and
guide the model’s training process via Spearman’s
correlation coefficient. This ensures maximum con-
sistency between the model’s behavior during train-
ing and testing phases. However, as Spearman cor-
relation is non-differentiable and thus incompatible
with backpropagation, we opt for Pearson’s correla-
tion coefficient to update model parameters, which
also serves as the inspiration for the name Pcc-
tuning. Pearson correlation and our loss function
in the second stage are shown in Equation 9, where
X represents the cosine similarity between model-
derived embeddings, and Y denotes the human-

annotated scores for the text pairs.

cov(X,Y)
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Concretely, for a batch of text pairs {(z;, z})}¥,
we first invoke the PLM to encode x; and 1, ob-
taining f(z;) and f(z}). Then, we directly com-
pute their cosine similarity and store the result in
X = {cos(f(z;), f(x}))}}. Subsequently, we in-
put X and the true similarity scores Y = {y;}V
into Equation 9 to calculate the loss.

Employing Pearson coefficient as the loss func-
tion enables effective utilization of fine-grained an-
notation information and supports diverse combina-
tions with a small volume of data. For instance, the
tuning dataset in our second stage consists of the
training sets of STS-B (Cer et al., 2017) and SICK-
R (Marelli et al., 2014), which together contain
10,249 text pairs. This number merely represents
3.7% of the first-stage training dataset, yet their
combination varieties reach up to CJ,49. There-
fore, even with multiple epochs of training, the



similarity ranking of samples in each batch is un-
likely to repeat.

Figure 2 provides a detailed illustration of Pcc-
tuning’s training process. In the first stage, we
fine-tune the model using contrastive learning and
the NLI dataset. In the second stage, we introduce
a small amount of fine-grained annotated data and
load the checkpoint from the first phase to further
update the model parameters via Pearson’s correla-
tion coefficient.

4 Experiments

This section presents the experimental results of
Pcc-tuning. Initially, in subsection 4.1, we elabo-
rate on our experimental setup, including evalua-
tion methods, datasets, and the selection of base-
lines. Subsequently, in subsection 4.2, we compare
the performance of Pcc-tuning with contemporary
SOTA text representation strategies on internation-
ally recognized STS benchmarks. Finally, in sub-
section 4.3, we validate the efficacy of Pcc-tuning
under diverse prompts.

4.1 Implementation Details

In line with prior studies (Gao et al., 2021; Jiang
et al., 2022, 2023b), we utilize the SentEval (Con-
neau and Kiela, 2018) toolkit to assess our model
across seven STS tasks, with Spearman’s correla-
tion coefficient as the core metric.

As outlined in Section 3, Pcc-tuning incorpo-
rates a two-stage training pipeline. The respective
training sets originate from the NLI dataset orga-
nized by SimCSE (Gao et al., 2021), containing
275,602 text pairs, and a mixed dataset composed
of the training sets from STS-B and SICK-R, total-
ing 10,249 text pairs. In all experiments, only dur-
ing the testing phase can models access data from
the evaluation benchmarks. It is noteworthy that
although Pcc-tuning requires specific corpora at
both stages, the total data volume employed is only
285,851 entries. In contrast, the publicly available
training data for the current SOTA method, DeeLM
(Li and Li, 2023b), includes 480,862 triplet text
pairs, with additional data remaining inaccessible.

Our experiments are conducted using sev-
eral widely adopted 7B-scale generative PLMs:
OPT¢ 7, (Zhang et al., 2022), LLaMA~;, (Tou-
vron et al., 2023a), LLaM A2, and Mistraly,,. To
clearly demonstrate the superiority of Pcc-tuning,
we primarily compare it against current SOTA
strategies. Specifically, among our selected base-

lines, PromptEOL (Jiang et al., 2023b), Prompt-
STH (Zhang et al., 2024), AnglE (Li and Li,
2023a), and DeelLM (Li and Li, 2023b) are leading
generative PLM sentence representation methods,
which significantly outperform BERT-based ap-
proaches on STS benchmarks. Meanwhile, openai-
ada-002, jina-base-v2 (Giinther et al., 2023), and
nomic-embed-v1 (Nussbaum et al., 2024) represent
the most advanced contrastive learning pre-trained
models at present.

4.2 Main Results

Table 2 summarizes the results of the above ex-
periments. Under all tested PLMs, Pcc-tuning
consistently transcends the 87.5 Spearman correla-
tion upper bound of contrastive learning methods,
achieving an impressive average score of approx-
imately 90. Notably, when employing Mistralz,
as the backbone, Pcc-tuning attains a Spearman’s
correlation score of 90.61, substantially surpass-
ing the previous record of 86.01 set by DeeLM.
Moreover, Pcc-tuning excels beyond prior SOTA
methods in each of the seven STS tasks aggregated
within SentEval, manifestly affirming its efficacy.
These outcomes collectively underscore the crucial
role of modeling fine-grained annotated informa-
tion in STS tasks.

Furthermore, since Pcc-tuning’s first-stage im-
plementation mirrors that of PromptSTH, the com-
parison between Pcc-tuning and PromptSTH in
Table 2 also functions as an ablation study. It
reveals that, constrained by the coarse granular-
ity of contrastive learning, whether adopting the
earlier released OPT model or the newly open-
sourced Mistral model, the Spearman’s correla-
tion scores for PromptSTH are confined between
85.3 to 85.7, showing limited progress. In con-
trast, Pcc-tuning provides improvements of about
5 percentage points, reaffirming the mathematical
derivations discussed in Section 2.

In addition to challenges in fully harnessing fine-
grained annotated data, another significant draw-
back of contrastive learning is the need for large
batch sizes to prevent model collapse, which con-
sumes substantial computational resources (Jiang
et al., 2023b; Zhang et al., 2024). To explore the im-
pact of batch size on Pcc-tuning’s performance, we
conduct experiments detailed in Appendix A. The
findings indicate that Pcc-tuning exhibits strong
robustness to varying batch sizes. Additionally, we
also assess Pcc-tuning on seven transfer tasks, with
outcomes recorded in Appendix B.



Methods STS-12 STS-13 STS-14 STS-15 STS-16 STS-B  SICK-R  Avg.
Pre-trained Embedding Models
openai-ada-002 69.80 83.27 76.09 86.12 85.96 83.17 80.60  80.72
jina-base-v2 ¥ 74.28 84.18 78.81 87.55 85.35 84.85 7898  82.00
nomic-embed-vl ¥ 65.19 81.67 74.00 83.58 81.87 76.43 75.41 76.88
Fine-tuning Strategies
Previous SOTA methods. Implementation on LLaMA27,
SimCSE ¢ 78.39 89.95 84.80 88.50 86.04 87.86 81.11 85.24
PromptEOL 79.24 90.31 84.74 88.72 86.01 87.87 80.94  85.40
AnglE © 79.00 90.56 85.79 89.43 87.00 88.97 80.94  85.96
DeelLM ¢ 79.01 90.32 85.84 89.47 87.18 89.15 81.08  86.01
Implementation on OPT¢ 7y,
PromptSTH 79.30 89.59 84.69 89.17 85.96 88.36 81.51 85.51
Pcc-tuning 82.83 93.30 92.66 93.09 87.44 90.34 86.24 89.41
Implementation on LLaMA 7,
PromptSTH 78.48 90.09 85.10 88.71 85.93 88.51 80.95 85.40
Pcc-tuning 84.40 94.40 93.15 93.49 88.62 90.86 87.08  90.29
Implementation on LLaMA27,
PromptSTH 79.12 89.94 84.54 88.57 86.05 87.82 81.10  85.31
Pcc-tuning 84.22 94.37 93.49 93.49 88.62 90.95 87.22  90.34
Implementation on Mistralyy,
PromptSTH 79.19 89.70 85.07 88.88 86.65 88.20 81.95 85.66
Pcc-tuning 85.77 93.79 93.78 94.02 89.07 90.73 87.14  90.61

Table 2: Spearman’s correlation scores across seven STS benchmarks for different methods. This table highlights
Pcc-tuning’s comprehensive two-stage training strategy in comparison with PromptSTH, which corresponds to the
first stage of Pcc-tuning. §: results from (Muennighoff et al., 2022). i: results from Zhang and Li (2024). <$: results

from (Li and Li, 2023b).

4.3 Pcc-tuning under Various Prompts

In a pioneering effort to employ generative PLMs
for embedding derivation, the Explicit One-word
Limitation (EOL) format of the manual template,
proposed by PromptEOL (Jiang et al., 2023b), has
become the most widely adopted prompt in sen-
tence representation research. Recently, Zhang
et al. (2024) introduced two templates that deviate
from the EOL structure, namely PromptSTH and
PromptSUM. They demonstrated that adherence to
the EOL format is not necessary for effective PLM
fine-tuning. The specific forms of these prompts
are depicted in Table 3, where [X] represents the
input text, and the parts highlighted in red signify
the positions from which the model extracts em-
beddings.

To further validate the versatility of our ap-
proach, we assess the average Spearman’s corre-

lation scores across seven STS tasks using these
prompts as the templates for both stages of Pcc-
tuning. The corresponding results are delineated
in Table 4. It can be seen that regardless of the

PromptEOL

This sentence : "[X]" means in one word:"

PromptSUM

This sentence : "[X]" can be summarized as

PromptSTH

This sentence : "[X]" means something

Table 3: Manual templates employed by PromptEOL,
PromptSUM, and PromptSTH. Apart from the differ-
ences in prompts, the implementations of these three
methods are completely identical.



chosen prompt, Pcc-tuning consistently enhances
the model’s performance from approximately 85
to around 90, with minimal impact from the differ-
ent templates on the final outcomes. This finding
suggests when applying Pcc-tuning to downstream
tasks, there is little need for laborious prompt
searches, thereby offering significant application
potential.

PLMs Templates | Stage-1 | Stage-2

PromptEOL | 85.52 89.29

OPT¢.71, PromptSUM | 85.57 89.39
PromptSTH | 85.51 89.41

PromptEOL | 85.48 90.38

LLaMA7, | PromptSUM | 85.47 90.13
PromptSTH | 85.40 90.29

PromptEOL | 85.40 90.32

LLaMA27, | PromptSUM | 85.53 90.31
PromptSTH | 85.31 90.34

PromptEOL | 85.50 90.39

Mistralyy, | PromptSUM | 85.83 90.57
PromptSTH | 85.66 90.61

Table 4: Average Spearman’s correlation scores ob-
tained by Pcc-tuning on seven STS benchmarks using
different PLMs and manual templates. The settings for
stage-1 and stage-2 are consistent with the descriptions
in Section 4.1.

5 Related Work

Contrastive learning is currently the principal strat-
egy employed by the NLP community for address-
ing STS tasks, and our method, Pcc-tuning, is
specifically designed to overcome the inherent lim-
itations of contrastive learning, particularly its in-
ability to fully leverage the fine-grained annotated
information in text pairs.

Prior to the rise of contrastive learning-based
text representation schemes, Sentence-BERT had
already proposed enhancing the semantic encod-
ing capabilities of PLMs using the STS-B training
set (Reimers and Gurevych, 2019). However, sub-
sequent contrastive learning approaches such as
SimCSE (Gao et al., 2021), PromptBERT (Jiang
et al., 2022), and CoT-BERT (Zhang et al., 2023)
have demonstrated superior performance across
the seven STS benchmarks collected in SentEval,
thereby making them the focal point of current aca-
demic research and development.

Among these efforts, RankCSE (Liu et al., 2023)

also recognized that contrastive learning fails to
capture the fine-grained ordinal relationships be-
tween texts and advocated for the use of Jensen-
Shannon divergence to ensure rank consistency of
embeddings derived under different dropout masks.
However, this technique is only applicable in un-
supervised scenarios. Supervised STS solutions,
such as PromptEOL (Jiang et al., 2023b), still pre-
dominantly employ InfoNCE Loss to update model
parameters, thus falling into the performance bot-
tlenecks discussed in this paper.

To the best of our knowledge, this study is the
first to propose and substantiate the performance
upper bound of contrastive learning methods. Ad-
ditionally, Pcc-tuning is the inaugural method ca-
pable of achieving Spearman’s correlation scores
above 87 on standard STS tasks, marking a signifi-
cant advancement in the field.

6 Conclusion

In this paper, we first analyze the structure of con-
trastive learning loss functions, highlighting that
their coarse-grained categorization of semantic re-
lationships between text pairs renders contrastive
learning akin to a binary classifier. Building on this
insight, we rigorously derive the optimal Spear-
man correlation achievable by a binary classifier
in STS tasks, demonstrating that the upper bound
for the Spearman’s correlation score of contrastive
learning methods is 87.5. This finding effectively
explains the performance bottlenecks encountered
by current sentence representation methods in STS
tasks.

To achieve further breakthroughs, we introduce
Pcc-tuning, a strategy that effectively harnesses
fine-grained annotated information. Pcc-tuning
leverages a two-stage training pipeline and utilizes
Pearson’s correlation coefficient as the loss func-
tion in the second stage to fully exploit the ordinal
relationships between text pairs. Extensive experi-
mental results demonstrate that Pcc-tuning signif-
icantly enhances the quality of the generated em-
beddings, and this improvement is consistently ob-
served across different PLMs, prompts, and batch
sizes.

Limitations

In preparing the training dataset for the second
stage of Pcc-tuning, we employ a mixed corpus
composed of the training sets from STS-B and
SICK-R. However, the label scales of these two



datasets are not completely congruent. Specifi-
cally, the STS-B training set contains 5,749 text
pairs with similarity scores spanning from O to 5,
whereas the SICK-R training set includes 4,500
text pairs with similarity scores ranging from 1 to
5. To unify their annotation scales, we transform
each label in the SICK-R training set using the for-
mula 5 X %, thereby converting the labels to
the [0, 5] range. Given that this transformation is a
simple linear mapping, it is likely that some vital
manually annotated information is lost, potentially
hindering Pcc-tuning from reaching its optimal per-
formance on the evaluation benchmarks.
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A Pcc-tuning under Different Batch Sizes

PLMs ‘ Batch Size ‘ Spearman
192 89.34
216 89.41
OPTom, 224 89.38
256 89.35
192 90.26
224 90.28
LLaMA7, 232 90.29
256 90.25
192 90.34
200 90.32
LLaMAZn | 516 90.30
256 90.32
192 90.54
. 224 90.61
Mistralzy 232 90.60
256 90.54

Table 5: Average Spearman’s correlation scores

achieved by Pcc-tuning on seven STS benchmarks at
different batch sizes.

Here, we explore the impact of batch size on
the performance of Pcc-tuning. In line with previ-
ous sections, we employ four 7B-scale generative
PLMs as backbones and report the average Spear-
man’s correlation scores of Pcc-tuning across seven
STS tasks in SentEval under various parameter con-
figurations. We continue to utilize PromptSTH as
the manual template for encapsulating input sen-
tences, which is also the default setting for Pcc-
tuning.

Table 5 presents the results from these experi-
ments. Despite the significant differences between
batch sizes of 192 and 256, the resulting Spear-
man’s correlation scores are remarkably similar,
with both maintaining high performance levels.
This observation indicates that Pcc-tuning is not
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Model MR CR SUBJ MPQA SST2 TREC MRPC Avg.
GloVe T 7725 7830 91.17 87.85 80.18 83.00 72.87 81.52
Skip-thought I  76.50 80.10 93.60 87.10 82.00 9220 73.00 83.50
Avg. BERT 7 78.66 86.25 9437 88.66 8440 9280 6945 84.94
BERT-CLS 78.68 84.85 9421 8823 84.13 9140 71.13 84.66
IS-BERT 1 81.09 87.18 9496 8875 8596 88.64 7424 85.83
SimCSE-BERT » 81.18 86.46 9445 88.88 85.50 89.80 7443 85.81
PromptBERT »  80.74 85.49 93.65 8932 8495 8820 76.06 8549
Implementation on OPT¢ 7y,
Pcc-tuning 89.40 9277 9595 91.29 9434 9580 76.00 90.79
Implementation on LLaMA 7,
Pcc-tuning 89.59 9274 95.63 90.19 94.12 95.00 77.62 90.70
Implementation on LLaMA27;,
Pcc-tuning 89.72 93.51 9595 90.75 9434 9460 76.12 90.71
Implementation on Mistralyy,
Pcc-tuning 88.78 9221 9577 8945 9374 9580 74.09 89.98

Table 6: Performance of different methods on seven transfer tasks collected in SentEval. 1: results from (Reimers
and Gurevych, 2019). I: results from (Zhang et al., 2020). *: results from (Jiang et al., 2022).

sensitive to batch size. Further combined with the
findings from Section 4.3, where Pcc-tuning ex-
hibits minimal performance fluctuations under dif-
ferent prompts, it can be concluded that Pcc-tuning
possesses exceptional robustness and can easily
adapt to a variety of hyperparameter configurations.

B Transfer Tasks

In addition to the standard STS benchmarks, we
also evaluate Pcc-tuning on several transfer tasks,
including MR, CR, SUBJ, MPQA, SST2, TREC,
and MRPC. The results, displayed in Table 6,
demonstrate that Pcc-tuning consistently outper-
forms the baselines across all datasets. Notably,
its average score exceeds those of SImCSE and
PromptBERT by 4 to 5 percentage points, under-
scoring the ability of Pcc-tuning to generate high-
quality embeddings applicable across a broad range

of scenarios.

C Derivation Details

Due to space constraints, some steps in the calcula-
tion are abbreviated when rearranging Equation 5
in Section 2.3. Here, we provide the complete

11

derivation process:
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