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Abstract
In recent years, self-supervised pre-training methods have
gained significant traction in learning high-level information
from raw speech. Among these methods, HuBERT has demon-
strated SOTA performance in automatic speech recognition
(ASR). However, HuBERT’s performance lags behind data2vec
due to disparities in pre-training strategies. In this paper, we
propose (i) a Swap method to address pre-training and infer-
ence mismatch observed in HuBERT and (ii) incorporates Mul-
ticluster masked prediction loss for more effective utilization of
the models capacity. The resulting method is, MS-HuBERT,
an end-to-end self-supervised pre-training method for learn-
ing robust speech representations. It beats vanilla HuBERT
on the ASR Librispeech benchmark on average by a 5% mar-
gin when evaluated on different finetuning splits. Additionally,
we demonstrate that the learned embeddings obtained during
pre-training encode essential information for improving perfor-
mance of content based tasks such as ASR.
Index Terms: Automatic speech recognition, Multicluster
masked prediction loss, HuBERT

1. Introduction
In the recent years, there has been a significant interest in study-
ing self-supervised pre-training methods to learn/encode high
level information present in the speech data [1, 2, 3, 4, 5]. These
SSL methods utilize the input data itself to learn to encode use-
ful information, with the choice of pretext task playing a pivotal
role in the encoded information. The most popular pretext task
used is masked predictive coding (MPC) [6, 1, 7, 8, 9]. Hu-
BERT [2] is one such model that popularized the masked lan-
guage modelling (MLM) technique to learn high-level speech
representations from raw audio by achieving state-of-the-art
(SOTA) on the automatic speech recognition (ASR) task. The
underlying concept of HuBERT revolves around iterative pre-
training: starting with a raw audio/pseudo-label pair (x/y),
the model undergoes successive training iterations where the
trained model updates the pseudo-labels, iteratively refining its
representations until a predefined stopping criterion is reached.
However, despite its success, HuBERT falls short compared to
data2vec [10] in ASR performance for two primary reasons:
firstly, during pre-training, data2vec accesses the full context to
generate continuous labels, which are updated after each gradi-
ent update step, as opposed to the fixed discrete labels utilized in
HuBERT for the each iteration; and secondly, the ground truth
labels are created by averaging the representations from multi-
ple layers for loss calculation.

To bridge this gap, we propose two modifications to the Hu-
BERT framework. Firstly, we introduce the ”Swap” method to
enable full context access during pre-training, thus addressing

the pre-training and inference mismatch observed in HuBERT
and other MLM-based methods by using both the masked and
unmasked views during pre-training. Swap is motivated by
a simple idea, used heavily in the field of computer vision
[11, 12, 13]. Where two augmented views of the input are used
to learn a high level representation. Given e layers in a encoder,
it is a general practice to add a similarity loss on the output em-
beddings of the encoder after each layer, as seen in works using
U-net type architectures [14, 15, 16]. In contrast, our proposed
Swap method simply swaps the output embedding, at certain
indices, after each layer of the encoder between the masked and
unmasked view of the input. Motivated by the simple fact, that
the learned model is expected to generate exactly the same out-
put regardless of the two views, Swap method guides the output
after each layer to achieve the same.

Secondly, inspired by the work of Yadav et al. [17], we
incorporate a Multicluster masked prediction loss (MPL) ap-
proach. Using multiple cluster centers, also called multiple
resolutions, has been investigated by [18, 19, 17]. In [19],
the author introduces down-sampling and up-sampling mod-
ules within the transformer encoder after each layer to facilitate
learning features at multiple resolutions. On the other hand,
[18] explores parallel and hierarchical variations of HuBERT
with findings indicating the superiority of the hierarchical ap-
proach. This involves training multiple models, each model
adds almost same parameters as the original HuBERT, at vari-
ous resolutions using CNN as a down-sampling module. Lastly
[17] uses the fact that MPL is applied at multiple layers of en-
coder at different resolutions. This method does not introduce
any additional parameters to the original HuBERT model, ex-
cept the linear layers used for loss calculation which are dis-
carded after the pre-training. In this work, we adopt this ap-
proach and modify it for our use case for loss calculation given
its simplicity and higher performance.

These changes align HuBERT more closely towards
data2vec, primarily differing in their loss functions for pre-
training and other minor changes. The goal is study how much
HuBERT can be improved, with these changes, on the ASR
task.

Based on these observations. In this work, we propose
MulticlusterSwap-HuBERT (MS-HuBERT) method, incorpo-
rates (i) our proposed Swap method to address the pre-training
and inference mismatch issue, as the [MASK] symbol never ap-
pears during the inference, and (ii) the Multicluster MPL similar
to [17]. Our contributions are as follows:

1. We propose MS-HuBERT, an end-to-end self supervised pre-
training method to learn robust speech representations. It
combines the Swap method and Multicluster MPL with Hu-
BERT as shown in Figure 1.

2. We show that MS-HuBERT outperforms the original Hu-

Interspeech 2024
1-5 September 2024, Kos, Greece

5053 10.21437/Interspeech.2024-1978



Figure 1: Proposed MS-HuBERT approach, an end-to-end self supervised pre-training method to learn robust speech representations.
The input raw audio is passed to a CNN encoder. Two copies of the output is created i.e., masked and unmasked. Which is passed
through the Swap modified 2nd encoder. Multicluster Masked prediction loss is calculated, masked indices only, on the output embed-
dings from different blocks of the modified 2nd encoder.

BERT on the ASR Librispeech benchmark by a large margin.
And matches the performance of data2vec in high-resource
setting.

3. We showcase that the embeddings acquired during pre-
training encode crucial information essential for addressing
content based tasks such has ASR and phoneme recognition
(PR). This shows the effective utliziation of the modeling ca-
pacity.

2. Method
2.1. Background

HuBERT is an iterative pre-training SSL method comprising of
two encoders based on CNN (1st) and transformer (2nd), in that
order, architectures. The CNN encoder serves the dual purpose
of down-sampling the input data. The resulting output is passed,
denoted as U , to the transformer encoder and its output is used
for loss calculation. During the pre-training stage, raw audio is
passed to the CNN encoder and approximately 50% of the out-
put is masked, using the masking token [M ] and is subsequently
passed to the transformer encoder. The network is then trained
to optimize to output a discrete target sequence by minimizing
the masked prediction loss. The complete details can be found
in the original paper [2].

2.2. MS-HuBERT

MS-HuBERT augments HuBERT model in two ways (i) the
Swap method and (ii) the Multicluster MPL as shown in Fig-
ure 1. Swap method is introduced to address the pre-training
and inference mismatch phase in HuBERT i.e, during inference
the model does not use masking. Swap method modifies the
2nd encoder of HuBERT, such that the updated model now en-
counters, two views of the input, both masked and unmasked
inputs during pre-training. Lastly, our proposed method uses

modified Multicluster MPL as proposed by [17], because of its
enhanced model capacity utilization in learning features suit-
able for the ASR task. These changes aim to improve the ASR
performance, as shown in the Table 1.

2.2.1. Swap

Given a raw audio as an input, of batch of size 1, to the 1st en-
coder (CNN), its output is denoted as X = x1, x2, ..., xt−1, xt,
where t represents the total number of output tokens. Two
views of X are created: (i) masked view, where on average,
around 50% of these tokens are masked, meaning that half
of these tokens are replaced with the [m] token, resulting in
an updated output Xm = x1, [m], ..., [m], xt (view 1) and
(ii) unmasked view, a duplicate of the original X , denoted as
Xc = xc

1, x
c
2, ..., x

c
t−1, x

c
t (view 2). These two views are com-

bined, to form a batch of size 2, and is passed to the 2nd encoder.
The second encoder has N layers, each composed of a

transformer layer followed by a Swap layer as shown in Fig-
ure 1. The transformer layer is exactly similar to the original
HuBERT method. The proposed Swap method’s function is to
swap the outputs, at the masked indices, of the transformer layer
between the two views. This updated output serves as input to
the next block of encoder layer, and the process repeats till the
last layer. For example, the output of the transformer layer is
Hm = h1, h2, ..., ht−1, ht and Hc = hc

1, h
c
2, ..., h

c
t−1, h

c
t for

the masked and unmasked input respectively. The outputs at
the masked indices are now swapped using the swap method
i.e., the updated output are Hm = h1, h

c
2, ..., h

c
t−1, ht and

Hc = hc
1, h2, ..., ht−1, h

c
t for the masked and unmasked input,

respectively.
It’s important to note that there is no associated loss with the

”Swap” layer. This technique indirectly encourages the model
to output the same embeddings irrespective of the masked and
unmasked view.
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2.2.2. Multicluster MPL

The Multicluster MPL, inspired from [17], involves the compu-
tation of masked prediction loss (MPL) across multiple layers
of the transformer encoder, using multiple set of cluster centers
as labels. These encoder layers are selected equidistant in be-
tween the last layer and one intermediate layer. For instance,
consider a scenario with three sets of labels as (500, 250, 100),
where the last layer index is 12 and the intermediate layer index
is 8, the multiple layers are (12, 10, 8).

The Multicluster MPL is then formulated as the summation
of MPL over a, where a = (12, 500), (10, 250), (8, 100) is
a dictionary of which label set to use with which transformer
encoder layer 1. MPL is computed over the masked indices only,
as depicted in Figure 1. Furthermore, given the GPU memory
constraints, we randomly drop d items from the dictionary a for
every forward pass.

Multicluster loss =
∑

a(MPL).

3. Experimental Details
For all the experiments, similar to the HuBERT base model
configuration [2], the MS-HuBERT model comprises a CNN
encoder and 12 encoder transformer layers consisting of 768-
dimensional hidden states and 8 attention heads. There is no
large model used for training or comparison purposes.
Datasets: The ASR Librispeech benchmark dataset [20], which
is derived from the LibriVox project, is used for pre-training and
supervised finetuning purposes. It has 3 splits (i) Training, com-
prising train-clean-100, train-clean-360, and train-other-500,
(ii) Development including dev-other and dev-clean, and (iii)
Testing consists test-other and test-clean. Each data instance
comprises an audio and its corresponding transcript. For pre-
training MS-HuBERT, we use only the raw audios from the
combined training split resulting in a total 960 hours audios. For
supervised fine-tuning, three sets of Libri-Light [21]: 1 hour,
10 hour, 100 hour and the full Librispeech 960 hours dataset is
used.
pseudo-labels: Six sets of pseudo-labels with varying numbers
of clusters/resolutions are generated using first iteration Hu-
BERT [2]. Initially, a K-means model with 1000 cluster centers
is trained using latent features extracted from the 6th layer of the
first iteration HuBERT base. Subsequently, another K-means
model with 500 cluster centers is trained using the 1000 cluster
centers as features obtained in the prior step. This process is it-
eratively repeated four times to train four more K-means models
with 250, 125, 50, and 25 cluster centers (in that order) utiliz-
ing the cluster centers extracted from the previous step. This
results in a total of 6 set of pseudo labels used to calculate the
Multicluster MPL.
Pre-training: Unlike HuBERT, MS-HuBERT base incorpo-
rates 6 classification heads instead of just 1. This is because
of the Multicluster MPL. This results in a total parameter count
of 96.01 million, representing an increment of around 1.25 mil-
lion parameters compared to HuBERT. MS-HuBERT is trained
for 400,000 iterations on 32 GPUs with a batch size of at most
87.5 seconds of audio per GPU. The best model checkpoint is
determined using the dev-other subset. Pre-trained models and
training configurations will be made available after the accep-
tance.

1In the original paper a would be calculated in reverse order i.e.,
(8, 500), (10, 250), (12, 100).

Given the memory constraints and to avoid the out-of-
memory error, we randomly drop 2 clusters, and their respective
layer indices, in each gradient update step. Furthermore, the in-
termediate layer index is chosen using the formula : 0.25 ∗ 12,
where 12 is the number of transformer encoder layers.
Supervised Fine-tuning and inference: We follow the
Wav2Vec 2.0 [1] strategy to fine-tune MS-HuBERT to mini-
mize the Connectionist Temporal Classification [22] loss using
8 GPUs. The total batch size is of 200 seconds of audio per GPU
and the best model checkpoint is determined by the lowest Word
Error Rate (WER) achieved on the dev-other split. For infer-
ence, 4-gram language model (LM) is used with a beam width
of 500 for dev-other, dev-clean and 1500 for test-clean and test-
other. We do a conservative hyper-parameter search for the 1
hour and 10 hour splits and fixed hyper-parameter are used for
the 100 and 960 hours training splits during fine-tuning. The
inference hyper-parameters are searched with Ax, a Bayesian
optimization toolkit 2 with a beam-width of 500 using 32 trials.

4. Results
4.1. Main Results: Supervised Fine-tuning and Inference

Table 1: ASR Librispeech benchmark finetuning results using a
4-gram language model. wav2vec 2.0 and data2vec are not a
direct comparison to MS-HuBERT and is shown only such that
the reader has a broader picture. The readers should ignore
these two models until the Discussion section 5.

Method dev-clean dev-other test-clean test-other

1hr
wav2vec 2.0 [1] 5.0 10.8 5.5 11.3
HuBERT [2] 5.6 10.9 6.1 11.3
WavLM [9] - - 5.7 10.8
data2vec [10] 4.0 8.5 4.6 9.1
MS-HuBERT 5.6 10.9 5.9 11.3
- Swap 5.9 11.6 6.2 12.3

10hr
wav2vec 2.0 3.8 9.1 4.3 9.5
HuBERT 3.9 9.0 4.3 9.4
WavLM - - 4.3 9.2
data2vec 3.3 7.5 3.9 8.1
MS-HuBERT 3.6 8.5 4.1 8.8
- Swap 3.8 8.6 4.1 9.2

100hr
wav2vec 2.0 2.7 7.9 3.4 8.0
HuBERT 2.7 7.8 3.4 8.1
WavLM - - 3.4 7.7
data2vec 2.2 6.4 2.8 6.8
MS-HuBERT 2.4 7.1 3.0 7.2
- Swap 2.6 6.9 3.1 7.4

960hr
wav2vec 2.0 2.0 5.9 2.6 6.1
data2vec - - - 5.5
MS-HuBERT 1.8 5.1 2.4 5.5

Table 1 presents the outcomes on the Librispeech ASR
benchmark, where MS-HuBERT is compared with two simi-
lar approaches, HuBERT and WavLM. It is evident that MS-
HuBERT yields superior results. The margin of improvement
increase and the size of dataset used for fine-tuning has a di-
rect proportionality. This is a desired property of any training

2https://github.com/facebook/Ax
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framework i.e., as the dataset increase the performance should
increase.

Notably, upon the removal of the Swap concept, we ob-
served a degradation in performance, particularly in low-
resource settings. This proves that the Swap method does in-
deed contribute positively to the performance gains particularly
in low resource setting.

4.2. MS-HuBERT as a Feature Extractor

Table 2: SUPERB fine-tuning results.

Method PR ASR
wav2vec 2.0 [1] 5.74 6.43
HuBERT [2] 5.41 6.42
WavLM [9] 4.84 6.21
data2vec [10] 4.69 4.94
MS-HuBERT 4.42 5.60

To study the information encoded/learnt at different layers
of the MS-HuBERT model and how it compares to the original
HuBERT, we conduct two experiments: (i) SUPERB bench-
mark [23] and (ii) canonical correlation analysis (CCA) simi-
larity with word labels [24, 25].
SUPERB Benchmark: The SUPERB benchmark is designed
to evaluate the efficacy of a pre-trained model without fine-
tuning i.e., using the frozen encoder as a feature extractor.
Specifically, a linear weighted sum of the output embeddings
of all the encoder layers serves as a feature for solving any par-
ticular downstream task. In our study, we aim to assess the
quality of 2nd encoder embeddings, from the MS-HuBERT,
for tackling the speech recognition task. Thus, we employ the
ASR and phoneme-recognition (PR) tasks within the SUPERB
benchmark. The evaluation is on the clean split of the ASR
Librispeech benchmark. The results are reported in Table 2.
Clearly MS-HuBERT surpasses HuBERT and similar models
by a significant margin. This shows the model’s capability in
encoding information crucial in solving the ASR and PR task.
Except on the ASR task using data2vec.

Figure 2: Solid lines show the CCA similarity with the word
labels. Dotted lines show the AUC area under the curve for
them respectively.

CCA Similarity with Word Labels: Following the layer-wise
analysis conducted by Pasad et al. [24, 25], we use a modi-

fied version of canonical correlation analysis (CCA). Specifi-
cally, a projection-weighted CCA (PWCCA) [26]. The plots
are shown in Figure 2. It is clear that MS-HuBERT significantly
enhances the performance of word-level information across the
transformer encoder layers. Additionally, we compute the area
under the curve (AUC) and observe that it consistently surpasses
that of Hubert. This increases the model capacity utilization
compared to HuBERT. We also observe that Swap increases the
CCA similarity in the later layers, which could be the reason of
performance gain in low resource settings on ASR.

5. Discussion
In comparison to data2vec [10], our performance on the ASR
Librispeech benchmark, as illustrated in Table 1, still falls short,
particularly evident in low resource scenarios. This difference
may stem from the inherent nature of the MLM pre-text task uti-
lizing discrete tokens. For instance, WER metric for HuBERT
and WavLM in a 1-hour setting lag behind even wav2vec 2.0.
However, as the fine-tuning dataset increases, the performance
gap diminishes. When leveraging the entire 960 hours of the
Librispeech dataset, our performance matches that of data2vec.
On the SUPERB benchmark, for the PR task, MS-HuBERT out-
performs data2vec and is comparable in the context of ASR.

Given MS-HuBERT is trained using the pseudo labels gen-
erated from the the first iteration HuBERT, we posit that training
two iterations using the MS-HuBERT methodology could po-
tentially surpass data2vec on the ASR Librispeech benchmark
and ASR tasks within the SUPERB benchmark.

Complexity and Computational Cost: MS-HuBERT intro-
duces additional complexity to the pre-training process, partic-
ularly with the incorporation of the Swap method and Multi-
cluster loss approach. This increased complexity may result
in higher computational costs increasing the total time for pre-
training only. During inference MS-HuBERT and HuBERT fol-
lows the same forward pass.

6. Conclusion
Our results highlight the potential of MS-HuBERT in bridg-
ing the performance gap between HuBERT and data2vec on
the ASR Librispeech benchmark and content based tasks, ASR
and PR, on the SUPERB benchmark. MS-HuBERT is aimed at
mitigating the pre-training and inference mismatch in masked
language modeling for learning. Building upon the HuBERT
framework, MS-HuBERT incorporates two key modifications:
our proposed Swap method, enabling full context access dur-
ing pre-training, and the Multicluster loss approach for more
effective training. Through empirical evaluation on the ASR
Librispeech benchmark, MS-HuBERT demonstrates significant
performance improvements over the original HuBERT model,
achieving state-of-the-art results and matching the performance
of data2vec in high-resource settings. Future research could ex-
plore further enhancements to the MS-HuBERT methodology
to avoid iterative pre-training or improving the quality pseudo
labels altogether. Lastly, scaling the model size is also an open
question.
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