
Unleashing the True Potential of LLMs: A Feedback-Triggered
Self-Correction with Long-Term Multipath Decoding

Anonymous ACL submission

Abstract
Large Language Models (LLMs) have achieved001
remarkable performance across diverse tasks,002
yet their susceptibility to generating halluci-003
nated content during inference remains a criti-004
cal unsolved challenge. While self-correction005
methods offer potential solutions, their effec-006
tiveness is hindered by two inherent limitations:007
(1) the absence of reliable guidance signals for008
error localization, and (2) the restricted reason-009
ing depth imposed by conventional next- token010
decoding paradigms. To address these issues,011
we propose Feedback-Triggered Regeneration012
(FTR), a novel framework that synergizes user013
feedback with enhanced decoding dynamics.014
Specifically, FTR activates response regener-015
ation only upon receiving negative user feed-016
back, thereby circumventing error propagation017
from faulty self-assessment while preserving018
originally correct outputs. Furthermore, we in-019
troduce Long-Term Multipath (LTM) decoding,020
which enables systematic exploration of multi-021
ple reasoning trajectories through delayed se-022
quence evaluation, effectively overcoming the023
myopic decision-making characteristic of stan-024
dard next-token prediction. Extensive experi-025
ments on mathematical reasoning and code gen-026
eration benchmarks demonstrate that our frame-027
work achieves consistent and significant im-028
provements over state-of-the-art prompt-based029
self-correction methods.030

1 Introduction031

Large Language Models (LLMs) have achieved032

remarkable performance across a variety of tasks,033

including text generation, question answering, and034

code synthesis (Achiam et al., 2023; Touvron et al.,035

2023; Guo et al., 2025). Despite these achieve-036

ments, LLMs face significant challenges, partic-037

ularly the issue of hallucinations. Hallucinations038

refer to the generation of plausible but factually039

incorrect information, which remains a widely ac-040

knowledged problem in LLM inference (Yao et al.,041

2023; Liu et al., 2024a).042

IoE
GSM8K

IoE
MultiArith

IoE
HumanEval

Critic
GSM8K

Critic
MultiArith

Critic
HumanEval

Correct -> Incorrect Incorrect -> CorrectNo Change

Figure 1: The percentage distribution of answer changes
induced by self-correction using IoE Prompts (Li et al.,
2024) and Critic Prompts (Huang et al., 2024), with
experiments conducted on the Llama3-Instruct-3B.

To address this issue, self-correction mecha- 043

nisms have emerged as a promising research di- 044

rection, enabling LLMs to improve their out- 045

puts based on previous responses (Ji et al., 2023; 046

Madaan et al., 2024). These approaches empower 047

LLMs to refine their outputs through introspec- 048

tive reasoning, typically facilitated via carefully 049

designed prompts (Kim et al., 2024; Li et al., 2024; 050

Chen et al., 2024a; Huang et al., 2024). The 051

self-correction pipeline generally consists of two 052

phases: first, generating an initial answer using 053

standard LLM inference; and second, prompting 054

the LLM to assess and revise the initial output. 055

Nevertheless, the effectiveness of prompt-based 056

methods remains contentious. As illustrated in 057

Figure 1, experiments on three typical reason- 058

ing datasets demonstrate that two state-of-the-art 059

prompt-based self-correction methods (Huang 060

et al., 2024; Li et al., 2024) not only frequently 061

convert correct answers into incorrect ones but also 062

struggle to revise incorrect answers into correct 063

responses. In this study, we argue that this phe- 064

nomenon stems from two key challenges inherent 065

in the prompt-based self-correction process: 066

• C1. Lack of Effective Guidance Signals: 067

The prompt-based self-correction process re- 068

lies on the LLM itself to evaluate the cor- 069

1

rectness of its previous answers. However,070

due to the absence of explicit guidance sig-071

nals, the LLM may fail to accurately deter-072

mine which parts require revision, leading to073

unnecessary self-corrections (i.e., modifying074

correct answers to incorrect ones). Addition-075

ally, given the sensitivity of LLMs to input,076

biased prompts may cause incorrect alignment077

and mislead the LLM into making inaccurate078

judgments (Huang et al., 2024).079

• C2. Shallow Decoding Limits Deep Reason-080

ing: Self-correction of erroneous results by081

LLMs requires deeper thinking and reason-082

ing. However, most current methods follow083

the next-token prediction paradigm, which fo-084

cuses only on single-step predictions during085

the decoding process. The correctness of the086

answer depends on a comprehensive evalu-087

ation of the entire output answer sequence.088

This short-term, step-oriented decoding pro-089

cess limits the LLM’s ability to engage in090

deeper reasoning, thereby hindering its capac-091

ity to generate improved responses during the092

self-correction process.093

To address C1, we propose a feedback-triggered094

self-correction framework, named Feedback-095

Triggered Regeneration (FTR), that leverages user096

feedback to guide the LLM’s reasoning and self-097

correction process. In real-world scenarios, users098

naturally provide feedback on the responses gen-099

erated by LLMs, especially when they are dissatis-100

fied with the LLMs’ answers. This feedback serves101

as a direct indicator of whether the LLM’s output102

requires deeper reasoning and revision. Specifi-103

cally, when user feedback is negative, the LLM104

regenerates the output based solely on the initial105

input, thereby bypassing the issues associated with106

prompt-based methods. This approach eliminates107

the need for the LLM to self-assess its previous108

answers, thereby preventing the unnecessary al-109

teration of correct answers. Moreover, since user110

feedback is readily available in human-LLM in-111

teractions, FTR is highly adaptable to real-world112

applications and can be generalized across various113

tasks.114

To address C2, we strengthen FTR by integrat-115

ing a novel Long-Term Multipath (LTM) decod-116

ing strategy, which is designed to promote deeper117

reasoning in LLMs. Specifically, LTM explores118

multiple decoding paths at each step and evaluates119

their long-term performance, thereby expanding120

the search space available to the LLM. This ap- 121

proach contrasts with the conventional next-token 122

prediction paradigm, which focuses only on single- 123

step predictions and may fail to identify sequences 124

with higher long-term quality. By considering mul- 125

tiple paths and their long-term impact, LTM en- 126

ables the LLM to recompose its responses more 127

effectively, leading to more accurate and coherent 128

outputs. This strategy is applied during the regener- 129

ation stage of self-correction, allowing the LLM to 130

generate improved responses by leveraging deeper 131

reasoning. 132

Overall, we propose a novel user feedback- 133

triggered self-correction framework that integrates 134

user feedback with the advanced LTM decoding 135

strategy. To validate the effectiveness of our frame- 136

work, we conduct a series of experiments com- 137

paring it with SOTA prompt-based methods us- 138

ing open-source backend LLMs. These experi- 139

ments focused on challenging mathematical and 140

coding datasets, where our framework consistently 141

achieves superior performance. In summary, our 142

main contributions are as follows: 143

1. We introduce a novel self-correction frame- 144

work that leverages user feedback as a regen- 145

eration signal, thereby preventing unnecessary 146

self-corrections and improving the quality of 147

LLM outputs. 148

2. We propose a novel decoding method that eval- 149

uates the long-term performance of multiple 150

reasoning paths, thereby enhancing the accu- 151

racy and coherence of generated responses. 152

3. We demonstrate the superiority of our method 153

through extensive experiments on various 154

datasets and backend LLMs, showing consis- 155

tent improvements over existing prompt-based 156

approaches. 157

2 Preliminaries 158

In this section, we introduce the notation used 159

throughout this paper and provide an overview of 160

the commonly employed two-stage self-correction 161

framework. 162

2.1 Notation Definition 163

Let x = (x0, x1, . . . , xn) denote an input sequence, 164

and y = (y0, y1, . . . , ym) represent the correspond- 165

ing LLM response, where y = M(x). Here,M 166

denotes a typical autoregressive language model. 167

2

In this context, the response is generated sequen-168

tially during the decoding process. At the i-th step169

of the inference process, we define the probability170

of the current output sequence si = (y0, y1, . . . , yi)171

as P (si), which is calculated as the product of the172

likelihoods of the first i tokens:173

P (si) = P (y0|x)
i∏

k=1

P (yk|y0:k−1, x) (1)174

The perplexity (PPL) value of the sequence at step175

i is then defined as:176

PPLi = P (si)
− 1

i (2)177

In this work, PPL is employed as a metric to as-178

sess the quality of a sequence during the decoding179

process.180

2.2 Two-Stage Framework for Self-Correction181

The framework of most prompt-based self-182

correction methods can be divided into two stages,183

as depicted in Figure 2 (a):184

• Stage 1: An initial input x is provided to the185

LLM to generate an initial response yinit =186

M(x).187

• Stage 2: An independent correction prompt188

pcor is then given, prompting the LLM to re-189

flect on its generated response. This enables190

the LLM to refine its answer, regenerating the191

refined output ycor =M(x, yinit, pcor).192

In Figure 2 (b), we also present our proposed FTR193

self-correction framework for intuitive comparison.194

Specifically, we have made improvements from195

two perspectives: 1) incorporating user feedback196

as a guiding signal to prompt LLM to regenerate197

responses based on the initial input when necessary;198

2) adopting LTM decoding to enhance the LLM’s199

ability for deeper reasoning in order to address200

more complex error response scenarios.201

3 Methodology202

In this section, we first introduce our proposed203

feedback-triggered regeneration framework, fol-204

lowed by a detailed exploration of LTM decoding.205

3.1 Feedback-Triggered Regeneration206

In general, the correction prompt pcor provides no207

information about the correctness of the initial re-208

sponse yinit. Additionally, LLMs often lack the209

LLM

Input

Initial
Output Prompt+

LLM

Input

Initial
Output

User
Feedback

LLM

Refined
Output

LLM

Refined
Output

…

…

…

…

(a) Prompt-based Self-Correction (b) Feedback-Triggered Regeneration

…

…

Figure 2: (a) Framework of the prompt-based self-
correction approach. (b) Framework of our feedback-
triggered self-correction approach.

ability to independently assess the correctness of 210

their own responses, as highlighted in previous 211

works (Huang et al., 2024; Madaan et al., 2024). 212

These limitations may lead to erroneous decisions 213

by the LLM, as demonstrated in Figure 3 (a). 214

Moreover, when the LLM is well-aligned and 215

receives a carefully crafted initial input, the first re- 216

sponse should ideally be optimal, given the selected 217

decoding algorithm. However, introducing an ad- 218

ditional prompt may cause the LLM to generate a 219

response that is more aligned with the combined 220

input, rather than improving accuracy (Huang et al., 221

2024). This highlights another issue: the LLM’s 222

sensitivity to prompt design, which may ultimately 223

degrade performance (Xu et al., 2024; Liu et al., 224

2024b). For instance, even when correctness feed- 225

back is included in pcor , as shown in Figure 3 (b), 226

the LLM may still fail to refine the previous answer 227

accurately. 228

To avoid the negative impact of self-correction 229

prompts, we propose an enhanced two-stage FTR 230

self-correction framework: 231

• Stage 1: Similarly, provide the initial input 232

x to the LLM to generate the initial response 233

yinit =M(x). 234

• Stage 2: If user feedback indicates that the 235

LLM’s output yinit is problematic, the origi- 236

nal prompt x and an advanced decoding strat- 237

egy, LTM, are employed to regenerate the out- 238

put. Otherwise, no further action is taken. 239

ycor =M′(x) (3) 240

Here, M′ denotes the LLM with an alternative 241

LTM decoding strategy, wequipped with the LTM 242

3

 [Math Question] [Reasoning Process…]
The final result is: [6]

Review your previous answer.
if you are very confident
about your answer, maintain
your answer. Otherwise,
update your answer.

The answer you provided is
incorrect, please review the
answer and update it.

The answer you provided is
incorrect, please review the
answer and update it.

Upon reviewing my previous answer. l am
confident that the number of pieces of
clothing that could go in each of the
small loads is 6.
Here is the updated answer:
[Reasoning Process…]
The final result is: [6]

I apologize for my mistake earlier. Thank
you for pointing it out.
[Reasoning Process…]
The final result is: [6]

Sure! Here's the solution process and
final result for the math problem:
[Reasoning Process…]
Final Result: [3]

(a) Prompt-based self-correction without feedback

(b) Prompt-based self-correction with feedback

(c) Feedback triggered regeneration

 x y୧୬୧୲ = M(x)

 pୡ୭୰ yୡ୭୰ = M(x, y୧୬୧୲, pୡ୭୰)

 pୡ୭୰

 pୡ୭୰

Stage 1

Stage 2

yୡ୭୰ = M(x, y୧୬୧୲, pୡ୭୰)

yୡ୭୰ = M′(x)

Figure 3: Comparison of different self-correction meth-
ods. (a) Self-assessment and update; (b) Revision with
user feedback prompt; (c) Regeneration triggered by
user feedback.

decoding strategy, which is described in the follow-243

ing section. Note that the second stage of FTR uses244

only the original input x without introducing addi-245

tional prompts. Human feedback serves solely as246

an indicator to trigger regeneration, as illustrated247

in Figure 2 (b) and Figure 3 (c). This approach248

prevents the LLM output from being degraded by249

potentially biased prompts.250

3.2 Long-Term Multipath Decoding251

After receiving negative feedback from users, the252

FTR framework initiates the second stage of re-253

generation. Given the complexity of error scenar-254

ios, the LLM requires more in-depth reasoning255

to generate a higher quality response than the ini-256

tial incorrect one. To address this, we propose257

LTM decoding strategy for the second stage of self-258

correction. Unlike traditional paradigm that focus259

solely on the score of the next token, LTM consid-260

ers the performance from the sequence perspective,261

thereby alleviating the short sightedness of con-262

ventional decoding approaches and enabling more263

in-depth reasoning for the LLM. This approach im-264

proves decoding from two aspects: (1) Multipath265

Exploration: Instead of exploring a single path,266

token selection is performed using a “tree” struc-267

ture rather than the traditional “chain” structure.268

A

B

C

… … … …

LLMINPUT OUTPUT Good answer?

NO

YES

Regeneration Signal

ACCEPT
OUTPUT

Step 0
𝑝௧௛௥଴ = 0.72, 𝑘଴ = 1

Step 1
𝑝௧௛௥ଵ = 0.72 , 𝑘ଵ = 2

Step 2
𝑝௧௛௥ଶ = 0.65, 𝑘ଶ = 3

LTPD

Next-Token Prediction

ABC

𝑝(𝑠଴
଴) = 0.9

0.9

0.3 0.1 0.6

0.9 0.1 0.0 0.4 0.4 0.2

𝑝(𝑠ଵ
଴) = 0.27 𝑝(𝑠ଵ

ଶ) = 0.54

𝑝(𝑠ଶ
଴) = 0.24 𝑝(𝑠ଵ

ଷ) = 0.22 𝑝(𝑠ଵ
ସ) = 0.22

Figure 4: Illustration of LTM decoding strategies (V =
3), where black numbers in circles are token likelihood
and red ones indicate sequence likelihood.

This allows the LLM to explore multiple potential 269

sequences simultaneously, as illustrated in Figure 4. 270

(2) Sequence Evaluation: We use PPL as a metric 271

to evaluate the quality of all potential sequences, 272

retaining the top ki sequences at step i. This selec- 273

tion is dynamically adjusted according to the PPL 274

distribution at each decoding step. 275

The detailed implementation of LTM is de- 276

scribed below, including the method for determin- 277

ing ki at each step. An illustrative example is pro- 278

vided in Figure 4 for clarity. Firstly, the probabil- 279

ities of all possible sequences are computed. Let 280

ki−1 denote the number of candidates retained at 281

the (i − 1)-th step, and let V represent the size 282

of the LLM’s vocabulary. Accordingly, there are 283

ki−1 × V candidate sequences. Secondly, the top- 284

ki sequences are selected from the ki−1× V candi- 285

dates. These candidates are sorted based on their 286

probabilities P (sji), where j ∈ [0, ki−1 × V − 1] 287

denotes the index of each candidate. The cumu- 288

lative probability is computed until it exceeds the 289

threshold value pthri : 290

ki∑
j=0

P (sji) ≥ pthri . (4) 291

The number of retained sequences, denoted as ki, is 292

the minimal set that satisfies this condition, with all 293

other sequences pruned. Since PPL can be directly 294

calculated from the sequence probability, we use 295

P (sji) as the metric prior to the completion of the 296

sequence. The threshold pthri is defined as: 297

pthri = p∗ ×
ki−1×V−1∑

j=0

P (sji). (5) 298

Here, p∗ ∈ [0, 1] controls the number of sequences 299

to be pruned, where a lower p∗ results in more se- 300

quences being discarded. Finally, to control com- 301

putational overhead, an additional hyperparameter 302

4

k∗ is introduced. When ki exceeds k∗, only the first303

k∗ sequences are retained. At each step, LTM se-304

lects the most probable candidates while adhering305

to the constraints of pthri and k∗. The pseudocode306

for the algorithm is presented in Algorithm 1.307

Algorithm 1 Pseudocode of Dynamic Decoding
Input: A text sequence l;
Hyperparameters: p∗, k∗, maximum sequence
length N ;
Output: Beams B

1: Initialize B = []
2: Initialize P (S0) = 1
3: for i in range(1,N) do
4: // Calculate probabilities of all possible sen-

tences
5: P (Yi)←M(l +B)
6: P (Si)← P (Yi)× P (Si−1)
7: // Sort sentence probabilities
8: [Psort(Si), T okensort]← sort(P (Si))
9: // Compute probability threshold pthri

10: pthri ← p∗ ×
∑

P (Si)
11: // Select candidates T based on threshold
12: T ← top(Tokensort, Psort(Si), pthri)
13: // Update beams
14: B.append(Tokensort[: min(len(T), k∗)])
15: end for

In traditional sampling methods that select one308

token at a time, errors introduced early in the309

process can propagate through subsequent stages.310

Moreover, a token initially selected as the opti-311

mal choice may lose its advantage as the context312

evolves, leading to suboptimal sequence selection313

and a decline in overall performance. For instance,314

as illustrated in Figure 4, the left branch at step 1315

has a lower probability than the right branch but316

achieves better performance at step 2. This high-317

lights the limitations of methods that focus solely318

on immediate token probabilities without consider-319

ing long-term sequence quality. In contrast, LTM320

explores multiple sequences and evaluates the over-321

all long-term performance of each. This approach322

enables the LLM to look ahead at future tokens and323

retrospectively correct errors, thereby enhancing324

its ability to generate higher quality outputs.325

4 Experimental Setup326

In this section, we detail the experimental setup327

of our study, encompassing the LLMs employed,328

datasets utilized, baseline methods compared, eval-329

uation metrics applied, and implementation details.330

4.1 Backend LLMs 331

To verify the universality of our method, we test 332

various open-source LLMs ranging from 1B to 13B 333

parameters. These include Llama2-Chat-7B and 334

Llama2-Chat-13B (Touvron et al., 2023), Llama3- 335

Instruct-1B and Llama3-Instruct-3B (Dubey et al., 336

2024), and Qwen2.5-1.5B-Instruct and Qwen2.5- 337

3B-Instruct (Yang et al., 2024). For brevity, we 338

refer to these LLMs as Llama2-7B, Llama2-13B, 339

Llama3-1B, Llama3-3B, Qwen-1.5B, and Qwen- 340

3B in the subsequent sections. 341

4.2 Datasets 342

To simulate user feedback, we conduct experiments 343

using mathematical and coding datasets, where the 344

correctness of LLM outputs can be assessed by 345

comparing them with ground-truth solutions. The 346

datasets used are as follows: (1) GSM8K (Cobbe 347

et al., 2021): This dataset contains 1,319 mathe- 348

matical problems with standardized answers. We 349

adopt a zero-shot approach, prompting the LLMs 350

to generate both reasoning processes and final re- 351

sults. (2) MultiArith (Roy and Roth, 2015): Com- 352

prising 180 mathematical problems, this dataset 353

uses the same initial prompts as GSM8K. (3) Hu- 354

manEval (Chen et al., 2021): This dataset includes 355

164 programming questions. Prompts are formu- 356

lated based on implementations from the DeCLaRe 357

Lab (Chia et al., 2023). 358

4.3 Baselines 359

To evaluate the effectiveness of our method, 360

we compare it with two general-purpose, two- 361

stage prompt-based self-correction approaches: (1) 362

Critic Prompt (Huang et al., 2024): To ensure 363

experimental fairness, we adopt the experimental 364

setting from Li et al. (2024), which instructs the 365

LLM to identify errors in its previous responses 366

and generate refined results. (2) If or Else (IoE) 367

Prompt (Li et al., 2024): This method prompts the 368

LLM to assess its confidence in the initial answer 369

and generate a refined response if necessary. 370

For the Critic Prompt method, the LLM is in- 371

structed using the following prompt: "Review your 372

previous answer and find problems with your an- 373

swer. Based on the problems you found, improve 374

your answer. Please reiterate your answer". For 375

the IoE Prompt method, the prompt employed is 376

"Review your previous answer. If you are very 377

confident about your answer, maintain your answer. 378

Otherwise, update your answer". The key differ- 379

5

ence between these methods aligns with variations380

in pcor within the discussed framework.381

4.4 Evaluation metrics382

We evaluate model performance using top-1 ac-383

curacy (acc@1) for mathematical tasks and top-384

1 pass rate (pass@1) for coding tasks. acc@1385

measures the percentage of test cases where the386

model’s highest-ranked prediction matches the387

ground truth, while pass@1 quantifies the propor-388

tion of instances where the top prediction success-389

fully passes a predefined coding test.390

4.5 Implementation Details391

Users typically expect a single output, but LTM392

may generate multiple responses. In the FTR self-393

correction method, we first evaluate the PPL met-394

ric for all generated responses and select the one395

with the lowest PPL as the final output. For other396

self-correction methods, only one response is gener-397

ated per attempt using nucleus sampling (Holtzman398

et al., 2020; Fan et al., 2018; Holtzman et al., 2018)399

with p = 0.95 and k = 15.400

5 Experimental Results401

In this section, we present the empirical findings402

that demonstrate the efficacy of our approach.403

5.1 Overall Comparison404

Table 1 illustrates the comparative performance405

of our FTR method relative to baseline ap-406

proaches across multiple datasets and LLMs. Our407

FTR method achieves significant improvements408

(10%–20%) across various datasets and LLMs,409

highlighting its effectiveness and adaptability in410

integrating user feedback with the advanced LTM411

decoding strategy. In contrast, evaluations indicate412

that the Critic and IoE prompt methods often result413

in performance degradation when compared to the414

initial input across most datasets and LLMs. These415

findings suggest that prompt-based techniques may416

not be robust in enhancing LLM performance.417

This observation aligns with prior research by418

Huang et al. (2024), which indicates that certain419

prompts may mislead LLMs, resulting in a higher420

likelihood of correct responses being altered to in-421

correct ones. However, recent studies on advanced422

OpenAI GPT models, such as the research con-423

ducted by Li et al. (2024), present contrasting re-424

sults. They propose that the effectiveness of confi-425

dence prompts improves when utilized with larger426

LLMs. This discrepancy may be attributed to the427

Method GSM8K MultiArith HumanEval

Llama2-7B
Initial Input 0.206 0.539 0.104

+ Critic Prompt 0.171 0.522 0.043
+ IoE Prompt 0.136 0.339 0.091
+ FTR (Ours) 0.360 0.878 0.165

Llama2-13B
Initial Input 0.303 0.656 0.207

+ Critic Prompt 0.122 0.322 0.049
+ IoE Prompt 0.281 0.656 0.122
+ FTR (Ours) 0.463 0.917 0.250

Llama3-1B
Initial Input 0.245 0.406 0.287

+ Critic Prompt 0.167 0.289 0.165
+ IoE Prompt 0.173 0.383 0.281
+ FTR (Ours) 0.399 0.622 0.409

Llama3-3B#
Initial Input 0.774 0.961 0.488

+ Critic Prompt 0.485 0.750 0.390
+ IoE Prompt 0.394 0.650 0.323
+ FTR (Ours) 0.875 0.994 0.604

Qwen-1.5B#
Initial Input 0.422 0.678 0.409

+ Critic Prompt 0.334 0.506 0.220
+ IoE Prompt 0.328 0.567 0.085
+ FTR (Ours) 0.594 0.839 0.732

Qwen-3B#
Initial Input 0.837 0.994 0.677

+ Critic Prompt 0.789 0.939 0.524
+ IoE Prompt 0.823 0.989 0.628
+ FTR (Ours) 0.902 1.000 0.768

Table 1: Performance comparison of different self-
correction methods across different datasets and LLMs.

superior instruction-following and reasoning ca- 428

pabilities of these advanced models, which are 429

less developed in smaller LLMs. Our experimen- 430

tal results underscore the limited effectiveness of 431

prompt-based methods within the state-of-the-art 432

open-source model under 13B parameters. 433

5.2 Feedback Experiment 434

Here, we examine the rationale behind our pro- 435

posed FTR framework, which uses user feedback 436

as a guiding signal to refine LLM outputs. One rea- 437

son for the performance decline of prompt-based 438

self-correction methods is their tendency to convert 439

correct responses into incorrect ones. 440

User feedback serves as a crucial mechanism 441

to mitigate the performance decline observed in 442

prompt-based self-correction methods by identify- 443

ing incorrect outputs. This approach also could 444

be seamless integrated to prompt-based techniques 445

within self-correction framework. Therefore, we 446

conduct experiments using different configurations: 447

(1) feedback as prompt. In this method, the ac- 448

curacy of the initial answer is incorporated as an 449

additional prompt to guide the LLM in refining its 450

output. The prompt is "The answer you provided is 451

incorrect, please review the answer and update it". 452

6

Method GSM8K MultiArith HumanEval

Llama2-7B
Initial Input 0.206 0.539 0.104
+ Prompt 0.243 0.694 0.140

+ Indicator (Ours) 0.328 0.810 0.146
Llama2-13B

Initial Input 0.303 0.656 0.207
+ Prompt 0.359 0.806 0.220

+ Indicator (Ours) 0.455 0.872 0.243
Llama3-1B

Initial Input 0.245 0.406 0.287
+ Prompt 0.301 0.506 0.317

+ Indicator (Ours) 0.374 0.556 0.384
Llama3-3B#

Initial Input 0.774 0.961 0.488
+ Prompt 0.822 0.972 0.534

+ Indicator (Ours) 0.859 0.983 0.567
Qwen-1.5B#

Initial Input 0.422 0.678 0.409
+ Prompt 0.512 0.750 0.476

+ Indicator (Ours) 0.630 0.900 0.512
Qwen-3B#

Initial Input 0.837 0.994 0.677
+ Prompt 0.867 0.994 0.732

+ Indicator (Ours) 0.892 1.000 0.768

Table 2: Effectiveness of self-correction methods under
different user feedback utilization approaches.

(2) feedback as indicator: In this approach, the453

system directly generates the output based on the454

original input without an additional prompt. To en-455

sure fairness, we apply the same nucleus sampling456

method to both configurations.457

The results are presented in Table 2. Evidently,458

explicit feedback regarding the accuracy of the459

model’s responses, used in both feedback prompts460

and FTR methods, leads to significant performance461

improvements by targeting refinements specifi-462

cally to incorrect outputs. Notably, the feedback-463

as-indicator method outperforms the feedback-464

as-prompt method, suggesting that prompt-based465

approaches may lack robustness and potentially466

degrade model performance through additional467

prompts. Therefore, we recommend using user468

feedback as an indicator to trigger regeneration,469

rather than integrating it into the input prompt.470

5.3 Decoding Comparison471

To evaluate the LTM method, we assessed its per-472

formance as a standalone decoding strategy for473

LLMs without integrating any self-correction tech-474

niques, focusing on single-turn tasks. The mod-475

els and datasets used are consistent with those476

described in the preceding sections. The base-477

line methods comprise: (1) Beam Search: This478

method selects the top-k most probable beams at479

each decoding step and is a classical decoding tech-480

nique in the field of NLP. (2) Combined Sampling481

GSM8K MultiArith HumanEval

Llama2-7B
Beam Search 0.261 0.739 0.134

Combined Sampling 0.253 0.733 0.134
Adaptive Decoding 0.257 0.722 0.128

LTM Decoding 0.276 0.750 0.146
Llama2-13B

Beam Search 0.366 0.800 0.220
Combined Sampling 0.345 0.756 0.213
Adaptive Decoding 0.366 0.722 0.213

LTM Decoding 0.378 0.833 0.232
Llama3-1B

Beam Search 0.268 0.478 0.354
Combined Sampling 0.231 0.411 0.287
Adaptive Decoding 0.257 0.322 0.348

LTM Decoding 0.289 0.494 0.354
Llama3-3B

Beam Search 0.796 0.983 0.555
Combined Sampling 0.761 0.950 0.506
Adaptive Decoding 0.747 0.972 0.512

LTM Decoding 0.804 0.994 0.561
Qwen-1.5B

Beam Search 0.456 0.489 0.610
Combined Sampling 0.418 0.439 0.390
Adaptive Decoding 0.439 0.506 0.476

LTM Decoding 0.456 0.522 0.622
Qwen-3B

Beam Search 0.851 1.000 0.756
Combined Sampling 0.817 0.994 0.762
Adaptive Decoding 0.823 0.994 0.713

LTM Decoding 0.852 1.000 0.768

Table 3: Performance comparison of different decoding
methods for LLMs.

(nucleus sampling): This approach combines top- 482

p sampling and top-k sampling, with parameters 483

p = 095 and k = 15 used consistently across all ex- 484

periments. It is a widely adopted decoding strategy 485

in LLMs. (3) Adaptive Decoding: This method 486

enhances top-k sampling by dynamically adjusting 487

the candidate set size at each generation step based 488

on an entropy-based confidence score. Adaptive 489

Decoding is a relatively novel technique compared 490

to the aforementioned methods. For a fair compar- 491

ison, we ensure that the computing budgets (the 492

number of tokens during the decoding process) are 493

approximately equal by adjusting the hyperparam- 494

eters of the different decoding methods. 495

The results are presented in Table 3. It is evident 496

that the LTM surpasses all baseline methods. This 497

highlights the efficacy of multi-path exploration 498

and dynamically adjusted candidate sets, which not 499

only extend the exploration of decoding space but 500

also ensure that computational resources are con- 501

7

centrated on the most crucial steps. Conversely,502

we observe that the combined decoding method ex-503

hibits performance lower than expected in terms of504

accuracy. Nonetheless, it remains prevalent in the505

current landscape of LLMs owing to the diversity506

it offers in its outputs. Therefore, to enhance the507

output diversity of LTM while maintaining effec-508

tiveness, it is crucial to explore a balance between509

these two factors in future work.510

6 Related Work511

In this section, we introduce some related work,512

including self-correction and decoding methods.513

6.1 Self-Correction Methods514

Numerous studies have advanced self-correction515

methods in the domain of LLMs. For instance,516

Madaan et al. (2024) proposed a three-stage frame-517

work that enhances LLM outputs by integrating518

feedback from previous iterations. Li et al. (2024)519

designed prompts to guide the LLM in assessing520

its confidence and deciding whether to generate521

a revised response. Huang et al. (2024) further522

explored the use of critic prompts to evaluate the523

self-correction capabilities of LLMs. Addition-524

ally, task-specific prompts have been developed for525

translation tasks to facilitate iterative refinement526

(Chen et al., 2024a), and methods like Self-Debug527

have enabled LLMs to generate feedback based on528

their own code and execution results (Chen et al.,529

2024b). External tools like search engines and530

compilers have also been integrated to support er-531

ror correction (Gou et al., 2024). However, existing532

self-correction methods for LLMs rely on prompts533

while neglecting real-time user feedback. This can534

lead to redundant refinements and degrade LLM535

performance. Unlike previous work, our prompt-536

free approach incorporates useful user feedback to537

enhance efficiency and performance.538

6.2 Decoding Strategies539

Current decoding strategies in LLMs primarily use540

next-token prediction mechanisms such as top-k541

sampling(Fan et al., 2018; Holtzman et al., 2018)542

and nucleus sampling (top-p sampling)(Holtzman543

et al., 2020). In top-k sampling, the LLM selects544

the next token from the top k most probable to-545

kens, while in nucleus sampling, it samples from546

the smallest set of tokens whose cumulative prob-547

ability exceeds a threshold p. Basu et al. (2021)548

proposed a modified version of top-k sampling that549

incorporates a feedback mechanism to control the550

perplexity of the generated text. Zhu et al. (2024b) 551

introduced adaptive decoding, a variant of top-k 552

sampling that dynamically adjusts the size of k 553

based on the information entropy of the token prob- 554

ability distribution. 555

In an effort to improve LLM performance, sev- 556

eral approaches have been developed that explore 557

multiple inference paths. For example, the Chain- 558

of-Thought (CoT) reasoning algorithm (Wang and 559

Zhou, 2024) improved reasoning by combining 560

top-k sampling and greedy sampling, selecting the 561

longest output from the generated candidates. Like- 562

wise, Zhu et al. (2024a) enhanced reasoning by 563

decomposing model outputs into discrete steps and 564

assigning deductive scores to determine how many 565

branches should be processed. However, these ap- 566

proaches are often limited to fixed output templates 567

and constrained reasoning steps, reducing their flex- 568

ibility and practical applicability. Our proposed 569

LTM decoding addresses these limitations by focus- 570

ing on long-term reasoning paths and eliminating 571

reliance on predefined templates, enhancing adapt- 572

ability and flexibility in human-LLM interactions. 573

7 Conclusion 574

This work introduces the FTR self-correction 575

framework, which significantly enhances the per- 576

formance of LLMs by leveraging user feedback 577

as a guiding signal. Specifically, when user feed- 578

back indicates dissatisfaction with the LLMs’ out- 579

put, the framework employs LTM—an advanced 580

decoding strategy—to refine the response. By inte- 581

grating LTM with feedback-triggered regeneration, 582

the framework notably improves the overall quality 583

of the LLMs’ responses. Unlike existing methods 584

that rely heavily on prompts and the LLMs’ inter- 585

nal assessment capabilities, the FTR framework 586

is more flexible and adaptive. This makes it par- 587

ticularly well-suited for real-world human-LLM 588

interaction scenarios where intuitive feedback is 589

readily available. 590

We propose two directions for future work: (1) 591

Although LTM demonstrates superior performance, 592

it lacks diversity in its outputs. Exploring methods 593

to enhance the diversity of LTM would be a valu- 594

able area of research; (2) Recently, reinforcement 595

learning (RL) has gained significant importance 596

in the LLM field. One key direction is improving 597

response generation for possible candidate solution. 598

It would be interesting to investigate whether LTM 599

can aid in generating data that benefits RL. 600

8

Limitations601

Despite its advantages, LTM, as a greedy decod-602

ing method, is prone to higher levels of repetition603

and redundancy in text generation. Potential future604

directions include detecting and eliminating redun-605

dant outputs during the decoding process and in-606

tegrating sampling mechanisms into the algorithm607

to improve output diversity. These enhancements608

could further reduce computational load and la-609

tency, thereby improving real-time user interaction.610

In addition, LTM increases computational load611

to enhance the quality of LLM outputs, making it612

less suitable for scenarios that require both high613

output quality and low latency. Therefore, explor-614

ing a decoding approach that improves output qual-615

ity while maintaining low latency is of significant616

importance.617

References618

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama619
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,620
Diogo Almeida, Janko Altenschmidt, Sam Altman,621
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.622
arXiv preprint arXiv:2303.08774.623

Sourya Basu, Govardana Sachitanandam Ramachan-624
dran, Nitish Shirish Keskar, and Lav R. Varshney.625
2021. Mirostat: a neural text decoding algorithm626
that directly controls perplexity. In 9th International627
Conference on Learning Representations, ICLR 2021,628
Virtual Event, Austria, May 3-7, 2021.629

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming630
Yuan, Henrique Ponde De Oliveira Pinto, Jared Ka-631
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,632
Greg Brockman, et al. 2021. Evaluating large633
language models trained on code. arXiv preprint634
arXiv:2107.03374.635

Pinzhen Chen, Zhicheng Guo, Barry Haddow, and Ken-636
neth Heafield. 2024a. Iterative translation refinement637
with large language models. In Proceedings of the638
25th Annual Conference of the European Association639
for Machine Translation (Volume 1), EAMT 2024,640
Sheffield, UK, June 24-27, 2024.641

Xinyun Chen, Maxwell Lin, Nathanael Schärli, and642
Denny Zhou. 2024b. Teaching large language mod-643
els to self-debug. In The Twelfth International Con-644
ference on Learning Representations, ICLR 2024,645
Vienna, Austria, May 7-11, 2024.646

Yew Ken Chia, Pengfei Hong, Lidong Bing, and Sou-647
janya Poria. 2023. Instructeval: Towards holistic648
evaluation of instruction-tuned large language mod-649
els. arXiv preprint arXiv:2306.04757.650

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,651
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias652

Plappert, Jerry Tworek, Jacob Hilton, Reiichiro 653
Nakano, Christopher Hesse, and John Schulman. 654
2021. Training verifiers to solve math word prob- 655
lems. arXiv preprint arXiv:2110.14168. 656

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, 657
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, 658
Akhil Mathur, Alan Schelten, Amy Yang, Angela 659
Fan, et al. 2024. The llama 3 herd of models. arXiv 660
preprint arXiv:2407.21783. 661

Angela Fan, Mike Lewis, and Yann N. Dauphin. 2018. 662
Hierarchical neural story generation. In Proceedings 663
of the 56th Annual Meeting of the Association for 664
Computational Linguistics, ACL 2018, Melbourne, 665
Australia, July 15-20, 2018, Volume 1: Long Papers. 666

Zhibin Gou, Zhihong Shao, Yeyun Gong, Yelong Shen, 667
Yujiu Yang, Nan Duan, and Weizhu Chen. 2024. 668
CRITIC: large language models can self-correct with 669
tool-interactive critiquing. In The Twelfth Inter- 670
national Conference on Learning Representations, 671
ICLR 2024, Vienna, Austria, May 7-11, 2024. 672

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, 673
Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma, 674
Peiyi Wang, Xiao Bi, et al. 2025. Deepseek-r1: In- 675
centivizing reasoning capability in llms via reinforce- 676
ment learning. arXiv preprint arXiv:2501.12948. 677

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and 678
Yejin Choi. 2020. The curious case of neural text 679
degeneration. In 8th International Conference on 680
Learning Representations, ICLR 2020, Addis Ababa, 681
Ethiopia, April 26-30, 2020. 682

Ari Holtzman, Jan Buys, Maxwell Forbes, Antoine 683
Bosselut, David Golub, and Yejin Choi. 2018. Learn- 684
ing to write with cooperative discriminators. In Pro- 685
ceedings of the 56th Annual Meeting of the Asso- 686
ciation for Computational Linguistics, ACL 2018, 687
Melbourne, Australia, July 15-20. 688

Jie Huang, Xinyun Chen, Swaroop Mishra, 689
Huaixiu Steven Zheng, Adams Wei Yu, Xiny- 690
ing Song, and Denny Zhou. 2024. Large language 691
models cannot self-correct reasoning yet. In The 692
Twelfth International Conference on Learning 693
Representations, ICLR 2024, Vienna, Austria, May 694
7-11, 2024. 695

Ziwei Ji, Tiezheng Yu, Yan Xu, Nayeon Lee, Etsuko 696
Ishii, and Pascale Fung. 2023. Towards mitigating 697
LLM hallucination via self reflection. In Findings 698
of the Association for Computational Linguistics: 699
EMNLP 2023, Singapore, December 6-10, 2023. 700

Geunwoo Kim, Pierre Baldi, and Stephen McAleer. 701
2024. Language models can solve computer tasks. 702
Advances in Neural Information Processing Systems. 703

Loka Li, Zhenhao Chen, Guangyi Chen, Yixuan Zhang, 704
Yusheng Su, Eric Xing, and Kun Zhang. 2024. Con- 705
fidence matters: Revisiting intrinsic self-correction 706
capabilities of large language models. arXiv preprint 707
arXiv:2402.12563. 708

9

Fang Liu, Yang Liu, Lin Shi, Houkun Huang, Ruifeng709
Wang, Zhen Yang, Li Zhang, Zhongqi Li, and Yuchi710
Ma. 2024a. Exploring and evaluating hallucinations711
in llm-powered code generation. arXiv preprint712
arXiv:2404.00971.713

Fengyuan Liu, Nouar AlDahoul, Gregory Eady, Yasir714
Zaki, Bedoor AlShebli, and Talal Rahwan. 2024b.715
Self-reflection outcome is sensitive to prompt con-716
struction. arXiv preprint arXiv:2406.10400.717

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler718
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,719
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,720
et al. 2024. Self-refine: Iterative refinement with721
self-feedback. Advances in Neural Information Pro-722
cessing Systems.723

Subhro Roy and Dan Roth. 2015. Solving general arith-724
metic word problems. In Proceedings of the 2015725
Conference on Empirical Methods in Natural Lan-726
guage Processing, EMNLP 2015, Lisbon, Portugal,727
September 17-21, 2015.728

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-729
bert, Amjad Almahairi, Yasmine Babaei, Nikolay730
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti731
Bhosale, et al. 2023. Llama 2: Open founda-732
tion and fine-tuned chat models. arXiv preprint733
arXiv:2307.09288.734

Xuezhi Wang and Denny Zhou. 2024. Chain-of-thought735
reasoning without prompting. In Advances in Neural736
Information Processing Systems 38: Annual Confer-737
ence on Neural Information Processing Systems 2024,738
NeurIPS 2024, Vancouver, BC, Canada, December739
10 - 15, 2024.740

Ziyang Xu, Keqin Peng, Liang Ding, Dacheng Tao,741
and Xiliang Lu. 2024. Take care of your prompt742
bias! investigating and mitigating prompt bias in743
factual knowledge extraction. In Proceedings of the744
2024 Joint International Conference on Computa-745
tional Linguistics, Language Resources and Evalua-746
tion, LREC/COLING 2024, 20-25 May, 2024, Torino,747
Italy.748

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui,749
Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu,750
Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jian-751
hong Tu, Jianwei Zhang, Jianxin Yang, Jiaxi Yang,752
Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu,753
Keqin Bao, Kexin Yang, Le Yu, Mei Li, Mingfeng754
Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tian-755
hao Li, Tingyu Xia, Xingzhang Ren, Xuancheng756
Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan,757
Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan758
Qiu. 2024. Qwen2.5 technical report. arXiv preprint759
arXiv:2412.15115.760

Jia-Yu Yao, Kun-Peng Ning, Zhen-Hui Liu, Mu-Nan761
Ning, Yu-Yang Liu, and Li Yuan. 2023. Llm lies:762
Hallucinations are not bugs, but features as adversar-763
ial examples. arXiv preprint arXiv:2310.01469.764

Tinghui Zhu, Kai Zhang, Jian Xie, and Yu Su. 2024a. 765
Deductive beam search: Decoding deducible ratio- 766
nale for chain-of-thought reasoning. arXiv preprint 767
arXiv:2401.17686. 768

Wenhong Zhu, Hongkun Hao, Zhiwei He, Yiming Ai, 769
and Rui Wang. 2024b. Improving open-ended text 770
generation via adaptive decoding. In Forty-first In- 771
ternational Conference on Machine Learning, ICML 772
2024, Vienna, Austria, July 21-27, 2024. 773

10

	Introduction
	Preliminaries
	Notation Definition
	Two-Stage Framework for Self-Correction

	Methodology
	Feedback-Triggered Regeneration
	Long-Term Multipath Decoding

	Experimental Setup
	Backend LLMs
	Datasets
	Baselines
	Evaluation metrics
	Implementation Details

	Experimental Results
	Overall Comparison
	Feedback Experiment
	Decoding Comparison

	Related Work
	Self-Correction Methods
	Decoding Strategies

	Conclusion

