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Abstract

Large Language Models (LLMs) have achieved
remarkable performance across diverse tasks,
yet their susceptibility to generating halluci-
nated content during inference remains a criti-
cal unsolved challenge. While self-correction
methods offer potential solutions, their effec-
tiveness is hindered by two inherent limitations:
(1) the absence of reliable guidance signals for
error localization, and (2) the restricted reason-
ing depth imposed by conventional next- token
decoding paradigms. To address these issues,
we propose Feedback-Triggered Regeneration
(FTR), a novel framework that synergizes user
feedback with enhanced decoding dynamics.
Specifically, FTR activates response regener-
ation only upon receiving negative user feed-
back, thereby circumventing error propagation
from faulty self-assessment while preserving
originally correct outputs. Furthermore, we in-
troduce Long-Term Multipath (LTM) decoding,
which enables systematic exploration of multi-
ple reasoning trajectories through delayed se-
quence evaluation, effectively overcoming the
myopic decision-making characteristic of stan-
dard next-token prediction. Extensive experi-
ments on mathematical reasoning and code gen-
eration benchmarks demonstrate that our frame-
work achieves consistent and significant im-
provements over state-of-the-art prompt-based
self-correction methods.

1 Introduction

Large Language Models (LLMs) have achieved
remarkable performance across a variety of tasks,
including text generation, question answering, and
code synthesis (Achiam et al., 2023; Touvron et al.,
2023; Guo et al., 2025). Despite these achieve-
ments, LLMs face significant challenges, partic-
ularly the issue of hallucinations. Hallucinations
refer to the generation of plausible but factually
incorrect information, which remains a widely ac-
knowledged problem in LLM inference (Yao et al.,
2023; Liu et al., 2024a).
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Figure 1: The percentage distribution of answer changes
induced by self-correction using IoE Prompts (Li et al.,
2024) and Critic Prompts (Huang et al., 2024), with
experiments conducted on the Llama3-Instruct-3B.

To address this issue, self-correction mecha-
nisms have emerged as a promising research di-
rection, enabling LLMs to improve their out-
puts based on previous responses (Ji et al., 2023;
Madaan et al., 2024). These approaches empower
LLMs to refine their outputs through introspec-
tive reasoning, typically facilitated via carefully
designed prompts (Kim et al., 2024; Li et al., 2024;
Chen et al., 2024a; Huang et al., 2024). The
self-correction pipeline generally consists of two
phases: first, generating an initial answer using
standard LLM inference; and second, prompting
the LLM to assess and revise the initial output.

Nevertheless, the effectiveness of prompt-based
methods remains contentious. As illustrated in
Figure 1, experiments on three typical reason-
ing datasets demonstrate that two state-of-the-art
prompt-based self-correction methods (Huang
et al., 2024; Li et al., 2024) not only frequently
convert correct answers into incorrect ones but also
struggle to revise incorrect answers into correct
responses. In this study, we argue that this phe-
nomenon stems from two key challenges inherent
in the prompt-based self-correction process:

* C1. Lack of Effective Guidance Signals:
The prompt-based self-correction process re-
lies on the LLM itself to evaluate the cor-



rectness of its previous answers. However,
due to the absence of explicit guidance sig-
nals, the LLM may fail to accurately deter-
mine which parts require revision, leading to
unnecessary self-corrections (i.e., modifying
correct answers to incorrect ones). Addition-
ally, given the sensitivity of LLMs to input,
biased prompts may cause incorrect alignment
and mislead the LLM into making inaccurate
judgments (Huang et al., 2024).

* C2. Shallow Decoding Limits Deep Reason-
ing: Self-correction of erroneous results by
LLMs requires deeper thinking and reason-
ing. However, most current methods follow
the next-token prediction paradigm, which fo-
cuses only on single-step predictions during
the decoding process. The correctness of the
answer depends on a comprehensive evalu-
ation of the entire output answer sequence.
This short-term, step-oriented decoding pro-
cess limits the LLM’s ability to engage in
deeper reasoning, thereby hindering its capac-
ity to generate improved responses during the
self-correction process.

To address C1, we propose a feedback-triggered
self-correction framework, named Feedback-
Triggered Regeneration (FTR), that leverages user
feedback to guide the LLM’s reasoning and self-
correction process. In real-world scenarios, users
naturally provide feedback on the responses gen-
erated by LLMs, especially when they are dissatis-
fied with the LLMs’ answers. This feedback serves
as a direct indicator of whether the LLM’s output
requires deeper reasoning and revision. Specifi-
cally, when user feedback is negative, the LLM
regenerates the output based solely on the initial
input, thereby bypassing the issues associated with
prompt-based methods. This approach eliminates
the need for the LLM to self-assess its previous
answers, thereby preventing the unnecessary al-
teration of correct answers. Moreover, since user
feedback is readily available in human-LLM in-
teractions, FTR is highly adaptable to real-world
applications and can be generalized across various
tasks.

To address C2, we strengthen FTR by integrat-
ing a novel Long-Term Multipath (LTM) decod-
ing strategy, which is designed to promote deeper
reasoning in LLMs. Specifically, LTM explores
multiple decoding paths at each step and evaluates
their long-term performance, thereby expanding

the search space available to the LLM. This ap-
proach contrasts with the conventional next-token
prediction paradigm, which focuses only on single-
step predictions and may fail to identify sequences
with higher long-term quality. By considering mul-
tiple paths and their long-term impact, LTM en-
ables the LLM to recompose its responses more
effectively, leading to more accurate and coherent
outputs. This strategy is applied during the regener-
ation stage of self-correction, allowing the LLM to
generate improved responses by leveraging deeper
reasoning.

Overall, we propose a novel user feedback-
triggered self-correction framework that integrates
user feedback with the advanced LTM decoding
strategy. To validate the effectiveness of our frame-
work, we conduct a series of experiments com-
paring it with SOTA prompt-based methods us-
ing open-source backend LLMs. These experi-
ments focused on challenging mathematical and
coding datasets, where our framework consistently
achieves superior performance. In summary, our
main contributions are as follows:

1. We introduce a novel self-correction frame-
work that leverages user feedback as a regen-
eration signal, thereby preventing unnecessary
self-corrections and improving the quality of
LLM outputs.

2. We propose a novel decoding method that eval-
uates the long-term performance of multiple
reasoning paths, thereby enhancing the accu-
racy and coherence of generated responses.

3. We demonstrate the superiority of our method
through extensive experiments on various
datasets and backend LL.Ms, showing consis-
tent improvements over existing prompt-based
approaches.

2 Preliminaries

In this section, we introduce the notation used
throughout this paper and provide an overview of
the commonly employed two-stage self-correction
framework.

2.1 Notation Definition

Letz = (xg,x1,. .., z,) denote an input sequence,
and y = (Yo, Y1, . - ., Ym) represent the correspond-
ing LLM response, where y = M (z). Here, M
denotes a typical autoregressive language model.



In this context, the response is generated sequen-
tially during the decoding process. At the i-th step
of the inference process, we define the probability
of the current output sequence s; = (Yo, Y1, - - -, ¥i)
as P(s;), which is calculated as the product of the
likelihoods of the first ¢ tokens:

P(si) = P(yo|x) Hp(yk‘yO:kflax) (1
k=1

The perplexity (PPL) value of the sequence at step
1 is then defined as:

PPL; = P(s;) "1 )

In this work, PPL is employed as a metric to as-
sess the quality of a sequence during the decoding
process.

2.2 Two-Stage Framework for Self-Correction

The framework of most prompt-based self-
correction methods can be divided into two stages,
as depicted in Figure 2 (a):

e Stage 1: An initial input x is provided to the
LLM to generate an initial response ¥;n;; =

M(x).

* Stage 2: An independent correction prompt
Deor 18 then given, prompting the LLM to re-
flect on its generated response. This enables
the LLM to refine its answer, regenerating the
refined output Yeor = M (l'v Yinit, pcor)-

In Figure 2 (b), we also present our proposed FTR
self-correction framework for intuitive comparison.
Specifically, we have made improvements from
two perspectives: 1) incorporating user feedback
as a guiding signal to prompt LLM to regenerate
responses based on the initial input when necessary;
2) adopting LTM decoding to enhance the LLM’s
ability for deeper reasoning in order to address
more complex error response scenarios.

3 Methodology

In this section, we first introduce our proposed
feedback-triggered regeneration framework, fol-
lowed by a detailed exploration of LTM decoding.

3.1 Feedback-Triggered Regeneration

In general, the correction prompt p.,, provides no
information about the correctness of the initial re-
sponse Yn;t. Additionally, LLMs often lack the
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(a) Prompt-based Self-Correction (b) Feedback-Triggered Regeneration

Figure 2: (a) Framework of the prompt-based self-
correction approach. (b) Framework of our feedback-
triggered self-correction approach.

ability to independently assess the correctness of
their own responses, as highlighted in previous
works (Huang et al., 2024; Madaan et al., 2024).
These limitations may lead to erroneous decisions
by the LLM, as demonstrated in Figure 3 (a).

Moreover, when the LLM is well-aligned and
receives a carefully crafted initial input, the first re-
sponse should ideally be optimal, given the selected
decoding algorithm. However, introducing an ad-
ditional prompt may cause the LLM to generate a
response that is more aligned with the combined
input, rather than improving accuracy (Huang et al.,
2024). This highlights another issue: the LLM’s
sensitivity to prompt design, which may ultimately
degrade performance (Xu et al., 2024; Liu et al.,
2024b). For instance, even when correctness feed-
back is included in p.,, , as shown in Figure 3 (b),
the LLM may still fail to refine the previous answer
accurately.

To avoid the negative impact of self-correction
prompts, we propose an enhanced two-stage FTR
self-correction framework:

» Stage 1: Similarly, provide the initial input
x to the LLM to generate the initial response

Yinit = M(z).

» Stage 2: If user feedback indicates that the
LLM’s output y;,;; is problematic, the origi-
nal prompt = and an advanced decoding strat-
egy, LTM, are employed to regenerate the out-
put. Otherwise, no further action is taken.

Yeor = MI(SC) (3)

Here, M’ denotes the LLM with an alternative
LTM decoding strategy, wequipped with the LTM



Stage 1
l@ x &l yine = M(x)
. [Reasoning Process...]
[Math Question] The final result is: [6]

__________________________________________________________________________________

(a) Prompt-based self-correction without feedback

& Yeor = M(X, Yinit: Peor)
Upon reviewing my previous answer. | am
confident that the number of pieces of
clothing that could go in each of the
small loads is 6.
Here is the updated answer:
[Reasoning Process...]
The final result is: [6] X

B o

Review your previous answer.
if you are very confident
about your answer, maintain
your answer. Otherwise,
update your answer.

(b) Prompt-based self-correction with feedback

& Peor &lycor = M(X, Yinit, Peor)
The answer you provided is I apologize for my mistake earlier. Thank
incorrect, please review the you for pointing it out.
answer and update it. [Reasoning Process...]
The final result is: [6] X

(c) Feedback triggered regeneration

€ Peor &yeor = M'(x)

Sure! Here's the solution process and
final result for the math problem:
[Reasoning Process...]

Final Result: [3] «

The answer you provided is
incorrect, please review the
answer and update it.

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Figure 3: Comparison of different self-correction meth-
ods. (a) Self-assessment and update; (b) Revision with
user feedback prompt; (c) Regeneration triggered by
user feedback.

decoding strategy, which is described in the follow-
ing section. Note that the second stage of FTR uses
only the original input x without introducing addi-
tional prompts. Human feedback serves solely as
an indicator to trigger regeneration, as illustrated
in Figure 2 (b) and Figure 3 (c). This approach
prevents the LLM output from being degraded by
potentially biased prompts.

3.2 Long-Term Multipath Decoding

After receiving negative feedback from users, the
FTR framework initiates the second stage of re-
generation. Given the complexity of error scenar-
ios, the LLM requires more in-depth reasoning
to generate a higher quality response than the ini-
tial incorrect one. To address this, we propose
LTM decoding strategy for the second stage of self-
correction. Unlike traditional paradigm that focus
solely on the score of the next token, LTM consid-
ers the performance from the sequence perspective,
thereby alleviating the short sightedness of con-
ventional decoding approaches and enabling more
in-depth reasoning for the LLM. This approach im-
proves decoding from two aspects: (1) Multipath
Exploration: Instead of exploring a single path,
token selection is performed using a “tree” struc-
ture rather than the traditional “chain” structure.
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Figure 4: Tllustration of LTM decoding strategies (V' =
3), where black numbers in circles are token likelihood
and red ones indicate sequence likelihood.

This allows the LLM to explore multiple potential
sequences simultaneously, as illustrated in Figure 4.
(2) Sequence Evaluation: We use PPL as a metric
to evaluate the quality of all potential sequences,
retaining the top k; sequences at step . This selec-
tion is dynamically adjusted according to the PPL
distribution at each decoding step.

The detailed implementation of LTM is de-
scribed below, including the method for determin-
ing k; at each step. An illustrative example is pro-
vided in Figure 4 for clarity. Firstly, the probabil-
ities of all possible sequences are computed. Let
k;_1 denote the number of candidates retained at
the (i — 1)-th step, and let V' represent the size
of the LLM’s vocabulary. Accordingly, there are
k;—1 x V candidate sequences. Secondly, the top-
k; sequences are selected from the k;_1 x V' candi-
dates. These candidates are sorted based on their
probabilities P(s]), where j € [0,k;—1 x V — 1]
denotes the index of each candidate. The cumu-
lative probability is computed until it exceeds the
threshold value pyj,, :

k;

> P(s]) = pin-

J=0

“)

The number of retained sequences, denoted as k;, is
the minimal set that satisfies this condition, with all
other sequences pruned. Since PPL can be directly
calculated from the sequence probability, we use
P(s!) as the metric prior to the completion of the
sequence. The threshold py,, is defined as:

ki—l xV—1

>

J=0

P(s)).

i &)

*
pthri =p X

Here, p* € [0, 1] controls the number of sequences
to be pruned, where a lower p* results in more se-
quences being discarded. Finally, to control com-
putational overhead, an additional hyperparameter



k* is introduced. When k; exceeds k*, only the first
k* sequences are retained. At each step, LTM se-
lects the most probable candidates while adhering
to the constraints of py,, and £*. The pseudocode
for the algorithm is presented in Algorithm 1.

Algorithm 1 Pseudocode of Dynamic Decoding
Input: A text sequence [;
Hyperparameters: p*, k*, maximum sequence
length NV;
Output: Beams B

1: Initialize B = [ ]

2: Initialize P(Sp) =1

3: for i in range(1,N) do

4:  // Calculate probabilities of all possible sen-
tences
P(Y;) <~ M(l+ B)
/I Sort sentence probabilities
[Psort (S;), Tokengort] < sort(P(S;))
/I Compute probability threshold pyy,,
10: Py, < DF X Y, P(S))
11:  // Select candidates 1" based on threshold
12: T < top(Tokengort, Psort(Si), Dthr;)
13:  // Update beams
14 B.append(T'okenser[: min(len(7T'), k*)])
15: end for

R S A

In traditional sampling methods that select one
token at a time, errors introduced early in the
process can propagate through subsequent stages.
Moreover, a token initially selected as the opti-
mal choice may lose its advantage as the context
evolves, leading to suboptimal sequence selection
and a decline in overall performance. For instance,
as illustrated in Figure 4, the left branch at step 1
has a lower probability than the right branch but
achieves better performance at step 2. This high-
lights the limitations of methods that focus solely
on immediate token probabilities without consider-
ing long-term sequence quality. In contrast, LTM
explores multiple sequences and evaluates the over-
all long-term performance of each. This approach
enables the LLM to look ahead at future tokens and
retrospectively correct errors, thereby enhancing
its ability to generate higher quality outputs.

4 Experimental Setup

In this section, we detail the experimental setup
of our study, encompassing the LLMs employed,
datasets utilized, baseline methods compared, eval-
uation metrics applied, and implementation details.

4.1 Backend LLMs

To verify the universality of our method, we test
various open-source LLMs ranging from 1B to 13B
parameters. These include Llama2-Chat-7B and
Llama2-Chat-13B (Touvron et al., 2023), Llama3-
Instruct-1B and Llama3-Instruct-3B (Dubey et al.,
2024), and Qwen2.5-1.5B-Instruct and Qwen2.5-
3B-Instruct (Yang et al., 2024). For brevity, we
refer to these LLMs as Llama2-7B, LLlama2-13B,
Llama3-1B, Llama3-3B, Qwen-1.5B, and Qwen-
3B in the subsequent sections.

4.2 Datasets

To simulate user feedback, we conduct experiments
using mathematical and coding datasets, where the
correctness of LLM outputs can be assessed by
comparing them with ground-truth solutions. The
datasets used are as follows: (1) GSM8K (Cobbe
et al., 2021): This dataset contains 1,319 mathe-
matical problems with standardized answers. We
adopt a zero-shot approach, prompting the LLMs
to generate both reasoning processes and final re-
sults. (2) MultiArith (Roy and Roth, 2015): Com-
prising 180 mathematical problems, this dataset
uses the same initial prompts as GSM8K. (3) Hu-
mankEval (Chen et al., 2021): This dataset includes
164 programming questions. Prompts are formu-
lated based on implementations from the DeCLaRe
Lab (Chia et al., 2023).

4.3 Baselines

To evaluate the effectiveness of our method,
we compare it with two general-purpose, two-
stage prompt-based self-correction approaches: (1)
Critic Prompt (Huang et al., 2024): To ensure
experimental fairness, we adopt the experimental
setting from Li et al. (2024), which instructs the
LLM to identify errors in its previous responses
and generate refined results. (2) If or Else (IoE)
Prompt (Li et al., 2024): This method prompts the
LLM to assess its confidence in the initial answer
and generate a refined response if necessary.

For the Critic Prompt method, the LLM is in-
structed using the following prompt: "Review your
previous answer and find problems with your an-
swer. Based on the problems you found, improve
your answer. Please reiterate your answer". For
the IoE Prompt method, the prompt employed is
"Review your previous answer. If you are very
confident about your answer, maintain your answer.
Otherwise, update your answer". The key differ-



ence between these methods aligns with variations
in Py Within the discussed framework.

4.4 Evaluation metrics

We evaluate model performance using top-1 ac-
curacy (acc@1) for mathematical tasks and top-
1 pass rate (pass@1l) for coding tasks. acc@l
measures the percentage of test cases where the
model’s highest-ranked prediction matches the
ground truth, while pass@1 quantifies the propor-
tion of instances where the top prediction success-
fully passes a predefined coding test.

4.5 Implementation Details

Users typically expect a single output, but LTM
may generate multiple responses. In the FTR self-
correction method, we first evaluate the PPL met-
ric for all generated responses and select the one
with the lowest PPL as the final output. For other
self-correction methods, only one response is gener-
ated per attempt using nucleus sampling (Holtzman
etal., 2020; Fan et al., 2018; Holtzman et al., 2018)
with p = 0.95 and k£ = 15.

5 Experimental Results

In this section, we present the empirical findings
that demonstrate the efficacy of our approach.

5.1 Overall Comparison

Table 1 illustrates the comparative performance
of our FTR method relative to baseline ap-
proaches across multiple datasets and LLMs. Our
FTR method achieves significant improvements
(10%—-20%) across various datasets and LLMs,
highlighting its effectiveness and adaptability in
integrating user feedback with the advanced LTM
decoding strategy. In contrast, evaluations indicate
that the Critic and IoE prompt methods often result
in performance degradation when compared to the
initial input across most datasets and LLMs. These
findings suggest that prompt-based techniques may
not be robust in enhancing LLM performance.
This observation aligns with prior research by
Huang et al. (2024), which indicates that certain
prompts may mislead LLMs, resulting in a higher
likelihood of correct responses being altered to in-
correct ones. However, recent studies on advanced
OpenAl GPT models, such as the research con-
ducted by Li et al. (2024), present contrasting re-
sults. They propose that the effectiveness of confi-
dence prompts improves when utilized with larger
LLMs. This discrepancy may be attributed to the

Method GSMSK MultiArith HumanEval
# Llama2-7B #
Initial Input 0.206 0.539 0.104
+ Critic Prompt 0.171 0.522 0.043
+ IoE Prompt 0.136 0.339 0.091
+ FTR (Ours) 0.360 0.878 0.165
# Llama2-13B #
Initial Input 0.303 0.656 0.207
+ Critic Prompt 0.122 0.322 0.049
+ IoE Prompt 0.281 0.656 0.122
+ FTR (Ours) 0.463 0.917 0.250
# Llama3-1B #
Initial Input 0.245 0.406 0.287
+ Critic Prompt 0.167 0.289 0.165
+ IoE Prompt 0.173 0.383 0.281
+ FTR (Ours) 0.399 0.622 0.409
# Llama3-3B#
Initial Input 0.774 0.961 0.488
+ Critic Prompt 0.485 0.750 0.390
+ IoE Prompt 0.394 0.650 0.323
+ FTR (Ours) 0.875 0.994 0.604
# Qwen-1.5B#
Initial Input 0.422 0.678 0.409
+ Critic Prompt 0.334 0.506 0.220
+ IoE Prompt 0.328 0.567 0.085
+ FTR (Ours) 0.594 0.839 0.732
# Qwen-3B#
Initial Input 0.837 0.994 0.677
+ Critic Prompt 0.789 0.939 0.524
+ IoE Prompt 0.823 0.989 0.628
+ FTR (Ours) 0.902 1.000 0.768

Table 1: Performance comparison of different self-
correction methods across different datasets and LLMs.

superior instruction-following and reasoning ca-
pabilities of these advanced models, which are
less developed in smaller LLMs. Our experimen-
tal results underscore the limited effectiveness of
prompt-based methods within the state-of-the-art
open-source model under 13B parameters.

5.2 Feedback Experiment

Here, we examine the rationale behind our pro-
posed FTR framework, which uses user feedback
as a guiding signal to refine LLM outputs. One rea-
son for the performance decline of prompt-based
self-correction methods is their tendency to convert
correct responses into incorrect ones.

User feedback serves as a crucial mechanism
to mitigate the performance decline observed in
prompt-based self-correction methods by identify-
ing incorrect outputs. This approach also could
be seamless integrated to prompt-based techniques
within self-correction framework. Therefore, we
conduct experiments using different configurations:
(1) feedback as prompt. In this method, the ac-
curacy of the initial answer is incorporated as an
additional prompt to guide the LLM in refining its
output. The prompt is "The answer you provided is
incorrect, please review the answer and update it".



Method GSMS8K MultiArith HumanEval
# Llama2-7B #
Initial Input 0.206 0.539 0.104
+ Prompt 0.243 0.694 0.140
+ Indicator (Ours) 0.328 0.810 0.146
# Llama2-13B #
Initial Input 0.303 0.656 0.207
+ Prompt 0.359 0.806 0.220
+ Indicator (Ours) 0.455 0.872 0.243
# Llama3-1B #
Initial Input 0.245 0.406 0.287
+ Prompt 0.301 0.506 0.317
+ Indicator (Ours) 0.374 0.556 0.384
# Llama3-3B#
Initial Input 0.774 0.961 0.488
+ Prompt 0.822 0.972 0.534
+ Indicator (Ours) 0.859 0.983 0.567
# Qwen-1.5B#
Initial Input 0.422 0.678 0.409
+ Prompt 0.512 0.750 0.476
+ Indicator (Ours) 0.630 0.900 0.512
# Qwen-3B#
Initial Input 0.837 0.994 0.677
+ Prompt 0.867 0.994 0.732
+ Indicator (Ours) 0.892 1.000 0.768

Table 2: Effectiveness of self-correction methods under
different user feedback utilization approaches.

(2) feedback as indicator: In this approach, the
system directly generates the output based on the
original input without an additional prompt. To en-
sure fairness, we apply the same nucleus sampling
method to both configurations.

The results are presented in Table 2. Evidently,
explicit feedback regarding the accuracy of the
model’s responses, used in both feedback prompts
and FTR methods, leads to significant performance
improvements by targeting refinements specifi-
cally to incorrect outputs. Notably, the feedback-
as-indicator method outperforms the feedback-
as-prompt method, suggesting that prompt-based
approaches may lack robustness and potentially
degrade model performance through additional
prompts. Therefore, we recommend using user
feedback as an indicator to trigger regeneration,
rather than integrating it into the input prompt.

5.3 Decoding Comparison

To evaluate the LTM method, we assessed its per-
formance as a standalone decoding strategy for
LLMs without integrating any self-correction tech-
niques, focusing on single-turn tasks. The mod-
els and datasets used are consistent with those
described in the preceding sections. The base-
line methods comprise: (1) Beam Search: This
method selects the top-k most probable beams at
each decoding step and is a classical decoding tech-
nique in the field of NLP. (2) Combined Sampling

GSM8K MultiArith  HumanEval

# Llama2-7B #

Beam Search 0.261 0.739 0.134
Combined Sampling  0.253 0.733 0.134
Adaptive Decoding 0.257 0.722 0.128
LTM Decoding 0.276 0.750 0.146

# Llama2-13B #
Beam Search 0.366 0.800 0.220
Combined Sampling ~ 0.345 0.756 0.213
Adaptive Decoding 0.366 0.722 0.213
LTM Decoding 0.378 0.833 0.232

# Llama3-1B #
Beam Search 0.268 0.478 0.354
Combined Sampling  0.231 0411 0.287
Adaptive Decoding 0.257 0.322 0.348
LTM Decoding 0.289 0.494 0.354

# Llama3-3B #
Beam Search 0.796 0.983 0.555
Combined Sampling  0.761 0.950 0.506
Adaptive Decoding 0.747 0.972 0.512
LTM Decoding 0.804 0.994 0.561

# Qwen-1.5B #
Beam Search 0.456 0.489 0.610
Combined Sampling  0.418 0.439 0.390
Adaptive Decoding 0.439 0.506 0.476
LTM Decoding 0.456 0.522 0.622

# Qwen-3B #

Beam Search 0.851 1.000 0.756
Combined Sampling  0.817 0.994 0.762
Adaptive Decoding 0.823 0.994 0.713
LTM Decoding 0.852 1.000 0.768

Table 3: Performance comparison of different decoding
methods for LLMs.

(nucleus sampling): This approach combines top-
p sampling and top-k sampling, with parameters
p = 095 and k£ = 15 used consistently across all ex-
periments. It is a widely adopted decoding strategy
in LLMs. (3) Adaptive Decoding: This method
enhances top-k sampling by dynamically adjusting
the candidate set size at each generation step based
on an entropy-based confidence score. Adaptive
Decoding is a relatively novel technique compared
to the aforementioned methods. For a fair compar-
ison, we ensure that the computing budgets (the
number of tokens during the decoding process) are
approximately equal by adjusting the hyperparam-
eters of the different decoding methods.

The results are presented in Table 3. It is evident
that the LTM surpasses all baseline methods. This
highlights the efficacy of multi-path exploration
and dynamically adjusted candidate sets, which not
only extend the exploration of decoding space but
also ensure that computational resources are con-



centrated on the most crucial steps. Conversely,
we observe that the combined decoding method ex-
hibits performance lower than expected in terms of
accuracy. Nonetheless, it remains prevalent in the
current landscape of LLMs owing to the diversity
it offers in its outputs. Therefore, to enhance the
output diversity of LTM while maintaining effec-
tiveness, it is crucial to explore a balance between
these two factors in future work.

6 Related Work

In this section, we introduce some related work,
including self-correction and decoding methods.

6.1 Self-Correction Methods

Numerous studies have advanced self-correction
methods in the domain of LLMs. For instance,
Madaan et al. (2024) proposed a three-stage frame-
work that enhances LLM outputs by integrating
feedback from previous iterations. Li et al. (2024)
designed prompts to guide the LLM in assessing
its confidence and deciding whether to generate
a revised response. Huang et al. (2024) further
explored the use of critic prompts to evaluate the
self-correction capabilities of LLMs. Addition-
ally, task-specific prompts have been developed for
translation tasks to facilitate iterative refinement
(Chen et al., 2024a), and methods like Self-Debug
have enabled LLMs to generate feedback based on
their own code and execution results (Chen et al.,
2024b). External tools like search engines and
compilers have also been integrated to support er-
ror correction (Gou et al., 2024). However, existing
self-correction methods for LLMs rely on prompts
while neglecting real-time user feedback. This can
lead to redundant refinements and degrade LLM
performance. Unlike previous work, our prompt-
free approach incorporates useful user feedback to
enhance efficiency and performance.

6.2 Decoding Strategies

Current decoding strategies in LLMs primarily use
next-token prediction mechanisms such as top-k
sampling(Fan et al., 2018; Holtzman et al., 2018)
and nucleus sampling (top-p sampling)(Holtzman
et al., 2020). In top-k sampling, the LLM selects
the next token from the top k most probable to-
kens, while in nucleus sampling, it samples from
the smallest set of tokens whose cumulative prob-
ability exceeds a threshold p. Basu et al. (2021)
proposed a modified version of top-k sampling that
incorporates a feedback mechanism to control the

perplexity of the generated text. Zhu et al. (2024b)
introduced adaptive decoding, a variant of top-k
sampling that dynamically adjusts the size of k
based on the information entropy of the token prob-
ability distribution.

In an effort to improve LLM performance, sev-
eral approaches have been developed that explore
multiple inference paths. For example, the Chain-
of-Thought (CoT) reasoning algorithm (Wang and
Zhou, 2024) improved reasoning by combining
top-k sampling and greedy sampling, selecting the
longest output from the generated candidates. Like-
wise, Zhu et al. (2024a) enhanced reasoning by
decomposing model outputs into discrete steps and
assigning deductive scores to determine how many
branches should be processed. However, these ap-
proaches are often limited to fixed output templates
and constrained reasoning steps, reducing their flex-
ibility and practical applicability. Our proposed
LTM decoding addresses these limitations by focus-
ing on long-term reasoning paths and eliminating
reliance on predefined templates, enhancing adapt-
ability and flexibility in human-LLM interactions.

7 Conclusion

This work introduces the FTR self-correction
framework, which significantly enhances the per-
formance of LLMs by leveraging user feedback
as a guiding signal. Specifically, when user feed-
back indicates dissatisfaction with the LLMs’ out-
put, the framework employs LTM—an advanced
decoding strategy—to refine the response. By inte-
grating LTM with feedback-triggered regeneration,
the framework notably improves the overall quality
of the LLMs’ responses. Unlike existing methods
that rely heavily on prompts and the LLMs’ inter-
nal assessment capabilities, the FTR framework
is more flexible and adaptive. This makes it par-
ticularly well-suited for real-world human-LLM
interaction scenarios where intuitive feedback is
readily available.

We propose two directions for future work: (1)
Although LTM demonstrates superior performance,
it lacks diversity in its outputs. Exploring methods
to enhance the diversity of LTM would be a valu-
able area of research; (2) Recently, reinforcement
learning (RL) has gained significant importance
in the LLM field. One key direction is improving
response generation for possible candidate solution.
It would be interesting to investigate whether LTM
can aid in generating data that benefits RL.



Limitations

Despite its advantages, LTM, as a greedy decod-
ing method, is prone to higher levels of repetition
and redundancy in text generation. Potential future
directions include detecting and eliminating redun-
dant outputs during the decoding process and in-
tegrating sampling mechanisms into the algorithm
to improve output diversity. These enhancements
could further reduce computational load and la-
tency, thereby improving real-time user interaction.

In addition, LTM increases computational load
to enhance the quality of LLM outputs, making it
less suitable for scenarios that require both high
output quality and low latency. Therefore, explor-
ing a decoding approach that improves output qual-
ity while maintaining low latency is of significant
importance.
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