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Abstract
In real-world crowdsourcing scenarios, most
workers often annotate a few instances only,
which results in a significantly sparse crowd-
sourced label matrix and subsequently harms the
performance of label integration algorithms. Re-
cent work called worker similarity-based label
completion (WSLC) has been proven to be an
effective algorithm to addressing this issue. How-
ever, WSLC considers solely the correlation of the
labels annotated by different workers on per indi-
vidual instance while totally ignoring the correla-
tion of the labels annotated by different workers
among similar instances. To fill this gap, we pro-
pose a novel label distribution propagation-based
label completion (LDPLC) algorithm. At first, we
use worker similarity weighted majority voting
to initialize a label distribution for each missing
label. Then, we design a label distribution prop-
agation algorithm to enable each missing label
of each instance to iteratively absorb its neigh-
bors’ label distributions. Finally, we complete
each missing label based on its converged label
distribution. Experimental results on both real-
world and simulated crowdsourced datasets show
that LDPLC significantly outperforms WSLC in
enhancing the performance of label integration
algorithms. Our codes and datasets are available
at https://github.com/jiangliangxiao/LDPLC.

1. Introduction
Supervised learning is a critical branch of machine learn-
ing, with the primary goal of learning the mapping between
inputs and outputs from annotated data (Li & Tang, 2017;
Jiang et al., 2019; Li et al., 2021). High-quality annotated
data is crucial for the success of model training, but its acqui-
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sition often presents significant challenges (Tu et al., 2019;
Wu et al., 2023; Zhang et al., 2023). Traditionally, high-
quality annotated data is generated through manual annota-
tion by domain experts, but which is both time-consuming
and expensive. As a result, efficiently obtaining large-scale
and high-quality annotated data has become a major bottle-
neck in the practical application of supervised learning.

To break through this bottleneck, crowdsourcing is intro-
duced as an efficient and cost-effective method to rapidly ob-
tain large volumes of annotated data (Xu et al., 2022; Ji et al.,
2023) . Currently, mainstream crowdsourcing platforms in-
clude Amazon Mechanical Turk (AMT), CloudCrowd and
CrowdFlower. These platforms utilize the internet to out-
source tasks traditionally performed by domain experts to a
distributed group of non-professional crowd workers (Liang
et al., 2023; Mak & Lam, 2023). However, due to variations
in the knowledge and abilities of crowd workers, the anno-
tated labels are often accompanied by noise and inconsistent
quality. To address this issue, each instance is typically
assigned to multiple crowd workers and thus obtains its mul-
tiple noisy label set. Then, label integration is used to infer
the integrated label of each instance from its multiple noisy
label set (Sheng et al., 2008; Zhang et al., 2024a). In recent
years, label integration has attracted widespread attention
from researchers, and a large number of algorithms have
been proposed from different perspectives (Zheng et al.,
2017; Zhang, 2022; Zhang et al., 2024c).

However, in real-world crowdsourcing scenarios, most
workers often annotate a few instances only, thus most in-
stances do not receive sufficient labels, leading to a large
number of missing labels in the crowdsourced label matrix.
The sparse label matrix significantly harms the performance
of label integration algorithms. To mitigate the problem of
sparsity, a small number of researchers have paid attention
to the importance of the preprocessing of crowdsourced la-
bel matrix and proposed a few label completion algorithms.
For example, to address binary-class crowdsourcing tasks,
Jung & Lease (2012) propose a probabilistic matrix factor-
ization (PMF)-based label completion algorithm. To further
improve its performance, Yang et al. (2024) propose a PMF-
based three-stage label completion (PMF-TLC) algorithm.
Recently, to address multi-class crowdsourcing tasks, Wu
et al. (2024) propose worker similarity-based label comple-
tion (WSLC), which significantly improves the performance
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of label integration algorithms.

To the best of our knowledge, WSLC considers solely the
correlation of the labels annotated by different workers on
per individual instance while totally ignoring the correlation
of the labels annotated by different workers among similar
instances. To fill this gap, we propose a novel label comple-
tion algorithm called label distribution propagation-based
label completion (LDPLC). At first, we use worker similar-
ity weighted majority voting to initialize a label distribution
for each missing label. Then, we design a label distribu-
tion propagation algorithm to enable each missing label of
each instance to iteratively absorb its neighbors’ label dis-
tributions. Finally, we complete each missing label based
on its converged label distribution. In general, the main
contributions of this work can be summarized as follows:

• We find that WSLC considers solely the correlation of
the labels annotated by different workers on per indi-
vidual instance while totally ignoring the correlation
of the labels annotated by different workers among
similar instances.

• We propose a label distribution propagation-based label
completion (LDPLC) algorithm. In LDPLC, we use
worker similarity weighted majority voting to initialize
a label distribution for each missing label and then
design a label distribution propagation algorithm to
enable each missing label of each instance to iteratively
absorb its neighbors’ label distributions.

• We conduct a series of experiments on both real-world
and simulated crowdsourced datasets. The experimen-
tal results indicate that LDPLC further improves the
performance of label integration algorithms compared
to WSLC.

The rest of the paper is organized as follows. Section 2
briefly reviews related work on label integration and label
completion. Section 3 proposes our LDPLC. Section 4
reports the experimental setup and results. Section 5 con-
cludes the paper and outlines future work.

2. Related Work
Over the past few years, a large number of label integration
algorithms have been proposed from different perspectives.
Among them, majority voting (MV) is a simple yet effec-
tive label integration algorithm, which selects the most fre-
quently assigned label as the integrated label. Since MV
ignores the annotation quality of each crowd worker, it is
sensitive to noise and unsuitable for complex tasks. To
improve its performance, researchers propose many more
sophisticated label integration algorithms. For example,
Dawid & Skene (1979) propose Dawid-Skene (DS), which

utilizes the expectation maximization framework to itera-
tively estimate true labels and observer error rates. Demar-
tini et al. (2012) propose ZenCrowd(ZC), which employs
a two-element probability parameter to iteratively estimate
the reliability of each individual worker. Li & Yu (2014)
proposes iterative weighted majority voting (IWMV), which
optimizes error rate bounds to find reliable workers. Zhang
et al. (2015b) propose positive label frequency threshold
(PLAT), which is designed to address imbalanced scenarios
and uses multiple noisy label sets to model the decision
thresholds. Zhang et al. (2016) also propose ground truth
inference using clustering (GTIC), which generates features
from multiple noisy label sets and then clusters instances
into different groups utilizing generated features. Tao et al.
(2021) propose differential evolution-based weighted soft
majority voting (DEWSMV), which exploits a differential
evolution algorithm to estimate the quality of crowd workers
labeling different instances. Chen et al. (2022) propose label
augmented and weighted majority voting (LAWMV), which
merges the neighbors’ multiple noisy label sets to obtain
its augmented multiple noisy label set and weights each
neighbor. Jiang et al. (2022) propose multiple noisy label
distribution propagation (MNLDP), which at first estimates
the multiple noisy label distribution of each instance from
its multiple noisy label set and then propagates its multiple
noisy label distribution to its nearest neighbors.

To the best of our knowledge, all above works primarily
aim to design more effective label integration algorithms
while paying little attention to the preprocessing of crowd-
sourced label matrix before label integration. In real-world
crowdsourcing scenarios, most workers often annotate a
few instances only, which results in a significantly sparse
crowdsourced label matrix and subsequently harms the per-
formance of label integration algorithms. To mitigate the
problem of sparsity, a small number of researchers have paid
attention to the importance of the preprocessing of crowd-
sourced label matrix and proposed a few label completion
algorithms. For example, Jung & Lease (2012) propose
an algorithm to utilize probabilistic matrix factorization
(PMF) to address the challenge of predicting missing labels
in binary-class crowdsourcing tasks. To further enhance its
performance, Yang et al. (2024) propose a PMF-based three-
stage label completion (PMF-TLC) algorithm, which flips
low-quality raw labels based on a confidence-based strategy,
employs PMF to complete missing labels, and finally filters
low-quality output labels using a between-class margin-
based algorithm. Recently, to address multi-class crowd-
sourcing tasks, Wu et al. (2024) propose worker similarity-
based label completion (WSLC), which completes each
missing label by worker similarity. Specifically, they esti-
mate the similarity between each pair of workers and com-
plete the missing labels based on the estimated worker simi-
larity and the labels from similar workers. However, WSLC
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considers solely the correlation of the labels annotated by
different workers on per individual instance while totally
ignoring the correlation of the labels annotated by differ-
ent workers among similar instances. To fill this gap, we
propose a novel label distribution propagation-based label
completion (LDPLC) algorithm in Section 3.

3. The Proposed LDPLC
3.1. Motivation

As we discussed in Section 2, existing works have primarily
focused on label integration while paying little attention to
the preprocessing of crowdsourced datasets. In real-world
crowdsourcing scenarios, most workers often annotate a
few instances only, which results in a significantly sparse
crowdsourced label matrix. WSLC has been validated as
an effective label completion algorithm to address this is-
sue. WSLC assumes that different workers with similar
cognitive abilities will annotate similar labels on the same
instance. Based on this assumption, WSLC completes the
missing labels based on the worker similarity and the la-
bels from similar workers. However, since each instance is
annotated by only a few workers, WSLC relies on limited
information from these similar workers to complete missing
labels, which does not fully use the correlation of the labels
in crowdsourced dataset. To overcome this limitation, we
introduce the assumption that the same workers will also
annotate similar labels on similar instances. This additional
perspective allows each missing label to not only absorb the
label distribution information from similar workers on the
corresponding instance but also absorb the label distribution
information from the corresponding worker across similar
neighboring instances.

Specifically, we attempt to initialize a label distribution for
each missing label and then design a label distribution prop-
agation algorithm to enable each missing label to absorb
information from its neighbors. Therefore, two core issues
need to be addressed. The first issue is how to initialize a la-
bel distribution. WSLC assumes that different workers with
similar cognitive abilities will annotate similar labels on the
same instance. Based on this assumption, we use worker
similarity weighted majority voting to initialize a label dis-
tribution for each missing label. The second issue is how
to propagate the initialized label distribution. We assume
that the same worker will also annotate similar labels on
similar instances. Therefore, we first query neighbors, then
optimize their weights, and finally propagate the distribution
from weighted neighbors to each missing label.

To this end, we propose a novel label distribution
propagation-based label completion (LDPLC) algorithm.
Its framework can be graphically shown in Figure 1. Firstly,
we use Pearson correlation to learn a feature vector for
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Figure 1. Overall framework of LDPLC.

each worker. Secondly, we use cosine similarity to esti-
mate worker similarity for each pair of workers based on
the learned feature vectors. Thirdly, we initialize a label
distribution for each missing label based on the original
crowdsourced dataset and the estimated worker similarity of
each pair of workers. Fourthly, we query neighbors for each
instance in the feature space of the original crowdsourced
dataset. Fifthly, we optimize the neighbors’ weights using
local linear embedding. Finally, we propagate the initialized
label distribution from weighted neighbors to each missing
label of each instance and then complete each missing label
based on its converged label distribution. In the following
subsections, we will present the detailed process.

3.2. Label Distribution Initialization

In a crowdsourcing scenario, a crowdsourced dataset D can
be denoted as {(xi,Li)}Ni=1, where N denotes the num-
ber of instances. xi donates the i-th instance in D, which
can be denoted as {ai1, . . . , aim, . . . , aiM}. M denotes the
number of features and aim denotes the m-th feature value
of the i-th instance. Li denotes the multiple noisy label
set of xi, which is denoted as {li1, . . . , lir, . . . , liR}. R
denotes the number of workers and lir denotes the label
annotated by r-th worker ur on xi. lir is drawn from a fixed
set {−1, c1, . . . , cq, . . . , cQ}, where Q denotes the number
of classes, cq denotes the q-th class and −1 means that ur

does not annotate xi.

According to the framework of LDPLC, worker similarity
estimation is a crucial step in label distribution initialization.
In worker similarity estimation, we first need to construct
a dataset Dr for ur, where Dr consists of all the instances
annotated by ur in D. Next, we learn a feature vector Vr

for ur based on the label variable and the original feature
variables of Dr. We denote Vr as {vr1, . . . , vrm, . . . , vrM},
where vrm denotes the m-th feature value of ur. Here, we
use Pearson correlation to learn the feature vector (Hall,
2000; Wu et al., 2024) by Eq. (1).

cor(Cr,Arm)

=

∑|Dr|
i=1 (lir − C̄r)(airm − Ārm)√∑|Dr|

i=1 (lir − C̄r)2
√∑|Dr|

i=1 (airm − Ārm)2
,

(1)

where Cr and Arm denote the label variable and the m-th
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feature variable of Dr, respectively. And airm denotes the
m-th feature value of the i-th instance in Dr. C̄r and Ārm

denote the mean values of Cr and Arm, respectively. C̄r

and Ārm can be calculated by Eqs. (2) and (3), respectively.

C̄r =
1

|Dr|

|Dr|∑
i=1

lir. (2)

Ārm =
1

|Dr|

|Dr|∑
i=1

airm. (3)

Since the label variable is a discrete variable, we use
weighted Pearson correlation. To be specific, if we want to
calculate Pearson correlation between Cr and Arm, we can
decompose Cr into multiple binary label variables, each
binary label variable corresponding to a value of Cr. The
value of each binary label variable takes value 1 when the
corresponding value of Cr occurs and 0 for other values.
Next, we calculate Pearson correlation between each binary
label variable and Arm, and perform a weighted summa-
tion by the prior probability of the corresponding value. If
Arm is also discrete, we decompose it into multiple binary
feature variables and then calculate Pearson correlation be-
tween each binary label variable of Cr and each binary
feature variable of Arm. Based on the above analysis, the
feature value vrm of ur is calculated by Eq. (4).

vrm =



∑
lr

p(Cr = lr) cor(Cbr,Arm),

if Arm is a continuous variable,∑
lr

∑
arm

p(Cr = lr,Arm = arm) cor(Cbr,Abrm),

otherwise.
(4)

where lr and arm denotes the values that Cr and Arm take,
respectively. Cbr and Abrm are a binary label variable of
Cr and a binary feature variable of Arm, respectively. The
prior probabilities p(Cr = lr) and p(Cr = lr,Arm =
arm) can be calculated by Eqs. (5) and (6), respectively.

p(Cr = lr) =

∑|Dr|
i=1 δ(lir, lr)

|Dr|
, (5)

p(Cr = lr,Arm = arm) =

∑|Dr|
i=1 δ(lir, lr)δ(airm, arm)

|Dr|
,

(6)
where δ(.) denotes an indicator function that outputs 1 if
the two input values are equal and outputs 0 otherwise.

By Eqs. (1) - (6), we calculate the learned feature vector Vr

for ur. Finally, we use cosine similarity to estimate worker
similarity s(ur, ur′) between ur and ur′ based on Vr and

Vr′ , which is calculated by Eq. (7).

cos(Vr,Vr′) =
Vr · Vr′

|Vr||Vr′ |

=

∑M
m=1 vrmvr′m√∑M

m=1 v
2
rm

√∑M
m=1 v

2
r′m

.
(7)

Since cos(Vr,Vr′) takes values in the interval [-1,1], we
take max-min normalization for the values of cos(Vr,Vr′),
which is calculated by Eq. (8).

s(ur, ur′) =
cos(Vr,Vr′)− (−1)

1− (−1)
. (8)

With the above calculation of worker similarity, we can
proceed to initialize a label distribution for each label. Let
Pir = {pir1, . . . , pirq, . . . , pirQ} denote the label distribu-
tion of lir, where pirq denotes the probability lir belongs to
cq. Therefore, for annotated labels and unannotated labels,
we can directly initialize their label distributions by Eqs. (9)
and (10), respectively.

pirq =

{
1, if lir == cq

0, otherwise
. (9)

pirq =

∑R
r′=1 δ(lir′ , cq)s(ur, ur′)∑Q

q=1

∑R
r′=1 δ(lir′ , cq)s(ur, ur′)

. (10)

3.3. Label Distribution Propagation

In the process of label distribution propagation, we design
an algorithm to enable each label to iteratively absorb infor-
mation from its neighbors. First, we use the HEOM metric
to query K neighbors of xi, where neighbors are denoted as
Ni = {xik}Kk=1 and xik denotes k-th neighbor of xi. Then,
we use the local linear embedding (LLE) to optimize the
weights of K neighbors (Miao et al., 2022; Ghojogh et al.,
2022), where the weights are denoted as wi = {wik}Kk=1.
Here, we construct a minimization objective function based
on LLE as Eq. (11).

L(wi) =
∑

k1,k2:xk1
,xk2

∈Ni

wik1
(xi−xk1

)T (xi−xk2
)wik2

.

(11)

This objective can be solved using the least squares algo-
rithm, which is defined as Eq. (12).

min
wi

L(wi)

s.t.


K∑

k=1

wik = 1

∀wik ∈ wi, wik ≥ 0

.
(12)
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Algorithm 1 LDPLC

1: Input: D = {(xi,Li)}Ni=1 -a crowdsourced dataset
2: Output: D′-the completed crowdsourced dataset
3: for r = 1 to R do
4: Construct a dataset Dr for ur

5: for m = 1 to M do
6: Learn the feature value vrm of ur by Eqs. (1)-(6)
7: end for
8: end for
9: for r = 1 to R do

10: for r′ = 1 to R do
11: Estimate the worker similarity s(ur, ur′) by Eqs. (7)

and (8)
12: end for
13: end for
14: for i = 1 to N do
15: for r = 1 to R do
16: if lir! = −1 then
17: Initialize the label distribution Pir by Eq. (9)
18: else
19: Initialize the label distribution Pir by Eq. (10)
20: end if
21: end for
22: end for
23: for i = 1 to N do
24: Query the neighbors Ni for xi

25: Optimize the neighbors’ weights wi by Eqs. (11) and (12)
26: end for
27: for t = 1 to T do
28: for i = 1 to N do
29: for r = 1 to R do
30: Propagate the neighbors’ label distributions to Pir by

Eq. (13)
31: end for
32: end for
33: end for
34: for i = 1 to N do
35: for r = 1 to R do
36: if lir == −1 then
37: Complete the missing label lir by Eq. (14)
38: end if
39: end for
40: end for
41: return D′

Therefore, we can obtain a weight wik for each neighbor
xik of xi. Next, we propagate the label distributions from
each neighbor xik to xi by Eq. (13).

P t+1
ir =

∑
k:xik∈Ni

wikP
t
irk + Pir

2
, (13)

where P t
irk denotes the distribution of the label annotated

by ur on xik after t iterations of propagation. When the
propagation converges, we obtain the converged distribution
P ∗

ir of each missing label lir. Finally, we complete lir based
on P ∗

ir, which is calculated by Eq. (14).

lir = arg max
cq∈{c1,c2,...,cQ}

P ∗
ir . (14)

To this end, the learning algorithm of LDPLC is described

in Algorithm 1. After the above process, the completed
D′ can be fed into existing label integration algorithms to
enhance their performance.

3.4. Time Complexity Analysis

In Algorithm 1, lines 3-8 learn feature vectors with a time
complexity of O(R(N +M(nlna|Dr|))), where nl and na

are the average number of values for a label variable and
an original feature variable, respectively. Lines 9-13 esti-
mate worker similarity with a time complexity of O(R2M).
Lines 14-22 initialize label distributions with a time com-
plexity of O(NR(Q + R)). Lines 23-26 identify neigh-
bors and optimize their weights with a time complexity of
O(N2M +NK3). Lines 27-33 propagate the label distri-
butions with a time complexity of O(TNRKQ). Finally,
lines 34-40 complete missing labels with a time complexity
of O(NRQ). If only the highest order terms are taken, the
overall time complexity of LDPLC is O(nlna|Dr|RM +
R2M +NR2 +N2M +NK3 + TNRKQ).

3.5. Convergence Analysis

In the part of the previous subsection, we describe the label
distribution propagation for ur on xi. Now, we discuss the
propagation process of ur across the whole dataset D. First,
we define Pr = [P T

1r, . . . ,P
T
ir , . . . ,P

T
Nr]

T , which has a
size of N ×Q. The matrix W is defined as the weights of
the nearest neighbors, with a size of N × N , where each
element Wij of W is denoted by Eq. (15).

Wij =

{
wik, if xj == xik

0, otherwise
. (15)

Then, we update Eq. (13) to Eq. (16).

Pt+1
r =

W
2
Pt

r +
Pr

2
. (16)

Eq. (16) is a linear iterative formula, where W
2 controls the

weight of propagation, and Pr

2 preserves the influence of
the original distribution. When t is equal to 0, it is obtained
that P0

r is equal to Pr. By expanding the recursion using
mathematical induction, we derive the explicit expression
of Pt

r as Eq. (17).

Pt
r = (

W
2
)tPr +

t−1∑
i=0

(
W
2
)i
Pr

2
. (17)

Since the elements in W satisfy Wij ∈ [0, 1], the spectral
radius of W

2 is less than 1, ensuring that (W2 )t approaches
0 as t increases, as shown in Eq. (18),

lim
t→∞

(
W
2
)t = 0. (18)
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Figure 2. Worker distribution of the “LabelMe” dataset.

According to the geometric series formula,
∑t−1

i=0(
W
2 )i can

be calculated by Eq. (19).

lim
t→∞

t−1∑
i=0

(
W
2
)i = lim

t→∞

(W2 )0 − (W2 )t

1− W
2

= (1− W
2
)−1.

(19)

Therefore, Pt
r converges to a fixed matrix, which is calcu-

lated by Eq. (20).

lim
t→∞

Pt
r = (1− W

2
)−1Pr

2
. (20)

4. Experiments and Results
4.1. Experiments Setup

To validate the effectiveness of the LDPLC algorithm, we
use WSLC (Wu et al., 2024) and LDPLC to complete miss-
ing labels in real-world and simulated datasets, respectively,
and compare their effectiveness in terms of the integration
accuracy of each label integration algorithm. In our exper-
iments, we implement LDPLC and WSLC on the Crowd
Environment and its Knowledge Analysis (CEKA) (Zhang
et al., 2015a) platform. The label integration algorithms
used include MV (Sheng et al., 2008), DS (Dawid & Skene,
1979), IWMV (Li & Yu, 2014), GTIC (Zhang et al., 2016),
DEWSMV (Tao et al., 2021) and MNLDP (Jiang et al.,
2022). For MV and GTIC, we use the existing implementa-
tions on the CEKA platform. For DEWSMV and MNLDP,
we implement them on the CEKA platform. The parameter
settings of all label integration algorithms are consistent
with those specified in their original papers. For simplicity,
we set both the number of neighbors K and the number of it-
erations T to 5. All experiments are independently repeated
ten times, and the average results of the ten experiments are
used as the final results.

MV DS IWMV GTIC DEWSMV MNLDP
50

55

60

65

70

75

80

85

90

76.40 76.70 76.30 76.40 76.50

80.50
81.60 81.50 81.70 81.70 81.60 82.50

WSLC
LDPLC

Figure 3. Integration accuracy (%) comparisons of six label inte-
gration algorithms after label completion by WSLC and LDPLC
on the “LabelMe” dataset, respectively.

4.2. Experiments on Real-world Datasets

To evaluate the performance of LDPLC, we conduct experi-
ments on the widely used real-word crowdsourced dataset
“LabelMe”. The dataset is collected from AMT platform, de-
signed for image classification. The dataset “LabelMe” con-
tains 1000 instances, and includes 8 classes: “highway”, “in-
side city”, “tall building”, “street”, “forest”, “coast”, “moun-
tain”, and “open country”. In total, there are 2547 multiple
noisy labels from 59 workers, with a mean annotation qual-
ity of 74.05% and a mean annotation ratio of 4.32%. Each
worker’s annotation ratio and annotation quality denote the
proportions of the instances he annotated in all instances
and the true labels in all his annotated labels, respectively,
shown in Figure 2. It can be seen that most workers’ anno-
tation qualities are greater than 0.5, enabling each label to
absorb more accurate information during the propagation
process. Although a few workers’ annotation qualities are
below 0.5, their annotation ratios are very low, resulting in
minimal impact on the propagation process. Therefore, we
use this dataset in our experiments.

Figure 3 shows the integration accuracies of six label in-
tegration algorithms after label completion by WSLC and
LDPLC on the “LabelMe” dataset, respectively. We can see
that after label completion using LDPLC, the integration ac-
curacy of each integration algorithm improves significantly.
Specifically, the integration accuracies of MV (81.60%), DS
(81.50%), IWMV (81.70%), GTIC (81.70%), DEWSMV
(81.60%) and MNLDP (82.50%) after label completion by
LDPLC are much higher than those of MV (76.40%), DS
(76.70%), IWMV (76.30%), GTIC (76.40%), DEWSMV
(76.50%) and MNLDP (80.50%) after label completion by
WSLC, respectively. From these results, we can conclude
that LDPLC further improves the performance of all label
integration algorithms compared to WSLC. Except for the
dataset “LabelMe”, we also conduct experiments on two
other widely used real-world crowdsourced datasets “Ruters”
and “Leaves” to validate the effectiveness of LDPLC. Due to
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the limited pages, the detailed description of these datasets
and experimental results are provided in Appendix A. These
results also demonstrate the effectiveness of LDPLC.

4.3. Experiments on Simulated Datasets

In this subsection, we conduct a series of experiments on
the whole 34 simulated datasets published on the CEKA
platform. The detailed description of these datasets is pro-
vided in Table 1. Here, “#Instances” denotes the number
of instances, “#Features” denotes the number of attributes,
“#Classes” denotes the number of classes, “Missing” denotes
whether the dataset contains missing values and “Feature
type” denotes the type of attributes the dataset contains.
Since MNLDP cannot handle missing feature values, we
need to complete missing feature values on the datasets.
Specifically, we replace all missing feature values with the
mean of numerical feature values or the modes of nominal
feature values from the available data, using an unsuper-
vised feature filter ReplaceMissingValues in the Waikato
Environment and Knowledge Analysis (WEKA) (Witten
et al., 2011) platform. Subsequently, we simulate 40 crowd
workers to replicate a real-world crowdsourcing process
according to the characteristics of the ”LabelMe” dataset.
Observed in Figure 2, most workers’ annotation ratios and
annotation qualities are in the interval [0, 0.1] and [0.6, 0.9],
respectively. Therefore, for each simulated crowd worker
ur, we randomly sample its annotation ratio and annotation
quality from the uniform distribution [0, 0.1] and [0.6, 0.9],
respectively. As a result, approximately 95% of the labels in
the label matrix are missing, reflecting the sparsity observed
in real-world crowdsourced datasets.

Table 2 presents the integration accuracy comparisons of
six label integration algorithms after label completion by
WSLC and LDPLC, respectively. Based on these results,
we compare each pair of label integration algorithms after
label completion by WSLC and LDPLC using the corrected
paired two-tailed t-test with the significance level α = 0.05
(Nadeau & Bengio, 2003; Zhang et al., 2024b). The symbols
• and ◦ in the table indicate that the integration accuracy
has a statistically significant improvement or degradation
using our proposed LDPLC compared to WSLC, respec-
tively. The bottom of Table 2 denotes the mean integration
accuracy and the Win/T ie/Lose (W/T/L) across the 34
datasets. The mean integration accuracy reflects the aver-
age performance of different label integration algorithms
after label completion by WSLC and LDPLC. The W/T/L
indicates that in terms of improving the performance of
label integration algorithms, LDPLC wins WSLC on W
datasets, ties on T datasets, and loses on L datasets. These
experimental results verify the effectiveness of our proposed
LDPLC. Specific conclusions are summarized as follows:

• The average integration accuracies of MV (83.51%),

Table 1. Description of 34 simulated datasets.

Dataset #Instances #Features #Classes Missing Feature type

anneal 898 38 6 yes hybrid
audiology 226 69 24 yes nominal
autos 205 25 7 yes hybrid
balance-scale 625 4 3 no numeric
biodeg 1055 41 2 no numeric
breast-cancer 286 9 2 yes nominal
breast-w 699 9 2 yes numeric
car 1728 6 4 no nominal
credit-a 690 15 2 yes hybrid
credit-g 1000 20 2 no hybrid
diabetes 768 8 2 no numeric
heart-c 303 13 5 yes hybrid
heart-h 294 13 5 yes hybrid
heart-statlog 270 13 2 no numeric
hepatitis 155 19 2 yes hybrid
horse-colic 368 22 2 yes hybrid
hypothyroid 3772 29 4 yes hybrid
ionosphere 351 34 2 no numeric
iris 150 4 3 no numeric
kr-vs-kp 3196 36 2 no nominal
labor 57 16 2 yes hybrid
letter 20000 16 26 no numeric
lymph 148 18 4 no hybrid
mushroom 8124 22 2 yes nominal
segment 2310 19 7 no numeric
sick 3772 29 2 yes hybrid
sonar 208 60 2 no numeric
spambase 4601 57 2 no numeric
tic-tac-toe 958 9 2 no nominal
vehicle 846 18 4 no numeric
vote 435 16 2 yes nominal
vowel 990 13 11 no hybrid
waveform 5000 40 3 no numeric
zoo 101 17 7 no hybrid

DS (83.57%), IWMV (83.54%), GTIC (83.45%),
DEWSMV (83.54%) and MNLDP (83.99%) after label
completion by LDPLC are much higher than those of
MV (74.56%), DS (74.08%), IWMV (74.57%), GTIC
(74.43%), DEWSMV (74.55%) and MNLDP (76.80%)
after label completion by WSLC, respectively. The
result once again demonstrates that LDPLC further
improves the performance of all label integration algo-
rithms compared to WSLC.

• LDPLC significantly wins WSLC on 30, 30, 30, 30, 30,
and 27 datasets for MV, DS, IWMV, GTIC, DEWSMV
and MNLDP, respectively, while significantly losing
only on 1 dataset. In t-test results, the number of
datasets in which LDPLC wins significantly (W ) is
always much higher than the number of datasets in
which it loses significantly (L) for all label integra-
tion algorithms. This further strongly demonstrates the
effectiveness of LDPLC.

In addition, to validate the robustness of LDPLC under
different annotation quality distributions, we conduct an-
other set of experiments. In new experiments, we replace
the distribution of the annotation quality with a Gaussian
distribution N(0.75, 0.152), while keeping other settings
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Table 2. Integration accuracy (%) comparisons of six label integration algorithms after label completion by WSLC and LDPLC on the
uniform distribution, respectively.

MV DS IWMV GTIC DEWSMV MNLDP

Dataset WSLC LDPLC WSLC LDPLC WSLC LDPLC WSLC LDPLC WSLC LDPLC WSLC LDPLC

anneal 70.45 86.31 • 68.21 86.24 • 70.41 86.29 • 69.82 86.26 • 70.35 86.31 • 74.70 86.38 •
audiology 69.25 81.19 • 69.20 81.24 • 69.11 81.33 • 68.98 80.44 • 69.12 81.19 • 71.20 80.62 •
autos 71.76 82.68 • 71.61 82.68 • 71.81 82.63 • 71.85 81.95 • 71.66 82.68 • 73.95 81.17 •
balance-scale 75.15 83.46 • 72.34 83.01 • 74.83 83.34 • 73.46 83.34 • 74.99 83.44 • 79.49 84.16 •
biodeg 77.95 81.42 • 77.72 81.31 • 77.92 81.39 • 77.82 81.44 • 77.92 81.44 • 79.99 81.75 •
breast-cancer 78.39 78.15 77.10 78.14 78.04 78.14 77.80 78.11 78.50 78.32 79.27 77.72
breast-w 78.48 85.81 • 78.37 85.64 • 78.44 85.72 • 78.43 85.84 • 78.44 85.82 • 82.47 88.58 •
car 78.40 86.24 • 75.71 86.25 • 78.41 86.25 • 77.64 86.25 • 78.41 86.25 • 83.81 86.49 •
credit-a 74.59 81.06 • 74.75 81.03 • 74.65 81.05 • 74.64 81.06 • 74.59 81.06 • 76.42 81.32 •
credit-g 77.00 77.80 75.95 77.72 76.76 77.79 76.61 77.79 76.93 77.82 78.44 77.55
diabetes 76.63 78.31 76.05 78.09 76.56 78.15 76.39 78.27 76.69 78.27 78.16 78.18
heart-c 77.33 84.29 • 76.27 84.23 • 77.16 84.19 • 75.58 84.33 • 77.43 84.33 • 80.69 84.16 •
heart-h 77.18 83.74 • 76.67 83.67 • 77.07 83.70 • 76.33 83.64 • 77.14 83.70 • 80.54 83.23
heart-statlog 74.92 78.52 • 74.48 78.59 • 74.44 78.81 • 74.37 78.41 • 74.96 78.56 • 74.26 78.85 •
hepatitis 69.36 83.03 • 69.74 82.84 • 71.29 83.03 • 70.26 82.84 • 69.29 83.03 • 67.55 83.94 •
horse-colic 72.31 77.69 • 72.69 77.58 • 72.39 77.58 • 72.39 77.72 • 72.28 77.69 • 72.94 77.34 •
hypothyroid 83.18 88.79 • 79.58 88.72 • 83.12 88.79 • 82.33 88.79 • 83.18 88.80 • 88.05 89.02
ionosphere 72.59 83.90 • 73.85 83.88 • 73.62 83.82 • 73.59 83.96 • 72.56 83.96 • 75.13 85.02 •
iris 72.00 86.87 • 72.27 87.13 • 71.87 87.13 • 71.80 87.07 • 72.27 86.67 • 75.33 90.93 •
kr-vs-kp 76.04 85.33 • 76.08 85.32 • 76.06 85.32 • 76.02 85.32 • 75.98 85.32 • 78.10 85.61 •
labor 66.14 80.17 • 67.37 82.98 • 63.33 80.35 • 68.95 79.47 • 65.26 80.70 • 50.35 81.75 •
letter 71.18 90.58 • 72.75 91.20 • 73.32 91.19 • 71.20 90.57 • 71.24 90.57 • 78.99 91.32 •
lymph 69.26 84.80 • 69.19 84.80 • 69.53 84.80 • 69.66 84.80 • 69.19 84.80 • 70.14 85.81 •
mushroom 76.66 88.02 • 76.67 88.02 • 76.69 88.02 • 76.67 88.02 • 76.70 88.02 • 79.41 88.37 •
segment 69.64 87.63 • 69.33 87.51 • 69.65 87.53 • 69.67 87.64 • 69.58 87.61 • 75.80 88.46 •
sick 81.26 84.56 • 77.50 84.30 • 81.20 84.54 • 80.50 84.50 • 81.27 84.58 • 84.93 85.12
sonar 71.54 78.56 • 72.40 79.04 • 72.07 78.94 • 72.36 78.80 • 71.54 78.85 • 69.76 79.42 •
spambase 78.36 83.40 • 78.28 83.39 • 78.36 83.39 • 78.33 83.40 • 78.36 83.40 • 80.12 83.64 •
tic-tac-toe 76.75 77.83 75.96 77.80 76.70 77.82 76.54 77.80 76.86 77.83 78.66 76.75 ◦
vehicle 72.67 82.45 • 72.71 82.37 • 72.71 82.38 • 72.72 82.46 • 72.73 82.42 • 76.76 82.35 •
vote 76.57 83.10 • 76.39 83.11 • 76.50 83.11 • 76.46 83.08 • 76.69 83.11 • 78.80 84.09 •
vowel 73.49 91.53 • 73.48 91.53 • 73.47 91.53 • 73.48 91.53 • 73.55 91.53 • 78.23 91.79 •
waveform 74.53 84.84 • 74.01 84.51 • 74.45 84.73 • 74.49 84.84 • 74.55 84.86 • 79.05 85.73 •
zoo 74.06 87.43 • 73.96 87.43 • 73.57 87.53 • 73.47 87.43 • 74.46 87.43 • 79.80 88.62 •

Mean 74.56 83.51 74.08 83.57 74.57 83.54 74.43 83.45 74.55 83.54 76.80 83.99

W/T/L - 30/4/0 - 30/4/0 - 30/4/0 - 30/4/0 - 30/4/0 - 27/6/1

unchanged, and the results are shown in Table 3. Specifi-
cally, Table 3 shows the integration accuracies of six label
integration algorithms after label completion by WSLC and
LDPLC on the Gaussian distribution and the t-test results.
From these results, we can still see that LDPLC further im-
proves the performance of all label integration algorithms
compared to WSLC. These results demonstrate that LDPLC
is not sensitive to annotation quality distributions.

Besides WSLC, PMF and PMF-TLC have also been pro-
posed for label completion, but they can only handle binary-
class crowdsourcing tasks. To further evaluate the effec-
tiveness of LDPLC, we conduct additional experiments to
compare the performance of PMF, PMT-TLC and LDPLC
on all binary datasets in Table 1. Detailed experiments
and results are provided in Appendix B. These results also
demonstrate the effectiveness of LDPLC.

4.4. Parameter Sensitivity Analysis of LDPLC

In LDPLC, we can adjust two parameters: K and T . K
and T denote the number of neighbors and the number
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Figure 4. Integration accuracy (%) comparisons of MV after label
completion by LDPLC on the “LabelMe” dataset when K and T
vary from 1 to 15.

of iterations in the label distribution propagation process,
respectively. Now, we analyze the impact of these two
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Table 3. Integration accuracy (%) comparisons of six label integration algorithms after label completion by WSLC and LDPLC on the
Gaussian distribution, respectively.

MV DS IWMV GTIC DEWSMV MNLDP

Dataset WSLC LDPLC WSLC LDPLC WSLC LDPLC WSLC LDPLC WSLC LDPLC WSLC LDPLC

anneal 68.30 84.37 • 65.69 84.16 • 68.35 84.32 • 67.59 84.21 • 68.23 84.36 • 71.35 84.26 •
audiology 68.54 81.33 • 68.41 81.33 • 68.54 81.33 • 68.54 79.42 • 68.63 81.28 • 69.69 80.44 •
autos 69.42 81.76 • 69.27 81.76 • 69.37 81.80 • 69.32 81.76 • 69.27 81.80 • 71.22 81.12 •
balance-scale 73.81 83.02 • 71.31 82.24 • 73.58 82.82 • 73.01 82.90 • 73.73 82.99 • 78.64 83.74 •
biodeg 78.40 81.65 • 78.11 81.56 • 78.37 81.59 • 78.26 81.64 • 78.47 81.66 • 80.26 81.83
breast-cancer 77.45 77.55 76.61 77.52 77.20 77.52 77.03 77.55 77.31 77.52 79.37 77.59
breast-w 80.04 86.28 • 79.89 86.15 • 80.00 86.22 • 79.88 86.28 • 80.10 86.32 • 83.55 89.07 •
car 79.19 87.03 • 76.39 87.03 • 79.23 87.04 • 78.53 87.04 • 79.17 87.04 • 83.89 87.24 •
credit-a 74.81 80.19 • 75.41 80.16 • 75.03 80.22 • 75.04 80.23 • 74.83 80.20 • 76.29 80.67 •
credit-g 74.48 74.70 73.76 74.63 74.45 74.72 74.43 74.67 74.51 74.70 76.13 74.15
diabetes 76.63 77.88 75.37 77.80 76.42 77.83 76.06 77.75 76.58 77.79 78.11 77.92
heart-c 76.24 84.29 • 75.25 84.29 • 75.98 84.29 • 74.85 84.29 • 76.17 84.29 • 80.79 84.49 •
heart-h 76.12 82.99 • 74.76 82.99 • 75.95 82.99 • 74.59 82.99 • 76.05 83.02 • 80.61 83.30
heart-statlog 73.63 78.00 73.70 77.85 73.78 77.82 73.56 78.00 73.67 78.00 74.11 77.78
hepatitis 65.68 79.29 • 66.58 79.61 • 67.42 79.74 • 66.90 79.23 • 65.68 79.22 • 61.93 79.93 •
horse-colic 71.66 78.12 • 72.06 77.93 • 71.90 77.93 • 71.79 78.04 • 71.66 78.02 • 72.15 77.47 •
hypothyroid 83.16 88.49 • 79.87 88.36 • 83.13 88.48 • 82.48 88.47 • 83.15 88.48 • 87.74 88.86
ionosphere 68.20 77.95 • 70.09 78.52 • 70.20 78.32 • 70.17 77.89 • 68.32 77.92 • 69.54 79.03 •
iris 71.07 87.13 • 71.40 87.33 • 72.40 86.87 • 72.87 87.67 • 70.60 87.07 • 75.53 91.47 •
kr-vs-kp 75.78 84.25 • 75.77 84.24 • 75.80 84.25 • 75.75 84.23 • 75.81 84.23 • 77.50 84.62 •
labor 60.88 79.30 • 62.98 79.65 • 62.98 79.83 • 66.32 79.12 • 60.70 78.95 • 39.65 78.42 •
letter 71.44 90.74 • 67.67 88.55 • 71.87 90.64 • 71.42 90.74 • 71.43 90.73 • 79.52 91.53 •
lymph 69.05 83.51 • 69.05 83.51 • 69.39 83.45 • 69.32 83.45 • 69.12 83.58 • 71.28 83.85 •
mushroom 76.96 87.85 • 76.97 87.85 • 76.97 87.85 • 76.96 87.85 • 76.95 87.85 • 79.04 88.20 •
segment 70.75 87.53 • 70.75 87.50 • 70.75 87.48 • 70.74 87.55 • 70.72 87.53 • 77.20 88.59 •
sick 79.42 82.33 75.47 81.96 • 79.40 82.36 78.50 82.26 • 79.36 82.32 82.93 82.99
sonar 69.81 78.99 • 70.15 79.62 • 69.62 79.52 • 70.14 79.18 • 69.66 79.04 • 67.89 78.94 •
spambase 76.87 81.63 • 76.83 81.63 • 76.87 81.62 • 76.85 81.64 • 76.88 81.64 • 78.43 82.01 •
tic-tac-toe 76.36 77.47 75.27 77.47 76.36 77.50 76.09 77.50 76.34 77.46 78.53 76.65 ◦
vehicle 72.78 81.97 • 72.86 81.97 • 72.86 81.93 • 72.94 81.98 • 72.80 82.08 • 76.50 82.17 •
vote 77.61 84.99 • 77.49 84.99 • 77.68 85.01 • 77.68 84.99 • 77.75 84.99 • 79.91 86.35 •
vowel 71.18 89.94 • 71.22 89.94 • 71.23 89.94 • 71.20 89.94 • 71.28 89.94 • 75.86 90.17 •
waveform 72.65 83.36 • 72.22 82.98 • 72.51 83.25 • 72.59 83.32 • 72.56 83.35 • 77.52 84.31 •
zoo 74.46 86.44 • 74.56 86.44 • 73.96 86.44 • 73.57 86.54 • 74.46 86.44 • 79.80 87.43 •

Mean 73.61 82.72 73.04 82.63 73.81 82.73 73.68 82.66 73.59 82.70 75.66 83.13

W/T/L - 28/6/0 - 29/5/0 - 28/6/0 - 29/5/0 - 28/6/0 - 25/8/1

parameters on MV after label completion by LDPLC on
the “LabelMe” dataset. We change both K and T from 1
to 15 and set the step size to 1. Figure 4 shows integration
accuracies of MV after label completion by LDPLC when
K and T vary. We can see that as K varies from 2 to 15, the
integration accuracies of all label integration algorithms vary
within one percentage point. This indicates that LDPLC is
rarely sensitive to K. Considering that K takes values in the
interval [3, 6] when LDPLC achieves the best performance,
we set K to 5 in this paper. As T varies, the integration
accuracy increases rapidly at first in the interval [1, 4] and
then stabilizes after 4, which is consistent with the analysis
in subsection 3.5. Therefore, we set T to 5 in this paper.

5. Conclusion
WSLC has been proven to be an effective algorithm for la-
bel completion. In this paper, we find that WSLC considers
solely the correlation of the labels annotated by different
workers on per individual instance while totally ignoring
the correlation of the labels annotated by different workers

among similar instances. To address this issue, we proposed
a novel label distribution propagation-based label comple-
tion (LDPLC) algorithm. In LDPLC, we first use worker
similarity weighted majority voting to initialize a label dis-
tribution for each missing label. Then, we design a label
distribution propagation algorithm to enable each missing la-
bel of each instance to iteratively absorb its neighbors’ label
distributions. Finally, we complete each missing label based
on its converged label distribution. Extensive experiments
demonstrate that LDPLC further improves the performance
of label integration algorithms compared to WSLC.

Nevertheless, there are still some limitations in LDPLC.
For example, in crowdsourcing scenarios with high noise
ratios, the quality of the labels tends to be low, which results
in inaccurately initializing the label distributions. These
inaccurately label distributions enlarge the propagation of
erroneous information during the label distribution propa-
gation process. Therefore, how to further extend LDPLC
to the crowdsourcing scenarios with high noise ratios is the
main direction of our future work.
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A. Experiments on the “Ruters” and “Leaves” datasets.
The dataset “Ruters” contains 1799 instances and 8 classes. In total, there are 5410 multiple noisy labels from 38 workers,
with a mean annotation quality of 59.59% and a mean annotation ratio of 7.91%. The dataset “Leaves” contains 384
instances and 6 classes. In total, there are 3840 multiple noisy labels from 83 workers, with a mean annotation quality of
55.03% and a mean annotation ratio of 12.05%. The integration accuracies of six label integration algorithms after label
completion by WSLC and LDPLC on the “Ruters” and “Leaves” datasets are shown in Figure 5. From these results, we can
conclude that LDPLC further improves the performance of all label integration algorithms compared to WSLC.
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Figure 5. Integration accuracy (%) comparisons of six label integration algorithms after label completion by WSLC and LDPLC,
respectively.

B. Experiments on 18 simulated binary datasets.
We construct two sets of experiments on 18 simulated binary datasets. The first set of experiments compares the performance
of PMF and LDPLC, and the second set of experiments compares the performance of PMF-TLC and LDPLC. In each set of
experiments, we simulate 40 crowd workers. For each simulated crowd worker, we randomly sample its annotation ratio and
annotation quality from the uniform distribution [0, 0.1] and [0.6, 0.9], respectively. The experimental results are shown
in Table 4 and Table 5. From the results, we can conclude that LDPLC further improves the performance of most label
integration algorithms compared to PMF and PMF-TLC on binary datasets.

Table 4. Integration accuracy (%) comparisons of six label integration algorithms after label completion by PMF and LDPLC on 18
simulated binary datasets, respectively.

MV DS IWMV GTIC DEWSMV MNLDP

Dataset PMF LDPLC PMF LDPLC PMF LDPLC PMF LDPLC PMF LDPLC PMF LDPLC

biodeg 72.48 81.55 • 74.60 81.53 • 72.35 81.53 • 75.77 81.56 • 74.83 81.53 • 77.54 81.76 •
breast-cancer 38.15 80.66 • 41.96 80.80 • 36.96 80.63 • 41.53 80.73 • 38.01 80.70 • 34.34 79.79 •
breast-w 49.40 85.14 • 48.27 85.04 • 43.62 85.14 • 62.43 85.16 • 49.03 85.21 • 50.66 87.39 •
credit-a 58.71 82.74 • 58.83 82.78 • 58.55 82.75 • 63.59 82.72 • 58.70 82.69 • 57.55 82.74 •
credit-g 70.62 77.28 72.77 77.26 69.92 77.31 75.96 77.24 73.21 77.27 71.75 76.99
diabetes 49.86 78.18 • 50.56 78.20 • 46.38 78.22 • 68.43 78.11 • 49.88 78.18 • 49.27 78.20 •
heart-statlog 48.34 80.30 • 49.89 80.11 • 47.85 80.11 • 47.85 80.11 • 48.26 80.26 • 46.67 79.18 •
hepatitis 77.48 82.52 • 76.84 82.45 • 77.35 82.32 • 76.12 82.32 • 77.48 82.71 • 78.84 83.68 •
horse-colic 63.53 79.10 • 63.37 79.08 • 63.64 79.08 • 64.89 79.05 • 63.56 79.08 • 63.56 78.75 •
ionosphere 65.98 83.13 • 65.33 82.79 • 65.73 82.96 • 64.84 83.13 • 65.93 82.96 • 65.30 84.33 •
kr-vs-kp 76.93 86.50 • 77.06 86.49 • 76.81 86.49 • 79.22 86.50 • 77.14 86.51 • 84.91 86.72 •
labor 66.14 80.17 • 66.32 81.58 • 66.32 81.93 • 65.26 79.30 • 65.96 80.88 • 66.84 83.68 •
mushroom 76.46 87.90 • 76.68 87.91 • 76.37 87.91 • 78.92 87.91 • 76.71 87.91 • 88.44 88.22
sick 78.26 86.51 • 80.40 86.22 • 78.13 86.52 • 73.66 86.47 • 82.68 86.53 • 86.55 87.23
sonar 56.59 81.25 • 56.73 81.73 • 56.40 81.64 • 58.65 81.44 • 56.64 81.39 • 55.91 81.54 •
spambase 76.55 83.88 • 77.66 83.88 • 76.59 83.88 • 79.58 83.88 • 77.77 83.88 • 83.72 84.16
tic-tac-toe 75.48 78.55 • 77.37 78.57 75.19 78.56 • 79.47 78.57 77.43 78.53 77.91 77.77
vote 43.63 86.16 • 44.90 86.12 • 43.01 86.12 • 45.7 86.16 • 43.63 86.14 • 41.82 86.83 •
Mean 63.59 82.31 64.42 82.36 62.84 82.39 66.77 82.24 64.27 82.35 65.64 82.72

W/T/L - 17/1/0 - 16/2/0 - 17/1/0 - 16/2/0 - 16/2/0 - 13/5/0
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Table 5. Integration accuracy (%) comparisons of six label integration algorithms after label completion by PMF-TLC and LDPLC on 18
simulated binary datasets, respectively.

MV DS IWMV GTIC DEWSMV MNLDP
Dataset PMF-TLC LDPLC PMF-TLC LDPLC PMF-TLC LDPLC PMF-TLC LDPLC PMF-TLC LDPLC PMF-TLC LDPLC
biodeg 74.38 81.55 • 75.82 81.53 • 75.21 81.53 • 78.38 81.56 • 77.45 81.53 • 83.08 81.76
breast-cancer 76.43 80.66 • 70.77 80.80 • 77.38 80.63 • 79.79 80.73 78.74 80.70 78.32 79.79
breast-w 76.94 85.14 • 67.98 85.04 • 77.97 85.14 • 83.03 85.16 • 78.76 85.21 • 93.58 87.39 ◦
credit-a 76.09 82.74 • 57.70 82.78 • 76.25 82.75 • 79.91 82.72 • 75.35 82.69 • 83.68 82.74
credit-g 73.19 77.28 • 75.56 77.26 73.85 77.31 • 79.60 77.24 76.46 77.27 76.72 76.99
diabetes 73.58 78.18 • 66.19 78.20 • 74.43 78.22 • 80.33 78.11 ◦ 75.44 78.18 • 78.67 78.20
heart-statlog 73.63 80.30 • 58.81 80.11 • 74.74 80.11 • 75.77 80.11 • 74.85 80.26 • 80.78 79.18
hepatitis 76.84 82.52 • 80.71 82.45 75.68 82.32 • 73.16 82.32 • 73.61 82.71 • 85.68 83.68
horse-colic 72.42 79.10 • 63.94 79.08 • 72.47 79.08 • 78.09 79.05 71.22 79.08 • 79.29 78.75
ionosphere 74.84 83.13 • 66.38 82.79 • 75.84 82.96 • 76.23 83.13 • 73.65 82.96 • 84.62 84.33
kr-vs-kp 80.47 86.50 • 80.86 86.49 • 80.45 86.49 • 83.08 86.50 • 80.74 86.51 • 88.92 86.72 ◦
labor 77.37 80.17 55.09 81.58 • 76.14 81.93 • 74.03 79.30 • 76.32 80.88 84.74 83.68
mushroom 81.27 87.90 • 81.54 87.91 • 81.33 87.91 • 83.89 87.91 • 81.48 87.91 • 92.08 88.22 ◦
sick 83.24 86.51 • 88.36 86.22 ◦ 83.29 86.52 • 81.99 86.47 • 88.17 86.53 91.45 87.23 ◦
sonar 73.41 81.25 • 56.11 81.73 • 73.89 81.64 • 78.07 81.44 • 74.04 81.39 • 83.17 81.54
spambase 78.19 83.88 • 79.48 83.88 • 78.00 83.88 • 80.65 83.88 • 79.29 83.88 • 85.57 84.16 ◦
tic-tac-toe 74.92 78.55 • 75.90 78.57 75.88 78.56 • 79.72 78.57 77.28 78.53 72.89 77.77 •
vote 78.23 86.16 • 63.61 86.12 • 77.81 86.12 • 84.18 86.16 • 79.22 86.14 • 91.40 86.83 ◦
Mean 76.41 82.31 70.27 82.36 76.70 82.39 79.45 82.24 77.34 82.35 84.15 82.72
W/T/L - 17/1/0 - 14/3/1 - 18/0/0 - 13/4/1 - 13/5/0 - 1/11/6
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