CoreaSpeech: Korean Speech Corpus via
Jamo-based Coreset Selection for
Efficient and Robust Korean Speech Generation

Ki-Joong Kwon', Jun-Ho So?, Sang-Hoon Lee!*
'Department of Artificial Intelligence, Ajou University, South Korea
2Department of Mathematics, Ajou University, South Korea
{kijoongkwon, jhso, sanghoonlee}@ajou.ac.kr

Abstract

While substantial advances have been achieved in TTS for languages such as
English and Mandarin, Korean remains comparatively underrepresented due to
the lack of rigorous preprocessing methods, systematically constructed datasets,
a shortage of standardized Korean TTS benchmarks, and explicitly optimized
models for Korean. To address these limitations, we propose a Korean-tailored
data-refinement and coreset selection pipeline. It refines speech data and performs
textual normalization especially for numerals and English terms, followed by a
novel coreset selection strategy that leverages Jamo-based linguistic and phonolog-
ical features unique to Korean. As a result, we release CoreaSpeech, an efficient
and robust Korean speech corpus comprising 700 hours across 21,449 speakers.
This refined core subset, evenly balanced across utterances ranging from 0 to 30
seconds, is derived from 2,058 hours of widely used Korean datasets. Building
on this, we conducted extensive experiments via cross-lingual fine-tuning with
our CoreaSpeech dataset. Furthermore, we introduce a new universal Korean TTS
benchmark dataset including clean, noisy, and numeric subsets. Additionally, we
demonstrate that our Korean-specific text normalization serves as a plug-and-play
module, reliably improving performance regardless of the underlying TTS archi-
tecture. We publicly release our dataset, pipeline code, and evaluation benchmarks
to support reproducible research and further advances in Korean and multilingual
speech synthesis: https://coreaspeech.github.io/demo/|

1 Introduction

Recent advancements in Text-to-Speech (TTS) technology have significantly enhanced synthesized
speech quality, including improved naturalness, particularly in widely researched languages such
as English and Mandarin. Key factors driving these improvements include large-scale high-quality
corpora [} 2], well-established preprocessing methods [2| [3]], publicly available and rigorously
designed evaluation benchmarks [4H6], and powerful, optimized models [7H9]]. However, research in
Korean TTS remains comparatively underdeveloped, primarily due to limitations such as the small-
scale of available speech corpora, lack of sufficient Korean-specific preprocessing methodologies, a
shortage of standardized Korean TTS evaluation benchmarks, and an absence of explicitly optimized
models tailored to Korean linguistic and phonological characteristics.

Korean Corpus from large multilingual datasets (e.g., Emilia [10] and Common Voice[11]) while
maximizing diversity, often present potential audio quality issues, including severe background noise
from online sources and unnatural pronunciations due to non-native speakers. In contrast, the KSS
dataset [12], although of high audio quality due to studio recordings, consists exclusively of single-
speaker recordings. Moreover, large-scale Korean datasets such as AI—Huredominantly consist

*Corresponding author.

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Track on Datasets and Benchmarks.


https://coreaspeech.github.io/demo/

Table 1: Publicly Available Speech Corpora Used in TTS Research

Dataset Hours #Samples #Speakers Languages License
Non-Korean

LJSpeech 24 13,100 1 English Public Domain
LibriTTS 585 - 2,456 English CCBY 4.0
LibriSpeech 982 292,367 2,484 English CCBY 4.0
WenetSpeech4TTS 12,800 - - Mandarin CCBY 4.0
Emilia 101,654 - - Multilingual CCBY-NC4.0
IndicVoices—R [17] 1,704 690,000 10,496 22 Indian languages CCBY 4.0
Common Voice 33,150 - - 133 languages CCO0 1.0
Korean-specific

KSS 12 12,853 1 Korean CCBY-NC-SA 4.0
Emilia (KO) 213 91,065 27,171 Korean CC BY-NC 4.0
CoreaSpeech (Ours) 700 168,790 21,449 Korean CC BY-NC 4.0

of repeated scripts spoken by multiple speakers, resulting in limited linguistic diversity. In addition
to their individual drawbacks, these datasets share a common limitation of having predominantly
short utterances (3—4 seconds), restricting the models’ ability to effectively generate longer, natural-
sounding speech segments, as highlighted in previous studies [[13}[14].

During preprocessing, Korean speech data presents additional complexity due to two main reasons.
First, Korean speech data frequently includes English loanwords, code-switching, and numerals
with context-dependent pronunciations. These characteristics necessitate specialized normalization
strategies to ensure training consistency and speech quality. Second, Korean’s unique syllable block
structure composed of Jamo characters requires phonological balance. Recent studies highlight the
importance of effective preprocessing for data selection, but previous embedding-based approaches
using Large Language Models (LLMs) [[15}[16] have primarily focused on coarse aspects, limiting
their suitability for Korean’s phonological requirements. Thus, there is a clear need for an efficient
data selection method that reflects the phonological characteristics of Korean.

Moreover, Korean TTS research lacks standardized evaluation benchmarks covering diverse acoustic
and linguistic contexts. A comprehensive benchmark capable of evaluating synthesis quality under
optimal acoustic conditions, robustness to noisy environments, and accuracy in handling context
dependent numeral pronunciations is therefore essential.

Finally, despite recent advances in multilingual TTS systems, models that faithfully capture Korean’s
unique phonological and graphemic characteristics remain scarce. To close this gap, there is a need
for a dedicated Korean TTS model that can be easily optimized by fine-tuning only a small set of
parameters, without relying on extensive computational resources.

To address these limitations, we introduce:

* CoreaSpeech: A diverse, and high-fidelity Korean speech corpus (700 hours, 21,449 speak-
ers), refined from raw public audio.

* Korean Text Preprocessor (N2gk+): An automatic normalization module handling context-
dependent numerals, English loanwords, code-switching, and special characters.

* Efficient Coreset Selection: Linguistically aware coreset selection leveraging Korean-
specific Jamo pair distributions and acoustically aware selection via dynamic audio quality
thresholds (UTMOS)

* Korean Universal Testset: Comprehensive Korean TTS benchmark comprising clean, noisy,
and numeric subsets to rigorously evaluate synthesis quality across diverse acoustic and
linguistic scenarios.

* Korean Optimized TTS (PEFT-TTS): A Korean-specialized TTS model optimized via
low-resource, parameter-efficient fine-tuning of only 5.81M LoRA parameters, trained on a
single GPU.

We publicly release our dataset, preprocessing pipeline, and evaluation benchmarks to facilitate repro-
ducible research, promote further advancements, and accelerate progress in Korean and multilingual
TTS research.
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Figure 1: Overview of the proposed Pipeline.

2 Data Pipeline

This section introduces a data pipeline designed to construct a high-fidelity Korean speech corpus
that not only ensures data quality but also carefully selects core subsets for optimized TTS model
training, as illustrated in Figure[T}

2.1 Data Conditioning

2.1.1 Audio

We begin by performing speaker diarization to ensure segments contain speech from a single speaker.
Given raw audio from diverse sources, we employ the pyannote/speaker-diarization-3.1 [18] to label
speaker turns within each utterance. We only retain segments containing exactly one speaker. Any
multi-speaker segments are discarded. This procedure ensures speaker-homogeneity, facilitating
subsequent normalization steps. Further evaluation results for diarization are provided in Section[5.4]
(see Table[6).

2.1.2 Text Categorizing

Directly discarding all utterances containing non-Korean language tokens may lead to the loss of
critical semantic and acoustic information. Thus, to minimize the loss of valuable speech samples,
we propose LNCat, a precise text categorization approach that selectively retains utterances based
on their convertibility into Korean graphemes (Hangul). Specifically, LNCat identifies English
tokens commonly used in everyday speech, such as institutional names and units, which can reliably
be converted into Korean pronunciations, while discarding samples containing English words or
sentences that may confuse the training process. We implement this selective categorization using a
simple yet effective algorithm, with detailed procedures and evaluation provided in Appendix [C]

2.1.3 Text Normalization

Normalizing numerals, English tokens, and special characters into consistent Korean pronunciations
pose significant challenges due to their inherent complexity and variability in spoken Korean. Thus,
we propose N2gk+, an automatic normalization method designed to produce natural Korean pro-
nunciations without relying on manual annotations or resource-intensive speech recognition models.
Specifically, N2gk+ robustly handles numerals that potentially have multiple valid pronunciations as
well as convertible English tokens and special characters, converting them into Hangul graphemes
to ensure consistent and clear textual inputs for subsequent TTS acoustic modeling. Additionally,
applying N2gk+ to TTS model input texts significantly improves the quality of synthesized speech,
with detailed analyses and evaluation results provided in the Section [5.3] Further methodological
details and computational efficiency are presented in Appendix
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2.2 Coreset Selection

2.2.1 Jamo Bigram (Grapheme level)

Achieving exhaustive phonetic coverage while mitigating phonetic imbalance remains inherently
challenging. Further complicating matters, English writing represents phonemes directly with basic
graphemes such as individual letters or common digraphs, whereas Korean orthography represents
an entire syllable as a single block. Each block is built from up to three sub-graphemes called jamo:
an initial consonant (IC), a medial vowel (MV), and an optional final consonant (FC). With 19
ICs, 21 MVs, and 28 FCs, these sub-units can generate up to 11,172 distinct syllables. Moreover,
Korean pronunciation involves phonetic interactions between adjacent syllables, such as liaison and
assimilation. Capturing every possible pairwise interaction would require modelling up to 11,1722
combinations, which is practically infeasible.

To address this issue efficiently, we propose a Jamo Bigram coreset selection strategy that explicitly
considers pairwise Jamo adjacency. Specifically, we represent each utterance through four distinct
adjacent types: (IC, MV), MYV, FC), (FC, next-IC), and (MV, next-1C), cumulating in a maximum of
1,878 unique Jamo pairs. This method efficiently captures phonetic patterns and interactions between
adjacent syllables. Further details are provided in Appendix [J]

We then aggregate these Jamo pairs across the dataset and estimate their distributions. If a pair’s
count is at or below a predefined threshold ¢ (e.g., 500), all utterances containing that pair are retained
so that comparatively rare phonetic patterns are never lost. For pairs whose counts exceed ¢, every
utterance containing the over-represented pair is retained with probability:

p = exp|[—p(global count — t)] e

where (3 is a small constant (e.g., 10~%). This probabilistic filtration curbs the dominance of frequent
Jamo patterns, thereby promoting a more even exploration of the language’s phonetic space. Further
hyperparameter setting details are provided in Appendix [H.2] While we specifically utilize Jamo-
level pair distributions for efficient and linguistically representative core subset selection, alternative
grapheme-level tokenization methods such as Byte-Pair Encoding (BPE) [[19] could also potentially
be employed.

2.2.2 Dynamic UTMOS threshold (Audio quality level)

Concurrently, among the utterances retained after stochastic removal step (i.e., those containing suffi-
ciently represented Jamo pairs above threshold ¢), we further refine sample selection by considering
their audio quality as measured by the UTMOS metric [20].

Using a fixed (static) UTMOS threshold to filter low-quality utterances often excluded various audio
segments containing slight background noise, adversely affecting the model’s ability to generalize
and synthesize speech from noisy audio prompts. Moreover, using a fixed threshold sometimes
resulted in the unintended exclusion of entire speaker subsets from specific datasets. Since most
publicly available Korean speech datasets including those in our study are typically collected from
specific platforms or under specific recording conditions, we addressed this limitation by introducing
a dynamic, dataset specific UTMOS thresholding method. This approach determines appropriate
thresholds tailored to each individual dataset, incorporating a broader and more diverse range of
audio qualities and speakers into the training corpus. Detailed experimental results and procedures
for determining these dynamic thresholds are provided in the Section [5.4]and Appendix [E]

2.3 Supplementary Finalization
2.3.1 Data Appending for duration balancing

Lastly, recognizing that Korean speech datasets typically contain a large proportion of very short
utterances, we explored a data appending method. Specifically, short segments from the same speaker
were concatenated using cross-fading to produce longer utterances, thereby adjusting the dataset to
include a wider and more balanced range of sample durations up to a maximum of 30 seconds. When
selecting utterances, we randomly determined both the number of segments and the specific segments
within each speaker, considering both speaker-level and dataset-level duration distributions. Despite
potential drawbacks, this approach reduced hallucinations to some extent when synthesizing longer
sentences. Further details regarding this method are included in Appendix
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Figure 2: Semantic PCA with frequency and projection
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Figure 3: Acoustic PCA with frequency and projection
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Figure 4: Duration Augmentation

3 Dataset Analysis

Semantic & Acoustic features: We assessed the frequency and diversity of the semantic (Figure
[2) and acoustic (Figure [3) embedding spaces by fitting PCA on the 768-dimensional ko-sbert-sts
[21] and WavLLM [22]] vectors, then projecting every dataset variant onto the same two principal
components axes derived from the raw data. Both analyses reveal that the raw data exhibits highly
concentrated regions, which are reduced after coreset selection. Semantic diversity was particularly
well preserved, maintaining over 95% of the original diversity, and acoustic diversity held at 82%
despite speaker diarization and UTMOS filtering. Additionally, duration appending largely preserves
the original (Core data) distributions in both semantic and acoustic features.

Duration distribution: Figure ] illustrates that duration appending resulting closely to a uniform
distribution across 0-30 s range, increasing the mean utterance length from 5.24 s to 14.95 s. Experi-
mental results in[5.4] show that this appending mitigates errors when synthesizing long utterances.
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4 Model

This chapter introduces the base model F5-TTS [23] and PEFT-TTS, an application of parameter-
efficient fine-tuning, to evaluate the effectiveness and suitability of the CoreaSpeech dataset and to
build a model explicitly optimized for Korean speech synthesis.

4.1 FS5-TTS

F5-TTS is a non-autoregressive TTS model trained in a multilingual environment (English and
Mandarin). It generates mel-spectrograms through a flow-matching approach [24], utilizing a text
embedding module based on ConvNeXt V2 [25]] and Diffusion Transformer (DiT) blocks [26]. Since
F5-TTS directly learns the text-to-speech mapping without forced alignment as in E2-TTS [27], it
minimizes the loss in duration diversity that may occur during the forced alignment process.

4.2 PEFT-TTS

Although multilingual TTS models have the advantage of covering a wide range of speech and
acoustic characteristics across multiple languages [9], they are not necessarily fully optimized for
Korean. To achieve performance specialized for Korean at low computational cost, this study applies
a cross-lingual parameter-efficient fine-tuning (PEFT) technique to the existing F5-TTS model. In
this approach, considering that the pretrained model was not trained on Korean, we applied full
fine-tuning to the text embedding and ConvNeXt V2 modules, while the remaining modules were
trained only using LoRA adapter [28] parameters specialized for the Korean dataset, CoreaSpeech.
As shown in Figure[5] ConvNext V2, Prompt Adapter, and DiT-LoRA Adapter learn Korean speaker
characteristics, pronunciation, and prosody in detail during training.

Prompt Adapter Prompt Adapter LoORA (rank=64) is applied to the linear projection layer, which
receives concatenated text embeddings and audio features as input. This layer plays a crucial role
in balancing the trade-off between pronunciation accuracy and speaker similarity. To fine-tune this
adapter, the DropPath technique [29] is used to stochastically drop the adapter’s residual path, which
alleviates overfitting and improves generalization performance across the entire dataset.

DiT LoRA Adapter LoRA (rank=16) is also applied to the self-attention layer of the DiT block
that generates the mel-spectrogram. This design efficiently adjusts the core parameters of the block
responsible for capturing speaker characteristics, preserving the existing pre-trained knowledge while
flexibly integrating speaker and prosody information from new data. The specific impact of the LoRA
rank on synthesis quality is described in detail in Appendix



Table 2: Comparison of recent text-to-speech models

Models |  Korean Text Processor | Training Data | Korean Data(hour) | #Param. (Trainable)
XTTS BPE + hangul-romanizer [30] | Common Voice (Public) 539 0.4B
CosyVoice 2 | raw BPE + Num2Words (En) Internal 2,200 0.5B

Llasa Llama BPE Emilia (Public) 213 1B

Zonos eSpeak NG Internal unknown 1.6B
PEFT-TTS | Jamo + N2gk+ CoreaSpeech (Public) | 700 \ 0.3B (5.81M)

Table 3: Korean Universal Testset

Eval Set | Model | CER(]) WER(]) SIM(1) UTMOS (1)
| GT | 314 9.46 0.83 3.60
XTTS 4.22 12.23 0.70 3.16
Clean data Cosy Voice 2 3.08 9.05 0.80 372
Llasa 8.65 25.37 0.65 3.90
Zonos 5.17 15.83 0.76 3.41
| PEFT-TTS (Ours) | 2.37 6.97 0.80 3.37
| GT | 921 22.64 0.76 1.65
XTTS 15.68 39.69 0.53 1.68
Noisy data CosyVoice 2 22.12 31.27 0.61 2.30
Llasa 34.10 89.18 0.31 2.20
Zonos 8.25 20.18 0.64 2.58
| PEFT-TTS (Ours) | 825 20.61 0.67 2.13
| GT | 623 18.93 0.85 3.42
XTTS 8.21 27.15 0.71 2.81
Numeric data | CosyVoice 2 17.65 52.60 0.82 3.60
Llasa 17.80 58.75 0.66 3.55
Zonos 21.21 64.08 0.77 3.29
| PEFT-TTS (Ours) | 5.97 19.71 0.81 2.90
| GT | 619 17.01 0.81 2.89
XTTS 9.37 26.35 0.64 2.55
Avg. Cosy Voice 2 14.28 30.97 0.74 3.21
Llasa 20.18 57.76 0.54 3.22
Zonos 11.54 33.37 0.72 3.09
| PEFT-TTS (Ours) |  5.35 15.76 0.76 2.80

5 Evaluation

5.1 Experimental Setup

We evaluated the CoreaSpeech dataset by fine-tuning the multilingual F5-TTS, pretrained on English
and Mandarin, using the parameter-efficient approach described in Section .2} To match the original
pretraining conditions, all training samples were downsampled to 24kHz. We maintained the same
hyperparameters from the F5-TTS model, specifically setting RMS normalization to 1, classifier-
free guidance strength to 2.0, using the Euler ODE solver method, and performing 32 NFE steps.
Additional fine-tuning configurations included LoRA with rank of 16 and 64 for the prompt adapter
and DiT LoRA, respectively, a DropPath rate of 0.3, the AdamW optimizer, and a learning rate of
1e5 with training conducted on a single NVIDIA TITAN RTX. For static UTMOS threshold, we
applied 3.5.

Evaluations involved a cross-sentence synthesis task, using objective metrics, Character Error Rate
(CER) and Word Error Rate (WER), computed via Whisper-Large-V3 [31]], speaker similarity (SIM)
via WavLM and synthesis quality via UTMOS. For subjective evaluation, we conducted Naturalness
Mean Opinion Score (nMOS) tests involving 20 native Korean listeners, who rated synthesized
speech samples on a scale from 1 (poor) to 5 (excellent).

Additionally, to evaluate our proposed Korean text preprocessor (N2gk+), we specifically utilized
Korean news data categorized using LNCat for measuring conversion performance.

5.2 Benchmarking: Korean Universal Testset

We introduce the Korean Universal Testset, a novel benchmark designed to rigorously assess the
performance and robustness of Korean TTS models. This benchmark consists of three distinct subsets:
Clean, Noisy, and Numeric, each comprising 100 utterances selected to represent diverse speakers
and linguistic scenarios relevant to practical Korean TTS applications. All subsets are specifically
constructed for cross-sentence tasks to evaluate zero-shot synthesis capabilities.



Table 4: Number-to-Korean Comparison: Latency and Accuracy

Method \ Latency (ms) \ Numeric (%) English (%) Numeric & English (%)
g2pk 31.60 £ 0.52 31.03 5.98 1.26
KoNLPy 0.11 £ 0.05 53.13 0.00 0.00
ChatGPT-4.1 API 52.67 34.51 76.69
ChatGPT-03 API 61.13 45.65 76.92
N2gk+ \ 1.19+ 0.16 \ 90.38 96.43 81.77

Table 5: Evaluation of N2gk+ as a Plug-and-Play Text Normalization Module

Method | N2gk+ | CER(}) WER(}) SIM () UTMOS (1)
GT | - | 623 18.93 0.84 3.42
XTTS X 8.21 27.15 0.71 2.81
v 6.86 21.29 0.71 2.83
Cosy Voice 2 X 17.65  52.60% 0.82 3.60
v 6.90 22.95 0.82 3.43
Llasa X 17.80 58.75 0.66 3.55
v 11.15 35.45 0.67 3.60
Zonos X 21.21 64.08 0.77 3.29
v 7.29 24.12 0.78 3.34
Ours X 11.11 35.99 0.81 2.86
v 5.97 19.71 0.81 2.90

The Clean set measures synthesis performance under optimal acoustic conditions. In contrast, the
Noisy set evaluates robustness in acoustically challenging scenarios typically encountered in everyday
life, including urban street noises, vehicle sounds, human conversations, and wind noise. Lastly, given
the complexity of numeric pronunciation in Korean, the Numeric set includes numerals, floating-
point numbers, explicitly pronounced special symbols (e.g., percentages, %), common English
abbreviations, and units denoted by English characters.

We benchmarked our model against multilingual TTS models capable of Korean speech synthesis
(XTTS[32], CosyVoice 2[33]], Llasa[34], and Zonos[33]]), as summarized in Table@ Performance
outcomes for each subset are presented in Table3]

Additionally, for supplementary validation using well-known datasets , we conducted Korean Open-
source Testset. Detailed results for this set are available in Appendix (see Table [I3). The model
demonstrates robust overall performance though lower UTMOS scores due to slower pronunciation
of numbers in the Numeric Set. Substantial nMOS, sMOS and RTF results are detailed in Appendix
[Al

5.3 Korean Text Preprocessor: N2gk+

We evaluated our Korean text preprocessor, N2gk+, designed as a plug-and-play module to sig-
nificantly enhance numeric and English abbreviation handling in Korean TTS. We first compared
N2gk+ with existing number-to-Korean conversion methods, including g2pk [36], KoNLPy [37],
and ChatGPT [38][39], focusing on latency and accuracy (Table[5). The KoNLPy library, primarily
designed for general Korean natural language processing, relies on simple mapping for numeric
conversions, resulting in lower accuracy and lacking English handling capabilities. The g2pk method
converts text to phonemes, enabling English handling but offering limited benefits due to its high
latency and sensitivity to spacing issues, as detailed in Appendix ChatGPT exhibited high
accuracy on expressions where numeric values co-occured with English unit terms, yet its overall
conversion performance was still modest. In contrast, N2gk+ exhibited superior performance across
all evaluated categories, while maintaining relatively low latency.

Further, we observed even greater improvements when integrating N2gk+ into multilingual TTS
models performing Korean synthesis, likely due to the universal nature of numeric expressions. As
demonstrated in Table 6, integrating N2gk+ consistently improved linguistic accuracy across various
Korean TTS models compared to their original preprocessing methods.



Table 6: Performance Comparison across Pipeline Components (Data Cond., Suppl. Final., Spk.,
Diar., Jamo Bi., Data App., and Dur. denote Data Conditioning, Supplementary Finalization, Number
of Speakers, Diarization, Jamo Bigram, Data Appending, and Total Duration, respectively)

Ablation | DataCond. | CoresetSelection | Suppl. Final. | Samples | Spk. | CER() WER() SIM(H) UTMOS()
| Diar. | N2gk+ | Jamo Bi. | UTMOS | Data App. | (Dur.) | |
GT ‘ - ‘ - ‘ - ‘ - ‘ - ‘ ‘ ‘ 6.19 17.01 0.81 2.89
Emilia+KSS | X | X | X | X | X | 103k(225) |27k | 717 2152 072 2.81
Base X X X X X 1,591k (2,058) | 28k 9.35 26.83 0.70 2.80
Base-diar. v X X X X 1,582k (2,031) | 26k 9.33 26.82 0.69 2.80
Norm v v X X X 1,559k (1,993) | 25k 7.72 21.84 0.76 2.82
Normgtatic v v X v X 875k (998) 2k 13.5 38.60 0.76 2.79
Norm-app v v X X v 448Kk (1,993) 25k 6.07 17.19 0.74 2.83
Core-app v v v X v 238k (1,249) 22k 598 17.19 0.75 2.79
Core-appstatic v 4 v v v 132k (565) 4k 6.03 16.91 0.75 2.79
CoreaSpeech | v | v Dynamic | v | 168k (700) | 21k | 5.54 15.76 0.76 2.80

5.4 Ablation Study: Pipeline Components

We conducted an ablation study to evaluate the contributions of individual components within the
CoreaSpeech pipeline, as summarized in Table[6] Each entry correspond to a dataset variant derived
from Base configuration, indicating whether each component is applied or not, while Base denotes
the raw unprocessed dataset. Text normalization significantly contributes to model performance, as
demonstrated by comparing the Base and Norm datasets. Although speaker diarization is essential, the
comparison between Base and Base-diar. reveals that the decrease in the number of samples relative to
number of speakers is marginal. Data appending improves WER and CER by alleviating hallucination
issues despite certain limitations, as further detailed in Appendix [F2] Coreset selection based on
Jamo pairs achieves comparable or superior performance using fewer data points, aiding the model in
effectively capturing Korean phonological phenomena. Filtering data based on fixed audio quality
threshold severely reduces speaker diversity and negatively impacts performance. Incorporating rare
Jamo pairs preserves approximately twice the number of speakers, while applying a dynamic UTMOS
threshold retains nearly ten times more speakers, resulting in superior overall performance. Detailed
results for each subset across these metrics are provided in Appendix

6 Potential Broader Impact

Practical Application Despite rapid advancements in multilingual TTS research, the lack of
high-quality, language-specific Korean speech-text datasets remains a bottleneck. Our proposed
CoreaSpeech (700 h), automated pipeline, plug-and-play text preprocessor (N2gk+), and PEFT-TTS
models significantly enhance Korean speech synthesis performance.

Ethical Consideration Improved synthetic speech quality might inadvertently increase misuse
risks, such as generating misleading content or deepfake speech, emphasizing the need for careful
management and detection strategies. Accordingly, future research will focus on developing detection
and monitoring techniques, as well as guidelines for ethical use to mitigate these potential issues.

Limitation The dataset size was limited by available public speech resources, and a larger and more
diverse corpus would likely further improve model performance. Additionally, duration appending,
though effective for increasing utterance length, may introduce contextual inconsistencies. Lastly,
numeric normalization to Korean pronunciations slows the reading speed of synthesized numeric
content, potentially affecting naturalness.

7 Conclusion

In this paper, we introduce CoreaSpeech, a large-scale, high-quality Korean speech corpus effectively
curated by leveraging the linguistic characteristics of Korean. Our key contributions include the
release of extensive, high-quality Korean data, a preprocessing pipeline that effectively addresses
phonetic imbalances and contextually variable numerals and English loanwords, and the Korean
Universal Testset, designed to robustly evaluate diverse acoustic environments and complex numeral
pronunciations. Moreover, we validated the effectiveness of our proposed pipeline through extensive
experiments utilizing parameter-efficient fine-tuning on a single GPU. Despite these advancements,
achieving optimal naturalness remains challenging. Thus, future research would require developing
more sophisticated data appending techniques and methodologies for determining optimal thresholds,
aiming to further improve the naturalness and overall quality of synthesized speech.
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Table 7: Subjective Evaluation & Real-Time Factor

Eval Set | Model | nMOS sMOS | RTF
Clean data | GT | 3914013  4.09+0.12 | -
XTTS 2.2240.13  2.32+0.14 | 0.265
CosyVoice 2 3.57+0.13  3.91+0.11 | 0.725
Llasa 2.364+0.13  2.65+0.14 | 0.798
Zonos 2.5740.13  2.62+0.14 | 5.230
‘ PEFT-TTS (Ours) ‘ 3.514+0.13  3.71+£0.12 ‘ 0.242
Noisy data | GT | 4574£0.10 4.65+0.08 | -
XTTS 1.974+0.12  2.00£0.13 | 0.255
Cosy Voice 2 3.47+0.14 3.51+0.15 | 0.626
Llasa 1.75+0.12  1.78£0.13 | 0.807
Zonos 2.854+0.13  2.754+0.14 | 5.220
‘ PEFT-TTS (Ours) ‘ 3.01+0.13  3.02+0.14 ‘ 0.281
‘ GT ‘ 4.76+0.07 4.40+0.12 ‘ -
XTTS 2.114+0.11  2.15£0.13 | 0.257
Numeric data | Cosy Voice 2 2.61+0.14  3.33+0.16 | 0.542
Llasa 1.7840.11  2.31£0.14 | 0.793
Zonos 1.65+0.10 2.17£0.14 | 5.387
| PEFT-TTS (Ours) | 3.48+0.12 3.94+0.11 | 0.192
| GT | 4414006 4.38+0.06 | -
XTTS 2.104+0.07  2.15£0.08 | 0.259
Avg. Cosy Voice 2 3.22+0.08 3.58+0.08 | 0.631
Llasa 1.96+0.07 2.2440.08 | 0.799
Zonos 2.364+0.08 2.51+£0.08 | 5.279

PEFT-TTS (Ours) | 3.33+0.07 3.55+0.08 | 0.238

A Subjective Evaluation Results (nMOS & sMOS)

We conducted naturalness (nMOS) and similarity (sMOS) evaluations across three distinct testsets
(clean, noisy, and numeric), comparing our PEFT-TTS model against several baseline models (see
Table[7), with all reported scores accompanied by 95% confidence intervals (CIs). On the clean set,
our model achieved comparable naturalness to CosyVoice 2. In contrast, results on the noisy set
showed differences compared to CosyVoice 2, likely because our model simultaneously generates
persistent background noise throughout synthesized speech, while CosyVoice 2 effectively mitigates
this noise via inherent speech enhancement capabilities, leading to differences between objective
neural evaluations and subjective scores. Additionally, the noisy set revealed discrepancies between
objective ground-truth (GT) scores and subjective neural model evaluations, likely because everyday
background noises do not typically cause discomfort for human listeners but are perceived as unnatural
by neural models. In the numeric set, our model outperformed the baselines, primarily reflecting
the effectiveness of our proposed text preprocessor in accurately handling numeric pronunciations.
Moreover, our model achieved the fastest inference speed measured by Real-Time Factor (RTF),
emphasizing its computational efficiency, especially given its small parameter size and capability to
run effectively on a single GPU.

All scores were obtained through a crowdsourced online listening test. To evaluate the nMOS and
sMOS of Korean TTS models, we recruited native Korean participants and provided them with
detailed instructions specifying the use of headphones, maintaining a noise-free environment, and
conducting absolute evaluations, as well as guidance for navigating a Gradio-based evaluation
webpage. Participants listened to randomly ordered speech samples from six different models across
three distinct testsets (clean, noisy, numeric) and rated each sample using a five-point. Each participant
received monetary compensation of KRW 50,000 upon completion of all evaluations, an amount
exceeding Korea’s minimum hourly wage at the time of evaluation. Screenshots of the nMOS and
sMOS evaluation interfaces are provided in Figure 6]
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Figure 6: Screenshots of the Gradio interface used for nMOS and sMOS evaluations.
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B Related Works

B.1 Acoustic Normalization

The VCTK dataset (44 hours, 109 English speakers), composed of studio-quality recordings, further
exemplified controlled acoustic conditions. It underwent minimal acoustic processing, mainly nor-
malization and spectral filtering, given the inherently low background noise and reverberation from
professional recording setups. Recent large-scale speech datasets, however, have primarily relied on
diverse internet sources, resulting in considerable acoustic variability. The Emilia dataset (101,654
hours, multilingual) addressed this by introducing "Emilia-Pipe," a scalable open-source pipeline
involving standardization, vocal extraction (using Ultimate Vocal Remover), speaker diarization,
VAD-based segmentation, and deep-learning-driven speech enhancement. Final filtering was applied
via quality metrics (e.g., DNSMOS), ensuring high acoustic quality from inherently noisy sources.

Similarly, WenetSpeech4TTS (12,800 hours, Mandarin) transformed in-the-wild data through speaker
diarization and deep neural networks for noise reduction and reverberation control. The processed
segments were subsequently filtered based on acoustic clarity and speech intelligibility metrics.
IndicVoices-R (1,704 hours, 10,496 speakers, 22 Indian languages) followed a comprehensive clean-
ing pipeline incorporating state-of-the-art neural models, HTDemucs for noise removal, VoiceFixer
for dereverberation, and DeepFilterNet3 for artifact suppression producing high-quality speech data
from diverse real-world environments. These works collectively demonstrate the evolution of acoustic
data cleaning techniques, incorporating sophisticated deep learning models alongside traditional sig-
nal processing to produce extensive, multilingual datasets optimized for advanced speech generation
tasks.

B.2 Text Normalization

Text normalization is a crucial preprocessing step for TTS datasets, commonly involving lowercasing,
numeral expansion, abbreviation standardization, and consistent punctuation rules. Traditional English
datasets like LibriTTS and LibriSpeech typically provide transcripts processed through standard
normalization procedures. These include conversion of numbers into written forms, abbreviation
expansions, removal or normalization of punctuation, and consistent casing. Such transformations
ensure homogeneity in textual input, facilitating more effective TTS model training.

Recently developed large-scale datasets like Emilia and WenetSpeech4TTS also employ similar
methods, but with additional multilingual considerations. Emilia uses a multilingual ASR model
(Whisper-Medium) combined with efficient segmentation techniques, resulting in consistently an-
notated multilingual transcripts. WenetSpeech4TTS similarly leverages ASR-based transcription
followed by language-specific normalization rules to maintain uniformity across its large Mandarin
corpus. IndicVoices-R, on the other hand, carefully filters and validates speech-text pairs using multi-
ple levels of standardized transcription, explicitly differentiating between verbatim and normalized
forms, thus accommodating diverse linguistic phenomena across Indian languages.

However, text normalization for Korean poses unique challenges due to the language’s agglutinative
characteristics, nuanced pronunciation rules, and complex numeral systems. Widely used Korean
NLP tools like KoNLPy offer morphological analysis and tokenization, yet suffer from significant
limitations in numeral handling. KoNLPy’s numeric processing relies primarily on simple direct
mappings, rendering it insufficient for representing numerals accurately beyond very basic use
cases. Another commonly used library, g2pK, converts graphemes to phonemes to handle Korean
pronunciation complexities, explicitly addressing context-sensitive pronunciation rules. However,
g2pK struggles with English and numerals embedded within Korean sentences, as it forcibly maps
them to Hangul-based pronunciations. Moreover, g2pK’s performance is highly sensitive to spacing
errors, a frequent issue given Korean’s optional and inconsistent spacing rules. Consequently, this
sensitivity often leads to erroneous pronunciations, diminishing the reliability of the processed
transcripts.

Given these limitations, there is a clear need for a robust and efficient normalization pipeline
specifically tailored to handle Korean text’s unique attributes, especially the frequent occurrence of
English words, abbreviations, and numerals within the linguistic context.
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B.3 Korean Text Preprocessing in other models

XTTS (Coqui XTTS-v2) XTT uses a custom multilingual Byte-Pair Encoding (BPE) tokenizer
with a vocabulary of 6681 tokens. For Korean (as well as Japanese and Chinese), XTTS applies
a special preprocessing step. All Hangul text is romanized (transliterated to Latin script) before
tokenization. This is done using the open-source hangul-romanize library, ensuring Korean characters
are converted to a Latin alphabet representation (following the standard Korean romanization scheme)
prior to encoding. Consequently, XTTS does not feed native Hangul graphemes into the model, nor
does it perform a separate G2P conversion to Korean phonemes, instead, the romanized Korean
text is tokenized like any other Latin-script input. XTTS’s pipeline does not document any unique
handling of numerals in Korean. Presumably, numbers are left as Arabic digits in the text and would
be processed through the same BPE tokenizer. Embedded English words in a Korean utterance are
left unchanged which means code-switched English terms can be tokenized alongside the romanized
Korean in a unified token space.

CosyVoice 2 Cosy Voice ZEI is a multilingual streaming TTS model utilizing a large language model
(Qwen-2.5-0.5B LLM) as its text encoder. It inherits the LLM’s multilingual subword tokenizer,
which covers multiple languages. CosyVoice 2 does not perform any Korean-specific grapheme-to-
phoneme conversion or transliteration, directly processing Korean Hangul text through the tokenizer.
Unlike Chinese, which receives dedicated preprocessing to prevent incorrect subword merges, Korean
(alongside English and Japanese) is directly processed by the tokenizer without specific grapheme-
to-phoneme conversions or transliterations. Notably, CosyVoice 2 explicitly normalizes numeric
tokens in Korean input texts by converting them into corresponding English words (e.g., "44" —
"forty-four") before tokenization. Embedded English words remain unchanged, directly tokenized
into English subwords by the multilingual tokenizer. Consequently, CosyVoice 2 processes Korean
text at a combined Hangul grapheme and English-word level, explicit conversion of numeric tokens
into appropriate Korean words is essential to maintain naturalness in synthesized speech.

Llasa TTS Llasa TTS is a LLaMA-based speech synthesis model (1B/3B/8B), initially trained
primarily on a large bilingual Chinese—English corpus. It leverages the LLaMA text tokenizer for input,
inheriting the same SentencePiece BPE vocabulary as the base LLaMA language model. Korean text is
also processed through this general tokenization system without language-specific rules. This method
tokenizes input without specialized handling such as transliteration or phonemization. Numerals and
embedded English tokens are directly tokenized without specific normalization, processed simply as
digit sequences or Latin script tokens. A variant of Llasa trained explicitly on Korean datam among
other languages has been introduced (llasa-1B—multi-speakers—genshin—zh—en-ja—koﬂ Despite the
inclusion of Korean speech data in training, the lack of specialized Korean text normalization may
limit the model’s performance in accurately and naturally synthesizing Korean speech containing
numerals and mixed-language tokens.

Zonos TTS Zonos TTﬂltilizes eSpeak NG, an external grapheme-to-phoneme (G2P) tool, to enable
multilingual text processing. This approach allows Zonos to quickly support multiple languages
without dedicated language-specific preprocessing or tokenization modules. Specifically, for Korean,
eSpeak NG converts Hangul text directly into phonetic sequences represented typically by IPA
or X-SAMPA, which are then consumed by the TTS model. However, eSpeak NG demonstrates
several significant limitations when handling Korean text, particularly with numerals, units, and
mixed-language scenarios.

eSpeak NG struggles with Korean text, particularly in handling units, numerals, and mixed-language
expressions. It misreads abbreviations like "mm" as letter-by-letter English, mispronounces numerals
after English words (e.g., "GPT-3" as "GPT sam"), and fails to apply context-aware rules for time
expressions (e.g., "7 o’clock” as "chil si" instead of "ilgop si").

Due to these limitations, employing eSpeak NG in Korean TTS results in unnatural pronunciation, par-
ticularly in sentences combining numerals, units, and English tokens. Hence, achieving high-quality,
natural-sounding Korean TTS would necessitate a dedicated, linguistically aware preprocessing
strategy that properly addresses these language-specific challenges.

*https://huggingface.co/coqui/XTTS-v2.
*https://huggingface.co/FunAudioLLM/CosyVoice2-0.5B
Shttps://huggingface.co/HKUSTAudio/Llasa- 1B-multi-speakers-genshin-zh-en-ja-ko
Shttps://github.com/Zyphra/Zonos

16


https://huggingface.co/coqui/XTTS-v2
https://huggingface.co/FunAudioLLM/CosyVoice 2-0.5B
https://huggingface.co/HKUSTAudio/Llasa-1B-multi-speakers-genshin-zh-en-ja-ko
https://github.com/Zyphra/Zonos

B.4 Coreset Selection

Coreset selection, an approach first highlighted in machine learning by Sener and Savarese for active
learning in convolutional neural networks, has recently gained attention in the context of TTS. The
underlying goal of coreset selection is to identify a small but representative subset of data, preserving
the original dataset’s diversity and effectiveness for model training.

In the large-scale corpus WenetSpeech4TTS, data was strategically divided into subsets based on
linguistic and acoustic criteria, focusing on diversity in speaker identity, speech styles, and textual
content. This allowed the efficient construction of representative subsets, significantly reducing
computational resources without compromising model performance.

A recent study introduced a method specifically tailored for TTS datasets. This approach extracts
linguistic embeddings using BERT and acoustic embeddings using wav2vec 2.0, alongside speaker
embeddings (x-vectors). These embeddings are concatenated into joint feature vectors to measure
diversity. The method employs a greedy algorithm to incrementally build a coreset by maximizing
the diversity metric, defined by squared Euclidean distances among data points. Experimental
evaluations across multiple languages (Japanese, Chinese, English) demonstrated that this diversity-
based approach outperformed traditional phoneme-balanced selection in terms of naturalness and
intelligibility, even when using significantly reduced dataset sizes.

Further emphasizing the importance of coreset selection, DEFT-UCS leveraged unsupervised cluster-
ing methods to efficiently select data subsets without reliance on annotations. By embedding textual
data using models like Sentence-T3, and performing K-means clustering, this method sampled "easy"
and "hard" examples (based on centroid distances) to construct representative coresets. DEFT-UCS
demonstrated that using only 32.5 of the original dataset could achieve comparable or superior
performance in fine-tuning language models for various text-generation tasks.

These studies collectively underscore the practicality and effectiveness of coreset selection methods,
highlighting their potential to significantly reduce data requirements and computational costs while
maintaining or even enhancing model quality. However, these methods, whether relying on simple
metric-based clipping or deep learning-based embedding techniques, cannot guarantee the perfect
preservation of all linguistic diversity within the selected text subsets.

B.5 Handling Duration

In previous studies, discrepancies between training and inference durations have led to critical issues
in text-to-speech (TTS) synthesis. Specifically, acoustic models trained primarily on sentence-level
datasets often struggle with length generalization, causing significant deterioration in speech quality
when synthesizing long-form content. Such mismatches typically result in pronunciation errors,
unnatural prosody, erratic durations, and irregular pitch patterns.

To address these challenges, several methodologies have been proposed. Common approaches include
integrating context encoders to enrich acoustic features, employing models like Tacotron2 or Fast-
Speech?2 variants for enhanced length generalization, and introducing pause prediction modules to
improve naturalness during inference. However, these solutions have their limitations, such as autore-
gressive models exhibiting slow inference speeds and context encoders encountering generalization
issues, failing to reliably extrapolate durations beyond their training scope.

The recent study introduced techniques like Moving Average Equipped Gated Attention (MEGA),
Global-information-enhanced Classification Pause Insertion (GCPI), and context generation through
Large Language Models (LLMs) as solutions aimed at mitigating these duration-related challenges.

Nevertheless, despite advancements achieved through these methodologies, the distribution of dura-
tions in the training dataset itself remains fundamentally important. Balanced and sufficiently diverse
duration coverage within training corpora significantly enhances a model’s capability to generalize
effectively to varying lengths during inference, complementing existing techniques. Therefore, at-
tention to duration diversity is essential for robust and natural speech synthesis performance in TTS
applications.
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C Text Categorization and Filtering: LNCat

To effectively handle the frequent occurrence of English tokens, numerals, and foreign language
elements within Korean speech datasets, we introduce a dedicated categorization and filtering strategy
termed LNCat. This method serves as a critical preprocessing step, distinguishing samples that can
reliably be converted into standardized Korean pronunciations from those that cannot. In Korean
speech corpora, it is common for utterances to contain English terms, numerals, or mixed-language
tokens. Completely discarding all samples with English or numerals can result in a significant loss of
valuable semantic and acoustic information, negatively impacting TTS model training. Therefore,
distinguishing samples based on their convertibility into standardized Korean pronunciation is
essential. The LNCat algorithm achieves this goal by identifying which samples should be retained
and which should be discarded.

C.1 LNCat Categorizing Methodology

The LNCat method assigns language-category tags to each utterance based on the linguistic composi-
tion of the input text:

* ko_only Only Korean Hangul characters

* ko_en Korean and English tokens

¢ ko _num Korean and numerals

* ko_en_num Korean, English tokens, and numerals

* ko_jp/ko_zh/ko_other Korean mixed with Japanese, Chinese, or other languages (dis-
carded)

¢ en_only/jp_only/zh_only/other_other/other Utterances without Korean content (dis-
carded)

Only utterances classified as ko_only, ko_en, ko_num and ko_en_num are retained. All other
categories are discarded from further processing.

C.2 Determining English Convertibility (en_convertable)

Samples tagged as ko_en or ko_en_num undergo an additional evaluation to determine if their
embedded English tokens can reliably be converted into Korean pronunciation. We define this
convertibility (en_convertable) based on the following conditions applied to each English token in
the text:

1. Units The token, converted entirely to lowercase, matches a predefined list of standard

non non

measurement units (e.g., "kg", "mm", "cm", "ml").

2. Upper-case abbreviations Tokens composed entirely of uppercase letters and limited to
4 characters or fewer. This rule accommodates commonly pronounced abbreviations and
acronyms such as "CCTV", "BMW", "SKT".

3. Single-letter tokens Tokens consisting of a single alphabet character (upper or lower case),
commonly used in Korean speech to represent anonymous entities or placeholders (e.g., "A
SIAH" — "company A").

If any English token in an utterance fails to meet at least one of these three criteria, the sample is
flagged as non-convertible (en_convertable = False) and subsequently discarded to prevent confusion
or degradation during TTS model training. For example, the utterance "a Z| o)A 2.5 3kg #-2] TV
£ 4tt}." contains tokens that all satisfy the defined convertibility conditions: "a" (single-letter token),
"3kg" (recognized measurement unit), and "TV" (uppercase abbreviation). Therefore, this utterance
is classified as convertible. Conversely, the utterance "a X] |4 @5 3kg #&] TVE 4t=4|, U+
awesome 3] ©!" includes the token "awesome,"” which does not meet any of the established criteria
for convertibility. As a result, this second example is categorized as non-convertible and subsequently
discarded.

This precise categorization and filtering process ensures we retain as many valuable speech samples
as possible without negatively affecting model training quality. Consequently, LNCat significantly
improves dataset efficiency and linguistic coherence in the preprocessing pipeline.
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D Korean Text Preprocessor: N2gk, N2gk+

This section describes the detailed functionalities implemented in our proposed Korean-specific text
preprocessing modules, N2gk (Num2Grapheme Korean) and N2gk+, highlighting their comprehen-
sive handling of numerals, English tokens, and special symbols in Korean TTS datasets.

D.1 Numeral Conversion (N2gk)

The N2gk module robustly addresses the inherent complexity of Korean numeral pronunciation, which
arises primarily from two different numeral systems: Sino-Korean (Hanja-based) and native Korean
(pure Korean). In Korean speech, a single digit may have multiple valid pronunciations depending on
context, unit suffix, and grammatical structures. For instance, the numeral "1’ can be pronounced as il
(%), hana (S}, or han (31, each preferred in different contexts or when paired with certain units or
suffixes. Since using an inappropriate pronunciation can lead to misunderstandings, we prioritize the
most common and contextually appropriate pronunciation. To systematically handle these nuances,
N2gk categorizes numerals based on linguistic context and unit-specific usage, explicitly addressing
the following numeral distinctions and special pronunciation cases:

* Sino-Korean vs. Native Korean Numerals Sino-Korean numerals are derived from Hanja
(Chinese characters), such as ¥ (il, one), ©] (i, two), A} (sam, three), and used predominantly
in formal contexts, units of measure, and counting larger numbers. Conversely, native Korean
numerals (5}1} (hana, one), = (dul, two), Al (set, three)) are frequently used with certain
everyday units, counting objects, and for age expressions. N2gk explicitly handles these two
numeral systems by contextually mapping numerals based on the following unit categories:

1. Native Korean units e.g., " (myeong, persons), A& (saram, people), @}2] (mari,
animals), H14] (beonjjae, ordinal numbers), A] (si, hours on the clock), 7l| (gae, items),
7}A] (gaiji, kinds or types), ZF (jan, cups or glasses), ¥ (beon, times or occasions), A}
(jang, sheets or pages), ¥ (byeong, bottles), A (sal, years of age), 14| (yeonse, age,
honorific), etc.

2. Sino-Korean units e.g., % (cho, seconds), & (bun, minutes), A]Z} (sigan, hours,
duration), € (il, days), 5= (ju, weeks), & (wol, months), I (nyeon, years), ¥ (won,
Korean Won), &2 (dalleo, dollars), kg (kilogram), mm (millimeter), cm (centimeter),
°C (degree Celsius), % (percent), 321 E (pointeu, points), etc.

* Numeral Reading Mechanism Korean numerals employ positional reading, similar to
English (tens, hundreds, thousands), with units such as 4] (sip, tens), 5 (baek, hundreds),
2 (cheon, thousands), and extend up to larger units like 7 (gyeong). Notably, the numeral
’1” in thousands is typically silent (e.g., 1000 is pronounced & (cheon), not & (il-cheon)),
explicitly accommodated by N2gk.

* Special Numeral Cases Certain numerals have irregular pronunciations similar to English
numerals (e.g., twelve, fifteen). For example, the number 20 can be pronounced ©]4]
(i-sip), but more commonly A& (seumul) or 2~ (seumu). Months also follow special
pronunciations, such as June (6¥) as -3 (yu-wol) rather than 8- (yuk-wol), and October
(10¥) as A& (si-wol) instead of 4} ¥ (sip-wol). N2gk explicitly handles these irregular
cases.

* Commas and Decimal Points Numbers with commas (e.g., 1,000,000) are processed by
ignoring commas during conversion. Decimal numbers follow English-style pronunciation,
using & (jeom, point), with each digit pronounced individually (e.g., 3.14 as 4 LA}
(sam-jeom-il-sa)).

* English Numbers within Korean Text Numerals following English terms are typically
pronounced using English pronunciations. For example, the numeral ’3* in *GPT3’ is
pronounced 2 2] (sseuri) rather than the Korean 4} (sam). N2gk explicitly encodes common
patterns.

* Phone Number Handling Korean phone numbers (e.g., 010-1234-5678) are explicitly
converted into digit-by-digit Korean pronunciation (gong-il-gong il-i-sam-sa o-yuk-chil-
pal).
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D.2 Extended Functionalities (N2gk+)

The extended N2gk+ module inherits all functionalities of N2gk and adds robust handling for
English tokens, special characters, abbreviations, historical dates, and numeric ranges. Specifically, it
incorporates the following capabilities.

* English to Korean Grapheme Conversion All English letters are mapped to their Korean
phonetic representations, e.g., A (9]|©], ei), B (H], bi), C (], ssi). Common abbreviations,
acronyms, and proper nouns (e.g., WHO (B] E-5-9]|0] 2] 2), SKT (]| A7 ©] E]), BMW (H]
AEE-3), CCTV (XA EH]), TV (E]H])) are explicitly converted to their standard Korean
pronunciations. Established exceptions such as FIFA (I] 1}, pipa) and NASA (L}A}, nasa)
are individually handled due to their common usage in Korean.

* Special Symbol Handling Special symbols are systematically converted into their Korean
pronunciation equivalents, e.g., % (HAIE, peosenteu), (SH, aen), $ (2], dalleo), °C (=4,
dossi), + (&3 2, peulleoseu), - (FFo] 1 2, mainaseu), (4F, syap), etc.

 Historical Dates Handling Historical dates with special pronunciation conventions are
explicitly managed. For example, the Korean historical date 3.17 (March 1st) is correctly
converted to 2+ (samiljeol) rather than a literal decimal pronunciation 474 44 (sam-
jeomiljeol). N2gk+ explicitly recognizes and converts numerals in these historical contexts
appropriately.

* Ranges Handling The tilde symbol, frequently used to indicate ranges (e.g., 34), is naturally
read as "o]|4]" (eseo) in Korean. Moreover, when numerals within a range have a following
unit or suffix, both numerals are consistently pronounced using either Sino-Korean or native
Korean numerals, depending on context.

* Removal of Unnecessary Special Characters and Symbols To improve clarity and consis-
tency, N2gk+ removes extraneous special symbols and handles parentheses by deleting their
contents if necessary, ensuring clean textual input for TTS.

* Single Korean Character Mapping Individual consonants such as 7, v, ©, v, A, and
o are mapped to their complete Korean pronunciations: 7 (7], giyeok), - (42, nieun),
© (U2, digeut), 1 (H]3, bieup), ~ (A, siot), o (0]5, ieung).

* Prioritization and Complexity Management The functionalities mentioned above are
deeply intertwined, often overlapping within text inputs. To handle these complexities,
we implemented carefully prioritized rules ensuring a coherent and conflict-free text pre-
processing pipeline. The prioritization ensures numerals, English tokens, special symbols,
and historical events are consistently and accurately transformed according to contextual
requirements, maximizing naturalness in synthesized Korean speech.

D.3 Preliminary Experiments for Text Preprocessor Evaluation

Prior to evaluating the effectiveness of our proposed text preprocessor, N2gk+, we conducted prelimi-
nary experiments to establish baseline performance of comparative models. Specifically, to evaluate
the performance of the Korean grapheme-to-phoneme converter, g2pK, we converted both input
texts (containing numerals and English) and corresponding ground-truth (GT) texts (pure Hangul
without numerals or English) using g2pK and measured accuracy. Since phoneme outputs from
g2pK are highly sensitive to text spacing, we further investigated performance by removing all
spaces entirely. This extreme scenario resulted in approximately a two-fold increase in accuracy for
numeral-containing texts, highlighting g2pK’s instability due to common spacing inconsistencies
in real-world Korean texts. However, our reported results are based on original texts with spacing
preserved, as completely removing spacing is impractical in realistic scenarios.

Additionally, we conducted experiments with ChatGPT-based prompts, evaluating two distinct types
under fully reset memory conditions, one minimal and one detailed. The generic prompt requested
ChatGPT to convert numerals and embedded English into their most natural Korean textual forms,
providing relevant conversion examples. In contrast, the detailed prompt explicitly included the
key mappings and conversion rules used by our proposed N2gk+ algorithm, instructing ChatGPT
to strictly follow these specified guidelines. Counterintuitively, the detailed prompt yielded lower
performance, we utilized results obtained with the generic prompt for subsequent performance
comparisons.
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Figure 7: UTMOS threshold comparison (Static vs. Dynamic)

E UTMOS threshold

E.1 Static vs. Dynamic

Figure [7] compares static and dynamic UTMOS thresholding across four subsets of CoreaSpeech.
Note that UTMOS thresholding is applied during the selection of Jamo bigrams to preserve rare pairs,
which is crucial for phonetic coverage. When a static threshold is used, the model is primarily trained
on high-quality samples above a fixed score, which limits its robustness to noisy or low-quality
conditions. To address this, we allow the threshold to adapt dynamically to the score distribution,
enabling the inclusion of a proportion of lower-quality samples when appropriate.

This approach improves generalization, especially in acoustically diverse environments. Importantly,
our current implementation uses only simple summary statistics (mean and median) to determine
dataset-specific thresholds. Despite this simplicity, we observe consistent improvements. Eventually,
each dataset,Emilia, KSS, CoreaSpeech (Diverse Style subset), and CoreaSpeech (Emotional subset),
received a dynamically computed UTMOS threshold of 1.040, 3.807, 3.538, and 3.305, respectively,
based on their individual score distributions. In future work, we plan to investigate more sophisticated
thresholding strategies by incorporating additional distributional features to better tailor the threshold
to each dataset.

E.2 Implementation

To determine a threshold 7 for filtering based on UTMOS scores, we considered multiple strategies.
While the standard approach 7 = pu — zo is simple, it is sensitive to outliers and inappropriate for
skewed distributions. Since many speech datasets, including ours, are recorded under consistent
conditions or extracted from homogeneous sources, their UTMOS distributions tend to be skewed.
Therefore, we adopted a robust alternative using the median absolute deviation (MAD):

7 = median — k - MAD 2)

To further adapt the strictness of filtering based on the overall dataset quality, we dynamically adjust
the coefficient k£ depending on the deviation of the mean u from a reference mean i, ¢:
I

Mref )

k= max(kminy kmax

3
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F Data Appending

F.1 Implementation

This section describes the detailed implementation of our proposed data appending strategy employed
to address the prevalent short-duration problem in speech datasets. Notably, our method is designed
under realistic conditions where the number of speakers, the number of available samples per speaker,
and individual utterance durations are completely unknown in advance. We further split speakers by
annotated emotion and style before concatenation

Still, the key idea is to strategically concatenate shorter utterances from the same speaker, thereby
achieving balanced coverage across a wider range of utterance durations (0-30 seconds), as illustrated
at Figure [

Given a set of speech utterances U = {u;}¥,, each utterance u; has an associated duration d(u;),
speaker identity s(u;), and corresponding text transcript. The goal is to generate a new set of
augmented utterances U’, such that each augmented utterance u € U’ satisfies:

0 < d (u') < 30 seconds, and s (u’) remains unchanged. 4)

We first organize utterances by speaker identity to maintain speaker consistency within augmented
samples. For each speaker s;:

Us, ={ucU]|s(u) =s;} (%)

Only utterances whose duration is less than or equal to the maximum allowed duration (30 seconds)
are selected for further processing:

Ugtefed ={ue U, |d(u) <30} (6)

To achieve balanced coverage of durations between 1 to 30 seconds, we introduce a probabilistic
selection mechanism. Specifically, we define buckets B; representing integer durations from 0 to 29
seconds. We calculate bucket frequencies based on two distributions:

* Global bucket frequency npycket (i), representing the total count of samples across all
speakers.
* Speaker-specific bucket frequency myycket (4, S;), representing the count of samples within

a specific speaker s;.

The weight for selecting k-utterances (% in seconds) for concatenation from a particular speaker s; is
computed as follows:

(]Vtolal — Tlbucket (Z)) ) (1 . 1 ) (Mlotal (3]) — Mbucket (ia 3])) ) 1
Niotal Sotal Miotal (3 j) Sotal

)

Wbucket (i, Sj) =

where Nioptar = Z?go Npucket (2) 1S the total number of utterances across all speakers, Myota1(s;) =

Z?io Mipucket (4, S7) s the total number of utterances for speaker s;, and Syotq; is the total number
of remaining speakers yet to be processed.

Notably, the term S, (the number of remaining speakers) serves as a dynamic balancing factor.
Initially, when many speakers remain, the weight emphasizes speaker-specific diversity, ensuring
each speaker’s samples cover a wide range of durations. However, as the process continues and fewer
speakers remain, the influence of global distribution increases, prompting a globally uniform duration
distribution across the dataset. This mechanism addresses two practical challenges:

* Relying solely on global distribution might lead individual speaker’s samples to cluster in
specific buckets, limiting intra-speaker variety

» Conversely, relying only on speaker specific distributions might result in global imbalances.

To ensure no weight becomes zero, we enforce a minimum weight threshold e:

Woucket (%, §;) = Max {Whucker (2, 5;),€}, €is asmall constant ( e.g., 10*6) )
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We further define selection weights according to an expected number of utterances -:

Do Sucppes d(u) ;
= ———, wheredyy, (sj) = —/—F—7—
K davg (Sj) e ( j) Ugll_tered‘ ©)
Selection weights for sampling k& < || utterances are then :
. 30
W (k, 8;) = Weucker | min | k - L—J,29 )85 (10)
v

We randomly sample utterances according to these computed weights and concatenate them into a
single audio segment per augmented utterance. Concatenation employs a cross-fade window of 0.5
seconds to avoid abrupt spectral discontinuities:

Given audio segments =1, T2, ..., Tg:
u' = 1 Brage T2 Brade *** Prade Th (11)
where the cross-fade concatenation (& fade) operation between two segments x,, Tp is:
Za Prage Tp = FadeOut (z4,0.55) + Fadeln (xy, 0.5s) (12)
This ensures natural acoustic continuity and spectral smoothness within concatenated utterances.

To prevent any duration bucket from becoming excessively dominant, we impose a dynamic threshold

Mthreshold (Sj ) :
‘Uﬁllered

Nihreshold (55) = %Ot +1 (13)
1

If the frequency of a specific duration bucket exceeds mthreshold(sj), we temporarily avoid adding
further utterances into that bucket for the current speaker, ensuring balanced and even duration
distribution across the dataset.

F.2 Limitation

Our data appending method, while effective, has several limitations. Utterances were concatenated
only when style and emotion annotations matched within the same speaker. However, since the con-
catenation process was random, the resulting sequences did not always maintain semantic coherence,
and punctuation such as sentence-ending periods occasionally caused unnatural transitions.

When style or emotion annotations are unavailable, it becomes more difficult to preserve acoustic
consistency. This highlights the need for future work that can ensure semantic and acoustic alignment
without relying on explicit annotations. Although the method was introduced to address hallucinations
caused by discrepancies between training and inference durations, it did not fully resolve the issues,
indicating that more advanced solutions are necessary for stable long-form generation.
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Table 8: Performance comparison across pipeline components on Clean Data

| DataCond. | CoresetSelection | Suppl. Final. |
Method Diar. | N2gk+ | Jamo Bi. | UTMOS | Duration App. | CoR (W WER(D)  SIM(T) - UTMOS (1)
GT - - | - | - | - | 3140 9463  0.834 3.604
Base X X X X X 3.824 11264  0.764 3.396
Base-diar. v X X X X 3.804 11240  0.754 3.408
Norm v v X X X 3.290 9.740  0.807 3.394
Normiiqtic v v X v X 4168 12231  0.803 3.407
Norm-app v v X X v 2.905 8.645 0.800 3.343
Core-app v v v/ X v 2.806 8.260  0.801 3.302
Core-appstatic | v v v v v 2.779 8.022 0.801 3.380
CoreaSpeech v v v Dynamic v 2.373 6.970 0.803 3.378
Table 9: Performance comparison across pipeline components on Noisy Data
| DataCond. | CoresetSelection | Suppl. Final. |
Method [Diar. [ N2gk+ | Jamo Bi. | UTMOS | Daw App. | CoR@W  WER()  SIM(D)  UTMOS (1)
GT | I - - 1 - ] | 9213 22640  0.761 1.657
Base X X X X X 12459  30.830  0.661 2.056
Base-diar. v X X X X 12629 31400  0.652 2.091
Norm v v X X X 12.347 30.869 0.657 2.070
Normyyasic v v/ X v X 23.080  59.417  0.671 2.041
Norm-app 4 v X X v 9.521 23.470 0.609 2.157
Core-app v v v X v 8.916 22.874 0.645 2.131
Core-appsiatic | v v v v v 9.460 23295  0.652 2.020
CoreaSpeech v v v Dynamic v 8.259 20.618 0.673 2.131

Table 10: Performance comparison across pipeline components on Numeric Data

Data Cond. Coreset Selection Suppl. Final
Method } Diar. | N2gk+ } Jamo Bi. | UTMOS } Dﬁ?a App. } CER() WER() SIM(D) UTMOS(T)
GT | - | - | - \ - \ - | 6.236 18.936 0.854 3.427
Base X X X X X 11.790 38.407 0.682 2.954
Base-diar. v X X X X 11.560  37.818 0.677 2.918
Norm v v X X X 7.526 24.940 0.824 2.966
Normgtatic v v X v X 13450  44.161 0.820 2.998
Norm-app v v X X v 5.812 19.469 0.817 2.923
Core-app v v v X v 6.239 20.697 0.818 2.954
Core-appsiatic 4 v v v v 5.856 19.442 0.816 2.972
CoreaSpeech v v v Dynamic v 5.973 19.716 0.818 2.903

G Korean Testset

G.1 Detailed evaluation for Korean Universal subsets

Tables[8] [Pl and[T0]present detailed evaluation metrics for subsets of the Korean Universal Testset,
specifically categorized into Clean, Noisy, and Numeric testsets.

In the Clean and Noisy sets (Tables B] and E]), one notable metric is the performance of Normgyq¢;c,
which uses a fixed UTMOS threshold (set to 3.5) for data filtering. While this static threshold approach
resulted in a moderate increase in WER and CER on the Clean set compared to Norm, it caused
a nearly two-fold increase in WER on the Noisy set. This substantial performance drop suggests
that the Normg;.+; method significantly reduced speaker diversity and text coverage, indicating
limited robustness and adaptability to noisy prompts. On the Numeric set (Table[I0), the introduction
of our proposed N2gk+ preprocessor resulted in substantial improvements in WER starting from
the Norm subset. However, consistent with findings from the Noisy set, the application of a static
UTMOS threshold (Normg;¢;.) again notably degraded WER performance. Overall, the inclusion of
data appending methods showed minor but consistent WER improvements, indicating their positive
impact on longer utterances, which constitute a relatively small portion of the dataset. Furthermore,
the difference in performance between Normg;qs;. and Core-appsiqtic highlights the effectiveness of
preserving Jamo-pair diversity.
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Table 11: Performance comparison across pipeline components on Emilia Data

| DataCond | CoresetSelection | Suppl. Final. |
Method [Diar. [ N2gks | Tamo Bi. | UTMOS | Data App. | CoR@W  WER()  SIM(D)  UTMOS(T)
GT - - 1 - 1 - | - | 10306 26509  0.774 2442
Base X X X X X 9.220 23.505 0.751 2.422
Base-diar. v X X X X 9.015 23.481 0.756 2.436
Norm v v X X X 8.887 23.546 0.757 2.436
Normsazice v v X v X 19.822  54.399 0.736 2.413
Norm-app v v X X v 9.187 24.908 0.729 2.413
Core-app v v v X v 7.871 20.318 0.752 2.404
Core-appstatic | v v v v v 7.980 20.496 0.737 2.422
CoreaSpeech v v v Dynamic v 7.156 18.805 0.757 2.449
Table 12: Performance comparison across pipeline components on KSS Data
| DataCond. | CoresetSelection | Suppl. Final. |
Method [ Diar. | N2gk+ | Tamo Bi. | UTMOS | DataApp. | (LR WER()  SIM(D)  UTMOS ()
GT | - | - | - \ - \ - | 2.558 6.219 0.645 3.777
Base X X X X X 4319 10.051 0.652 3.253
Base-diar. v X X X X 3.778 10.372 0.652 3.176
Norm v v X X X 3.380 8.094 0.652 3.321
Normgatic v v X v X 2.533 6.177 0.649 3.399
Norm-app v v X X v 2.555 6.266 0.638 3.234
Core-app v v v X v 2.128 5.041 0.646 3.383
Core-appstatic v v v v v 1.573 3.906 0.640 3.336
CoreaSpeech v v v Dynamic v 2.039 4.958 0.647 3.365

Table 13: Korean open source testset: Note that the Emilia dataset was already included in the training
of the LLaSA model, whereas speakers in this testset were excluded from our model’s training. For
the KSS dataset, the corresponding speaker was included in our model’s training.

Eval Set | Model | CER()) WER(}) SIM(1) UTMOS (1)
| GT | 10306 26059  0.774 2.442
XTTS 32326 62795  0.629 2.250
Emilia (KO) | CosyVoice 2 6.083 16.657  0.749 3.012
Llasa 24985  70.169  0.497 2757
Zonos 7737 20922 0.718 2.919
| PEFT-TTS (Ours) | 7.156 18.805  0.757 2.449
GT 8.272 2.558 0.645 3.777
XTTS 109.281  274.108  0.578 2413
KSS CosyVoice 2 3.443 9.241 0.610 3.506
Llasa 5.525 14562 0.496 3.635
Zonos 5.759 14.194  0.596 3.557
| PEFT-TTS (Ours) | 2.039 4.958 0.647 3.365

G.2 Korean Open-source Testset

Tables [T1] and [T2] report metrics for the Emilia and KSS data, respectively. The Emilia and KSS
datasets were intentionally excluded from the Korean Universal Testset due to the high likelihood
that existing TTS models have trained on these datasets. For fair evaluation, our model specifically
excluded all samples from both Emilia and KSS datasets during training. Consequently, the Emilia
testset represents unseen speaker validation, whereas the KSS testset, being a single-speaker dataset,
represents seen speaker validation. Table [I3]| provides a benchmarking comparison of our model
against other models using these two testsets, with the important note that each model differs in terms
of its training exposure to the Emilia and KSS datasets.
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Table 14: Ablation: LoRA rank

DiT rank | #Trainable Params. | CER (}) WER ({) SIM (1) UTMOS (1)

GT | - | 7.220 15.180 0.786 2.087
16 5.81M 4.957 12.838 0.720 2.831
64 10.10M 4.844 13.405 0.736 2.783

Table 15: Ablation: Jamo extraction coefficient (/) with threshold (t) as 500 - Korean Universal
Testset : Tdenotes that Gini coefficient computed for Jamo bigram counts over 1000, while unmarked
Gini coefficient is computed over threshold (t).

Jamo Sel. (8) | Total Duration | Gini coefficient ~ Gini coefficientt | CER (}) WER () SIM (1) UTMOS (1)

GT \ - \ - - | 7023 15931 0773 2.981

random \ 100 | 07701 07539 | 7.173 21384  0.763 2.784

0.01 68.58 0.5965 0.5347 6515 18491  0.766 2.781

0.001 214.53 0.7258 0.6348 6.146 17394 0.759 2.809

0.0001 1249.86 0.7240 0.6947 5631 15945 0762 2.795

0 1871.21 0.7724 0.7528 6562 18645 0752 2.813
CER WER

200 A

175 4

150 ¢

125 4

CER

w
100 4
75 A

50 A

25 A

50k 100k 150k 200k 250k 300k 50k 100k 150k 200k 250k 300k
Steps (k) Steps (k)
SIM UTMOS

SIM

0.72

S0k 100k 150k 200k 250k 300k sok 100k 150k 200k 250k 300k
Steps (k) Steps (k)

Figure 8: Evaluation metrics (CER, WER, SIM, and UTMOS) on the Korean Universal Testset up to
300k steps, according to different values of the compression factor (5).

H Ablation

H.1 LoRA rank effectiveness depends on training data size

Table [T4] shows that increasing the LoRA rank of the DiT block from 16 to 64 yields virtually no
difference across all objective metrics. Although the rank of 64 model tends to capture phonological
characteristics slightly faster than rank of 16 in fewer epochs, after sufficient training, both models
ultimately exhibit nearly identical performance. In other words, the improvement achieved by in-
creasing adapter size is marginal and falls within the typical variation observed across runs, despite
quadrupling the number of trainable parameters. Therefore, we selected the rank of 16 configuration
for the final model due to its higher parameter efficiency.

26



. Criginal

I Extracted f=0.0001
B Extracted f=0.001
B Extracted j=0.01

T

T
)

V
\

1

— T T T T T
10° 10! 107 108 104 10° 25x10% 5x10° 75%10°
Count

Figure 9: Distribution of surviving Jamo—bigram counts after probabilistic pruning with different
coefficients 3.

H.2 Jamo extraction coefficient

Table [15]and Figure[§|present the effects of varying the Jamo extraction coefficient (3) compared to a
random data selection baseline on the Korean Universal Testset. We experimented with three 3 values
(0.01, 0.001, 0.0001) to identify the optimal setting, while ¢ was driven by the lowest-frequency 25%
of types of Jamo pairs, collectively representing only 0.05% of the total frequency.

The distributional imbalance was quantified using the Gini coefficient, calculated at two thresholds
(500, used during extraction, and 1000). Random selection resulted in Gini coefficients nearly identical
to the unfiltered set, showing limited capability to address imbalance, reflected by higher WER and
CER metrics as shown in Figure g).

Higher 3 values removed more data, lowering the Gini coefficient (particularly notable for bigram
counts above 1000) thus reducing imbalance while preserving linguistic (Jamo-pair) coverage. How-
ever, despite similar Gini coefficients, 5 = 0.001 and S = 0.0001 exhibited noticeable performance
differences, indicating the significant influence of total data duration. Ultimately, the best performance
was achieved with 5 = 0.0001, effectively balancing linguistic coverage and dataset size.

Additionally, Figure Q]illustrates the actual distribution of randomly selected 30 Jamo pairs for each
[ value, visually confirming the impact of different extraction coefficients on pair distributions.
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I License

Table 16: Public speech corpora mentioned in this study and their licenses.

Dataset Languages License

LJSpeech English Public Domain
LibriTTS English CCBY 4.0
LibriSpeech English CCBY 4.0
WenetSpeech4TTS Mandarin CCBY 4.0

Emilia Multilingual CCBY-NC 4.0
Common Voice 133 languages CCO0 1.0
IndicVoices—R 22 Indian languages CC BY 4.0

KSS (Korean SS) Korean CC BY-NC-SA 4.0

Table 17: External pretrained models and tools employed in this work.

Model / Tool License

F5-TTS (base model) MIT (code) / CC BY-NC 4.0 (models)

Coqui XTTS v2 Mozilla Public License 2.0 (code) /Coqui Public Model License 1.0.0 (models)
Cosy Voice 2 Apache-2.0

Llasa CCBY-NC4.0

Zonos Apache-2.0

Whisper-Large v3 MIT

WavLM (Base / Large) MIT
pyannote-diarization 3.1 MIT

ko-sbert-s Apache-2.0
g2pk Apache-2.0
KoNLPy GPL-3.0-or-later
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Figure 10: (a) Decomposition of the first syllable han (31), (b) decomposition of the second syllable
geul ()

J Jamo

Korean Hangul is an alphabetic writing system where letters called Jamo are grouped into blocks
representing syllables. Each Hangul syllable block is composed of at least two Jamo, an initial
consonant (also called choseong, and a medial vowel (jungseong), and optionally a final consonant
(jonseong) at the end. For example, as illustrated in Figure (a), the syllable "} is written as a
single block but consists of the Jamo 5’ (initial consonant /), > }° (medial vowel @), and * " (final
consonant n). In total, Korean has 19 possible initial consonants, 21 vowels, and 28 possible final
consonant positions. This combinatorial design yields 19 x 21 x 28 = 11, 172 theoretically possible
distinct syllable blocks in Hangul.

Initial consonants include distinctive tense or fortis forms (T, tc, m, s, ), which are articulated
with increased muscular tension and no aspiration, clearly distinguishing them from aspirated
counterparts (e.g., tense tc [t] versus aspirated € [t]). Notably, the consonant & varies contextually
between a flap [r] and a lateral [1], and o uniquely remains silent at syllable onset but is pronounced
[n] in the final position. Medial vowels encompass 21 distinct forms, consisting of 10 monophthongs
and 11 diphthongs or vowel combinations, including glide prefixes such as y- ( F, 4,2,7r, H, )
and w- (+},2l,+4,+,-1), along with the distinctive vowel — and the compound vowel —]. Every
syllable block contains exactly one medial vowel. The final consonant (batchim) can appear in 27
forms, including consonant clusters, or 28 if counting syllables without a final consonant. However,
actual pronunciation often differs from the written form; in practice, only seven consonant sounds
([7, v, T, =, o, v, o])are realized in final positions. Specifically, final consonants v and =
are pronounced as [H ], ©, B, A, &, X, %, and & are all pronounced as [t ],and 7, T, 3 as
[7], while &, v, o, and = maintain their respective pronunciations.

For a complete list of Jamo for each initial (Choseong), medial (Jungseong), and final (Jongseong)
element, their International Phonetic Alphabet (IPA) transcriptions, and other details, see Tables @],

and 20}
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Table 18: Initial consonants (Choseong)

Hangul Name IPA Notes

] giyeok [g] or [k] -

T nieun [n] -

T digeut [t] or [d] -

a rieul [1] or [r] -

o mieum [m] -

H bieup [p] or [b] -

A siot [s]; [¢] before [i]  (soft s; before [i] it sounds like [¢])
o ieung silent silent when used as an initial
=z jieut [j] or [te] -

= chieut [ch] or [te"] Aspirated

3 kieuk (k] or [k"] Aspirated

E tieut [t] or [t"] Aspirated

hi4 pieup [p] or [p"] Aspirated (typically [p"])

& hieut [h] -

Tense (Fortis) Consonants: higher tension, no aspiration

T ssang-giyeok  [k’] (tense [k]) Stiff °’k’ sound

T ssang-digeut  [t’] (tense [t]) Stiff ’t’ sound

By ssang-bieup [p’] (tense [p]) Stiff, unaspirated ’p’
oy ssang-siot [s’] (tense [s]) Forced ’s’ sound

= ssang-jieut [te’] (tense [tg]) Stiff ’jj’ sound

Table 19: Medial vowels (Jungseong)

Hangul Name IPA Notes ‘ Hangul Name IPA Notes

5 a [a] - - u [u] -

I ae [e] - T yu [jul -

3 ya [jal - — eu [u] Unrounded ("ugh’-like)
f yae [jel - | i [i] -

1 eo [A]or [0] - 2} wa [wa] -

Rl e [e] - B wae [we] -

9 yeo [jal - 2] oe [welor [¢] -

ql ye [jel - - WO [wa] -
a o [o] - -l we [we] -
o yo [jol - -1 wi [wi] -

- ui [mi] or [i] Context-dependent
Table 20: Final consonants (Jongseong)

Hangul Name IPA | Hangul ~Name IPA | Hangul Name IPA
© digeut [t] - giyeok k7] = rieul (1
A siot [t1] 3 kieuk k"] 1 rieul-bieup  [I]
b3 jieut [t] A giyeok-siot k] A rieul-siot (1
= chieut [t] 1 rieul-giyeok k'] TE rieul-tieut 1]
E tieut [t] T ssang-giyeok  [k'] 5 rieul-hieut (1
5 hieut [t] B bieup [p] v nieun [n]
P ssang-siot [t] b pieup [p7] IPS nieun-jieut  [n]
o mieum [m] oL rieul-pieup [p] s nieun-hieut  [n]
2 rieul-mieum  [m] HA bieup-siot [p’] o ieung [n]
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J.1 Decomposition of Hangul and representations

Every Korean syllable is structured as initial consonant + Vowel + optional final consonant in that
order. Decomposing Hangul into Jamo thus yields the basic phonemic letters that make up the
syllables. For example, word *+=" (Figure can be decomposed in Jamo sequence as 5, F, L,
7, —, & representing h an g u l. This shows how any Hangul text can be broken down into a linear
sequence of consonant and vowel symbols.

In Unicode, there are two ways to represent Hangul text, either as precomposed syllable codepoints
(one per block), or as a sequence of Jamo characters. Jamo have their own Unicode ranges (U+1100-
U+11FF for initial medial letters, and U+11XX for final variants, or the Hangul Compatibility Jamo
U+3130-U+318F). In the Hangul Jamo block, the initial versus final forms of the same letter are
encoded separately (e.g., an initial 7 and a final 7 are different code points). This allows explicit
distinction of position in text encoding.

For training a TTS model, we conceptually treat each Jamo as a distinct token in sequence which
model doesn’t necessarily need to distinguish by code point if we ensure the sequence ordering. The
key is that any Korean syllable can be represented by at most three Jamo tokens, rather than as a
single indivisible unit.

J.2 Rationale for Jamo level Representation in TTS

Using Jamo as the basic input units for a Korean TTS model offers several linguistic and practical
advantages over using whole syllable blocks or word-level units:

Phonetic Granularity Each Jamo roughly corresponds to a phonetic sound. By decomposing text
into Jamo, we supply the TTS model with a sequence of units that are very close to the actual
pronunciation. Essentially, Jamo are an alphabetic phonemic script. This means a TTS system can
learn the mapping from letters to audio without an intermediate phonemic transcription, because
Hangul “sounds as it is written” in most cases. In contrast, treating each syllable block as an atomic
unit would obscure the internal phonetic structure. For instance, the model would treat “7}” and
“4L” as completely unrelated symbols, even though they share the consonant 7 and only differ in
the vowel. Jamo-level input makes such relationships explicit — the model sees that “7}” (7 + })
and “5F” (7 +-r) share the letter 7, so it can more easily generalize the pronunciation of =7 across
different vowels.

Open Vocabulary & Generalization Building on the above point, Jamo decomposition guarantees
an open vocabulary system. Any Korean word, even if OOV (out-of-vocabulary) for the training
corpus, can be synthesized as long as its letters have been seen. This is crucial because Korean is an
agglutinative language with a very large lexicon. Fore perspective, an authoritative Korean dictionary
contains over 1.1 million unique words (counting distinct headword entries). It is impractical to
include or explicitly model all words in a TTS system. Instead, by training at the letter level, the
model can construct new words from known pieces. Jamo sequences cover every possible syllable that
can be formed in Korean, so the TTS can potentially read any word or name, even unfamiliar ones,
by combining the learned pronunciations of the constituent Jamo. This compositional generalization
is one the core motivations for using Jamo units. In contrast, a syllable level model could fail on
a syllable it never saw during training. A word level model would be even more brittle. It would
only know the specific words seen in training and would treat an unknown word as entirely out-of-
vocabulary. Jamo level input elegantly avoids this issue.

Morphological Transparency Korean orthography often preserves morphological structure even
when pronunciation changes. By using Jamo directly, the model can implicitly leverage morphology.
For example, the verb ending -5 1] T} is composed of s + eu + p + ni + da (+ 1 U T}) but pronounced
"2t} [s"amnida] due to assimilation. A Jamo based model sees the underlying letters A, —, v,
L, |, ©, }and can learn the pattern that v L of 2+1 L yields a [mn] sound in that context.
Meanwhile, it still recognizes this sequence as the polite verb ending (common morpheme) and
might generalize timing or intonation for it. If we had converted everything to surface phonemes,
some of that orthographic morphological clue would be lost. Essentially, Jamo input can carry latent
morphological information, which might help the model produce more consistent pronunciation for
inflections or particle attachments and handle systemic sound changes as they occur across morpheme
boundaries.
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Simpler Text Processing Pipeline Using Jamo directly means we rely on the model to learn Korean
pronunciation rules, rather than hand-coding them. Korean has a well-understood set of pronunciation
adjustment rules (liaison, nasalization, tensification, etc., discussed below). A common alternative
approach is to perform a grapheme-to-phoneme (G2P) conversion with a tool like G2pK before
feeding to the TTS. G2p will output a phonetic transcription (often still Hangul in IPA) that reflects
how the word should be pronounced in standard Korean. While effective, this adds complexity: it
requires maintaining a dictionary or rule engine and handling exceptions. A Jamo based end-to-end
model, on the other hand, can learn these context-dependent pronunciation from data. It has been
observed that modern neural TTS models are capable of learning the pronunciation rules of phonetic
writing systems without an explicit G2P step, especially if the orthography is mostly regular. Hangul
is largely phonemic, so many TTS systems skip an explicit phoneme conversion. Eliminating the
G2P step reduces potential error propagation and avoids sensitivity to spacing variations, which can
notably influence pronunciation due to phonological phenomena in Korean.

Memory Efficient With Jamo, because the total number of symbols is small, the model’s embedding
layer is much more compact. For example, 68 symbols versus 11,172 means nearly 165 times fewer
embedding vectors. This not only saves memory but can also speed up training and inference due
to fewer distinct classes. A smaller vocabulary might also require less data to adequately learn each
symbol’s usage. The trade-off is that the sequence length is longer (each syllable becomes 2-3 tokens
instead of 1). However, modern sequence-to-sequence models (like Transformers) can handle the
increased length easily since Korean words are not extremely long (and the increase is linear). The
benefit of a compact, fully covered vocabulary often outweighs the cost of slightly longer sequences.

J.3 Phonological Phenomena in Korean

Phonological phenomena in Korean can be broadly categorized into the following types:

¢ Liaison (Cases: Common) Final consonant moves to the next syllable if it begins with a
vowel. E.g., BF31 0] & (mat-it-seo-yo) is pronounced [HFA] %] Q] (ma.gisa.jo).

¢ Final Consonant Neutralization (Cases: 7 sounds) Final consonant in Korean are sim-
plified into one of seven consonant sounds: [ 7 (k"), - (n), ©(t"), () ,m(m), v (p), o].
E.g., % (ot) is pronounced [-2] (ot”), and 5§} (bab) is pronounced [5}] (pap’).

* Nasalization (Cases: 3 types) When followed by nasal consonants, final obstruents (7, ©
B ) become nasalized (o, L, o respectively). E.g., 9&F-& (ap-mun) is pronounced [&}&]
(am.mun)

)

* Lateralization (Cases: 2 types) When L+ and & meet across syllable boundaries, they
merge into a double [ = =] ([11]) sound. E.g., A2} (sin-la) is pronounced [ 2} (sil.la).

* /n/-Insertion (Cases: Common in compounds) An [+ ] sound is inserted between
consonant-final syllables and vowel-initial syllables starting with /i/ or glide /j/. E.g., 22¢]
(kkot-ip) is pronounced [¥2'9] (kon.nip).

* Aspiration and & Assimilation (Cases: 2 main types) Final consonant & aspirates
following consonants 7, ©, B, X, turning them into their aspirated counterparts (=,

€, 2, =). Additionally, 5 is frequently deleted between vowels or sonorants. E.g., =T}
(joh-ta) becomes [ ZE}] (tco.t" a)

 Tensification/Fortition (Cases: Common after obstruents) Plain consonants become tense
after syllables ending in obstruents. E.g., 317 (hak-gyo) is pronounced [S}+3] (hak™.kjo).

« Palatalization (Cases: 2 main types) Alveolar consonants © and & become palatalized to
=z and = respectively before the vowels ©] [i] or 5] [hi]. Additionally, ~ is pronounced as
[¢] before /i/. E.g., Z40] (gat-i) is pronounced [7}]] (ka.te" i).

These phonological phenomena represent very specific cases, most commonly arising from inter-
actions between the final consonant of one syllable and the initial consonant of the next. Although
such specific phonological cases constitute a relatively small proportion of all possible syllable
combinations in Korean, accurately modeling these phenomena is crucial for natural and fluent
Korean speech synthesis. In other words, the pronunciation of a given syllable can vary significantly
depending on its surrounding context, an effective method is required for a TTS model to properly
learn these context-dependent pronunciation variations.
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J.4 Pair-wise Jamo Representation

Given the linguistic advantages and phonological characteristics described above, we propose a
pair-wise representation based on Jamo to effectively leverage these strengths. By explicitly modeling
pairs of adjacent Jamo, we effectively address both phonetic granularity within syllables and context-
dependent phonological variations across syllable boundaries, particularly interactions involving the
final consonant of one syllable and the initial consonant of the next. Specifically, we represent each
utterance through four distinct pair types to comprehensively cover all possible Jamo pairs: (initial
consonant, medial vowel), (medial vowel, final consonant), (final consonant, next initial consonant),
and (medial vowel, next initial consonant) since the final consonant is optional. These pairs are
extracted using a sliding window of length two with stride one over each decomposed sequence,
ensuring comprehensive coverage without added complexity, resulting in a maximum of 1,878 unique
Jamo pairs. This significantly reduces complexity compared to modeling complete syllable pairs,
while still capturing critical pronunciation phenomena such as liaison, nasalization, and tensification.

Using this pair-wise representation offers several important advantages. Firstly, it simplifies modeling
complexity and enhances computational feasibility. Secondly, by focusing explicitly on inter-syllabic
relationships, the model more effectively generalizes pronunciation patterns rather than memorizing
isolated syllables, improving the naturalness and accuracy of synthesized speech, especially in cases
of unseen or rare combinations. Finally, applying a pair-wise Jamo representation when selecting
core datasets ensures balanced phonetic coverage. By identifying and retaining utterances containing
infrequent but phonologically critical Jamo pairs, and probabilistically filtering overly frequent
patterns, this method achieves a more representative and linguistically robust dataset.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly outline the paper’s contributions, includ-
ing CoreaSpeech, the processing pipeline, coreset selection, a new benchmark, and the
PEFT-TTS model, all of which are detailed in the subsequent sections.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitations are explicitly discussed in Section 6.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]

Justification: The paper contains no formal theorems, so no mathematical assumptions or
proofs are required.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All data, code, hyper-parameters, and checkpoints are publicly released and
fully documented in the paper.

Guidelines:

» The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The CoreaSpeech Dataset, Korean Universal Testset, and model checkpoints
are released under the CC-BY-NC 4.0 license, and the preprocessing, training, and evaluation
code are released under the MIT license at the project URL.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The correspondingpp details are described in Sections 4, 5.1 and Appendix
H.1.

Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer:
Justification: Although Section 5.2 Appendix A reports error bars for experimental results,
other sections lack explicit information on statistical significance, variability factors, un-

derlying assumptions (e.g., normality), and the methods used to calculate error bars or
confidence intervals.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the
experiments?

Answer: [Yes]

Justification: Section 5.1 Experimental Setup states that fine-tuning was carried out on a
single NVIDIA TITAN RTX GPU.

Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We comply with the NeurIPS Code of Ethics and discuss all relevant issues in
Section 6.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We discussed all relevant issues in Section 6.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.
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* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: We explicitly restrict the use of our data and models to non-commercial
purposes through licensing.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The paper cites numerous existing datasets and tools used in the research.
Specific licensing information for each item can be found in an appendix.

Guidelines:
* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Detailed documentation of the assets introduced in this paper is provided on
the demo page specified in the abstract.

Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [Yes]

Justification: We conducted Naturalness Mean Opinion Score (nMOS) tests in which Korean
native listeners evaluated the samples. Further details are provided in Appendix A.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The nMOS listening tests involved anonymous adult participants and did

not collect any personally identifiable information. Thus, explicit IRB approval was not
obtained.

Guidelines:
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* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: We do not use LLM.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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