
Under review as submission to TMLR

DistDD: Distributed Data Distillation Aggregation through
Gradient Matching

Anonymous authors
Paper under double-blind review

Abstract

In this paper, we introduce DistDD, a novel approach within the federated learning frame-
work that reduces the need for repetitive communication by distilling data directly on clients’
devices. Unlike traditional federated learning that requires iterative model updates across
nodes, DistDD facilitates a one-time distillation process that extracts a global distilled
dataset, maintaining the privacy standards of federated learning while significantly cutting
down communication costs. By leveraging the DistDD’s distilled dataset, the developers
of the FL can achieve just-in-time parameter tuning and neural architecture search over
FL without repeating the whole FL process multiple times. We provide a detailed conver-
gence proof of the DistDD algorithm, reinforcing its mathematical stability and reliability
for practical applications. Our experiments demonstrate the effectiveness and robustness of
DistDD, particularly in non-i.i.d. and mislabeled data scenarios, showcasing its potential to
handle complex real-world data challenges distinctively from conventional federated learning
methods. We also evaluate DistDD’s application in the use case and prove its effectiveness
and communication savings in the NAS use case.

1 Introduction

Federated learning typically involves iterative communication between the central server and its clients.
Throughout the training process, the server proposes parameters for the clients to calculate the updates
for their local models Zhou et al. (2021); Khodak et al. (2020); Agrawal et al. (2021). The server then
aggregates these updates to refine the global model. While these communication costs might be necessary
for the federated learning paradigm to maintain users’ privacy, they become significant because a good
machine learning model typically requires repeated training to debug better parameters and neural network
architectures Zhang et al. (2021).

For example, consider the following two use cases:

Use case A (Parameter Tuning). (see Figure 1): Considering the developers need to tune the hyper-
parameters of the FL process, Khan et al. (2023); Zhang et al. (2021); Zhou et al. (2021); Agrawal et al.
(2021) such as batch size, learning rate, epoch, optimizer, etc. In a typical FL architecture, the parameter
tuning process requires repeating the full FL process, which involves multiple clients joining. Such a process
brings enormous communication costs due to the unnecessary multiple repeat tuning.

Use case B (NAS over FL). (see Figure 1): Another example is the neural architecture search over FL
Zhu et al. (2021); Zhu & Jin (2021); Liu et al. (2023a); He et al. (2021); Khan et al. (2023); Yan et al. (2024).
Considering the scene in which the developers of the FL want to search for the optimal neural architecture
for the FL tasks, The FL server must search for a new neural architecture at each iteration during such
a process. Then, the FL server needs to perform the whole FL process using the searched architecture to
collect the performance as feedback. Such approaches must be repeated multiple times until the optimal
neural architecture is searched. This process brings huge communication costs as well.

Such use cases require repeatedly tuning the model, bringing huge communication costs Zhou et al. (2021).
To reduce such communication costs, an appealing approach is for the clients to upload the data directly to

1

Under review as submission to TMLR

Gradient

ClientClientClient

Server

FedAvg{
batch size: 32,
learning rate: 1e-5,
......
epoch: 128,
optimizer: SGD,
activate function: ReLu
}

{
batch size: 128,
learning rate: 1e-6,
......
epoch: 1024,
optimizer: Adam,
activate function: Tanh
}

...

Parameter Tuning

Neural architecture search

{
batch size: 32,
learning rate: 1e-5,
......
epoch: 128,
optimizer: SGD,
activate function: ReLu
}

{
batch size: 128,
learning rate: 1e-6,
......
epoch: 1024,
optimizer: Adam,
activate function: Tanh
}

...

Parameter Tuning

Neural architecture search Distilled
Dataset

Gradient Gradient

Distilled
DatasetServer

ClientClientClient

DistDD

Distilled
Dataset

Gradient Gradient Gradient

Trained
Model

Trained
Model

FedAvg Tuning
DistDD Tuning

Figure 1: We provided two use cases for DistDD. The parameter tuning and NAS require multiple whole
FL processes for typical FL. For DistDD, the server needs to acquire the distilled dataset through DistDD
process at first, then repeat local tuning and NAS within the FL server itself to get the optimal network
architecture and optimal parameter. Then, the server can repeat the FL process only once using the optimal
network architecture and optimal parameters.

the server so that future training and tuning can only happen within the server. However, an obvious flaw
is that data uploading will invade the clients’ privacy, which is against the principle of federated learning.

Therefore, in this paper, we seek to answer the question: How can we allow clients to upload the essential
information to train a classifier so that the server can further train and tune the models without additional
communication costs while protecting the client’s privacy (as much as federated learning can protect).

To answer this question, we introduce a novel distributed data distillation method (Distributed Data Dis-
tillation through gradient matching) in this paper. DistDD is a method that combines gradient matching
Zhao et al. (2020) with distributed learning to distill knowledge from multiple clients into a single dataset.
In this process, clients use their local datasets to get gradients. The critical step is to compute the loss
between the aggregated global gradient and the gradient from the distilled dataset and use this loss to build
the distilled dataset. Finally, the server uses the synthesis distilled dataset to tune and update the global
model.

We demonstrate the convergence of DistDD by conducting detailed experiments (§4.2). Since the non-iid
and the mislabeling problems are frequently met in the optimization process of standard FL settings, we
evaluated DistDD under the non-iid (§4.4) and mislabeling problems (§4.3). These experimental results
verify the effectiveness and robustness of DistDD in dealing with complex real-world situations. We designed
rigorous experiments and tested them on multiple public datasets. Furthermore, we also conducted a detailed
ablation study (§C) and evaluated DistDD’s performance in the neural architecture use case (§4.5).

Overall, DistDD provides a new approach for solving challenges in the current distributed big data environ-
ment and opens up new possibilities for future research. We believe that DistDD will trigger more research
in the fields of distributed learning and data distillation in the future. We summarize our contribution as
three-folded:

• We propose a new method called DistDD, which distillates data from distributed clients in a distributed
way. DistDD effectively distills the distributed data from the distributed clients, thus enabling numerous
debugging attempts without more communication cost.

2

Under review as submission to TMLR

• We identify the potential mislabeling and non-iid problems in the distributed data distillation paradigm
and propose methods to solve them.

• We provide convergence proof and conduct extensive experiments to prove the effectiveness and conver-
gence of our DistDD framework.

2 Related Work

2.1 Federated Learning

Mislabeling. In the context of distributed learning, there may be instances where nodes misclassify certain
data, leading to a decrease in data quality. Some research further extends this issue to Byzantine attacks in
distributed learning Shi et al. (2021); Fang et al. (2020); Shejwalkar & Houmansadr (2021); Cao et al. (2020).
In these attacks, malicious nodes can manipulate their model parameters (such as weights or gradients) to
degrade the accuracy of the global model. Various strategies have been proposed to defend against Byzantine
attacks in distributed learning So et al. (2020). These include client selection strategies, score-based detection
methods, spectral-based outlier detectors, and update denoising. In our DistDD, we also consider that each
client’s data may have bad quality since the clients’ labels might be wrong.

Hyper-parameter optimization. Previous researchers also have worked on hyper-parameter optimization
in FL. Zhou et al. (2021) leverages meta-learning techniques to utilize local and asynchronous to optimize
the hyper-parameter. Khodak et al. (2020) applied techniques from NAS with weight-sharing to FL with
personalization to modify local training-based FL. Agrawal et al. (2021) clusters edge devices based on the
training hyper-parameters and genetically modifies the parameters cluster-wise. However, these approaches
still require multiple communication processes.

Key contributions for federated learning. The debugging of a typical FL process requires iteratively
choosing different parameters, thus bringing heavy communication costs. However, our proposed method,
DistDD, distillates the data from distributed clients rather than just directly training a single classifier
model. By acquiring this distilled dataset, FL servers can iteratively train the global model on the distilled
dataset locally without iteratively debugging the parameters of FL, thus avoiding high communication costs.

2.2 Dataset Distillation

Dataset distillation Wang et al. (2020) involves creating a condensed dataset from a larger one, with the aim
of training models to achieve strong performance on the original extensive dataset. This distillation algorithm
takes a substantial real-world dataset as input (the training set) and generates a compact, synthetic distilled
dataset. The production of high-quality, compact, distilled datasets is significant for enhancing dataset
comprehension and a wide array of applications, including continual learning, safeguarding privacy, and
optimizing neural architecture in tasks such as neural architecture search.

Some previous works aim to use gradient or trajectory-matching surrogate objectives to achieve distillation.
Shin et al. (2023); Du et al. (2023); Cazenavette et al. (2022) use trajectory matching to distill dataset. Zhao
& Bilen (2021); Liu et al. (2023b) propose using gradient matching to distill the dataset. Wang et al. (2022);
Zhao & Bilen (2023); Zhao et al. (2023) align the features condense dataset, which explicitly attempts
to preserve the real-feature distribution as well as the discriminant power of the resulting synthetic set,
lending itself to strong generalization capability to various architectures. Bohdal et al. (2020); Sucholutsky &
Schonlau (2021) propose simultaneously distilling both images and their labels, thus assigning each synthetic
sample a ‘soft’ label rather than a ‘hard’ label.

Data distillation has been employed as an effective strategy to enhance the performance of distributed
learning systems or to develop novel distributed learning architectures Zhang et al. (2022); Pi et al. (2023);
Xiong et al. (2023); Song et al. (2023). These studies have demonstrated how data distillation can be

3

Under review as submission to TMLR

integrated into distributed learning to achieve more effective learning outcomes or to introduce innovative
architectural paradigms within the distributed learning framework.

Key contributions for dataset distillation. DistDD introduces a new scene for dataset distillation. In
this scene, a central server wants to distill the data from distributed clients. This scene brings new challenges
in protecting each distributed client’s privacy and cutting communication costs.

3 Methodology

Algorithm 1 Federated Data Distillation through gradient matching
1: Input: A central server p, distributed clients i = 0, ..., I − 1. The portion δ of selected participated

clients per round. Training set Ti for each client i = 0, ..., I−1. Randomly set of synthetic samples S for
C classes, probability distribution over randomly weights Pθ0 , neural network ϕθ, number of loop steps
T , number of steps for updating weights ςθ and synthetic samples ςS in each inner-loop step respectively,
learning rates for updating weights ηθ and synthetic samples ηS .

2: Initialize θ0 ∼ Pθ0 ▷ Neural networks initialization.
3: for all t = 0, ..., T − 1 do
4: p sends θt to I
5: p samples δ × I clients I ′ from I ▷ Participant selection.
6: for all c = 0, ..., C − 1 do
7: for all i = 0, ..., I ′ − 1 do
8: Each client i:
9: i samples a mini-batch BTi

c ∼ Ti

10: LTi
c = 1∣∣BTi

c

∣∣ ∑(x,y)∈B
Ti
c

ℓ (ϕθt(x), y) ▷ Update local neural networks.

11: i computes gt,c,i = ∇θLTi
c (θt) ▷ Compute updated gradients.

12: i sends gt,c,i to p
13: end for
14: p computes Gt,c =

∑I′−1
i=0 gt,c,i ▷ Aggregate global gradients.

15: p samples a mini-batch BS
c ∼ S

16: p computes LS
c = 1

|BS
c |
∑

(s,y)∈BS
c

ℓ (ϕθt
(s), y)

17: p computes gt,c = ∇θLS
c

18: Sc ← opt− algS (D (Gt,c, gt,c) , ςS , ηS) ▷ Update distilled dataset.
19: end for
20: p updates θt+1 ← Gt,c ▷ Update neural networks.
21: end for
22: Output: S

In DistDD, there is a central server p. And there are multiple distributed clients i = 0, ..., I − 1, each has
a local dataset Ti. The dataset contains C classes.

To get the optimal parameter for training, p has to optimize the hyper-parameter of FL by repeating the
whole FL process. However, due to FL’s high communication and computation costs, it is inefficient for
p and I to conduct such a costly process. Thus, it is more reliable for p to distill the datasets from the
client set I into one distilled dataset and use the distilled dataset to optimize the parameters.However, it is
unfeasible for p to collect the datasets from all the clients and do the data distillation locally on the server.
Thus, DistDD achieves the data distillation in a distributed way:

Initially, p randomly generate an initialized set of synthetic samples S containing C classes, probability
distribution over randomly initialized weights Pθ0 . p also initialize a deep neural network ϕθ, which serves as
a classifier for this dataset. Now p set the number of loop steps T , the number of steps for updating weights
ςθ and synthetic samples ςS in each inner-loop step respectively, learning rates for updating weights ηθ and
synthetic samples ηS .

4

Under review as submission to TMLR

In each iteration, p will first sends the classifier model weight θt to each client i. Each client i samples a
mini-batch BTi

c ∼ Ti from its local dataset Ti. And the mini-batch BTi
c will be used to compute the loss LTi

c

using the classifier θt:
LTi

c = 1∣∣∣BTi
c

∣∣∣
∑

(x,y)∈B
Ti
c

ℓ (ϕθt(x), y) . (1)

i then computes the gradient gt,c,i using the loss as:

gt,c,i = ∇θLTi
c (θt) (2)

and sends the gradient gt,c,i back to p, extracting each client’s data knowledge into the gradient gt,c,i.

After receiving the gradient gt,c,i from sampled clients, p aggregate all the gradients to a global gradient as
Gt,c:

Gt,c =
I−1∑
i=0

gt,c,i =
I−1∑
i=0
∇θLTi

c (θt) . (3)

The central server aggregates all the clients’ knowledge about their local data into the global gradient Gt,c

by aggregating all the gradients gt,c,i from each client i. To be noted, each client only sends the gradient
update gt,c,i to the central server without sending other privacy-related information, thus achieving the same
level of privacy as the typical FL process.

Then p samples a mini-batch BS
c ∼ S from the synthetic dataset S, and computes the gradient using the

classifier θt as
gt,c = ∇θLS

c = ∇θLS
c = 1

|BS
c |

∑
(s,y)∈BS

c

ℓ (ϕθt
(s), y) . (4)

p will compute the loss D (Gt,c, gt,c) by computing the gradient mismatching between Gt,c and gt,c as:

D (Gt,c, gt,c) = D
(
∇θLS

c (θt) ,∇θLT
c (θt)

)
(5)

Then p update the synthetic data Sc of class c by matching the loss as

Sc ← opt− algS (D (Gt,c, gt,c) , ςS , ηS)
= opt− algS

(
D
(
∇θLS

c (θt) ,∇θLT
c (θt)

)
, ςS , ηS

) (6)

This step aims to update the synthetic data Sc by computing gradient mismatch.

At the last of each iteration, p updates the model weight θt+1 as

θt+1 ← opt− a lgθ

(
LS (θt) , ςθ, ηθ

)
(7)

After T iterations, the datasets distributing across the set of the clients I are distilled into a dataset labeled
as S.

3.1 Protect Privacy

However, there are still many claims about the privacy of federated learning. Previous researchers claim
that the exchanged gradient updates between clients and the central server can still leak privacy-related
information from clients to the central server. Furthermore, we consider providing more privacy protection
methods for DistDD by introducing DPSGD Abadi et al. (2016) into our DistDD framework.

The DPSGD is performed as: For each xj in mini-batch BTi
c , the gradient is computed as

gt,c,i(xj) = ∇θLTi
c (θt, xj) . (8)

Then DistDD applies clip gradient as

gt,c,i(xj)← gt,c,i(xj)/ max
(

1,
∥gt,c,i(xj)∥2

C

)
. (9)

5

Under review as submission to TMLR

Datasets MNIST FashionMNIST CIFAR
Dir 1 0.5 0.1 1 0.5 0.1 1 0.5 0.1
Whole Dataset 99.3 93.6 87.2
GM (IPC=100) 97.2 91.1 80.7
FedAvg 98.8 94.3 92.5 92.5 86.3 74.3 86.3 75.3 65.9
FedProx 99.1 95.7 93.8 92.6 90.7 86.2 86.5 80.1 72.1
DistDD (IPC=10) 94.1 90.3 82.3 82.1 75.3 67.6 51.3 47.4 41.5
DistDD (IPC=50) 95.6 92.8 83.1 84.7 82.5 69.3 75.2 62.4 51.5
DistDD (IPC=100) 96.9 93.2 84.0 90.1 84.3 72.5 78.2 69.2 57.3

Table 1: The performance comparison to the whole dataset (centralized training using the whole dataset),
GM (centralized gradient matching using the whole dataset), FedAvg, FedProx, and DistDD. For FedAvg and
DistDD, we set the client number to 50. The FedAvg’s accuracy value is compared with the whole dataset
training and recorded in the table. The DistDD’s accuracy is compared with the gradient matching’s
accuracy (IPC=100) and recorded in the table. The comparison between (FedAvg-Whole dataset) and
(DistDD - GM) indicates that DistDD’s performance aligns with FedAvg on the distributed pattern.

Then we add differential privacy noise to it as

g̃t,c,i ←
1
|BTi

c |

∑
j

gt,c,i(xj) +N
(
0, σ2C2I

) (10)

3.2 Tackle with Mislabeling Problem

The issue of mislabeling in data distillation, particularly in distributed learning systems, poses a significant
challenge to the integrity and effectiveness of machine learning models. This problem arises when clients
contributing to the distilled dataset inadvertently or intentionally introduce errors in labeling, thereby com-
promising the data quality. Such inaccuracies can significantly impact the performance of the aggregated
dataset, especially in scenarios where diverse clients contribute data, increasing the likelihood of inconsis-
tencies and errors. Addressing this issue requires a focus on developing robust methods for detecting the
potential mislabeling of clients and discarding their gradient updates.

We introduce the Median from Yin et al. (2018) to tackle with mislabeling problem in DistDD:

Definition (Coordinate-wise median). For vectors xi ∈ P, i ∈ [I], the coordinate-wise median g :=
med{xi : i ∈ [I]} is a vector with its k-th coordinate being gk = med{xi

k : i ∈ [I]} for each k ∈ [d], where
med is the usual (one-dimensional) median.

4 Evaluation

We first reveal our experiment setting in §4.1. Next, we compare DistDD with FedAvg schemes in §4.2.
Then, we consider the mislabeling situations and evaluate the DistDD method under different portions of
mislabeling clients in §4.3. The data distribution problem of nonIID is considered in §4.4. To prove the
effectiveness of using DistDD in the use cases, we evaluated DistDD under NAS settings in §4.5.

4.1 Experiment Setting

We discussed our experiment settings in this section:

• Models. In our experimental setup, we employ a Convolutional Neural Network (ConvNet) architecture
as the foundational network for our study.

• Datasets. We leverage three image classification datasets, namely MNIST, FashionMNIST, and CIFAR-
10, as the experimental datasets.

6

Under review as submission to TMLR

• Client number. The default configuration for our system includes a predefined client count of 20.
Furthermore, our system employs a randomized participant selection process, wherein 50% of the clients
actively participate in the training process during each iteration (this setting follows the convention of
both FL and DD).

• Image per class. Notably, we adhere to a predefined standard of 100 images per class as the default
quantity for each image category.

• Communication round. Our experimentation proceeds throughout 500 communication rounds, with
each round representing a critical iteration in the distributed learning process. To measure the efficacy of
our system, we employ the classification accuracy of the base model trained on the generated images as
the principal metric for evaluation.

• Data distribution. We used the Dirichlet distribution to guide the data segmentation process in this
experiment. The Dirichlet distribution is a multinomial distribution often used to represent the probability
distribution of multiple categories and is very suitable for simulating the distribution of different categories
in a data set. The concentration parameter α of the Dirichlet distribution (we noted as dir) is used to
guide the non-iid degree of the distribution.

4.2 Comparison with FedAvg

Methods. The comparative analysis presented in Table 1 evaluates the performance of DistDD with other
schemes, including the whole dataset (centralized training using the whole dataset), GM (centralized gradient
matching using the whole dataset), FedAvg, FedProx under various IPC settings and data distribution
scenarios among distributed clients. This analysis specifically focuses on the impact of the image per class
(IPC) parameter on DistDD and how it compares to the performance of other schemes.

Results. The results show that DistDD performs similarly to FedAvg as the IPC value increases, with a
notable performance gap when IPC is below 100. At IPC=100, DistDD matches FedAvg’s performance.
In IID settings with Dirichlet distribution parameter (dir) of 1, both systems exhibit identical accuracy.
However, in highly non-IID scenarios (dir=0.1), DistDD underperforms significantly compared to FedAvg,
highlighting its weaker robustness in diverse data environments.

FedAvg Avg. Per Client DistDD DistDD+Median

0.0 0.2 0.4 0.6 0.8 1.0
Mislabeling Data Portion

25
50
75

100

Ac
cu

ra
cy

MNIST

(a) MNIST

0.0 0.2 0.4 0.6 0.8 1.0
Mislabeling Data Portion

20
40
60
80

Ac
cu

ra
cy

FashionMNIST

(b) FashionMNIST

0.0 0.2 0.4 0.6 0.8 1.0
Mislabeling Data Portion

20
40
60
80

Ac
cu

ra
cy

CIFAR

(c) CIFAR

Figure 2: We conducted further study of mislabeling in data. Considering developers may mistakenly or
maliciously mislabel the input dataset, we evaluated DistDD’s performance under this situation. The
mislabeling data portion is set from 0.0 to 1.0.

4.3 Mislabeling Situation

Methods. We then investigate the impact of mislabeling in data distillation, where clients may introduce
labeling errors that compromise the integrity of the distilled data. We model this as clients being prone to
a certain proportion of mislabeled samples, with consistent mislabeling patterns across clients. We compare
the performance of four frameworks: FedAvg, local gradient matching, DistDD and a DistDD adaptation
of the Median anti-byzantine attack defense (Yin et al. (2018)) to address mislabeling challenges.

7

Under review as submission to TMLR

Centralized Gradient Matching DistDD Avg. of Per Client Local FedAvg

0.1 0.3 0.5 0.7 0.9
Alpha value of Dirichlet distribution

40

60

80

100

Ac
cu

ra
cy

MNIST

(a) MNIST

0.1 0.3 0.5 0.7 0.9
Alpha value of Dirichlet distribution

40

60

80

Ac
cu

ra
cy

FashionMNIST

(b) FashionMNIST

0.1 0.3 0.5 0.7 0.9
Alpha value of Dirichlet distribution

20

40

60

Ac
cu

ra
cy

CIFAR

(c) CIFAR

Figure 3: Considering the non-iid nature of federated learning, we studied how the non-iid distribution affects
the performance of DistDD. We use the Dirichlet distribution to model the non-iid distribution.

Results. The outcomes of the evaluation are presented in Figure 2. Our findings reveal that local gradient
matching in its raw form is ill-equipped to counter this threat, thereby leading to a degradation in perfor-
mance as the proportion of mislabeled data increases. DistDD on the other hand, demonstrates a certain
degree of resilience in specific scenarios due to its ability to aggregate knowledge from diverse clients, thus
mitigating the effects of the mislabeling issue to some extent. Notably, when augmented with the Median
mechanism, DistDD exhibits a robust defense against mislabeling, even in the presence of widespread mis-
labeling, resulting in consistently high levels of accuracy. Also, we compare FedAvg with our DistDD. The
results show that DistDD with Median as the defense method can overcome the FedAvg scheme without
any defense.

4.4 Non-iid Situation

FedAvg
DistDD per tuning

FedAvg after DistDD tuning
FedAvg per tuning

2 4 6 8 10
No. Tuning Iteration

90

100

Ac
cu

ra
cy

(a) MNIST

2 4 6 8 10
No. Tuning Iteration

80

90

100

Ac
cu

ra
cy

(b) FashionMNIST

2 4 6 8 10
No. Tuning Iteration

70
80
90

Ac
cu

ra
cy

(c) CIFAR

Figure 4: Use case evaluation for DistDD. The results indicate that using DistDD for Network Architecture
Search (NAS) over Federated Learning (FL) is as effective as the traditional FedAvg approach in terms of
accuracy. However, DistDD offers a significant advantage in reducing time costs, especially as the number
of tuning iterations increases. This is because, unlike FedAvg, DistDD requires less communication after
the initial tuning, presenting a more efficient trade-off between time and performance.

Methods. This experiment examines the impact of non-iid data distribution on DistDD’s classification
accuracy, which is crucial for assessing its performance in real-world scenarios with diverse client data
patterns. Using the Dirichlet distribution to simulate non-iid conditions, we vary the parameter alpha (dir)
from 0.1 to 1.0 to control the degree of non-iid. To evaluate their performance under these conditions, a
comparative analysis is conducted between centralized gradient matching, DistDD, local gradient matching,
and FedAvg.

8

Under review as submission to TMLR

Results. The results shown in Figure 3, indicate that DistDD performs significantly worse than centralized
gradient matching in highly non-iid scenarios. However, as the data distribution becomes nearly iid, DistDD
approaches the performance of centralized gradient matching. Additionally, we evaluate per-client local
gradient matching, which shows reduced efficacy in non-iid settings, as demonstrated by the accuracy results
in Figure 3.

4.5 Use Case for DistDD

FedAvg DistDD

1 2 3 4 5 6 7 8 9 10
Parameter Tuning Times

50

100

Ti
m

e
Co

st
(m

in
) MNIST

(a) MNIST

1 2 3 4 5 6 7 8 9 10
Parameter Tuning Times

50

100
Ti

m
e

Co
st

(m
in

) FashionMNIST

(b) FashionMNIST

1 2 3 4 5 6 7 8 9 10
Parameter Tuning Times

100

200

Ti
m

e
Co

st
(m

in
) CIFAR

(c) CIFAR

Figure 5: Time overhead comparison between FedAvg and DistDD under different hyper-parameter tuning
times.

Methods. To prove DistDD’s effectiveness on the use case B: NAS over FL, we provided an example
evaluation as shown in Figure 4. We compared original FedAvg accuracy, DistDD’s accuracy in each tuning
iteration (after the DistDD’s distilled dataset-based NAS, the network was trained on DistDD’s distilled
dataset.), FedAvg’s accuracy after DistDD tuning (after DistDD’s distilled dataset-based NAS, the network
was trained again using FedAvg) and FedAvg tuning (directly using FedAvg for NAS). We also compare
DistDD’s time cost with FedAvg’s time cost under increasing parameter tuning times (see Figure 5).

Results. The results show that FedAvg after DistDD NAS has a similar accuracy with FedAvg for NAS.
This proves DistDD’s effectiveness for the NAS over FL. When only searching for the architecture for one
time, the two frameworks’ time costs are nearly the same. While, as the tuning periods increase, FedAvg’s
time cost goes above DistDD’s time cost soon. This is because DistDD does not need to communicate for
the tuning process after the 1st tuning process.

5 Ablation Study

Centralized Gradient Matching DistDD

100 300 500 700 900
Communication Round

90

95

Ac
cu

ra
cy

MNIST

(a) MNIST

100 300 500 700 900
Communication Round

70

80

Ac
cu

ra
cy

FashionMNIST

(b) FashionMNIST

100 300 500 700 900
Communication Round

20

40

Ac
cu

ra
cy

CIFAR

(c) CIFAR

Figure 6: Ablation study of different Communication Rounds.

9

Under review as submission to TMLR

Full Participation Random Participation

10 20 30 40 50 60 70 80 90 100
Participating Portion Per Round(%)

85

90

95

Ac
cu

ra
cy

MNIST

(a) MNIST

10 20 30 40 50 60 70 80 90 100
Participating Portion Per Round(%)

75

80

85

Ac
cu

ra
cy

FashionMNIST

(b) FashionMNIST

10 20 30 40 50 60 70 80 90 100
Participating Portion Per Round(%)

35

40

45

Ac
cu

ra
cy

CIFAR

(c) CIFAR

Figure 7: Ablation study of different participants portion.

5.1 Different Nodes Number

We evaluate the performance of DistDD in response to varying degrees of node participation. In this
particular experiment, it is notable that the cumulative volume of data samples across all clients remains
unaltered. Consequently, as we increase the number of participating nodes, the number of data samples
allocated to each individual client simultaneously diminishes. We rely on the classification accuracy outcomes
to illuminate the performance changes, as shown in Figure 12.

To conduct the comparative analysis, we compare three distinct configurations: firstly, the local gradient
matching; secondly, DistDD featuring full participation from all nodes; and thirdly, DistDD with a 50%
random client participation scheme. The experiment results manifest a notable trend. Specifically, the
performance of DistDD with full participation exhibits a gradual decline with the amplification of node
numbers; nonetheless, this decline is relatively modest. In contrast, the performance of DistDD with
random participation shows a substantially steeper descent in accuracy.

5.2 Image number per class

In this section, we explore the impact of the number of generated images per class with a specific focus on
its effect on classification accuracy. To undertake this ablation study, we systematically vary the quantity of
images per class, encompassing the values 1, 10, 20, 30, 40, and 50. The outcomes are shown in Figure 13.

It is notable that local gradient matching reaches convergence primarily when the image count per class
ranges between 10 and 20. In contrast, DistDD exhibits a convergence behavior at a significantly higher
threshold, typically exceeding 30 images per class. This observation suggests that DistDD necessitates a
more substantial quantity of images to aggregate knowledge from the distributed clients effectively. However,
it is noteworthy that the performance of DistDD demonstrates the potential to approximate the performance
levels achieved by local gradient matching when the image count per class reaches sufficiently high values.
This disparity in the requisite image count for DistDD may be attributed to the expansive dispersion of
data across numerous clients, consequently mandating a greater number of generated images to facilitate
convergence.

5.3 Communication Rounds

In this section, we evaluate the influence of communication rounds on the performance of DistDD with
a particular emphasis on its impact on classification accuracy. We conduct this analysis by contrasting
two configurations of DistDD one with full client participation per round and another with random
participation of 50% of the clients per round, within the context of a 20-client scenario. The results, illustrated
in Figure 10, offer the observed effects.

Evidently, DistDD with full client participation typically requires approximately 300 communication rounds
to converge. In contrast, the variant of DistDD featuring random client participation necessitates a sig-

10

Under review as submission to TMLR

Centralized Gradient Matching Full Participation Random Participation

2510 20 30 40 50 60 70 80 90 100
Distributed Node Number

50

100

Ac
cu

ra
cy

MNIST

(a) MNIST

2510 20 30 40 50 60 70 80 90 100
Distributed Node Number

50

75

Ac
cu

ra
cy

FashionMNIST

(b) FashionMNIST

2510 20 30 40 50 60 70 80 90 100
Distributed Node Number

40

60

Ac
cu

ra
cy

CIFAR

(c) CIFAR

Figure 8: Ablation study of node number.

Centralized Gradient Matching DistDD

1 10 20 30 40 50
Images per Class

92
94
96
98

Ac
cu

ra
cy

MNIST

(a) MNIST

1 10 20 30 40 50
Images per Class

70

75

80

Ac
cu

ra
cy

FashionMNIST

(b) FashionMNIST

1 10 20 30 40 50
Images per Class

40

60

80

Ac
cu

ra
cy

CIFAR

(c) CIFAR

Figure 9: Ablation study of different image numbers per class.

nificantly greater number of communication rounds to achieve the same convergence. This discrepancy in
the convergence rate primarily stems from random client participation, which mandates a more extended
communication process for each client to convey and synchronize their knowledge with the central server.

5.4 Portion of Selected Clients per Round

Next, we study the effect of the proportion of selected clients per round, focusing on random participation
throughout 500 communication rounds. We maintain a constant client count of 20 while adhering to a
Dirichlet distribution parameter (dir = 1.0) for data partitioning. The proportion of participating clients is
systematically varied, ranging from 10% to 100% (representing full participation).

Noteworthy is the observation that it necessitates a participation rate of 80% within the random selective
participation scheme to achieve parity in classification accuracy with full participation. Conversely, when
the participation rate falls below the 50% threshold, the performance of DistDD markedly falls behind that
of local gradient matching. This disparity in performance underlines the significance of the participation
proportion in the context of random selection and underscores the trade-off between participation rate and
classification accuracy.

6 Discussion

The same level of privacy protection: FL has been widely considered an efficient method to aggregate
knowledge from distributed clients and protect distributed clients’ privacy. Although FL has many privacy
challenges, the privacy level itself is enough for many scenes. Like FL, our proposed method DistDD only
allows the gradient updates exchange between clients and servers. This gradient update is used in the
central server’s gradient matching process to construct a distilled dataset. There is no other privacy-related

11

Under review as submission to TMLR

information exchanged in DistDD. Thus, DistDD, as an alternative to FL, can protect privacy to the same
level as FL.

Abstract for global dataset. In fact, DistDD provides the abstract for the global dataset. By performing
the gradient matching in a distributed way, DistDD aggregates the global knowledge into the distilled dataset
as a global abstract. This abstract enables the server of FL to tune the parameter and the architecture
without high communication costs.

7 Conclusion

In conclusion, our work introduces a new distributed data distillation framework, named DistDD (Dis-
tributed Data Distillation through gradient matching), which combines the gradient matching methods with
distributed learning. This novel approach enables the extraction of distilled knowledge from a diverse set of
distributed clients, offering a solution for aggregating large-scale distributed data while enabling the server
to train the global model on the global dataset freely without concern about communication overhead. Our
comprehensive experimentation has also demonstrated the robustness and effectiveness of DistDD in various
scenarios.

12

Under review as submission to TMLR

References
Martin Abadi, Andy Chu, Ian Goodfellow, H. Brendan McMahan, Ilya Mironov, Kunal Talwar, and Li Zhang.

Deep learning with differential privacy. In Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security. ACM, oct 2016. doi: 10.1145/2976749.2978318. URL https://doi.org/
10.1145%2F2976749.2978318.

Shaashwat Agrawal, Sagnik Sarkar, Mamoun Alazab, Praveen Kumar Reddy Maddikunta, Thippa Reddy
Gadekallu, Quoc-Viet Pham, et al. Genetic cfl: Hyperparameter optimization in clustered federated
learning. Computational Intelligence and Neuroscience, 2021, 2021.

Ondrej Bohdal, Yongxin Yang, and Timothy Hospedales. Flexible dataset distillation: Learn labels instead
of images, 2020.

Xiaoyu Cao, Minghong Fang, Jia Liu, and Neil Zhenqiang Gong. Fltrust: Byzantine-robust federated learning
via trust bootstrapping. arXiv preprint arXiv:2012.13995, 2020.

George Cazenavette, Tongzhou Wang, Antonio Torralba, Alexei A Efros, and Jun-Yan Zhu. Dataset distilla-
tion by matching training trajectories. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 4750–4759, 2022.

Jiawei Du, Yidi Jiang, Vincent YF Tan, Joey Tianyi Zhou, and Haizhou Li. Minimizing the accumulated
trajectory error to improve dataset distillation. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 3749–3758, 2023.

Minghong Fang, Xiaoyu Cao, Jinyuan Jia, and Neil Gong. Local model poisoning attacks to {Byzantine-
Robust} federated learning. In 29th USENIX security symposium (USENIX Security 20), pp. 1605–1622,
2020.

Chaoyang He, Erum Mushtaq, Jie Ding, and Salman Avestimehr. Fednas: Federated deep learning via neural
architecture search. 2021.

Salabat Khan, Atif Rizwan, Anam Nawaz Khan, Murad Ali, Rashid Ahmed, and Do Hyuen Kim. A multi-
perspective revisit to the optimization methods of neural architecture search and hyper-parameter opti-
mization for non-federated and federated learning environments. Computers and Electrical Engineering,
110:108867, 2023.

Mikhail Khodak, Tian Li, Liam Li, M Balcan, Virginia Smith, and Ameet Talwalkar. Weight sharing for
hyperparameter optimization in federated learning. In Int. Workshop on Federated Learning for User
Privacy and Data Confidentiality in Conjunction with ICML, volume 2020, 2020.

Jianchun Liu, Jiaming Yan, Hongli Xu, Zhiyuan Wang, Jinyang Huang, and Yang Xu. Finch: Enhancing
federated learning with hierarchical neural architecture search. IEEE Transactions on Mobile Computing,
2023a.

Yanqing Liu, Jianyang Gu, Kai Wang, Zheng Zhu, Wei Jiang, and Yang You. Dream: Efficient dataset
distillation by representative matching. arXiv preprint arXiv:2302.14416, 2023b.

Renjie Pi, Weizhong Zhang, Yueqi Xie, Jiahui Gao, Xiaoyu Wang, Sunghun Kim, and Qifeng Chen. Dynafed:
Tackling client data heterogeneity with global dynamics. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 12177–12186, 2023.

Virat Shejwalkar and Amir Houmansadr. Manipulating the byzantine: Optimizing model poisoning attacks
and defenses for federated learning. In NDSS, 2021.

Junyu Shi, Wei Wan, Shengshan Hu, Jianrong Lu, and Leo Yu Zhang. Challenges and approaches for
mitigating byzantine attacks in federated learning. arXiv preprint arXiv:2112.14468, 2021.

Seungjae Shin, Heesun Bae, Donghyeok Shin, Weonyoung Joo, and Il-Chul Moon. Loss-curvature matching
for dataset selection and condensation. In International Conference on Artificial Intelligence and Statistics,
pp. 8606–8628. PMLR, 2023.

13

https://doi.org/10.1145%2F2976749.2978318
https://doi.org/10.1145%2F2976749.2978318

Under review as submission to TMLR

Jinhyun So, Başak Güler, and A Salman Avestimehr. Byzantine-resilient secure federated learning. IEEE
Journal on Selected Areas in Communications, 39(7):2168–2181, 2020.

Rui Song, Dai Liu, Dave Zhenyu Chen, Andreas Festag, Carsten Trinitis, Martin Schulz, and Alois Knoll.
Federated learning via decentralized dataset distillation in resource-constrained edge environments. In
2023 International Joint Conference on Neural Networks (IJCNN), pp. 1–10. IEEE, 2023.

Ilia Sucholutsky and Matthias Schonlau. Soft-label dataset distillation and text dataset distillation. In 2021
International Joint Conference on Neural Networks (IJCNN). IEEE, jul 2021. doi: 10.1109/ijcnn52387.
2021.9533769. URL https://doi.org/10.1109%2Fijcnn52387.2021.9533769.

Kai Wang, Bo Zhao, Xiangyu Peng, Zheng Zhu, Shuo Yang, Shuo Wang, Guan Huang, Hakan Bilen,
Xinchao Wang, and Yang You. Cafe: Learning to condense dataset by aligning features. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12196–12205, 2022.

Tongzhou Wang, Jun-Yan Zhu, Antonio Torralba, and Alexei A. Efros. Dataset distillation, 2020.

Yuanhao Xiong, Ruochen Wang, Minhao Cheng, Felix Yu, and Cho-Jui Hsieh. Feddm: Iterative distribution
matching for communication-efficient federated learning. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 16323–16332, 2023.

Jiaming Yan, Jianchun Liu, Hongli Xu, Zhiyuan Wang, and Chunming Qiao. Peaches: Personalized federated
learning with neural architecture search in edge computing. IEEE Transactions on Mobile Computing,
2024.

Dong Yin, Yudong Chen, Ramchandran Kannan, and Peter Bartlett. Byzantine-robust distributed learning:
Towards optimal statistical rates. In International Conference on Machine Learning, pp. 5650–5659.
PMLR, 2018.

Huanle Zhang, Mi Zhang, Xin Liu, Prasant Mohapatra, and Michael DeLucia. Automatic tuning of federated
learning hyper-parameters from system perspective. 2021.

Jie Zhang, Chen Chen, Bo Li, Lingjuan Lyu, Shuang Wu, Shouhong Ding, Chunhua Shen, and Chao Wu.
Dense: Data-free one-shot federated learning. Advances in Neural Information Processing Systems, 35:
21414–21428, 2022.

Bo Zhao and Hakan Bilen. Dataset condensation with differentiable siamese augmentation. In International
Conference on Machine Learning, pp. 12674–12685. PMLR, 2021.

Bo Zhao and Hakan Bilen. Dataset condensation with distribution matching. In Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 6514–6523, 2023.

Bo Zhao, Konda Reddy Mopuri, and Hakan Bilen. Dataset condensation with gradient matching. arXiv
preprint arXiv:2006.05929, 2020.

Ganlong Zhao, Guanbin Li, Yipeng Qin, and Yizhou Yu. Improved distribution matching for dataset con-
densation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 7856–7865, 2023.

Yi Zhou, Parikshit Ram, Theodoros Salonidis, Nathalie Baracaldo, Horst Samulowitz, and Heiko Ludwig.
Flora: Single-shot hyper-parameter optimization for federated learning. arXiv preprint arXiv:2112.08524,
2021.

Hangyu Zhu and Yaochu Jin. Real-time federated evolutionary neural architecture search. IEEE Transactions
on Evolutionary Computation, 26(2):364–378, 2021.

Hangyu Zhu, Haoyu Zhang, and Yaochu Jin. From federated learning to federated neural architecture search:
a survey. Complex & Intelligent Systems, 7(2):639–657, 2021.

14

https://doi.org/10.1109%2Fijcnn52387.2021.9533769

Under review as submission to TMLR

A Convergence Analysis

We formulate the proof of our DistDD as two steps: First, we prove the convergence of our FL process.
Then, we prove the convergence of the gradient matching process by proving that the synthetic dataset can
be very close to the original dataset.

A.1 Problem Formulation

We formulate local SGD as follows:

θi,k+1
t := θi,k

t − η
∂L

∂θi,k
t

= θi,k
t − η▽ θi,k

t (11)

θi is the local model parameter for client i, t is global round index and k is local step index.

And we consider the overall optimization objective as

minF (θ) = Ei∼C(Fi(θ)) (12)

We have a client population as C = 1, 2, 3, ..., M .

A.2 Assumptions

To prove the convergence of our work, we have two main assumptions.

Assumption 1: Unbiased stocahstic gradient. The expectation of the stochastic gradient for a given
θt,k

i is equal to the average local gradient for a given model ϕ(·). This is to say, the gradient expectation of
the SGD equals the gradient of the GD:

E[▽θi,k
t |θ

i,k
t] = ▽Fi(θi,k

t) (13)

Given a dataset of Ti = (§i, †i)i = 0N , where the N denotes the length of the whole dataset. The objective
of the GD and its gradients are calculated as:

Fi(x(i,k)
t) = 1

N

N∑
i=1
L(ϕ(§i), †i)

∇Fi(x(i,k)
t) = 1

N

N∑
i=1
∇L(ϕ(§i), †i)

(14)

In this case, the expectation is the weighted average of a single batch with batch size as bn, i.e.,

E
[
∇x

(i,k)
t |x(i,k)

t

]
=

N−bn+1∑
j=1

(
bn∑

i=1

∂L
∂x

(i,k)
t,sj

· P (I = i|S = sj)
)
· P (S = sj)

=
N−bn+1∑

j=1

(
P (I = i|S = sj)P (S = sj)

bn∑
i=1

∂L
∂x

(i,k)
t,sj

)

= 1
N

N∑
i=1

∂L
∂x

(i,k)
t

= 1
N

N∑
i=1
∇L(ϕ(§i), †i)

= ∇Fi(x(i,k)
t)

(15)

1

Under review as submission to TMLR

where batch set is S = s1, · · · , sbn. SGD or Adam is a stochastic optimization algorithm that randomly
selects samples from the batch for gradient calculation.

Assumption 2: Bounded variance:

E
[∥∥∥∇x

(i,k)
t −∇Fi(x(i,k)

t)
∥∥∥2
|x(i,k)

t

]
≤ σ2 (16)

This is to say the gradient of the SGD is close to that of the GD.

Assumption 3: L-Smooth: Local gradient ∇Fi(x) and global gradient ∇F (x) is ζ-uniformly bounded.

max
l

sup
x

∥∥∥∇Fi(x(i,k)
t)−∇F (x(i,k)

t)
∥∥∥ ≤ ζ (17)

A.3 Proof

Generally, we want to prove that

∥F (xk+1
t)− F (x∗)∥

≤ ∥F (xk
t)− F (x∗)∥,∀t, k ∈ [1, 2, 3, · · ·]

(18)

where F (x∗) is the optimal. Or, we give a weaker claim:

E

[
1

τT

T −1∑
t=0

τ∑
k=1

F
(
xk

t

)
− F (x⋆)

]
≤ an upper bound decreasing with T .

(19)

Note that E in this paper denotes Ei∼C , where C denotes the client set. Therefore, we can say that the E is
generally calculating the expectation over all the clients.

Decentralized optimization: Originating from the decentralized optimization, we derive the shadow
sequence to indicate the update process.

xk
t := 1

M

M∑
i=1

x
(i,k)
t (20)

Then, at round t local epoch k + 1,

xk+1
t = xk

t − η
1

M

M∑
i=1

x
(i,k)
t (21)

Then, we want to prove two lemmas:

Lemma 1: (Per Round Progress) Assuming the client learning rate satisfies η < 1
4L , we prove that the

expectation for each round is bounded.

E

[
1
τ

τ∑
k=1

F
(
xk

t

)
− F (x⋆)

∣∣∣∣F (t,0)

]

≤ 1
2ητ

(∥∥x0
t − x⋆

∥∥2 − E
[
∥xτ

t − x⋆∥2 | F (t,0)
])

+ ησ2

M
+ L

Mτ

M∑
i=1

τ−1∑
k=0

E
[∥∥∥x

(i,k)
t − xk

t

∥∥∥2
| F (t,0)

] (22)

where F (t,0) is the σ-field representing all the historical information up to the start of the t-th round

2

Under review as submission to TMLR

Lemma 2 (Bounded Client Drift): Assuming the client learning rate satisfies η < 1
4L , we prove that the

Bound in the lemma 1 is decreasing with T .

E
[∥∥∥x

(i,k)
t − xk

t

∥∥∥2
| F (t,0)

]
≤ 18τ2η2ζ2 + 4τη2σ2 (23)

where F (t,0) is the σ -field representing all the historical information up to the start of the t-th round

Theorem 1 (Convergence Rate for Convex Local Functions):Under the aforementioned assumptions
(a)− (g), if the client learning rate satisfies η < 1

4L , then one has

E

[
1

τT

T −1∑
t=0

τ∑
k=1

F
(
xk

t

)
− F (x⋆)

]

≤ D2

2ητT
+ ησ2

M
+ 4τη2Lσ2 + 18τ2η2Lζ2

(24)

where D := ||x(0,0)−x∗ ||. Furthermore, when the client learning rate is chosen as

η = min
{

1
4L

,
M

1
2 D

τ
1
2 T

1
2 σ

,
D 2

3

τ
2
3 T

1
3 L

1
3 σ

2
3

,
D 2

3

τT
1
3 L

1
3 ζ

2
3

}
, (25)

we have

E

[
1

τT

T −1∑
t=0

τ∑
k=1

F
(
xk

t

)
− F (x⋆)

]

≤ 2LD2

τT
+ 2σD√

MτT︸ ︷︷ ︸
Synchronous SGD

+ 5L
1
3 σ

2
3 D 4

3

τ
1
3 T

2
3

+ 19L
1
3 ζ

2
3 D 4

3

T
2
3︸ ︷︷ ︸

Add’1 errors from local updates & non-IID data

(26)

Now we have proved the convergence of distributed learning, we need to prove the convergence of gradient
matching using the distributed model.

We note the distributed model as θt. For opt− algS (D (gT , gS) , ςS , ηS), the D (gT , gS) is computed as

D (gT , gS) = ||gT − gS ||2 (27)

We first provide 3 assumptions:

Assumption 4: Properties of the objective function is L-smooth. Assume that the objective function
D (gT , gS) (we abbreviate the formula as D(S) = D (gT , gS) in the following discussion) is convex and has
Lipschitz continuous gradient, that is, there is a constant L > 0 such that for all S1 and S2,

|| ▽D (S1)−▽D (S2) || ≤ L||S1 − S2||. (28)

Assumption 5: Learning rate. The learning rate ηS satisfies

0 < ηS <
2
L

. (29)

Assumption 6: Target Function has lower bound. Assume that the objective function D(S) has a
lower bound D∗, that is, for all S, there is

D(S) ≥ D∗ (30)

Performing a first-order Taylor expansion at St+1 for D(S), we have

G(St+1) ≈ G(St) +▽G(St)⊤(St+1 − St). (31)

3

Under review as submission to TMLR

Following update rules based on gradient descent St+1 = St − ηS ▽D(St), we can substitute this into the
above Taylor expansion and get

D(St+1) ≈ D(St)− ηS || ▽D(St)||2. (32)

Since the gradient of G(S) is Lipschitz continuous, we have

D(St+1) ≤ D(St) +▽D(St)⊤(St+1 − St) + L

2 ||St+1 − St||2. (33)

Substituting the gradient descent update rule, we have

D(St+1) ≤ D(St)− ηS || ▽D(St)||2 + Lη2
S

2 || ▽D(St)||2. (34)

Simplifying the above inequality, we get

D(St+1) ≤ D(St)− (ηS + Lη2
S

2)|| ▽D(St)||2. (35)

Because 0 < ηS < 2
L , so ηS + Lη2

S
2 > 0, which suggests that D(St+1) ≤ D(St). This indicates that the

function value gradually decreases with iteration.

Then starting from D (St+1) ≤ D (St) −
(

ηS − Lη2
S

2

)
∥∇D (St)∥2, we can accumulate the reductions across

all iterations. For any T iterations, we have

D (ST)−D (S0) ≤ −
T −1∑
t=0

(
ηS −

Lη2
S

2

)
∥∇D (St)∥2 (36)

Then we have
T −1∑
t=0
∥∇D (St)∥2 ≤ D (S0)−D (ST)

ηS −
Lη2

S
2

(37)

Since D(S) ≥ D∗, we can substitute the lower bound D∗ into the above inequality to get

T −1∑
t=0
∥∇D (St)∥2 ≤ D (S0)−D∗

ηS −
Lη2

S
2

(38)

The above inequality shows that as the number of iterations T increases, there is an upper bound to the
sum of squared gradients. This means that as iterations proceed, the size of the gradients must decrease
because their cumulative sum is finite. Therefore, we can infer that ▽D(St) tends to zero as t increases,
which means that D(S) will converge within some bound. This bound is determined by the initial function
value D(S0) and the theoretical minimum value D∗.

B Privacy Analysis

DistDD adds DPSGD to protect privacy; here, we give the privacy guarantee for DPSGD in DistDD.

First, we review the definition of differential privacy. A randomized algorithm A satisfies (ϵ, δ)-differential
privacy, if for any two adjacent data sets D and D′ (they differ in one element), and all S ⊆ Range(A),
have:

P (A(D) ∈ S) ≤ eϵP (A(D′) ∈ S) + δ (39)
Among them, eϵ represents the upper bound of privacy loss, and δ represents the probability upper bound
that the algorithm may completely violate ϵ-differential privacy.

In DistDD, DPSGD achieves differential privacy by adding noise during gradient calculation. Specifically,
for each training sample, we calculate its gradient, clip it to limit its L2 norm, and add random noise that
satisfies the Gaussian distribution. This process can be formalized as:

4

Under review as submission to TMLR

• Gradient calculation: For each samplexi, calculate the gradient of the loss functionL(θ, xi) with
respect to the model parametersθgi = ∇θL(θ, xi).

• Gradient clipping: clip each gradientgi to the maximum L2 normC, and getg̃i = gi/ max(1, ∥gi∥2
C).

• Add noise: Calculate the average value of the clipped gradient, and add noise that satisfies the
Gaussian distributionN(0, σ2C2I), whereσ is the standard deviation of the noise, I is the identity
matrix. That is, ĝ = 1

n

∑n
i=1 g̃i + N(0, σ2C2I).

The Gaussian mechanism shows that for any functionf , if we add Gaussian noise with mean0 and standard
deviationσ to its output, then we can achieve(ϵ, δ)-differential privacy, where ϵ and δ are related to the
standard deviation of the noise σ, function f in any two adjacent data sets The maximum output difference
is related to the L2 norm ∆f .

For DPSGD, each gradient is clipped to the maximum L2 norm C before adding noise, so for any two
adjacent data sets, the maximum difference in gradients (i.e., ∆f) is limited In 2C.

According to the theorem of Gaussian differential privacy, for a given δ, ϵ can be calculated by the following
formula:

ϵ =
√

2 ln(1.25/δ) · ∆f

σ
(40)

Substituting ∆f = 2C, we get:
ϵ =

√
2 ln(1.25/δ) · 2C

σ
(41)

Here, σ is the standard deviation of Gaussian noise added to the clipped gradient mean, C is the threshold
for gradient clipping, δ is defined in (ϵ, δ)-The upper bound on the probability of privacy leakage allowed in
differential privacy.

Through the above formula, we can see that ϵ (privacy loss) and the standard deviation of noise σ, the
gradient clipping threshold C and the allowed privacy leakage probability δ D. Increasing the standard
deviation of noise σ can reduce ϵ and thereby enhance privacy protection, but this may be at the expense of
model accuracy. On the contrary, reducing σ or C can improve model performance but increase the privacy
loss ϵ.

C Ablation Study

Centralized Gradient Matching DistDD

100 300 500 700 900
Communication Round

90

95

Ac
cu

ra
cy

MNIST

(a) MNIST

100 300 500 700 900
Communication Round

70

80

Ac
cu

ra
cy

FashionMNIST

(b) FashionMNIST

100 300 500 700 900
Communication Round

20

40

Ac
cu

ra
cy

CIFAR

(c) CIFAR

Figure 10: Ablation study of different Communication Rounds.

C.1 Different Nodes Number

We evaluate the performance of DistDD in response to varying degrees of node participation. In this
particular experiment, it is notable that the cumulative volume of data samples across all clients remains
unaltered. Consequently, as we increase the number of participating nodes, the number of data samples

5

Under review as submission to TMLR

Full Participation Random Participation

10 20 30 40 50 60 70 80 90 100
Participating Portion Per Round(%)

85

90

95

Ac
cu

ra
cy

MNIST

(a) MNIST

10 20 30 40 50 60 70 80 90 100
Participating Portion Per Round(%)

75

80

85

Ac
cu

ra
cy

FashionMNIST

(b) FashionMNIST

10 20 30 40 50 60 70 80 90 100
Participating Portion Per Round(%)

35

40

45

Ac
cu

ra
cy

CIFAR

(c) CIFAR

Figure 11: Ablation study of different participants portion.

allocated to each individual client simultaneously diminishes. We rely on the classification accuracy outcomes
to illuminate the performance changes, as shown in Figure 12.

To conduct the comparative analysis, we compare three distinct configurations: firstly, the local gradient
matching; secondly, DistDD featuring full participation from all nodes; and thirdly, DistDD with a 50%
random client participation scheme. The experiment results manifest a notable trend. Specifically, the
performance of DistDD with full participation exhibits a gradual decline with the amplification of node
numbers; nonetheless, this decline is relatively modest. In contrast, the performance of DistDD with
random participation shows a substantially steeper descent in accuracy.

C.2 Image number per class

In this section, we explore the impact of the number of generated images per class with a specific focus on
its effect on classification accuracy. To undertake this ablation study, we systematically vary the quantity of
images per class, encompassing the values 1, 10, 20, 30, 40, and 50. The outcomes are shown in Figure 13.

It is notable that local gradient matching reaches convergence primarily when the image count per class
ranges between 10 and 20. In contrast, DistDD exhibits a convergence behavior at a significantly higher
threshold, typically exceeding 30 images per class. This observation suggests that DistDD necessitates a
more substantial quantity of images to aggregate knowledge from the distributed clients effectively. However,
it is noteworthy that the performance of DistDD demonstrates the potential to approximate the performance
levels achieved by local gradient matching when the image count per class reaches sufficiently high values.
This disparity in the requisite image count for DistDD may be attributed to the expansive dispersion of
data across numerous clients, consequently mandating a greater number of generated images to facilitate
convergence.

Centralized Gradient Matching Full Participation Random Participation

2510 20 30 40 50 60 70 80 90 100
Distributed Node Number

50

100

Ac
cu

ra
cy

MNIST

(a) MNIST

2510 20 30 40 50 60 70 80 90 100
Distributed Node Number

50

75

Ac
cu

ra
cy

FashionMNIST

(b) FashionMNIST

2510 20 30 40 50 60 70 80 90 100
Distributed Node Number

40

60

Ac
cu

ra
cy

CIFAR

(c) CIFAR

Figure 12: Ablation study of node number.

6

Under review as submission to TMLR

Centralized Gradient Matching DistDD

1 10 20 30 40 50
Images per Class

92
94
96
98

Ac
cu

ra
cy

MNIST

(a) MNIST

1 10 20 30 40 50
Images per Class

70

75

80

Ac
cu

ra
cy

FashionMNIST

(b) FashionMNIST

1 10 20 30 40 50
Images per Class

40

60

80

Ac
cu

ra
cy

CIFAR

(c) CIFAR

Figure 13: Ablation study of different image numbers per class.

C.3 Communication Rounds

In this section, we evaluate the influence of communication rounds on the performance of DistDD with
a particular emphasis on its impact on classification accuracy. We conduct this analysis by contrasting
two configurations of DistDD one with full client participation per round and another with random
participation of 50% of the clients per round, within the context of a 20-client scenario. The results, illustrated
in Figure 10, offer the observed effects.

Evidently, DistDD with full client participation typically requires approximately 300 communication rounds
to converge. In contrast, the variant of DistDD featuring random client participation necessitates a sig-
nificantly greater number of communication rounds to achieve the same convergence. This discrepancy in
the convergence rate primarily stems from random client participation, which mandates a more extended
communication process for each client to convey and synchronize their knowledge with the central server.

C.4 Portion of Selected Clients per Round

Next, we study the effect of the proportion of selected clients per round, focusing on random participation
throughout 500 communication rounds. We maintain a constant client count of 20 while adhering to a
Dirichlet distribution parameter (dir = 1.0) for data partitioning. The proportion of participating clients is
systematically varied, ranging from 10% to 100% (representing full participation).

Noteworthy is the observation that it necessitates a participation rate of 80% within the random selective
participation scheme to achieve parity in classification accuracy with full participation. Conversely, when
the participation rate falls below the 50% threshold, the performance of DistDD markedly falls behind that
of local gradient matching. This disparity in performance underlines the significance of the participation
proportion in the context of random selection and underscores the trade-off between participation rate and
classification accuracy.

D Adding Differential Privacy Noise to DistDD

Moreover, our investigation extends to assessing the influence of incorporating differential privacy (DP)
mechanisms into our DistDD. Differential privacy has proven its efficacy in protecting individual privacy
within distributed learning frameworks, rendering it an appealing avenue for augmenting privacy assurances
among participating clients. In the context of this experimental study, we systematically vary the noise scale
parameter denoted as σ, exploring values ranging from 0.01 to 100. This comprises a comparative analysis
of DistDD’s performance in the absence of DP (referred to as the non-DP scenario) and its performance
when DP is integrated (referred to as the DP-enabled scenario).

As shown in Figure 14, our findings substantiate that when the noise scale σ surpasses the threshold of
1e-2, a pronounced detrimental effect on DistDD’s performance becomes evident. Notably, the outcome is
manifested as a substantial degradation in the system’s overall performance metrics.

7

Under review as submission to TMLR

DistDD
DistDD with DPSGD

FedAvg
FedAvg with DPSGD

1e-2 1e-1 1 10 100
Noise Scale

60
70
80
90

100

Ac
cu

ra
cy

MNIST

(a) MNIST

1e-2 1e-1 1 10 100
Noise Scale

60

70

80

90

Ac
cu

ra
cy

FashionMNIST

(b) FashionMNIST

1e-2 1e-1 1 10 100
Noise Scale

30
40
50
60
70

Ac
cu

ra
cy

CIFAR

(c) CIFAR

Figure 14: This study explores the impact of integrating differential privacy (DP) into DistDD, a system
used within distributed learning environments to enhance privacy. By adjusting the noise scale parameter,
σ, from 0.01 to 100, the study compares the performance of DistDD with and without DP. The findings
reveal that increasing σ beyond 0.01 significantly diminishes DistDD’s performance, resulting in a marked
reduction in its overall efficiency. This indicates that while DP adds a layer of privacy protection, it also
poses challenges by adversely affecting system performance when the noise level is too high.

In summary, this comprehensive exploration underscores the critical significance of judiciously configuring
the noise scale parameter when integrating differential privacy into DistDD, thus ensuring that privacy
enhancements are harmoniously balanced with the preservation of system performance and convergence
integrity.

8

	Introduction
	Related Work
	Federated Learning
	Dataset Distillation

	Methodology
	Protect Privacy
	Tackle with Mislabeling Problem

	Evaluation
	Experiment Setting
	Comparison with FedAvg
	Mislabeling Situation
	Non-iid Situation
	Use Case for DistDD

	Ablation Study
	Different Nodes Number
	Image number per class
	Communication Rounds
	Portion of Selected Clients per Round

	Discussion
	Conclusion
	Convergence Analysis
	Problem Formulation
	Assumptions
	Proof

	Privacy Analysis
	Ablation Study
	Different Nodes Number
	Image number per class
	Communication Rounds
	Portion of Selected Clients per Round

	Adding Differential Privacy Noise to DistDD

