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Abstract

Speculative decoding is a promising approach for accelerating large language
models. The primary idea is to use a lightweight draft model to speculate the
output of the target model for multiple subsequent timesteps, and then verify
them in parallel to determine whether the drafted tokens should be accepted or
rejected. To enhance acceptance rates, existing frameworks typically construct
token trees containing multiple candidates in each timestep. However, their reliance
on token-level verification mechanisms introduces two critical limitations: First, the
probability distribution of a sequence differs from that of individual tokens, leading
to suboptimal acceptance length. Second, current verification schemes begin from
the root node and proceed layer by layer in a top-down manner. Once a parent
node is rejected, all its child nodes should be discarded, resulting in inefficient
utilization of speculative candidates. This paper introduces Traversal Verification,
a novel speculative decoding algorithm that fundamentally rethinks the verification
paradigm through leaf-to-root traversal. Our approach considers the acceptance
of the entire token sequence from the current node to the root, and preserves
potentially valid subsequences that would be prematurely discarded by existing
methods. We theoretically prove that the probability distribution obtained through
Traversal Verification is identical to that of the target model, guaranteeing lossless
inference while achieving substantial acceleration gains. Experimental results
on various models and multiple tasks demonstrate that our method consistently
improves acceptance length and throughput over token-level verification.

1 Introduction

Large Language Models (LLMs) have been widely adopted due to their exceptional performance
across various natural language processing tasks [10, 25, 34] . However, the massive parameters and
the autoregressive generation scheme of transformer decoder-only [30] LLMs limit the generation
speed. Speculative decoding [19, 3] is an lossless acceleration technique which employs a lightweight
model (draft model) with fewer parameters to speculate the output tokens of the original LLM (target
model) for several future timesteps, then feed the drafted tokens into the target model in parallel.
After getting the probability distribution of the target model, speculative decoding determines the
acceptance or rejection of each token based on their probabilities in both target and draft models. If a
token is rejected, a new token will be resampled and all subsequent tokens should be discarded.

To further improve acceleration performance, existing methods [23, 4, 21, 14, 35] generate multiple
candidates at each drafting timestep, forming a tree of drafted tokens. However, these methods
generally inherit the token-level verification mechanism from vanilla speculative decoding to tree
scenarios, resulting in suboptimal acceptance lengths in tree decoding. To be more specific, firstly,
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the probability distribution of a token sequence differs from that of an individual token. Vanilla
speculative decoding determines acceptance based on per-token probabilities, which sacrifices global
optimality for sequence-level acceptance. Secondly, existing tree decoding methods start verification
from the root node of the tree, and proceed layer by layer in a top-down manner. Once a parent node
is rejected, all its child nodes will be discarded accordingly, resulting in the wasting of drafted tokens.

To address these issues, we propose a novel speculative decoding method named Traversal Verification.
Unlike existing methods, Traversal Verification starts from the leaf node and generally operates in a
bottom-up manner. If the node is accepted, the entire sequence from the current node to the root is
accepted. If rejected, the algorithm proceeds to verify the sibling nodes (or the deepest child nodes of
its siblings if they exist). If all siblings are rejected, it backtracks to the parent node. This process
repeats until either a node is accepted or all nodes in the tree are rejected.

Through Traversal Verification, we effectively resolve the limitations of existing methods. First,
we consider sequence-level probabilities instead of individual token probabilities and improve the
acceptance lengths. Second, in Traversal Verification, a parent node will be verified only after all its
child nodes have been rejected, which minimizes the wasting of drafted candidates.

We conducted experiments on Llama3 [10] series and Llama2 [29] using various tree structures. The
experiments were performed on the Spec-Bench dataset [32], which encompasses six different tasks:
multi-turn conversation, translation, summarization, question answering, mathematical reasoning,
and retrieval-augmented generation. Experimental results demonstrate that Traversal Verification
consistently outperforms existing decoding methods by 2.2%-5.7% in average acceptance length
across diverse tasks with different tree architectures. Additionally, Traversal Verification could
potentially achieve greater improvements for deeper and larger decoding trees.

We highlight the advantages of Traversal Verification as follows:

1. Full utilization of drafted tokens. Traversal Verification enhances acceptance length
and improves the utilization of drafted tokens by considering sequence-level probability
distributions and systematically traversing nodes in the token tree. To our knowledge, it is
the first verification algorithm that makes use of the whole token tree.

2. Reliable generation quality. We theoretically prove that Traversal Verification is a lossless
verification algorithm, that is, the output distribution is identical to that of the target model.
This serves as a powerful guarantee of generation quality.

3. Pronounced improvement. Experiments across various tree structures and datasets shows
that Traversal Verification outperforms token-level verification. We also rigorously prove
that Traversal Verification is theoretically optimal in the case of a single chain.

4. Minimal implementation modification. Traversal Verification serves as a plug-and-play
replacement of existing verification methods. There is no need to change other parts of
existing speculative decoding pipelines.

2 Preliminaries

2.1 Speculative Decoding

Speculative decoding, also known as speculative
sampling [19, 3], is a lossless LLM acceleration
algorithm. In speculative decoding, a draft model
first generates a chain of γ new tokens (i.e., one
token per timestep for the next γ timesteps), then
the drafted tokens are fed into the target model
in parallel to get the target distribution.
We denote the drafted token chain by αγ =
(α0, α1, . . . , αγ), where α0 represents the pre-
fix and α>0 := (α1, . . . , αγ) denotes the γ new
tokens generated by the draft model. After ob-
taining the target distribution Mb, the drafted
tokens will be verified from timestep 1 to γ fol-
lowing Algorithm 1.

Algorithm 1 Single-token verification
Input: Prefix X0; draft token X; draft dis-

tribution Ms(·|X0); target distributions
Mb(·|X0) andMb(·|X0, X).

1: Sample η ∼ U(0, 1).
2: if η < Mb(X|X0)

Ms(X|X0)
then

3: Sample Y fromMb(·|X0, X).
4: Return: X,Y.
5: else
6: Sample Y from norm([Mb −Ms]+).
7: Return: Y.
8: end if

2



Mb

Ms a b c

0.6 0.3 0.1
a 0.3 0.3 0 0
b 0.4 0.1 0.3 0
c 0.3 0.2 0 0.1

Table 1: An example of single-token verification

Root

Layer 1

Layer 2

Figure 1: An example token tree

If a token is accepted, the verification proceeds to the next timestep. Once a token is rejected, all
subsequent tokens in the chain are discarded, and a new token will be resampled at the rejection
position based on the residual probability distribution. If all γ tokens are accepted, an additional token
is sampled from the target distribution at the timestep γ + 1. The output of a drafting-verification
cycle thus consists of all accepted tokens plus the resampled or newly sampled token at the final step.

To illustrate the acceptance mechanism intuitively, consider a simplified example with a vocabulary
of three tokens: [a, b, c]. Let the target model’s probability distribution beMb = [0.3, 0.4, 0.3], and
the draft model’s distribution beMs = [0.6, 0.3, 0.1]. All possible cases are summarized in Table 1.

According to Algorithm 1, if token b is sampled, it will be accepted directly becauseMb(b) >Ms(b).
Similarly, c will be accepted if sampled. If a is sampled, the acceptance probability is Mb(a)

Ms(a)
= 0.5.

Thus, the probability of generating token a is P(sample a)× P(accept a) = 0.3, which is equal to
Mb(a). These cases correspond to the diagonal entries in Table 1, highlighted in green.

Besides being accepted, token a also faces a rejection probability of 0.5. Upon rejection, a new token
is resampled from the residual probability distribution norm([Mb−Ms]+). Specifically, we subtract
Ms fromMb and set the negative values to zero (yielding [0, 0.1, 0.2] in this example), and then
normalize the residual probabilities. Therefore, the final probabilities for b and c consist of two parts:
1) direct acceptance after sampling fromMs and 2) resampling after rejection of a, indicated in cyan
in Table 1. By this means, the final distribution is kept identical toMb.

2.2 Recursive Rejection Sampling

Recursive Rejection Sampling (RRS) samples multiple candidates at each timestep and recursively
verifies them, as described in Algorithm 2. Recent works [4, 21, 14, 35] further refine RRS into RRS
without replacement (RRSw), where the probability of a rejected token inMs is set to zero, and then
normalizeMs of the remaining candidates. RRSw prevents repeated sampling and rejection of the
same token, especially for low-temperature situations, thereby improving overall acceptance rates.

We illustrate RRSw using the same example
in Table 1. Suppose that token a is sam-
pled and rejected. The residual distribution
becomes M′

b = norm([Mb − Ms]+) =
[0, 1/3, 2/3], while the new draft distribution
M′

s = norm(Ms(a) = 0) = [0, 3/4, 1/4].
Then we sample a new token from M′

s and
repeat the speculative decoding scheme: If to-
ken b is sampled, it is accepted with probability
M′

b(b)
M′

s(b)
= 4/9. If c is sampled, it is always ac-

cepted sinceM′
b(c) >M′

s(c). For scenarios
with more candidates, this process iterates until
all candidates are verified.
Combining chain-based speculative decoding
with multi-candidate per timestep yields tree
decoding. In the current framework, candidate
tokens are verified layer by layer from shallow
to deep: if a node is rejected, we continue to
verify its siblings; the current node itself and all
its children are discarded. If a node is accepted,
the verification proceeds to its child nodes in
the deeper layer.

Algorithm 2 Recursive Rejection Sampling
Input: Prefix X0; draft distribution Ms(·|X0);

k drafted candidates {Xi}ki=1 from
Ms(·|X0); target distributions Mb(·|X0)
andMb(·|X0, Xi), ∀1 ⩽ i ⩽ k.

1: Initialize residualM′
b withMb and draftM′

s
withMs.

2: for i=1,. . . ,k do
3: if η <

M′
b(Xi)

M′
s(Xi)

then
4: Sample Y fromMb(·|X0, Xi).
5: Return: Xi, Y .
6: else
7: M′

b ← norm([M′
b −M′

s]+).
8: if without replacement then
9: M′

s ← norm(M′
s(Xi) = 0).

10: end if
11: end if
12: end for
13: Sample Y fromM′

b(·|X0).
14: Return: Y .
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We demonstrate the token-level verification order using a simplified two-layer decoding tree, as
shown in Figure 1. In this tree, node X1 is verified first. If accepted, we proceed to its children
(X3 and X4) and verify them sequentially. If X1 is rejected, we discard X1, X3, X4, and go to X2.
If X2 is accepted, we continue to verify X5, otherwise, since all the sampled tokens are rejected, we
will resample a new token from the residual probability distribution of Layer 1.

3 Method

In this section, we first introduce Traversal Verification. Subsequently, we illustrate its distinctions
from token-level tree decoding (vanilla speculative decoding with RRSw) through an intuitive example
(see Figure 2). In the last part of this section, we discuss the theoretical guarantees, such as the
losslessness of Traversal Verification, and its optimality in single chain scenarios.

3.1 Traversal Verification

We present Traversal Verification in Algorithm 3.

Algorithm 3 Traversal Verification
Input: Prefix X0 as the root; a valid sampling tree T on draft distribution Ms; for all chains
∀α = (X0, . . . , Xγα

) ⊂ T , draft distributions ∀i < γα, Ms(·|Xi) and target distributions
∀i ⩽ γα,Mb(·|Xi).

1: Initialize: For all chains ∀α = (X0, . . . , Xγα
) ⊂ T , let piniα (X0) = 1 and then recursively set

the acceptance rates for all nodes of α,

piniα (Xi) = min

{
piniα (Xi−1)

Mb(Xi|Xi−1)

Ms(Xi|Xi−1)
, 1

}
, 1 ⩽ i ⩽ γα.

2: Set pα(Xi) = piniα (Xi), ∀Xi ∈ α,∀α ⊂ T , and the acceptance length τ = 0
3: while T ̸= ∅ do
4: Select α = (X0, . . . , Xγα

) ⊂ T from root to the first leaf node, with γα being its depth.
5: Sample η ∼ U(0, 1).
6: if η < pα(Xγα

) then
7: τ = γα and Xτ = (X0, . . . , Xγα

).
8: break.
9: else

10: Delete the last node of α from the tree T , that is T ← T − {Xγα}.
11: Set the residual and draft distributions by (1) and (2), i.e.,

M′
b(x|Xγα−1) = norm([pα(Xγα−1)Mb(x|Xγα−1)−Ms(x|Xγα−1)]+),

M′
s(x|Xγα−1) = norm(M′

s(Xγα
|Xγα−1) = 0).

12: Set p′α(Xγα−1) as (3) and then modify

pα(Xγα−1)← p′α(Xγα−1),

Mb(x|Xγα−1)←M′
b(x|Xγα−1), Ms(x|Xγα−1)←M′

s(x|Xγα−1), ∀x ∈ X

13: Update the acceptance rates for remaining chains β = (x0, . . . , xγβ
) ⊂ T with the starting

nodes xγα−1 = Xγα−1,

pβ(xi) = min

{
pβ(xi−1)

Mb(xi|xi−1)

Ms(xi|xi−1)
, 1

}
, γα ⩽ i ⩽ γβ .

14: end if
15: end while
16: Sample Y fromMb(·|Xτ ).
17: Return: Xτ , Y .
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Residual distribution in Algorithm 3 (Line 11): ∀x ∈ X ,

M′
b(x|Xγα−1) =

[pα(Xγα−1) · Mb(x|Xγα−1)−Ms(x|Xγα−1)]+∑
x[pα(Xγα−1) · Mb(x|Xγα−1)−Ms(x|Xγα−1)]+

. (1)

Modified draft distribution in Algorithm 3 (Line 11): ∀x ∈ X ,

M′
s(Xγα |Xγα−1) = 0 andM′

s(x|Xγα−1)← Ms(x|Xγα−1)

1−Ms(Xγα |Xγα−1)
if x ̸= Xγα . (2)

Acceptance probability in Algorithm 3 (Line 12):

p′α(Xγα−1) =

∑
x[pα(Xγα−1) · Mb(x|Xγα−1)−Ms(x|Xγα−1)]+∑

x[pα(Xγα−1) · Mb(x|Xγα−1)−Ms(x|Xγα−1)]+ + 1− pα(Xγα−1)
(3)

Traversal Verification exhibits two key distinctions from token-level tree decoding:

1. Bottom-up verification. Traversal Verification generally operates in a bottom-up manner,
starting verification from leaf nodes (i.e., deeper layers) and progressing toward the root,
while token-level tree decoding follows a top-down approach, verifying nodes layer by layer
from shallow to deep. Details about traversal order are provided in Appendix E.

2. Sequence-level acceptance. Traversal Verification incorporates the joint probability dis-
tribution of the token sequence, rather than relying solely on per-token probabilities. The
acceptance rate at each node represents the sequence-level acceptance rate from the current
node to the root. Thus, once a token is accepted, the entire sequence from the current node
to root is accepted.

3.2 An Intuitive Example of Traversal Verification

We now demonstrate Traversal Verification using the same illustrative case as introduced in Section
2.2. Following Algorithm 3, for the tree structure in Figure 1, the traversal order is X3 → X4 →
X1 → X5 → X2. Consider a tree with nodes sampled as [X1, X2, X3, X4, X5] = [a, c, b, c, a] as an
intuitive example. We present the detailed process of Traversal Verification in Figure 2.

Root 0.3 0.4 0.3

0.6 0.3 0.1

Root Root Root Root 

If rejected If rejected If rejected If rejected

Figure 2: The traversal order of verifying a sampling tree.

We define r(Xi) = Mb(Xi)
Ms(Xi)

for simplification. For the first chain X1X3, the acceptance rate of
Traversal Verification is

Ptraversal(accept X1X3) = min (min(r(X1), 1) · r(X3), 1) = min(0.5 · 0.4/0.3, 1) ≈ 0.667,

However, in token-level verification, the acceptance probability is only

Ptoken-level(accept X1X3) = min(r(X1), 1) ·min(r(X3), 1) = 0.5.

When X1X3 is rejected, we delete the last node X3 and then the first chain becomes X1X4. According
to Line 11-13 in Algorithm 3, since [p(X1)Mb(a)−Ms(a)]+ = 0 and [p(X1)Mb(c)−Ms(c)]+ =
0.05, the new p′(X1) and the acceptance rate of chain X1X4 are updated as

p′(X1) =
0.05

0.05 + 1− 0.5
≈ 0.091,

and

P(accept X1X4) = min

(
p′(X1) ·

M′
b(X4)

M′
s(X4)

, 1

)
≈ 0.637.
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If X4 is rejected, the residual acceptance probability of X1, namely p′(X1), is reduced to zero,
indicating that it cannot be accepted any more and should be removed immediately.

After node X1 is discarded, the draft and target distributions of token-level verification and Traversal
Verification in Layer 1 return to the same starting line once again. Then for the single chain X2X5,
Traversal Verification still expects longer acceptance than token-level verification (see Theorem 3.4).

3.3 Theoretical Guarantees

In this section, we formally establish the theoretical guarantees of Traversal Verification. Specifically,
we prove that the following statements hold for Traversal Verification:

1. Traversal Verification is a valid (i.e., lossless) tree verification algorithm, which means the
probability distribution of output sequences is identical to that of the target model.

2. In the special case where the sampling tree is a single chain, Traversal Verification achieves
the optimal upper-bound of expectation of acceptance length.

We first formally define the decoding tree under autoregressive generation as follows:
Definition 3.1 (Decoding tree under autoregressive generation). LetMs be a given distribution
and T be a decoding tree rooted at X0 under autoregressive generation. For all chains v =
(X0, . . . , Xγv

) ⊂ T where γv denotes the depth of chain v, if all child nodes of v are generated
according to the conditional distributionMs(·|v) (with or without replacement), then the sampling
tree T is termed a decoding tree based onMs under autoregressive generation.

For brevity, we hereafter refer to a tree satisfying the above definition as a decoding tree.

Given an decoding tree T , we prove that Traversal Verification serves as a valid tree verification
algorithm. A valid tree verification algorithm is defined as follows:
Definition 3.2 (Valid tree verification algorithm). Let T be a decoding tree defined as Definition
3.1. For all chains v = (X0, . . . , Xγv

) ⊂ T with depth γv, a tree verification algorithm Aver takes
the tree T , draft model distributionsMs(·|Xi), ∀i < γv and target model distributionsMb(·|Xi),
∀i ⩽ γv as inputs, and outputs an accept chain Xτ = (X0, . . . , Xτ ) ⊂ T where τ ⩽ maxv⊂T γv
and an additional token Y .

The tree verification algorithm Aver is called valid if its output distribution satisfies

(Xτ , Y ) = Aver(T,Ms,Mb) ∼Mb(·|X0), (4)

whereMb(X0|X0) = 1.

Additionally, the tree verification Aver is also called a valid chain verification algorithm if T is a
single chain and Aver satisfies (4).

For example, SpecInfer [23, Theorem 4.2] is a valid tree verification algorithm. In the case where the
sampling tree degenerates into a single chain, both the vanilla token verification [19, Appendix.A]
and Block Verification [27, Theorem 1] are valid chain verifications.

We now claim that Traversal Verification is a valid tree verification algorithm and is an optimal valid
chain verification algorithm with T being a single chain.
Theorem 3.3 (Losslessness of Traversal Verification). Traversal Verification (Algorithm 3) is a valid
tree verification algorithm.
Theorem 3.4. When the sampling tree reduces to one single chain, for any valid chain verification
algorithm VERIFY in Definition 3.2, let Ntraversal, Nblock and Nverify be the number of accepted
tokens in Traversal Verification, Block Verification [27] and VERIFY, respectively, then for any given
distributionsMs,Mb and draft chain T , we have

E[Ntraversal] = E[Nblock] ⩾ E[Nverify],

where E denotes the expectation taken over the randomness of draft chain T and internal random
variables utilized within the verification algorithms.

Discussions on theoretical foundations and design motivation of Traversal Verification. The
core idea of proving the losslessness (Theorem 3.3) of Traversal Verification lies in exploiting its
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self-similarity. The self-similarity of Traversal Verification implies that, for any parent node A in
the given sampling tree T , before determining the acceptance of A, all its descendant nodes have
already been processed through the same traversal mechanism. In other words, every local subtree
within the sampling tree T essentially operates as a scaled-down instance of the Traversal Verification
mechanism. Consequently, we can employ mathematical induction on the number of descendant
nodes to establish the critical Lemma A.2, from which Theorem 3.3 (the lossless theorem) directly
follows as a corollary.

For the single-chain optimality of Traversal Verification (Theorem 3.4), the key proof idea is to
ensure that Traversal Verification achieves the highest possible acceptance probability at each node,
aligning with Block Verification. Assume that the acceptance rate for a parent node A is P (A). As
a bottom-up verification framework, the target probability distribution for child nodes of A should
be P (A)Mb. By introducing a pseudo-child node with target probability (1− P (A)), we can apply
RRSw to transport the draft distributionMs to the target distribution P (A)Mb combining with
(1 − P (A)). We refer to the above process as the sequence-level RRSw method. Comprehensive
details are provided in Appendix F. This motivation directly leads to the formulations (1)–(3) of
Traversal Verification. Since Block Verification is an optimal valid chain verification algorithm [27,
Theorem 2], Traversal Verification inherits this optimality in the single-chain case (see Theorem 3.4).

4 Experiments

4.1 Experimental Setup

Target LLMs and draft model. We mainly conduct experiments on the Llama3 [10] series, using
Llama3.2-1B-Instruct as the draft model and Llama3.1-8B-Instruct as the target model. We also
include Llama-68M [23] with Llama2-7b [29] as the draft and target model, which is widely adopted
in existing speculative decoding researches [4, 12, 13, 26].

Tasks. We perform experiments on the Spec-Bench dataset [32], which includes 80 instances
from each of six distinct domains: multi-turn conversation (MT-Bench [36]), translation (WMT14
DE-EN [1]), summarization (CNN/Daily Mail [24]), question answering (Natural Questions [18]),
Mathematical reasoning (GSM8K [5]), retrieval-augmented generation (DPR [16]).

Metrics. We evaluate the performance of our method using two metrics: acceptance length and
token generation speed. Acceptance length is the number of tokens generated per drafting-verification
cycle, which reflects the theoretical performance of the verification method. We also include the actual
throughput for a comprehensive comparison. It is worth noting that there may be slight variations in
acceptance length according to differences in statistical methods, and we provide detailed discussions
and additional experimental results on this issue in Appendix D.

Implementation. For token-level tree verification, we adopt the RRSw implementation in EAGLE
[21] from Spec-Bench [32] open source repository. All experiments are conducted on a single
NVIDIA RTX A6000 GPU with PyTorch backend. Due to inherent randomness in sampling, we
conduct three independent runs for each case and report the average as the result.

Measurement of Generation Quality. Traversal Verification is theoretically a lossless speculative
decoding technique, which suggests that evaluating its generation quality should not be mandatory.
However, recognizing that some readers may seek assurance regarding this guarantee, we present
the measurements of generation quality as a supporting reference for losslessness. Please consult
Appendix C for the detailed experimental findings.

4.2 Overall Effectiveness

We present the acceptance lengths and throughput of two combinations of draft and target model,
namely Llama3.2-1B-Instruct with Llama3.1-8B-Instruct and Llama-68M with Llama2-7B in Table 2
and Table 3. For chain and binary tree, we set the depth at 5, which is equal to the maximum depth of
EAGLE sparse tree. Tok.V denotes token-level verification and Tra.V denotes Traversal Verification.
The acceptance lengths are rounded to 2 decimal places, and we also provide the standard errors. ∆
denotes the relative improvement of Traversal Verification over token-level verification. The baseline
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Table 2: Acceptance length and throughput on Llama3.2-1B-Instruct with Llama3.1-8B-Instruct.
Llama3.2-1B-Instruct (draft) & Llama3.1-8B-Instruct (target) Temperature=1

Chain Binary Tree EAGLE Sparse Tree

Tasks Tok.V Tra.V ∆ Tok.V Tra.V ∆ Tok.V Tra.V ∆
Multi-turn 3.95±0.03 4.09±0.03 3.5% 4.64±0.05 4.76±0.04 2.6% 4.53±0.02 4.67±0.02 3.1%
Translation 3.50±0.02 3.53±0.04 1.0% 4.28±0.02 4.43±0.03 3.4% 4.16±0.04 4.27±0.03 2.6%

Sum. 3.66±0.02 3.76±0.03 2.6% 4.51±0.02 4.64±0.02 2.7% 4.32±0.03 4.46±0.03 3.1%
QA 3.51±0.02 3.68±0.03 4.7% 4.32±0.05 4.40±0.04 2.0% 4.19±0.05 4.31±0.06 2.9%

Math 4.61±0.05 4.70±0.03 1.8% 5.37±0.03 5.39±0.05 0.4% 5.13±0.01 5.21±0.02 1.5%
RAG 4.05±0.04 4.17±0.05 3.1% 4.63±0.02 4.76±0.06 2.8% 4.60±0.03 4.68±0.04 1.7%

Avg. Accept. 3.88±0.02 3.99±0.01 2.8% 4.63±0.03 4.73±0.01 2.2% 4.49±0.02 4.60±0.02 2.4%
Avg. Token/s 51.2±1.2 52.5±1.1 2.5% 54.0±0.6 54.9±1.2 1.7% 57.3±1.3 58.5±0.8 2.1%

Table 3: Acceptance length and throughput on Llama-68M with Llama2-7B.
Llama-68M (draft) & Llama2-7B (target) Temperature=1

Chain Binary Tree EAGLE Sparse Tree

Tasks Tok.V Tra.V ∆ Tok.V Tra.V ∆ Tok.V Tra.V ∆
Multi-turn 2.05±0.05 2.16±0.03 5.5% 2.47±0.01 2.59±0.01 4.7% 2.55±0.02 2.70±0.02 5.6%
Translation 1.97±0.05 2.10±0.05 6.3% 2.38±0.01 2.43±0.03 2.1% 2.49±0.01 2.51±0.03 0.9%

Sum. 1.77±0.04 1.86±0.05 4.9% 2.14±0.01 2.27±0.03 5.8% 2.25±0.02 2.36±0.02 4.7%
QA 2.07±0.01 2.19±0.02 5.6% 2.59±0.05 2.71±0.01 4.8% 2.63±0.02 2.69±0.02 2.2%

Math 2.01±0.05 2.15±0.04 7.0% 2.49±0.05 2.67±0.06 7.0% 2.57±0.02 2.72±0.01 6.0%
RAG 2.09±0.05 2.19±0.03 4.8% 2.56±0.05 2.69±0.05 5.0% 2.63±0.02 2.71±0.06 3.2%

Avg. Accept. 1.99±0.01 2.10±0.01 5.7% 2.44±0.03 2.56±0.01 4.9% 2.52±0.01 2.62±0.01 3.8%
Avg. Token/s 58.0±0.7 60.8±0.8 4.8% 59.4±0.8 61.6±0.6 3.7% 69.1±0.9 71.2±1.0 3.0%

generation speed without speculative decoding for Llama3.1-8B-Instruct is 34.5±0.1 token/s and for
Llama2-7B is 37.3±0.1 token/s, and the speedup ratio can be calculated accordingly.

As can be observed from the results, compared with token-level verification, Traversal Verification
achieves an average improvement in acceptance length of 2.2% to 5.7% across different tasks, tree
architectures, and combinations of draft and target models. The performance gains from Traversal
Verification exhibit variability depending on the specific configurations of draft and target models.

Since Traversal Verification operates through a bottom-up verification mechanism across the entire
tree, it potentially introduces additional computational overhead compared to token-level verifica-
tion. Consequently, the actual throughput improvement is slightly lower than the improvement in
acceptance length. This issue can be mitigated through more optimized implementation.

4.3 Impact of Chain Depth and Tree Size

Since Traversal Verification considers the joint probability of the entire sequence, it is intuitive that
the performance improvement will become more pronounced as the tree size and depth increase.
To illustrate these effects, we perform experiments across varying chain depths and tree sizes.
Specifically, for chain decoding, we conduct experiments at depths of 2, 4, 6, and 8. For tree decoding,
we employ binary trees from depths of 2 to 5 (corresponding to trees with 23-1, 24-1, 25-1, and 26-1
nodes, respectively).

As shown in Figure 3, the advantage of Traversal Verification grows progressively with increasing
chain depth and tree size. In specialized scenarios (e.g., model offloading) where large tree sizes
are permissible (for example, Sequoia [4] utilizes trees with 768 nodes and depth exceeding 20),
Traversal Verification is expected to demonstrate even greater performance gains.
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Figure 3: Acceptance lengths and improvements under different chain depths and tree sizes.

4.4 Impact of Temperature

We investigate the impact of temperature on Traversal Verification. Intuitively, as the temperature
decreases (i.e., the probability distribution becomes more concentrated), the performance gap between
token-level verification and Traversal Verification narrows. Conversely, at higher temperatures,
Traversal Verification demonstrates more pronounced advantages.

Table 4: Acceptance lengths under different temperature.
Chain Binary Tree EAGLE Sparse Tree

Temp. Tok.V Tra.V ∆ Tok.V Tra.V ∆ Tok.V Tra.V ∆
0.2 4.16±0.01 4.20±0.01 1.0% 5.01±0.02 5.07±0.02 1.2% 4.77±0.03 4.84±0.01 1.5%
0.4 4.14±0.02 4.20±0.02 1.4% 5.00±0.01 5.06±0.01 1.2% 4.76±0.02 4.83±0.02 1.5%
0.6 4.11±0.02 4.17±0.03 1.5% 4.92±0.03 5.00±0.01 1.5% 4.71±0.01 4.78±0.01 1.5%
0.8 4.02±0.02 4.11±0.01 2.2% 4.81±0.02 4.90±0.02 1.7% 4.64±0.02 4.72±0.01 1.7%
1.0 3.88±0.02 3.99±0.01 2.8% 4.63±0.03 4.73±0.01 2.2% 4.49±0.02 4.60±0.02 2.4%

Table 4 presents the acceptance length of Traversal Verification and token-level verification across
different temperature settings, using Llama3.2-1B-Instruct and Llama3.1-8B-Instruct as the draft
and target models, respectively. The depths of chain and binary tree are set to 5. The superiority
of Traversal Verification increases with rising temperature, aligning with our intuitive expectations.
It is worth noting that Llama2-7B may generate repeated tokens at lower temperatures, leading to
unreliable acceptance length measurements; therefore, we omit the results for Llama2 in this analysis.

5 Related work

Significant efforts have been devoted to accelerating LLMs. Some approaches directly reduce memory
access and computational costs through techniques such as quantization [8, 9, 33, 22] and knowledge
distillation [11, 17, 37]. Some other works focus on architectural innovations, such as Mixture of
Experts (MoE) [15, 7], where only a subset of model parameters is activated during inference, thereby
improving inference speed.

Speculative decoding [3, 19] introduces a distinct drafting-verification paradigm that leaves the LLM
itself unchanged. Researches on speculative decoding primarily focus on two directions. 1) Better
alignment between the draft and the target model, such as EAGLE [21, 20] and Medusa [2] series.
2) Better verification strategies, such as innovations in tree structures [20, 4, 31] and verification
algorithms, which are more closely related to this work.

In chain decoding scenarios, Block Verification [27] and Asps [12] identify the sub-optimality in
token-level verification and propose enhancements. SpecTr [28] extends chain decoding to multi-
candidate settings by formulating it as an optimal transport problem solved via linear programming,
while SpecInfer [23] employs Recursive Rejection Sampling for multi-candidate situations. Sub-
sequent works refine this approach into RRSw (recursive rejection sampling without replacement)
[4, 21, 14, 35], preventing repeated sampling and rejection of identical tokens, thereby improving
acceptance rates. Beyond standard sampling, SpecHub [26] and Greedy Sampling [13] adopt hybrid
strategies: deterministically selecting top-K candidates with the highest probability and sampling
other candidates probabilistically, achieving higher acceptance rates in specific scenarios.
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6 Conclusion

This paper proposes Traversal Verification, a novel speculative decoding algorithm that significantly
enhances the acceptance length, thereby improving the throughput of LLM inference. We rethink the
limitations of existing token-level verification methods and adopt a bottom-up verification strategy
that allows sequence-level acceptance and full utilization of drafted tokens. We theoretically prove
the losslessness of Traversal Verification and its optimality when the decoding tree degenerates
into a single chain. Experimental results show that Traversal Verification consistently improves the
acceptance length and throughput of over existing speculative tree decoding methods across various
tasks, tree structures, and combinations of draft and target models.

Acknowledgments and Disclosure of Funding

This project is fully funded by Lenovo. We would like to express special thanks to the Lenovo AI Lab
and the Lenovo Model Factory Team for their valuable support in providing computing resources.

References
[1] Ondrej Bojar, Christian Buck, Christian Federmann, Barry Haddow, Philipp Koehn, Johannes Leveling,

Christof Monz, Pavel Pecina, Matt Post, Herve Saint-Amand, Radu Soricut, Lucia Specia, and Ales
Tamchyna. 2014. Findings of the 2014 workshop on statistical machine translation. In Proceedings of
the Ninth Workshop on Statistical Machine Translation, WMT@ACL 2014, June 26-27, 2014, Baltimore,
Maryland, USA.

[2] Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng, Jason D. Lee, Deming Chen, and Tri Dao. 2024.
Medusa: Simple LLM inference acceleration framework with multiple decoding heads. In Proceedings of
the International Conference on Machine Learning.

[3] Charlie Chen, Sebastian Borgeaud, Geoffrey Irving, Jean-Baptiste Lespiau, Laurent Sifre, and John
Jumper. 2023. Accelerating large language model decoding with speculative sampling. arXiv preprint
arXiv:2302.01318.

[4] Zhuoming Chen, Avner May, Ruslan Svirschevski, Yuhsun Huang, Max Ryabinin, Zhihao Jia, and Beidi
Chen. 2024. Sequoia: Scalable and robust speculative decoding. In Advances in Neural Information
Processing Systems 38: Annual Conference on Neural Information Processing Systems 2024, NeurIPS
2024, Vancouver, BC, Canada, December 10 - 15, 2024.

[5] Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John Schulman. 2021.
Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168.

[6] Gheorghe Comanici et al. 2025. Gemini 2.5: Pushing the frontier with advanced reasoning, multimodality,
long context, and next generation agentic capabilities.

[7] DeepSeek-AI, Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang
Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Daya Guo, Dejian Yang, Deli Chen,
Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting Chen, Guowei
Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Haowei Zhang, Honghui Ding, Huajian Xin,
Huazuo Gao, Hui Li, Hui Qu, J. L. Cai, Jian Liang, Jianzhong Guo, Jiaqi Ni, Jiashi Li, Jiawei Wang, Jin
Chen, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, Junxiao Song, Kai Dong, Kai Hu, Kaige
Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Lei Xu, Leyi Xia, Liang Zhao,
Litong Wang, Liyue Zhang, Meng Li, Miaojun Wang, Mingchuan Zhang, Minghua Zhang, Minghui Tang,
Mingming Li, Ning Tian, Panpan Huang, Peiyi Wang, Peng Zhang, Qiancheng Wang, Qihao Zhu, Qinyu
Chen, Qiushi Du, R. J. Chen, R. L. Jin, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, Runxin
Xu, Ruoyu Zhang, Ruyi Chen, S. S. Li, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shaoqing Wu,
Shengfeng Ye, Shengfeng Ye, Shirong Ma, Shiyu Wang, Shuang Zhou, Shuiping Yu, Shunfeng Zhou,
Shuting Pan, T. Wang, Tao Yun, Tian Pei, Tianyu Sun, W. L. Xiao, and Wangding Zeng. 2024. Deepseek-v3
technical report. arXiv preprint arXiv:2412.19437.

[8] Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. 2022. LLM.int8(): 8-bit matrix
multiplication for transformers at scale. arXiv preprint arXiv:2208.07339.

[9] Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. 2023. GPTQ: Accurate post-training
quantization for generative pre-trained transformers. arXiv preprint arXiv:2210.17323.

10



[10] Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, et al. 2024. The
llama 3 herd of models. arXiv preprint arXiv:2407.21783.

[11] Yuxian Gu, Li Dong, Furu Wei, and Minlie Huang. 2024. MiniLLM: Knowledge distillation of large
language models. In Proceedings of the International Conference on Learning Representations.

[12] Zhengmian Hu and Heng Huang. 2024. Accelerated speculative sampling based on tree monte carlo. In
Forty-first International Conference on Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024.

[13] Zhengmian Hu, Tong Zheng, Vignesh Viswanathan, Ziyi Chen, Ryan A. Rossi, Yihan Wu, Dinesh
Manocha, and Heng Huang. 2025. Towards optimal multi-draft speculative decoding. arXiv preprint
arXiv:2502.18779.

[14] Wonseok Jeon, Mukul Gagrani, Raghavv Goel, Junyoung Park, Mingu Lee, and Christopher Lott. 2024.
Recursive speculative decoding: Accelerating LLM inference via sampling without replacement. arXiv
preprint arXiv:2402.14160.

[15] Albert Q. Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris Bamford,
Devendra Singh Chaplot, Diego de Las Casas, Emma Bou Hanna, Florian Bressand, Gianna Lengyel,
Guillaume Bour, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-Anne Lachaux, Pierre
Stock, Sandeep Subramanian, Sophia Yang, Szymon Antoniak, Teven Le Scao, Théophile Gervet, Thibaut
Lavril, Thomas Wang, Timothée Lacroix, and William El Sayed. 2024. Mixtral of experts. arXiv preprint
arXiv:2401.04088.

[16] Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi Chen,
and Wen-tau Yih. 2020. Dense passage retrieval for open-domain question answering. In Proceedings
of the 2020 Conference on Empirical Methods in Natural Language Processing, EMNLP 2020, Online,
November 16-20, 2020.

[17] Jongwoo Ko, Sungnyun Kim, Tianyi Chen, and Se-Young Yun. 2024. Distillm: Towards streamlined
distillation for large language models. In Proceedings of the International Conference on Machine
Learning.

[18] Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur P. Parikh, Chris Alberti,
Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, Kristina Toutanova, Llion Jones, Matthew
Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob Uszkoreit, Quoc Le, and Slav Petrov. 2019. Natural
questions: a benchmark for question answering research. Trans. Assoc. Comput. Linguistics.

[19] Yaniv Leviathan, Matan Kalman, and Yossi Matias. 2023. Fast inference from transformers via speculative
decoding. In International Conference on Machine Learning, ICML 2023, 23-29 July 2023, Honolulu,
Hawaii, USA.

[20] Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. 2024. EAGLE-2: faster inference of language
models with dynamic draft trees. In Proceedings of the 2024 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2024, Miami, FL, USA, November 12-16, 2024.

[21] Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. 2024. EAGLE: speculative sampling requires
rethinking feature uncertainty. In Forty-first International Conference on Machine Learning, ICML 2024,
Vienna, Austria, July 21-27, 2024.

[22] Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan Xiao,
Xingyu Dang, Chuang Gan, and Song Han. 2024. AWQ: activation-aware weight quantization for on-device
LLM compression and acceleration. In Proceedings of the Annual Conference on Machine Learning and
Systems.

[23] Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao Cheng, Zeyu Wang, Zhengxin Zhang, Rae Ying Yee
Wong, Alan Zhu, Lijie Yang, Xiaoxiang Shi, Chunan Shi, Zhuoming Chen, Daiyaan Arfeen, Reyna
Abhyankar, and Zhihao Jia. 2024. Specinfer: Accelerating large language model serving with tree-based
speculative inference and verification. In Proceedings of the 29th ACM International Conference on
Architectural Support for Programming Languages and Operating Systems, Volume 3, ASPLOS 2024, La
Jolla, CA, USA, 27 April 2024- 1 May 2024.

[24] Ramesh Nallapati, Bowen Zhou, Cícero Nogueira dos Santos, Çaglar Gülçehre, and Bing Xiang. 2016.
Abstractive text summarization using sequence-to-sequence rnns and beyond. In Proceedings of the
20th SIGNLL Conference on Computational Natural Language Learning, CoNLL 2016, Berlin, Germany,
August 11-12, 2016.

[25] OpenAI. 2023. GPT-4 technical report. arXiv preprint arXiv:2303.08774.

11



[26] Ryan Sun, Tianyi Zhou, Xun Chen, and Lichao Sun. 2024. Spechub: Provable acceleration to multi-draft
speculative decoding. In Proceedings of the 2024 Conference on Empirical Methods in Natural Language
Processing, EMNLP 2024, Miami, FL, USA, November 12-16, 2024.

[27] Ziteng Sun, Uri Mendlovic, Yaniv Leviathan, Asaf Aharoni, Jae Hun Ro, Ahmad Beirami, and
Ananda Theertha Suresh. 2025. Block verification accelerates speculative decoding. In The Thirteenth
International Conference on Learning Representations.

[28] Ziteng Sun, Ananda Theertha Suresh, Jae Hun Ro, Ahmad Beirami, Himanshu Jain, and Felix X. Yu. 2023.
Spectr: Fast speculative decoding via optimal transport. In Advances in Neural Information Processing
Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New
Orleans, LA, USA, December 10 - 16, 2023.

[29] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh
Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao,
Xavier Martinet, Todor Mihaylov, Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy
Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan
Subramanian, Xiaoqing Ellen Tan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin
Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien
Rodriguez, Robert Stojnic, Sergey Edunov, and Thomas Scialom. 2023. Llama 2: Open foundation and
fine-tuned chat models.

[30] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In Advances in Neural Information Processing
Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017,
Long Beach, CA, USA.

[31] Jikai Wang, Yi Su, Juntao Li, Qingrong Xia, Zi Ye, Xinyu Duan, Zhefeng Wang, and Min Zhang. 2025.
Opt-tree: Speculative decoding with adaptive draft tree structure. Trans. Assoc. Comput. Linguistics.

[32] Heming Xia, Zhe Yang, Qingxiu Dong, Peiyi Wang, Yongqi Li, Tao Ge, Tianyu Liu, Wenjie Li, and
Zhifang Sui. 2024. Unlocking efficiency in large language model inference: A comprehensive survey of
speculative decoding. In Findings of the Association for Computational Linguistics, ACL 2024, Bangkok,
Thailand and virtual meeting, August 11-16, 2024.

[33] Guangxuan Xiao, Ji Lin, Mickaël Seznec, Hao Wu, Julien Demouth, and Song Han. 2023. SmoothQuant:
Accurate and efficient post-training quantization for large language models. In Proceedings of the
International Conference on Machine Learning.

[34] An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan Li,
Dayiheng Liu, Fei Huang, et al. 2024. Qwen2 technical report. arXiv preprint arXiv:2407.10671.

[35] Sen Yang, Shujian Huang, Xinyu Dai, and Jiajun Chen. 2024. Multi-candidate speculative decoding. arXiv
preprint arXiv:2401.06706.

[36] Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang, Joseph E. Gonzalez, and Ion Stoica. 2023. Judging
llm-as-a-judge with mt-bench and chatbot arena. In Advances in Neural Information Processing Systems
36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA,
USA, December 10 - 16, 2023.

[37] Qihuang Zhong, Liang Ding, Li Shen, Juhua Liu, Bo Du, and Dacheng Tao. 2024. Revisiting knowledge
distillation for autoregressive language models. In Proceedings of the Annual Meeting of the Association
for Computational Linguistics.

12



NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
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Justification: We are sure the abstract and introduction accurately reflect the paper’s contri-
butions and scope.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss the limitations of our work in Appendix G.
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• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
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violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.
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only tested on a few datasets or with a few runs. In general, empirical results often
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Justification: We have discussed the proposed assumptions and theoretical results in Section
3.3, and provided the formal proofs in Appendix A and Appendix B.
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• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if
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• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
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Justification: Our algorithm is demonstrated in Algorithm 3. We have provided the detailed
experimental setups in Section 4.1. The existing assets related to this paper have been listed
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
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(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: The entire codebase is proprietary due to our company policy, but maybe we
are able to release a portion of it in the future if permitted.
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• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
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• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We have provided the detailed experimental settings in Section 4.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We have provided the error bars in our results in Section 4.
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error
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error rates).
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they were calculated and reference the corresponding figures or tables in the text.
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puter resources (type of compute workers, memory, time of execution) needed to reproduce
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• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We are sure our research conforms with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We have provided the elaboration of broader impacts in Appendix H.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have provided the assets related to this paper in Appendix I.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
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• The answer NA means that the paper does not release new assets.
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asset is used.
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Answer: [NA]
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• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
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or other labor should be paid at least the minimum wage in the country of the data
collector.
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such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
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• The answer NA means that the paper does not involve crowdsourcing nor research with
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: This paper studies the acceleration algorithm (speculative decoding) of LLMs.
We use open-source LLMs as the draft and target model in speculative decoding. We
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for what should or should not be described.
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A Formal Proof of Losslessness of Traversal Verification

We first prove a necessary and sufficient condition for a valid tree verification algorithm (Definition
3.2). Our proof technique is analogous to [27, Lemma 2 in Appendix.B] and extends the original
lemma to a tree-structured case.
Lemma A.1. ∀Ms,Mb, let T be a decoding tree rooted at X0 base on Ms, and γmax :=
maxv⊂T γv be the maximum depth along all chains in T . The output of a tree verification algorithm
Aver is denoted as

(Xτ , Y ) = Aver(T,Ms,Mb).

Let Zγmax = (Z0, Z1, . . . , Zγmax
) be a sequence defined as follows:

Zγmax =

{
Xτ , τ = γmax

(Xτ , Y, Z>τ+1), τ < γmax
,

with Z>τ+1 := (Zτ+2, . . . , Zγmax) generated fromMb(·|Xτ , Y ). Then the tree verification algo-
rithm Aver is valid if and only if

Zγmax ∼Mb(·|X0). (5)

Proof. We first prove the sufficiency, i.e., Equation (5) implies that Aver satisfies Definition 3.2.

Taking the output (Xτ , Y ) as a new prefix into Aver, we obtain

(X̃ τ̃ , Ỹ ) = Aver(T̃ ,Ms,Mb),

with the root of T̃ being X̃0 = (Xτ , Y ) and then generate

Z̃γmax =

{
X̃ τ̃ , τ̃ = γmax

(X̃ τ̃ , Ỹ , Z̃>τ̃+1), τ̃ < γmax

with Z̃>τ̃+1 ∼Mb(·|X̃ τ̃ , Ỹ ). Note that by Equation (5), we have

Z̃γmax ∼ P(Xτ , Y )Mb(·|X̃0),

and
Zγmax , E∗ ∼Mb(·|X0),

Here, E∗ is an extension sequence of Zγmax generated fromMb(E
∗|Zγmax), such that the combined

sequence (Zγmax , E∗) has the same number of tokens as Z̃γmax . For the sequences (Zγmax , E∗) and
Z̃γmax , by taking the expectation over all the random variables after (Xτ , Y ), we get

P(Xτ , Y ) =Mb(X
τ , Y |X0),

namely, the proof of the sufficiency is completed.

The necessity is straightforward: If τ < γmax, Equation (5) holds trivially. If τ = γmax, then
Zγmax = Xτ and Y ∼Mb(·|Xτ ). By (4) in Definition 3.2, we also have

Zγmax ∼Mb(·|X0).

In conclusion, the proof of the necessity is also completed.

A.1 Proof of Theorem 3.3

By Lemma A.1, it would be enough to prove that Traversal Verification satisfies Equation (5). We
observe the inherent self-similar property of Traversal Verification: When arbitrarily selecting a
parent node and rejecting it, the algorithm has already evaluated all its descendant nodes through
the same traversal mechanism. In other words, Traversal Verification effectively applies a recursive
instance of itself to the local subtree rooted at the current parent node. Leveraging this self-similar
property, we establish the following stronger lemma than Theorem 3.3.
Lemma A.2. ∀Ms,Mb, let T be a decoding tree rooted at X0 base onMs and γmax := maxv⊂T γv
be the maximum depth along all chains in T . The first chain in T is denoted as α = (α0, α1, . . . , αγα

)
from root α0 = X0 to the first leaf node αγα

. Zγmax is the sequence generated by Traversal
Verification Atra(T,Ms,Mb) (i.e., Algorithm 3) in Lemma A.1. Then the following statements hold,
∀0 ⩽ ℓ ⩽ γα,

P(Zℓ = αℓ) = piniα (αℓ) and P(Zγmax = (αℓ, Z>ℓ)) = piniα (αℓ)Mb(Z>ℓ|αℓ). (6)
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Proof. When γα = 0, i.e., the tree T contains only the root node X0, then γmax = 0, Zγmax = X0

and the conclusion (6) holds trivially. Therefore, in subsequent proofs, we only need to consider the
case where γα ⩾ 1.

Next, we begin to prove the statements in (6) hold for any fixed 0 ⩽ ℓ ⩽ γα by induction on the
number of descendant nodes of αℓ. For simplicity, , we collect all the children nodes of αℓ as a new
set C(αℓ) ⊂ T and all the descendant nodes of αℓ as D(αℓ) ⊂ T .

When the number |D(αℓ)| = 0, i.e., αℓ is the leave node of the first chain α, then ℓ = γα and
Zγα = αγα means that the traversal algorithm Atra accepts the first chain α directly. Thus,

P(Zγα = αγα) = piniα (αγα
) and P(Zγmax = (αγα , Z>γα

)) = piniα (αγα
)Mb(Z>γα

|αℓ).

Suppose the two equations in (6) hold when |D(αℓ)| ⩽ k. Then when |D(αℓ)| = k + 1, we know
D(αℓ) is nonempty since the node αℓ+1 ∈ D(αℓ). Trivially, we have |D(αℓ+1)| ⩽ k, then by the
induction hypothesis,

P(Zℓ+1 = αℓ+1) = piniα (αℓ+1) (7)

P(Zγmax = (αℓ+1, Z>ℓ+1)) = piniα (αℓ+1)Mb(Z>ℓ+1|αℓ+1). (8)
For Traversal Verification Atra(T,Ms,Mb), the probability

P(Zℓ = αℓ) = P(Zℓ+1 = αℓ+1, Z
ℓ = αℓ) + P(Zℓ+1 ̸= αℓ+1, Z

ℓ = αℓ)

= piniα (αℓ+1) + P(Zℓ+1 ̸= αℓ+1) · P(Zℓ = αℓ|Zℓ+1 ̸= αℓ+1)

= piniα (αℓ+1) + (1− piniα (αℓ+1)) · P(Zℓ = αℓ|Zℓ+1 ̸= αℓ+1) (9)
In the case of Zℓ+1 ̸= αℓ+1, namely, all the nodes in D(αℓ+1) ∪ {αℓ+1} have been removed from
the original tree T , the remaining tree Tnew := T −D(αℓ+1)− {αℓ+1} modifies only the following
parameters compared to the original tree:

• the acceptance rate p′α(αℓ):

p′α(αℓ) =

∑
x[p

ini
α (αℓ) · Mb(x|αℓ)−Ms(x|αℓ)]+∑

x[p
ini
α (αℓ) · Mb(x|αℓ)−Ms(x|αℓ)]+ + 1− piniα (αℓ)

. (10)

• the distributionsM′
b(x|αℓ) andM′

s(x|αℓ) for all children nodes of αℓ:

M′
b(x|αℓ) =

[piniα (αℓ) · Mb(x|αℓ)−Ms(x|αℓ)]+∑
x[p

ini
α (αℓ) · Mb(x|αℓ)−Ms(x|αℓ)]+

, ∀x ∈ X , (11)

M′
s(αℓ+1|αℓ) = 0 andM′

s(x|αℓ) =
Ms(x|αℓ)

1−Ms(αℓ+1|αℓ)
∀x ̸= αℓ+1. (12)

Therefore, after αℓ+1 has been rejected, the acceptance rate of the parent node αℓ decreases from
piniα (αℓ) to p′α(αℓ), and the remaining children nodes of αℓ in Tnew are stochastic sampling nodes
on M′

s(·|αℓ), with their corresponding target distributions being M′
b(·|αℓ). By the self-similar

property of Atra, we observe that in the remaining tree Tnew, Traversal Verification utilizes only
the acceptance probability p′(αℓ) of parent node αℓ, the new distributionsM′

s(·|αℓ),M′
b(·|αℓ) of

children nodes C(αℓ), and the original distributionsMs(·|αℓ) andMb(·|αℓ) of other descendant
nodes D(αℓ)− C(αℓ). Since αℓ+1 /∈ Tnew, the number of descendant nodes of αℓ in new tree Tnew

is less than the original |D(αℓ)|, by the induction hypothesis, we know

P(Zℓ = αℓ|Zℓ+1 ̸= αℓ+1) = P(accept αℓ|reject αℓ+1)

= P(accept αℓ in Tnew) = p′α(αℓ), (13)

P(Zγmax = (αℓ, Z>ℓ)|Zℓ+1 ̸= αℓ+1) = P(Zγmax = (αℓ, Z>ℓ)|Tnew)

= p′α(αℓ)M′
b(Zℓ+1|αℓ)Mb(Z>ℓ+1|αℓ, Zℓ+1). (14)

Now, we begin to prove P(Zℓ = αℓ) = piniα (αℓ) at first.

P(Zℓ = αℓ)
(9)
= piniα (αℓ+1) + (1− piniα (αℓ+1)) · P(Zℓ = αℓ|Zℓ+1 ̸= αℓ+1)

(13)
= piniα (αℓ+1) + (1− piniα (αℓ+1)) · p′α(αℓ). (15)

21



Since P(Zℓ = αℓ) is independent to the random variable αℓ+1, we have

P(Zℓ = αℓ)

= Eαℓ+1
[P(Zℓ = αℓ)]

=
∑
x

piniα (αℓ+1 = x)Ms(x|αℓ) +

[
1−

∑
x

piniα (αℓ+1 = x)Ms(x|αℓ)

]
· p′α(αℓ)

=
∑
x

min
{
piniα (αℓ)Mb(x|αℓ),Ms(x|αℓ)

}
+ p′α(αℓ)

∑
x

[
Ms(x|αℓ)− piniα (αℓ)Mb(x|αℓ)

]
+

(10)
=

∑
x

min
{
piniα (αℓ)Mb(x|αℓ),Ms(x|αℓ)

}
+

∑
x

[
piniα (αℓ)Mb(x|αℓ)−Ms(x|αℓ)

]
+

=
∑
x

[
piniα (αℓ)Mb(x|αℓ) +Ms(x|αℓ)

]
−

∑
x

Ms(x|αℓ)

= piniα (αℓ).

Then we begin to prove the second statement of (6), i.e.,

P(Zγmax = (αℓ, Z>ℓ)) = piniα (αℓ)Mb(Z>ℓ|αℓ). (16)

For any sequence xγmax satisfying xℓ = αℓ, we have

P(Zγmax = xγmax)

= P(αℓ+1 = xℓ+1)P(Zγmax = (αℓ+1, x>ℓ+1)|αℓ+1 = xℓ+1)

+
∑

x′ ̸=xℓ+1

P(αℓ+1 = x′)P(reject αℓ+1)P(Zγmax = (αℓ, x>ℓ)|reject αℓ+1)

(8)
=Ms(xℓ+1|αℓ) · piniα (αℓ+1 = xℓ+1)Mb(x>ℓ+1|αℓ, xℓ+1)

+
∑

x′ ̸=xℓ+1

Ms(x
′|αℓ)[1− piniα (αℓ+1 = x′)]P(Zγmax = (αℓ, x>ℓ)|xℓ+1 ̸= αℓ+1)

(14)
=Ms(xℓ+1|αℓ) · piniα (αℓ+1 = xℓ+1)Mb(x>ℓ+1|αℓ, xℓ+1)

+ p′α(αℓ)M′
b(xℓ+1|αℓ)Mb(x>ℓ+1|αℓ, xℓ+1)

∑
x′ ̸=xℓ+1

Ms(x
′|αℓ)[1− piniα (αℓ+1 = x′)]

=Mb(x>ℓ+1|αℓ, xℓ+1) ·min
{
piniα (αℓ)Mb(xℓ+1|αℓ),Ms(xℓ+1|αℓ)

}
+Mb(x>ℓ+1|αℓ, xℓ+1) · p′α(αℓ)M′

b(xℓ+1|αℓ)
∑

x′ ̸=xℓ+1

[
Ms(x

′|αℓ)− piniα (αℓ)Mb(x
′|αℓ)

]
+

(∗)

We evaluate the value of Equation (∗) via case analysis of xℓ+1:

• Case 1: piniα (αℓ)Mb(xℓ+1|αℓ) ⩽Ms(xℓ+1|αℓ).

SinceM′
b(xℓ+1|αℓ) = 0 in this case (see (11)), the Equation (∗) is equal to

(∗) =Mb(x>ℓ+1|αℓ, xℓ+1) · piniα (αℓ)Mb(xℓ+1|αℓ) = piniα (αℓ)Mb(x>ℓ|αℓ).

• Case 2: piniα (αℓ)Mb(xℓ+1|αℓ) >Ms(xℓ+1|αℓ).

Since [Ms(xℓ+1|αℓ)− piniα (αℓ)Mb(xℓ+1|αℓ)]+ = 0, we have∑
x′ ̸=xℓ+1

[
Ms(x

′|αℓ)− piniα (αℓ)Mb(x
′|αℓ)

]
+

=
∑
x′

[
Ms(x

′|αℓ)− piniα (αℓ)Mb(x
′|αℓ)

]
+
.
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Together with (10) and (11), we get

p′α(αℓ)M′
b(xℓ+1|αℓ)

∑
x′ ̸=xℓ+1

[
Ms(x

′|αℓ)− piniα (αℓ)Mb(x
′|αℓ)

]
+

= p′α(αℓ)M′
b(xℓ+1|αℓ)

{∑
x′

[
piniα (αℓ)Mb(x

′|αℓ)−Ms(x
′|αℓ)

]
+
+ 1− piniα (αℓ)

}
= [piniα (αℓ)Mb(xℓ+1|αℓ)−Ms(xℓ+1|αℓ)]+

= piniα (αℓ)Mb(xℓ+1|αℓ)−Ms(xℓ+1|αℓ).

Taking it into (∗), then

(∗) =Mb(x>ℓ+1|αℓ, xℓ+1)
(
Ms(xℓ+1|αℓ) + piniα (αℓ)Mb(xℓ+1|αℓ)−Ms(xℓ+1|αℓ)

)
=Mb(x>ℓ+1|αℓ, xℓ+1)p

ini
α (αℓ)Mb(xℓ+1|αℓ) = piniα (αℓ)Mb(x>ℓ|αℓ).

In conclusion, (∗) = piniα (αℓ)Mb(x>ℓ|αℓ), i.e.,

P(Zγmax = xγmax) = piniα (αℓ)Mb(x>ℓ|αℓ), ∀xγmax = (αℓ, x>ℓ).

Thus, the Equation (16) holds and we have proven by mathematical induction that, in Traversal
Verification Atra, for any node αℓ in the initial first chain, the following equations hold:

P(Zℓ = αℓ) = piniα (αℓ) and P(Zγmax = (αℓ, Z>ℓ)) = piniα (αℓ)Mb(Z>ℓ|αℓ).

Theorem 3.3 can be directly deduced from this lemma. Specifically, by setting ℓ = 0 in Lemma A.2,
we immediately obtain that

P(Zγmax = (X0, Z>0)) =Mb(Z>0|X0).

SinceMb(X0|X0) = 1, we know
Zγmax ∼Mb(·|X0).

Therefore, the proof of and Theorem 3.3 has been completed.

B Formal Proof of Single-chain Optimality

To establish the optimality of Traversal Verification in the single-chain case, we need to introduce
two lemmas presented in [27].
Lemma B.1 (Lemma 3 in [27]). Let T = (α0, . . . , αγ) be a decoding chain based onMs, Ablock

be Block Verification proposed in [27], and

(Xτ , Y ) = Ablock(T,Ms,Mb).

Then we have ∀ℓ ⩽ γ,
P(τ ⩾ ℓ|Xℓ = αℓ) = piniα (αℓ).

Lemma B.2 (Lemma 4 in [27]). For chain verification algorithms that satisfy the constraints in
Lemma A.2, we have ∀ℓ ⩽ γ,

P(τ ⩾ ℓ|Xℓ = αℓ) ⩽ piniα (αℓ).

Proof. It suffices to observe that when the stochastic sampling tree reduces to a single-chain structure,
the equivalent definition Lemma A.1 of valid chain verification algorithm in this paper is identical to
the equivalent definition [27, Lemma 2] of the valid draft verification algorithm. Therefore, Lemmas
B.1 and B.2 hold automatically as the directly applications of [27, Lemma 3 and Lemma 4].

Note that when the sampling tree reduces to one single chain, Lemma A.2 shows that the probability
of Traversal Verification accepting at least ℓ tokens is

P(τ ⩾ ℓ|Xℓ = αℓ) = P(Zℓ = αℓ) = piniα (αℓ).
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By Lemmas B.1 and B.2, we show that among all valid chain verification algorithms (i.e., valid draft
verification algorithms satisfying the constraints in [27, Lemma 2]), Traversal Verification accepts
any given subsequence with the highest probability as the same as Block Verification. Specifically,
for a given decoding chain α = (α0, . . . , αγ) based onMs, we have

E[Ntraversal] = Eα∼Ms

[∑
ℓ

P(τtraversal ⩾ ℓ|Xℓ = αℓ)

]
= Eα∼Ms

[∑
ℓ

piniα (αℓ)

]
,

E[Nblock] = Eα∼Ms

[∑
ℓ

P(τblock ⩾ ℓ|Xℓ = αℓ)

]
= Eα∼Ms

[∑
ℓ

piniα (αℓ)

]
,

E[Nverify] = Eα∼Ms

[∑
ℓ

P(τverify ⩾ ℓ|Xℓ = αℓ)

]
⩽ Eα∼Ms

[∑
ℓ

piniα (αℓ)

]
.

This implies Theorem 3.4 holds.

C Evaluation of Generation Quality

Although we have already provided a mathematically rigorous proof for the losslessness of Traver-
sal Verification, we understand that it is also important to present experimental results regarding
generation quality. We would like to emphasize that the primary application scenario of Traversal Ver-
ification lies in non-greedy generation, therefore, due to the randomness introduced by sampling and
hardware fluctuations, there will be variations in the results generated each time. Consequently, the
losslessness of Traversal Verification cannot be "proven" through experiments, and the measurement
of generation quality serves merely as a reference.

We follow the method used in Medusa [2] for measuring generation quality: we use the MT-Bench
[36] dataset and employ a state-of-the-art LLM as a judge to evaluate the quality of generation.

Table 5 presents the evaluation of generation quality with Llama3.1-8B-Instruct (using the same
10-point scale as Medusa, higher score is better). We use Gemini-2.5-Flash [6] as the judge model
to assess the quality of the MT-bench responses. For all experiments, we ran them three times and
report the average.

Table 5: Evaluation of generation quality.
Method Verification Strategy Quality
Autoregressive N/A 6.72

Chain
Token-level 6.78
Traversal 6.77

EAGLE Sparse Tree
Token-level 6.76
Traversal 6.79

Binary Tree
Token-level 6.69
Traversal 6.74

The results show that Traversal Verification maintains roughly the same generation quality as both
naive generation and token-level verification, which serves as evidence for its lossless property.

D Statistical Methods and Additional Results

When calculating the acceptance length, the results may vary slightly due to different statistical
methods. Specifically, the default statistical method of Spec-Bench can generally be described as
"the average tokens generated per drafting-verification cycle across the whole dataset".

However, this statistical method is not entirely appropriate. Because Spec-Bench covers diverse tasks,
the answer length for each task and each sample can vary significantly. For instance, text generation
tasks (such as "Compose an engaging travel blog post about a recent trip to Hawaii") often have
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longer responses than short translation queries (such as "Translate German to English: Dennoch :
Die Wahrheit auszusprechen ist kein Verbrechen"). Calculating the average acceptance length by
aggregating all generated tokens will clearly be heavily influenced by long responses. Therefore,
when we compute the average acceptance length, we calculate it for each item first and then take
the average across all items. This introduces a slight difference from the default metric used in
Spec-Bench.

We provide the acceptance lengths obtained using different statistical methods in Table 6. We
also include the speedup ratios. To align with the official Spec-Bench benchmark results, we use
EAGLE-Vicuna-7B-v1.3 [21] as the draft model and Vicuna-7B-v1.3 [36] as the target model. As
shown, although the acceptance length slightly varies under different statistical methods, Traversal
Verification consistently achieves a stable improvement.

Table 6: Comparison of acceptance lengths using different statistical methods.

Tree Structure Verification Acceptance length Speedupdefault (by token) ours (by item)

Chain Token-level 2.57 2.51 1.77x
Traversal 2.63 2.57 1.81x

Binary Tree Token-level 3.11 3.04 1.87x
Traversal 3.22 3.12 1.92x

EAGLE Sparse Tree Token-level 3.18 3.10 2.00x
Traversal 3.26 3.16 2.04x

E Traversal Order

After the tree structure was determined, we adopt Depth-First Search (DFS) to establish the traversal
order, with only minor differences from standard (pre-order) DFS. Specifically, the initial steps
of a typical DFS involve starting from the root node and reaching the first leaf node, marking all
intermediate nodes as visited (this can also happen for subtrees). However, our verification starts
from the leaf nodes, and a node is marked as visited only after it has been verified. In other words,
the verification order is conceptually post-order DFS.

F Sequence-level RRSw

Root
Acceptance rate

Target
distribution

Root

Target
distribution

Figure 4: The sequence-level RRSw for two-layers decoding tree.

RRSw is a lossless probability modification method, which recursively redistributes the residual
probability to other candidates after rejections, and the probabilities only "flow" within the same layer
of a tree. Traversal Verification can be regarded as a sequence-level RRSw. As shown in Figure 4, we
first transform the original decoding tree on the left into the right one, and then utilize the classic
RRSw algorithm to derive the correct probability transition formulas.
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G Limitations

Despite Traversal Verification significantly enhances the performance of existing speculative decoding
frameworks, there are still some limitations. Firstly, our methodology is fundamentally applied to
stochastic decoding scenarios (requiring temperature > 0). In greedy decoding, where the temperature
parameter is set to zero, the absence of sampling mechanisms renders all verification approaches
functionally equivalent, thereby eliminating any potential performance gains from Traversal Ver-
ification. Secondly, the traversal of all tree nodes introduces additional computational overhead
during the verification phase. This characteristic may compromise practical throughput in particular
environments. However, this issue could be mitigated through optimized implementation, such as
discarding the sub-sequences with extremely low probabilities to avoid redundant computational
overheads.

H Broader Impacts

This paper proposes Traversal Verification, a novel speculative decoding algorithm. Traversal
Verification enhances the inference speed of Large Language Models (LLMs), thereby facilitating the
deployment on resource-constrained devices such as personal computers, mobile phones, and various
edge devices. LLMs themselves may be applied to a wide range of scenarios, potentially leading to
various positive or negative societal impacts. This work may indirectly contribute to such impacts,
but does not directly produce them.

I Licenses for Existing Assets

We summarize the assets and available resources related to this paper in Table 7.

Table 7: Licenses of assets.

Models

Llama3.1-8B-Instruct3 llama3.1 license
Llama3.2-1B-Instruct4 llama3.2 license

Llama2-7B5 llama2 license
Llama-68M6 apache-2.0

Vicuna-7B-v1.37 Non-commercial license
EAGLE-Vicuna-7B-v1.38 apache-2.0

Datasets & Codes Spec-Bench9 apache-2.0
EAGLE10 apache-2.0

3https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct
4https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct
5https://huggingface.co/meta-llama/Llama-2-7b-hf
6https://huggingface.co/JackFram/llama-68m
7https://huggingface.co/lmsys/vicuna-7b-v1.3
8https://huggingface.co/yuhuili/EAGLE-Vicuna-7B-v1.3
9https://github.com/hemingkx/Spec-Bench

10https://github.com/SafeAILab/EAGLE
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