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ABSTRACT

Building autonomous agents capable of solving long-horizon, real-world tasks has
garnered significant research interest. But outcome based rewards may cause re-
ward miscalibration which means it might mistakenly allocate positive reward to
flawed middle steps which is regarded as the key reason making the bad actions
being reinforced during training. However we reveal that outcome based reward
ensures expected negative advantage for those flawed middle steps, which means
the flawed actions should be punished during training. Even accounting for the
“squeezing effect” described by [Ren & Sutherland|(2024), the probability mass of
good actions should increase and the actor should gradually get rid of harmful ac-
tions. This shows that flawed actions should be punished during training. We fur-
ther identify gradient coupling between similar samples as a key issue in agentic
RL, the input prompt is extremely similar and the output action space is limited,
therefore during training, gradients from well-performing samples can inadver-
tently strengthen suboptimal or incorrect actions due to similar input observation
and output actions. We show that with gradient coupling, some flawed actions
might be enhanced. To address this, we propose training the actor to classify good
or bad actions to separate the embedding of good/bad actions and alleviate the
gradient interference, extensive experiments shows its effectiveness. E]

1 INTRODUCTION

Currently, with the rapid development of large language models (Achiam et al., [2023; [Team et al.,
2024;Bai et al.|[2023;|Guo et al.,[2025; |Ouyang et al.,[2022b), building an autonomous agent capable
of solving real world complex and long-horizon tasks has gained significant attention given the
great power of large language models (Zeng et al.,|[2023; |Wang et al.,[2022} [Bai et al.| 2024; Zhang
et al.| [2024; [Wang et al., [2025b). However, current training method fails to solve complex tasks,
Supervised Finetuning fails to generalize (Chu et al.l 2025} |[Fu et al., 2025)) and the performance is
unsatisfying. Current Reinforcement Learning methods mainly focus on single turn response (Shao
et al., 2024} |Yu et al., [2025) rather than multi turn interaction especially long horizon tasks which
requires lots of steps to solve.

Outcome-based reinforcement learning methods, such as GRPO (Shao et al., 2024; [Yu et al.| 2025;
Hu et al} [2025), has shown promising performance in domains like mathematical reasoning. Yet,
these methods underperform in multi-turn interactive agent tasks, often resulting in failure modes
like repetitive, unproductive actions (Wang et al., 2025c; [Zhang et al., 2025b). The prevailing hy-
pothesis attributes this failure to reward miscalibration: in a long trajectory, a flawed intermediate
action might still lead to a successful outcome, thus being incorrectly reinforced. Consequently,
many researchers try to address this by introducing step-level rewards to provide finer-grained feed-
back (Cui et al.| [2025;|Zhang et al.|2025a} [Feng et al.|, |2025|Zhang et al., 2025b), and eliminate the
positive reward to flawed actions.

In this work, we challenge this prevailing view. We reveal that outcome-based methods like GRPO
are, in principle, capable of penalizing detrimental actions, as such actions should yield a negative
expected advantage. This suggests that the persistence of flawed behaviors stems from a different,
more fundamental issue. Furthermore, considering the squeezing effect identified by Ren & Suther-
land| (2024)); Deng et al.|(2025a), which explains why the probability of the chosen response does not
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necessarily increase in DPO, we demonstrate that this effect does not hinder overall convergence of
GRPO: the probability mass on high-reward (good) actions should still increases, while bad actions
gradually diminish in likelihood.

Then a critical question arises: why do flawed behaviors—such as the echo trap observed in [Wang
et al.| (2025¢) or repetitive responses documented in|Zhang et al.| (2025b)—still emerge and persist
after GRPO training? We identify the root cause not in the reward signal, but in the high similarity
inherent to agentic task data, which leads to detrimental gradient interference. In agent tasks, the
input at step ¢ + 1 is often a minor modification of the input at step ¢, and the discrete action space
is limited. This high degree of similarity between distinct training samples means that the gradient
computed for one sample can improperly influence the update for another. For instance, a beneficial
update for a correct action can inadvertently increase the probability of a similar-looking but flawed
action.

While Deng et al.| (2025a) mitigates gradient coupling by downweighting penalties of specific to-
kens in negative samples, this approach fails in agent tasks because the targeted tokens are crucial
for reasoning, so reducing their penalty harms performance by acting like a removal of the negative
gradient. To counteract this gradient interference, the model must learn to differentiate between
high-quality and flawed actions at a representational level. Essentially, we want the model’s inter-
nal representations of a good action and a similar-looking bad action to be distinct. To this end,
we propose a straightforward yet effective solution: training the agent to simultaneously act as a
classifier.

By adding an auxiliary objective that classifies actions as good or bad, we compel the model to
learn discriminative representations. To alleviate the gradient conflict between two tasks, we use
generative classification disentanglement (GCD) which means the actor generatively classify is the
action a good one and alleviate the gradient coupling. This process effectively decouples the harmful
gradient influences between similar samples, our extensive experiments validate the effectiveness of
this approach.

Our contributions are listed as follows:

* We diagnose the failure of outcome-based RL in agentic tasks, and attributing it to gradient
interference from sample similarity rather than reward miscalibration.

* We show how will the training goes, and reveal the reason why and when will the probabil-
ity of flawed actions might be increasing instead of decreasing, and we show the importance
of cold start in agentic RL.

* We propose a novel training paradigm where the agent concurrently learns to act as a critic,
which effectively decouples harmful gradients, enhances the model’s discriminative ability,
and significantly improves performance.

2 RELATED WORK

LLM Reinforcement Learning Reinforcement Learning (RL during reinforcement learning) algo-
rithms like PPO (Schulman et al [2017) is growing extrsome emely popular which would weaken
the performancebecause it can greatly help the performance through Reinforcement Learning from
Human Feedback (RLHF) (Ouyang et al. [2022a)). Then Direct Preference Optimization (DPO)
(Rafailov et al.,[2023)) is proposed to simplicify the optimization process of PPO, and GRPO remove
the critic in PPO and greatly enhance the reasoning performance of LLM by estimating advantages
by using batches of samples generated from the same prompt which is also widely applied in tasks
like mathematical reasoning (Shao et al.l [2024), retrieval (Deng et al., 2025b; Jin et al., |2025) and
tool use (Qian et al.l 2025) and multi turn agent tasks (Wang et al.,|2025c}; |Chen et al.||2025; Zhang
et al.,|2025b; [Wang et al.| 2025a). But the reward spasity brings some problem like echo trap when
applying GRPO, which is hard to solve.

Step Level Rewards Simply using outcome based rewards would mistakenly allocate positive ad-
vantage to flawed actions, causing suboptimal performance (Zeng et al., 2025} |[Feng et al., 2025), so
some researchers try to use more fine grained step level rewards. [Feng et al.| (2025) recognize the
situation where two different step the same observation, which means the previous step is incorrect
and allocate a negative advantage. |[Zhang et al.| (2025b) explicitly define the reasoning logic and use
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step reward to ensure the agent follows the logic. Also, methods like ToolRL (Qian et al., 2025} [Wei
et al., 2025) uses the format of each step as step level reward. However, our paper shows that the
core reason why GRPO fails may not lie in the advantage allocation, instead it lies in the similarity
between different samples.

3  GRPO IN AGENTIC TASK

In outcome-based RL, agents receive rewards for successful
trajectories, leading to a common concern: flawed intermedi- The probability of repeat actions
ate actions might be inadvertently reinforced if they are part
of a successful trajectory (Zhang et al., 2025b; [Wang et al.,
2025c). |[Zhang et al.|(2025b)) shows that after GRPO, the num-
ber of repetitive actions even increase. This has motivated a
shift towards finer-grained, step-level rewards (Zhang et al.,
2025b; [Feng et al.| [2025). We also show in Figure E]that the
overall consistency of conducting repeated actions does not
decrease with training, and there are even more high consis-

—e— Repetition Consistency
—s=— High Consistency Percentage

N
>
o U

o
w
[

o
N
o

Consistency/ Probability
o
W
S

o
N
o

e I

25 50 75 100 125 150 175 200

=3
N
o

tency repetition. Previous methods blame it to reward miscal- Steps
ibration, which means flawed actions could happen in success )
trajectory and hold positive reward. Figure 1: The consistency of the re-

peat actions, we can observe that

However, this concern overlooks a critical point: flawed ac-  the model gradually being more

tions are not exclusive to successful trajectories; they appear, .onfident in some repetition (in-
often more frequently, in failed ones. Consequently, the cu-  creasing high consistency percent-
mulative feedback for such actions should theoretically be  406)  High consistency means 5
negative. This raises a fundamental question: why, despite repetition in 10 trials

negative expected feedback, do the probabilities of certain

flawed actions persist or even increase during training?

3.1 THE EXPECTED ADVANTAGE

First we show that when conducting GRPO, it should allocate negative advantage to those flawed
actions. Consider an action a; that introduces an additional risk of failure » > 0 (more chance
leading to failure). Let the policy 7y select this action with probability q. We can demonstrate that
the expected advantage of this action is inherently negative.

Lemma 3.1. For a policy my with probability q of conducting action a;, conducting action a; brings
risk r, then the expected advantage for action a; is

EﬂeAi:qr'(q_1)7 (D
where E ., A, stands for the expected advantage of action a; (we remove the std for convenience).
Lemma|3.1|shows that for any risky action (r > 0) that is not
chosen deterministically (¢ < 1), the expected advantage is

negative. This implies that GRPO should naturally discourage
such actions.

Percentage of Repeat Actions

o~

This Lemma assumes that the risky action holds the same
probability in success and failure trajectories. If one flawed
action appears more frequently in success trajectories, then its
expected advantage could be positive and it might be keep re- :

inforced. However, we show in Figure E]that for some flawed i ES:E in btare |
actions, it appears more in failure trajectories, so its expected ST T
advantage should be negative but it is not effectively punished

during training as we show in Figure[I} Figure 2: Repetition in success and

Recently, Ren & Sutherland| (2024) finds that during the train- failure trajectories

ing of DPO, the probability of the chosen sample actually also

drops, instead the probability of the one the reference model

prefers gradually increases. This is mainly due to the nature of softmax, if one probability drops,

percentage
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the probability mass will be distributed to other actions, therefore, if one action holds greater harm
(higher risk), then its probability will drop more greatly and the probability mass will somehow be
distributed to some less harmful actions, so its probability will even increase instead of decrease.
However, we show in the following theorem that this can not explain the phenomenon in GRPO
because the flawed action is explicitly punished, and the probability can hardly increase.

Theorem 3.2. Consider a scene with only 3 actions, action 1 happens with probability q and risk
r > 0, the probability of failure is p without taking action 1, and we assume action 2 with probability
G and risk 7 > 0, then we can show that, the probability of action 1 gradually increases requires

(24— 1)g7 +2(¢+q—1)gr > 0.
But the probability gap between action 1 and action 3 increases requires
(2 —-2q— q)gr+ ¢ <0,
which cannot be satisfied for r,7 > 0.

This directly means that, although the probability of the flawed action might be increasing because
a much more serious flaw will be greatly punished, but the probability mass will be more and more
allocated to the good action, and bad actions will gradually vanish.

Although we discuss the situation with only 3 actions, but this can be easily extended to other
situations if we simply consider action 3 as other actions. So the probability mass of bad actions
(action 1,2) will be squeezed during training. But this leads to a question, why after GRPO training,
some flawed actions still show up?

3.2 THE INFLUENCE OF SIMILAR SAMPLE GRADIENTS

Agentic tasks inherently produce highly similar training data. Successive turns differ only by a single
new observation, and the constrained action space leads to similar thought processes and outputs.
As shown in Figure 34 the inter-sample similarity in the ALFWorld is markedly higher than in the
GSMS8K mathematical reasoning task.

The high similarity between different samples leads directly to similarity in their gradients. As
a result, performing gradient descent on one sample can inadvertently influence the likelihood of
other, similar samples. To empirically validate this effect, we conduct experiments on ALFWorld.
First, we generate a set of interaction trajectories with the environment. From these, we select
pairs of input prompts and outputs, (x;, a;) and (z;,a;). We then perform a single step of gradient
descent using (z;, a;) and measure the change in the model’s output probability for the paired sample
(x,a;). The results, shown in Figure demonstrate a noticeable shift in probability, indicating
that optimization on one sample generalizes to similar samples due to shared gradient directions.
Sample Slmllarlty in ALFworld and GSM8K Influence of Positive Gradient Influence of Negative Gradient
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Figure 3: The gradient coupling

This implies that the probability of a given action is not only determined by its own gradient signal
but is also significantly influenced by gradients from other, similar training samples. The effect
is particularly pronounced for actions that are identical or highly similar—evident in the stronger
influence observed along the diagonal of the similarity matrix (same action with different input).
Consequently, the probability of suboptimal (or bad) actions may fail to decrease during training,
as gradient updates from positive samples with similar contexts can inadvertently increase their
likelihood.
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3.3 THE LEARNING DYNAMIC

How does this external gradient influence interact with the agent’s own learning signal? Let’s model
the gradient coupling from similar positive samples as a constant positive advantage denoted by c,
on a flawed action (z,y). This push competes with the action’s intrinsic, self-corrective advantage,
which, from Lernma isA=gqr(qg—1).

The magnitude of this self-correction, |A|, is not constant. As shown in Figure it forms a parabola
with a maximum at ¢ = 0.5, creating two distinct dynamic regimes:

* The Safe Regime (¢ < 0.5): In this regime, any undesirable increase in the flawed ac-
tion’s probability ¢ is met with a stronger self-corrective penalty | A|, creating a stabilizing
negative feedback loop. The model can naturally resist the external push c.

* The Danger Zone (¢ > 0.5): Here, as ¢ increases, the self-corrective penalty |A| weak-
ens. This makes the action highly susceptible to the external push c. Once a flawed ac-
tion’s probability enters this zone, gradient coupling can easily overpower the weak self-
correction, leading to a runaway increase in its probability.

This analysis immediately underscores the critical importance of a proper cold start. A well-
initialized model (e.g., via SFT or prompt design) can ensure that flawed actions start with low
probabilities (¢ < 0.5), placing them firmly in the “Safe Regime”. Without it, if ¢ is non-negligible,
RL training can become counterproductive. Our experiments in Appendix [B] confirm that a good
cold start dramatically improves convergence.

However, during training, the probabilities of
all samples are changing, with the probability
of good actions increasing, their advantage de-
creases, so the pull up strength to similar bad
action will gradually vanish, raising an impor-
tant question about convergence behavior: how
do interdependent updates affect the long-term

dynamics of training? lalior Probabikty

Larger Advantage
Considering the co-evolution of a good action
S1 (probability p;, expected advantage A; >
0) and a similar flawed action Sy (probability
p2, expected advantage A < 0). If |[A;] >
|As|, the strong positive advantage of S; can
leak and create a positive push on S5, causing
both probabilities to rise initially. Suppose the ? radient Coupling o

gradient update on sample S; induces an addi- s )
tional advantage dA; on sample S5, and vice ‘

versa, with d Ao influencing S;. Then, the ef-

fective advantage of S; becomes A; + JAs,

while that of Sy becomes Ay + 0 A4;.

Higher Probability
| Smaller Advantage

A Large Negative Risk (good action)

Then it is clear that Figure 4: The change of advantage

Ay +0Ay > Ay + 0 A

So it is natural that the probability gap (p; — p2) will be widen. At first, this is mainly because
the probability of p; increases faster than p,, the flawed action’s probability p, will only begin to
decrease after the good action’s probability p; becomes sufficiently high to generate a suppressive
effect that overcomes the gradient coupling. We show in Appendix [A.3] that it might require p; to
be very large because there could be several positive sample pushing the negative sample.

This means that some bad actions might be enhanced during training until the probability of good
actions converge to a high level, as we show in Figure [5] when the training goes, the probability
of some bad actions decrease, but the consistency of some other bad actions might increase, and
the consistency of bad actions will start to decrease when the consistency of positive actions are
relatively high. But there still exists some bad actions with high consistency, so some flawed actions
might be reinforced during the learning process which brings suboptimal performance.
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Figure 5: The dynamic of consistency in GRPO, we can observe that the consistency of some high
probability bad actions increases with training. Action labels are determined by the consistency of
5 judgments from Deepseek V3.

One most common mistake with small risk should be repeated actions, we conduct experiments
by using the checkpoints to generate some trajectories and we choose those repeated actions and
observe the confidence of the agent. We can observe from Figure 1| that, as the training goes, the
model’s confidence on repeat action does not decrease. Also the percentage of those high consis-
tency repetitions (5 times of repetition in 10 trials) is even increasing.

4 METHODOLOGY

Our analysis demonstrates that gradient coupling is the primary obstacle to effective agent training.
To overcome this, our goal is to weaken the influence ¢ between samples, ensuring that good actions
are reinforced while flawed ones are suppressed, i.e., A; + 0 Ay > 0 and As + 6 A; < 0, where A
and A, denote the advantages of the good and bad actions, respectively. Those methods with step
level reward directly changes A; by adding extra reward, bu directly enlarging |As|, the influence
caused by other samples will be relatively weaken, so it could less influenced by A;. But this does
not directly solve this problem because A; might also be enhanced, can we try to reduce the gradient
coupling and train the model with a smaller §.

Prior work, such as|Deng et al.|(2025a), attempts to mitigate this interference by identifying specific
tokens in negative samples and applying penalization to limit their influence on positive samples.
However, this approach is not well-suited to agent-based reinforcement learning. In mathematical
reasoning tasks, harmful similarity often stems from shared logical transition tokens, which can
be selectively penalized without disrupting core reasoning. In contrast, in agent tasks, similarity
arises primarily from overlapping action sequences and shared structures in the detailed reasoning
(e.g., planning or environmental interaction steps) as illustrated in Figure[9} Therefore, weaken the
penalization of these components could harm performance by acting like a removal of the negative
gradient as we show in Table

4.1 WEAKEN THE GRADIENT COUPLING

As shown in|Deng et al.| (2025a)), the gradient coupling in GRPO can be expressed as:

lyil ;|

Z Z ak,k/ . <hm7yi<k’hm,y;<k/>’ (2)

k=1k'=1

where oy, - denotes a token-level similarity weight based on prediction error, and h, ,_, represents
the hidden state embedding at position k conditioned on input & and preceding tokens. This formu-
lation reveals that gradient interference between samples arises primarily from similarities in their
internal representations—specifically, when the hidden embeddings of different samples are aligned
in vector space. In practice, for two distinct samples (z1, y1) and (x2, y2), if their inputs or reason-
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ing patterns are semantically or structurally similar, their hidden states become correlated, leading
to strong gradient coupling. As a result, updates intended for one sample inadvertently affect the
policy for another. Therefore, to mitigate this undesirable interaction, we argue that it is essential to
disentangle the embeddings of different samples during training.

For samples sharing similar la-
bel (both good actions or bad ac-
tions), the gradient coupling can
actually helps to converge faster.
However, when two similar sam-
ples have divergent outcomes, vpene)
one leading to success and the S
other to fai;gure—it becomes crit- Uz
ical to distinguish their represen-
tations to avoid harmful gradient
interference. In such cases, con-
flating their embeddings can lead
to contradictory updates, flawed
ones might be inadvertently rein-
forced. Figure 6: Training the model as a critic
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This motivates our core pro-

posal:generative classification disentanglement (GCD), specifically we train the actor model to si-
multaneously act as a classifier. As illustrated in Figure[6] we introduce an auxiliary task where the
model learns to classify whether a given action is good or bad. By supervising the model on out-
come labels, we force it to learn discriminative representations. Specifically, for two input-output
pairs (z1,y1) and (22, y2), where y; is successful and 5 is not, the classification objective pulls their
hidden embeddings apart in representation space. This separation ensures distinct predictions and
reduces spurious gradient coupling between samples of differing quality. By explicitly decoupling
good and bad behaviors in the embedding space, our approach mitigates cross-sample interference
and promotes more stable and accurate policy learning in long-horizon agent tasks.

Specifically, our overall training objective is:
L = Lsrpo + Lascp 3)

where Lgcp is a GRPO-style loss applied to a classification task. While Lgrpo optimizes the agent’s
actions based on task success, Lgcp optimizes the agent’s classification correctness. However, as
show in |Garcin et al.| (2025)) sharing the backbone of actor and critic model in PPO could hurt
the performance due to task conflict. To decline the gradient conflicts between two task, we use
generative classification, and we show that it conflicts with the agent task less in Appendix B]

Inspired by [Feng et al.| (2025), if the current observation occurs in following steps, this means that
this step might take a wrong step, because it means this step may be useless. Otherwise if the current
step is the last one, it means that it directly lead to success, so we recognize it as correct. Then
we prompt the actor model to judge is the action a good one and allocate reward to conduct GRPO
training. However, in this way we can hardly get enough positive samples, so when conduct training,
the agent can easily get a high score by simply predicting all responses as negative. Therefore, we
also use DeepSeek V3 to judge is it a good action then use the correct ones as training sample.

4.2 ESCAPING THE “DANGER ZONE” WITH PROMPT-BASED CORRECTION

Our critic-based training weakens gradient coupling, but it is worth noting that we can not entirely
eliminate it. As established, this residual coupling is most dangerous when a flawed action’s prob-
ability is high (the “Danger Zone”). In this regime, the action’s weak self-correction mechanism
is easily overpowered. To address this, we introduce a complementary strategy: prompt-based cor-
rection. During training, we collect the critiques generated by the model itself, which highlight the
specific mistakes it is prone to making. We then synthesize these common errors and inject them as
explicit instructions into the prompt for subsequent tasks.

This serves as a powerful, targeted intervention to drag the probability of specific flawed actions
out of the “Danger Zone’ and into the “Safe Regime.” Once the probability is low, the natural self-
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correction mechanism, can effectively take over and continue to suppress the flawed behavior during
reinforcement learning.

5 EXPERIMENTS

5.1 MAIN RESULTS

Table 1: Performance of our proposed method. We show the performance when combined with
GRPO, GiGPO and RLVMR. Following [Zhang et al.| (2025b), we split the data into three levels,
seen task variants and categories (L0O), unseen task with seen categories (L1) and unseen task with
unseen categories (L2)

ALFWorld ScienceWorld
Model Method LO L1 L2 mean LO L1 L2 mean
Vanilla 11.3 137 102 11.7 1.2 0.8 0.8 0.9

Qwen2.5-1.5B ~ “GiGPO ~ 929" 88.2 ~79.8 ~§7.0 632 557 414 334
with GCD  87.8 882 78.1 847 657 593 429 560
Vanilla  23.1 285 270 262 78 113 63 85

Qwen2.5-7B ~“GiGPO ~ 928 92.0 “ 914 004 750 648 476 625

with GCD 944 957 923 941 763 663 484 637

We mainly conduct experiments on ALFWorld (Shridhar et al., |2020) and ScienceWorld (Wang
et al.l|2022), which focus on text-based scientific experimentation. We conduct cold start using the
same training data of (Zhang et al.,[2025b)), and we train the model for 200 epochs.

We conduct experiments with Qwen2.5-1.5B and Qwen2.5-7B, and we first conduct cold start and
train the model with RL algorithms like GRPO (Shao et al.l [2024), GiGPO (Feng et al.l [2025)
and RLVMR (Zhang et al.| 2025b), and we add generative classification disentanglement (GCD)
to those methods to show how much can disentangling the embedding of similar samples help the
performance. We also show the performance when we directly conduct RL without cold start in
Appendix [B] and we discuss the time consumption in Appendix

We present the result in Table |1} the result shows that when we use cold start, the performance on
in domain test data is actually very close between different methods. Vanilla GRPO and GiGPO
performs similarly, methods with step level rewards like GiGPO, RLVMR and our method also only
brings marginal help especially on Qwen 2.5-7B, this is mainly because with cold start, most bad
behaviours has been eliminated, so during RL training the bad behaviours will be further weakened,
so those methods does not help that much.

However, when test on out domain data our method greatly helps, this is mainly because for those
out domain data, the bad actions can not be directly punished, it can only be indirectly influenced
by other similar sample gradients, and our method cluster the embedding of bad actions which
can help to punish bad actions while reduce the influence of other similar good actions. Also, our
experimental result seems to be higher than the one show in [Zhang et al| (2025b), this is mainly
because they simply train the model fro 100 epochs, and we observe that 100 epochs is not enough
for convergence, so we train it for 200 epochs.



Under review as a conference paper at ICLR 2026

ALFWor Id ScienceWor Id
100 100

89.8 89.8

087.388.2

80

60

Success Rate

40

20

0l
L1 L2

Lo L1
GRPO vanilla SFT [ GRPO judge SFT B GRPO co-train N GRPO+GCD

Figure 7: The performance with different cold start and setting. GRPO vanilla SFT means we
conduct cold start with only the agent task, GRPO judge SFT means we conduct cold start with
generative classification task. GRPO co-train means when conduct GRPO, we use the auxiliary
task, and GRPO GCD means we also summarize the critics and insert it into the prompt

5.2 ABLATION STUDY

We claim that by training the model as a generative judge to classify is the action a good one to
separate the embedding of good and bad actions which could effectively help reduce the gradient
coupling and improve the performance. Therefore, when conducting cold start, if we add generative
judge data, it can also effectively improve the performance as we show in Figure [7] that cold start
with generative judge data helps the performance. Also in Figure[7]we show that training the actor
as a classifier greatly helps the performance, and by summarizing the generated critic into a coherent
suggestion for the actor also helps.

5.3 THE GRADIENT COUPLING BETWEEN SAMPLES

As we claimed before, our method can effec-

tively separate the embedding between positive Quen25-1.58 Quen-2.5-78
and negative samples, following Equation2] we .| — oRep. sy T SRPO
calculate the influence on of one token on other —— GRPO+ a0 —=— GRPO+
samples and average the influence of tokens to

show the influence between samples. We use
the gap of influence between same class sam-
ples and the influence between different class N S A = | | | |
to show how much it take advantage of the gra- Steps Steps
dient coupling and eliminate its negative effect,
the result is shown in Figure[8] It shows that our
method effectively separate the embedding of
positive and negative samples, the gap is much
larger than vanilla GRPO and GiGPO.

Gap

Figure 8: The change of gradient coupling during
the training process

6 CONCLUSION

In this paper, we reveal that during GRPO, the expected advantage of flawed actions should be
negative even considering the squeezing effect. Then we show that the reason why flawed action
will be mistakenly enhanced mainly due to gradient coupling, which means that the gradient of
positive actions might mistakenly increase the probability of bad action due to the similarity of the
actions. Then, we propose to co-train the actor as a generative judge to disentangle the embedding
of good and bad actions.
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REPRODUCIBILITY STATEMENT

We provide our code in https://anonymous.4open.science/r/RL_GCD-E562, we
show the experimental setting in Appendix |B| and the prompts are also shown in Appendix
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LLM USAGE

This paper simply uses LLM to polish paragarphs, adjust grammars and help to generate code for
drawing pictures in the paper.

A PROOFS

A.1 PROOF OF LEMMA [3.1]

Given a policy g, with probability p it would fail completing the task and get reward 0, otherwise
success with reward 1. However, with probability ¢, it will take a mistake, and the mistake could
enlarge the risk of failing by r.

In this way, the success and fail probability could be represented as follows

(I1—¢q)-(1—p), nomistake and success

1—4q)-p, no mistake but fail @
g-(L—p—r), mistake but success
q-(p+r), mistake and fail
Then, we can calculate that,
P(success) = (1—¢)-(1=p)+q-(L—p—r)=1—p—qr, )

P(fail) =(1—q) p+a-(p+r)=p+ar
In GRPO, the advantage is calculated as A; = Sist_dI(ES()s ), where A; means the advantage, s; is the
calculated reward score. Based on Equation we have that E(a) = 1 - P(success) + 0 - P(fail) =
1—p—gqr

Then, we have that

ptgr—1 o
Wy 0 =0

prar g
Ai { Sld(’l")’ (6)

Then the expected advantage about the mistake is (we ignore the std),

Amistake =q-(1—=p—71)-(p+qr)+q-(p+7)-(p+qr—1)
=(q—pg—qr) - (p+aqr)+(pg+qr) (p+qr—1)
=(q¢—pg—qr+pg+qr) (p+qr)—pg—qr
=pq+q¢r—pg—qr=qr(g—1)

)

This means that unless ¢ = 1 or r = 0, the advantage will be negative, which means unless the
mistake will happen with probability 1 or the mistake will not lead to any risk of failure, it will be
discouraged.

In contrast, if » < 0, which means that the action will reduce the risk of failure, then it will be
encouraged unless the probability of taking the action is already 1.
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A.2 PROOF OF THEOREM [3.2]

However, due to the squeezing effect, the negative gradient might encourage the mistake. Following
Ren & Sutherland| (2024)), we also use logistic regression to show the squeezing effect.

Consider a simple V-class logistic regression problem where each high-dimensional input data z is
converted to a length-d feature vector via a deep neural network 7. The model uses a linearread-
out layer w € R¥*V to convert the feature vector to logits z = w” - w(z) and then generate the
probability prediction vector p using a Softmax head. We consider a common cross-entropy loss
function for each input pair (x, y). In summary, we have

T

Lce(P'y) = —eylog(p'); p' = Softmax(z'); 2" = (w") 7(x),

where ? is the index of the step during training and e, is a length-V one-hot vector determined by the
ground truth label y. To simplify our analysis, we assume a fixed 7 and only update the parameters
of the read-out layer w using stochastic gradient descent:

W = w! — AL = w' — () (p! — e,), ®)

where 7 is the learning rate. In GRPO, there are multiple positive and negative gradients, and the
magnitude of positive and negative gradient is determined by the advantage A, so we consider

wth = w' = AL =w' =Y (A na(@)(p' —e,)T) ©

Therefore, we have that,

zt—i—l _ (wt“)TW(w)
= (wt = (Ay - am(@)(p ~ ey)T)> ()

T
=win(z) - (Z (Ay - nm(z)(p" — ey)T)> m(z)

— el (5 A e,
If we consider an action ¢ with probability ¢ and expected advantage %

2" = (™) Tn(x) = 2f - nll7(2)]13 - (ZA — ey, )

= W) @) = < i@ | A= 0+ 2 A

1 yF#i (10)
— =t~ illr @)} (npAa - 1) - Ad)

1 /. )
_ St 2 - A _ A
= = —llr(@)[3 - n— (A - 1) - 4q)

1 -
— St I
= = +alln(@) 3 n—

A

The second equation is because is expected advantage with one action, so when conducting n

fd
actions, the advantage should be n %5 d, and the summation of all advantages should be 0. Therefore,
we can have that for the action with probability ¢ and risk 7 as z!*!, then the advantage is already
calculated to be gr(q — 1), then
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1
~qr(q = 1) =z +lln(@)|l3 - n——ar(q - 1)

1
Lt
2 = 2 (@) 0 o

std
Now consider a simple case with 3 different actions. And let the first action be the one with prob-
ability ¢ and risk r, the second action with probability ¢ and risk 7, then for the third action, the
probability is 1 — ¢ — ¢. From previous assumption, we require the expected probability of failure
to be p with the second and third action, so the risk of the third action is

q-r
q+q—1°
For a action with probability g and risk r, we can calculate the advantage as follows:

A

¢(A=p=7F)-(pt+ar)+q-(p+7)-(p+qr—1)
=(@+ae)q(l—p—7F+p+7)—qlp+7)
=qp+qr) —q4p+7)
= P4 +qqr —pq—qr
=q(qr—7)
Therefore we have the following,
qr(g—1), i =
A; = (j(qT_f% . =2
(1—q—d)qr— L), i=3
Then, based on Equation[T0] we know that,

1
2 = 2l (@) B (e — )
1
247 = 2+l (@) 3 - n—alar —7)
1 q-r
25" = 25 4 nl|m ()3 - an(l —q—q)(gr— ﬁ>
Then, we can have that
P = exp(zith) _exp(z+C- A
! exp( z§+1) >ojexp(2f +C - Aj)
Pt = exp(z})
1= t
Zj eXp(Z»)
And we can calculate does the probability thr1 increase by
Pt e+ C-A) X exn(z))
pi X;exp(zf +C-Aj)  exp(z])
_ exp(z!) Z] exp(z})
>ojexp(zh +C - (A — A7) exp(zh)

>2; exp(2])
2 exp(z) + O (45 — Ay))

pitt
Therefore, to determine is 22— > 1, we need to know is

exp(z5 + C - (Az — A1) +exp(z; + C - (Az — A1) > exp(25) + exp(z5)
Then we can calculate as follows,
exp(zh + C - (Ay — Ay)) + exp(zf,) +C - (A3 — Ay)) —exp(h) + exp(zg)

11
— (exp(C - (Ag — A1) — 1) - exp(sh) + (exp(C - (A3 — A1) — 1) -exp(sh) D
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As we know that po = jandps =1 —¢— ¢, and let § = Zj(z;’), we can have that exp(z4) = 6 - 4,
andexp(z) =4d-(1—q—q)

Since we only care about is it larger or smaller than 0, we ignore some constant and have.

exp(zh + C - (Ag — A1) +exp(zh + C - (A3 — Ay)) — exp(2h) + exp(2h)

(exp(C - (A2 — A1) — 1) -G+ (exp(C - (A3 — A1) — 1) - (1 =g — q)

e C(A2 —A1)g+e-C(A3—A1)-(1-q—q) (12)
=e-C(GA2 — qA1 + A3 — A1 — qAz + qA; — §A3 + A1)

=e-C(G(A2 — A3) + (¢ — 1)(A1 — 43))

IN

)

. . A q-r
As —As=qg(gr—7)—(1—q— r———
2= Ag=q(qr —7) — (L —q—q)(q p—
=q4r — ¢ — (1 —q—q)gr — ¢°
:2q(jf+q2r—qr—2cjf

q-r
A — As = qr(g—1)(qgr - ———
1— Az =qr(g—1)(gr q+q_1)

= 2q2r — 2qr + qqr — gr

Then, we can calculate
4(A2 — A3) + (¢ — 1)(A1 — 43)
= 2047 + Gq*r — Gqr — 247 + 2¢°r — 2¢°r + ¢*Gr — qar — 2¢%r + 2qr — qgr + §r
= §*7(2q — 2) + 4(¢*r — qr) + 4(¢Pr — qr) — qG7 + G7 + 6 (6 = 2¢°r — 4¢®r +2qr)  (13)
=2¢"7(¢ —1) +q(qr)(g — 1) + dgr(g — 1) — G7(g — 1) +6
= (24°7 + 24qr — G7) (g — 1) + 6
Therefore, to make it smaller than 0, we require
(247 4 24qr — ) (g — 1) + 6 <=0

2¢3r — 4¢%r + 2qr (14)
1 =2¢r(1—q)

2q2f + 24qr — qr > —

In this way, we show that in some cases, even if the action can have negative effect on the perfor-
mance, its probability would be encouraged instead of discouraged (an increasing q). Also as we
calculated in Equation the advantage is gr(q — 1), if we consider  as a constant, then the left side
of |14 will increase, while the right side might even decrease considering that ¢(1 — ¢) will decrease
with ¢ if ¢ is larger than 3.

Also, we can show that z§+1 — 2ttt

1 R qg-r
47— 2 =2 = st e 0 (=g - - L) art- 1)

td —
1 S o q+q (15)
. q-T
841 = 8t = et o (=0 - Dl - 0~ arta - )
Therefore, we have that
. . R ] -7
Slgn(Azt+1 — Azt) = Slgn ((1 —q— q)(qr — q—ﬂﬁ) — q?‘(q — 1))
(16)

=sign((1—q¢—q)gr+q-7+qr(qg—1))
= sign ((2 — 2¢ — ¢)qr + 47)

Itisclearthat2 —2¢—¢=(1—¢—¢)+(1—¢q) >0
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A.3 PROOF OF THEOREM [A]]

Consider two different sample (x1,y1), (22, y2), sample 1 holds probability ¢; and risk r; while
sample 2 holds probability g5 and risk r2. Also we assume that the logits before softmax is z; and

29, we assume that
Z exp(z1ly]) = Z exp(22[y]) = C 17)

yl=y1 yl=y2
Therefore, when conducting softmax, we have that

__ewp(a) o exp(z2lp])
U= ) + O 2T aplzal)) + O (18)

For sample 1, we have Advantage A; = ¢171(q1 — 1), and for sample 2 Ay = gar2(g2 — 1), then

with the influence 4, then the advantage for sample 2 could be represented as Ay = Ay + 6A4; =
gar2(q2 — 1) + dq1r1(q1 — 1). We letting r; = —&ro, and in the following we use r instead of 75

for simplicity, and we want Ag <=0, note that r > 0, then

Ay = Ag +0A; = qor(qa — 1) — E6qur(qn — 1) <0
q@2(q2 — 1) < &qi(q1 — 1)

QQ(QQ _1) 19
qi(q —1) =80 >
(1 —q2)

1)
a(l—aq) 2¢

If we assume that the logit of other z stays unchanged, considering that,

o= 2= o ew(z)
exp(z1[y1]) + C” exp(2zz2[yz]) + C 20
C c (20)
= logp= ————
exp(z1[y1]) +C exp(2z[ya]) + C
Then we have that
©2(1—q2) _  exp(zafya]) ¢ cexp(z1[y1]) + € exp(zi[y]) + C
(1 —q) exp(zafy2]) +C exp(z2(y2]) +C exp(z1[y1]) C
 ho+C hy+C  hy C
ho - (h1 + 0)2
hl-(hg—FO)Q 75
If we assume that ho < hy, which means g < ¢, then we have that
hy - (hy + C)?
< =~ 7
0= hl'(h2+0)2
_ (O _ (Y’ (22)
“\hy+C ~ \ ho

2
= exp(z1 — 22)
: 1
So, we require 21 — 22 > 5 In £0.

If we assume that the relationship between the advantage and the logit is linear, which means that
with advantage A, then 6z =7 - A,
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Then we have that 21 — 20 = 71 — 22 + ), (Al + 045 — AL — §AY), where 7, represents the
original value of the logit before GRPO, and } _, represents all the advantage of the GRPO steps.

Also we have that for all 4, A} + § A% > 0, which means A% > —§Aj.

Therefore,

1 ) . ) .
angagzl—22:51—52+nZ(A;+5Ag—A;—5Ag)
=z —Z+nY_ ((1-0)A} + (5 —1)A})

<A A+ ((1-08)A%+ (6 —1)(—54) (23)

<A —d+nYy, ((1-067)A})

=<7z —Zy+ +Azl-

So, we have that Az; > 2 1In&6 + Az, hy = exp(3In&d + AZ) - hy.

Theorem A.l. For two different kind samples (x1,y1) and (x2,ys2) with risk m1 9, if we assume
ry = —&ry (ro > 0), if the summation logit other actions of x1 and x4 are the same, and the
probability of both y, and vy is greater than 0.5. Then we have that, we require h, the logit of y1
to be exp(%fcs + AZ) times than its original value until the probability of yo start to decrease.

A.4 PROMPTS

Prompt for generate suggestion

Role: You are an Expert Al Strategist, tasked with synthesizing raw feedback to generate
high-level, actionable principles for improving an agent’s performance. The agent is operat-
ing in a complex environment like ALFWorld or ScienceWorld.

Context: You will be provided with a pre-defined theme and a list of specific advice sen-
tences that have already been clustered under this theme.

Your Sole Task: Distill the entire collection of related advice into one single, overarching
”Golden Rule.”

This rule must be:

» High-Level: Abstract away from specific examples.
* Actionable: Provide clear guidance on what the agent should do.
* Generalizable: Be applicable to future, unseen situations related to this theme.

For each theme provided in the input data, you must perform the following steps: 1. Think
Step-by-Step: First **you must think step by step and dig deep into the advices to formulate
the high-level principle.** Analyze the specific advice, identify the common pattern or root
cause, and build a line of reasoning toward a general rule. 2. Formulate the Rule: Based on
your thinking, synthesize the advice into **one single, actionable, and generalizable Golden
Rule.”

ADVICE LIST: {advice list}
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Prompt for critic generation

Role: You are an expert evaluator, a “Critic” tasked with judging the quality of an action
taken by another agent in ALFWorld/SciWorld, a household/science environment where the
agent is required with some tasks like ’put a cellphone in bed’ or ’determine if metal fork is
electrically conductive’

Given the question and the agent response you should judging the quality of the response
Context:

* Problem: {problem}
» Agent Response: {response}

The problem has not been solved in current state, if the agent considered the problem has
been done before taking any action, it should be a serious error.

Your Task:

1. Analyze: In your ‘(think)‘ block, perform a step-by-step analysis.

¢ Consider the ‘Current State‘ and the overall ‘Problem°.

* Evaluate the thinking process of the agent and check is the thinking logical and if
the ‘Chosen Action‘ makes logical progress.

* Evaluate will the ’Chosen Action’ cause serious trouble or it is obvious not a good
option or it may end in a loop of actions.

* Evaluate other possible actions and analyze is there some action obviously better
than the chosen one.

* You should notice that the agent is good at this task, the success rate is about 80
percent, but it will also make some small mistakes or redundant actions, so you
should not only consider the bad side of the action, also consider the good side.

2. Judge: In the ‘(answer)‘ block, provide a score. Use ‘1° for a good action, and ‘0° if the
action is obviously a poor action and there exists explicitly better actions.

3. Propose (if applicable): In the (action) block, if (and only if) the score is ‘0°, provide
the single best alternative action based on the available actions. Do not add any explanation
here, only the action itself.

4. Trajectory Analyze: Based on previous actions and its correspondding feedback, analyze
its previous actions and check is there some actions could be further improved

5. Advise: In the ‘(advise)* block, provide a single, concise sentence of feedback.

* Based on your analysis of current action and previous actions, provide advice to
help the agent avoid its mistakes and enhance its advantage in the future.

* Provide a high-level strategic principle that applies to various situations, rather than
a correction for this specific instance.

Output Format: You must follow this exact format. The ‘(action) block is conditional
and should only appear when the score is 0.

(think) Your step-by-step reasoning here. This is where you will explain why the chosen
action is good or bad. If it’s bad, you will also explain why your proposed alternative action
is better. (/think)

(answer)

boxed{0/1}(/answer) (action)The single best alternative action for current observation
here (only if score is 0)(/action) (advise)Your concise, high-level strategic advice here
(/advise)
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Prompt for ALFWorld

You are an expert agent operating in the ALFRED Embodied Environment. Your task is
to: {task description} You should strictly follow the guidelines below, do what the guide-
line suggests in your thinking steps to make better actions: {suggestions} Prior to this step,
you have already taken {step count} step(s). Below are the most recent {history length}
observaitons and the corresponding actions you took: {action history} You are now at step
{current step} and your current observation is: {current observation} Your admissible ac-
tions of the current situation are: [{admissible actions}].

Now it’s your turn to take an action. You should first reason step-by-step based on the guide-
line about the current situation. This reasoning process MUST be enclosed within (think)
(/think) tags. Once you’ve finished your reasoning, you should choose an admissible action
for current step and present it within (action) (/action) tags.

Prompt for ScienceWorld

You are an expert agent operating in the ScienceWorld environment, which is a text-based
virtual environment centered around accomplishing tasks from the elementary science cur-
riculum. You should strictly follow the guidelines below, do what the guideline suggests
in your thinking steps to make better actions: {suggestions} Your current task is: {task
description }

Prior to this step, you have already taken {step count} step(s). Below are the most recent
{history length} observations and the corresponding actions you took: {action history} You
are now at step {current step} and your current observation is: {current observation} Here
are the actions you may take:

Current available actions: {available actions}

Now it’s your turn to take an action. You should first reason step-by-step about the current
situation. This reasoning process MUST be enclosed within (think) (/think) tags. Once
you’ve finished your reasoning, you should choose an appropriate action for the current step
and present it within (action) (/action) tags.

B MORE EXPERIMENTS

We use the dataset and code of RLVMR (Zhang et al.,|2025b)) to generate data for cold start, we use
300 trajectories as recommended in the code of RLVMR. Then we use DeepSeek-V3 to generate
100 critic data and incorporate it into the training data. When conducting cold start, we use 8 PPU
with per device batch size 2 and learning rate le-5, we train it for 5 epochs. For reinforcement
learning, we also use 8 PPUs with train data size 16 and group size 8 and learning rate le-6, the max
steps of interaction with environment is set to 30. When conducting RL, we train Qwen2.5 1.5B for
200 epochs and 7B for 100 epochs as it converges faster

Table 2: The performance without cold start with L2

Method ALFWorld ScienceWorld

GRPO 48 4 26.6

with GCD 523 31.2

GiGPO 67.1 25.8

Qwen-7B  ith GCD 69.8 32.4
RLVMR 65.3 27.3

with GCD 68.7 29.5

We show the performance when we use value based classifier and use the classification task and
agent task to conduct cold start and the following RL in Table[3] we can observe that by conducting
cold start with sone generative judge data, the performance increases. Also we show that directly
conduct penalization on the advantage tokens cause similarity between different sample as show in
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Table 3: The performance with different cold start. Vanilla SFT mean vanilla cold start, generative
SFT means cold start with generative critic task, and value SFT means cold start with value based
classifier. GRPO means GRPO with the instruct model, GRPO SFT means GRPO generative SFT
as cold start, and GRPO_nthr means we add penalization to those similar tokens which would cause
gradient coupling, the model is tested on ALFWorld L1

value SFT GRPO GRPO_nthr

59.5 85.9 82.7
63.7 91.7 89.4

vanilla SFT  generative SFT

61.7 63.4
65.2 66.7

Qwen 1.5B
Qwen 7B

Deng et al.| (2025a) may not help in agent task. As we show in Figure[9] the tokens cause similarity
in agent task is key tokens about the reasoning.

Question: Janet's ducks lay 16 eggs per day. Question: Heat some egg anq put it in the garbage
Question She eats three for breakfast and bakes muffins SO0 ol o) ncac |
wg?;our.:or:: ;?Jlfhtzier:r;\sleng;rkiaélzefor gaz <think>\n1. To complete the task of heating some
per egg. ry day egg and putting it in the garbage can, | need to
first obtain the egg from the fridge. Currently, | am
4 / 747 / at fridge 1, which is closed. The next logical step is
.‘:gr;deat / Bag);ei?(?alszﬁ [r;rgsi;'lggt?; Iiﬁgf?i.ns 4 to open the fridge to access its contents, including
Correct Vo 4 il 7/ the egg. Once the fridge is open, | can check if
— 9 left. 4. Revenue: 9 x \$2 = $18/day Final / W )
Response Answer $18/da there is an egg inside and take it if
Y available.\n</think>\n<action>open fridge
1</action>
gﬁslflecgg‘]ast'e‘lJ?rz‘taélsecézﬂsylsi?;n‘;%?cjaf;o? SEZIIJ;Q <think> 1. The task is to heat an egg and put it in
TP / 74 7 the garbage can,l am in front of a fridge where an
Incorrect eaten (breakfast): 3. 3. Eggs used (muffins): 4. / 7 Y/
& 4. *Eggs remaining™*\( 16 - 3 + 4 = 17 \)\n 5 egg might be, | need tq check is the egg in fr|dAge
o I'\;evenue' \(17 '\times $2 = 34 \)\n Final / 1. Therefore, | should first examine is the egg in
i Janet A fridge and take it out to heat it up if available,
v 7 Y 9 otherwise | need to find the egg elsewhere
99 L D </think> <action>examine fridge 1</action>

Figure 9: The tokens that cause the similarity in gradient

To train the classifier, one direct way is to add a value head to conduct prediction, but we show in
Figure [I0b] that the two tasks are too different, their requires different embeddings and conflicting
with each other leading to suboptimal performance as show in Appendix |Bl So we use generative
judge, specifically, as show in Figure[6] when training the agent using GRPO, we can select some
of the responses and let the model judge is it a good action for several times, then we use rule based
reward to allocate reward to those responses and use GRPO to train it. If the model can effectively
judge is it a good action, then the embedding between positive and negative samples inherent the
model could be more separated and the influence between different could be weaken (small 9).

B.1 TiME CONSUMPTION

Table 4: The time consumption (hours) of different methods. Our method costs about 30% more
time but it converges faster, we show the performance of vanilla at epoch 200 and GCD at epoch
150 and it performs similarly

Time Performance
GRPO GiGPO RLVMR GRPO GiGPO RLVMR
vanilla 14.25 9.67 11.16 69.7 79.8 72.6
GCD 18.45 13.32 16.46 72.5 78.6 74.1
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MAE/Cos similarity between logits

IS

The num of actions with GCD

MAE/CoS

. vanilla 14.9
= 60D

11.3

4 =—— SFT & Value MAE
——— SFT & Generative MAE
=== SFT & Value CoS
=== SFT & Generative CoS

num actions

tive means

(b) The MAE and cosine similarity of logits in each
layer. SFT & Value means the difference/similar-
ity between logits of vanilla SFT model and the
aRPO o1eP0 LR value based classification model. SFT & Genera-

the difference.similarity between logits of

(a) Num actions with GCD on ALFWorld L2 vanilla SFT model and the generative critic model.

Figure 10: The number of actions and the influence of valued head based classification

We can observe from Table El that our method adds about %
time for training, also we show the performance of vanilla
at epoch 200 and GCD at epoch 150, this shows that that our
method already hold similar performance with vanilla method
in epoch 150, so our method indeed requires more training
time, but it cost similar time to converge to similar perfor-
mance and it can performs better. And Figure [TT] shows that
200 epoch already converges, continuely train the model does
not improve the performance.
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Figure 11: The learning dynamic of
GRPO
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