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ABSTRACT

Federated Learning (FL) is a distributed machine learning setting that requires
multiple clients to collaborate on training a model while maintaining data privacy.
The unaddressed inherent sparsity in data often results in overly dense models and
poor generalizability under data and client participation heterogeneity. We pro-
pose FL with an L0 constraint on the density of non-zero parameters, achieved
through a reparameterization using probabilistic gates and their continuous relax-
ation: originally proposed for sparsity in centralized machine learning. We show
that the objective for L0 constrained stochastic minimization naturally arises from
an entropy maximization problem of the stochastic gates and propose an algo-
rithm based on federated stochastic gradient descent for distributed learning. We
demonstrate that the target density (ρ) of parameters can be achieved in FL, under
data and client participation heterogeneity, with minimal loss in statistical perfor-
mance for linear models: (i) Linear regression (LR). (ii) Logistic regression (LG).
(iii) Softmax multi-class classification (MC). (iv) Multi-label classification with
logistic units (MLC), and compare the results with a magnitude pruning-based
algorithm for sparsity in FL. Experiments on synthetic data with target density
down to ρ = 5% and publicly available e2006-tfidf, RCV1, and MNIST datasets
with target density down to ρ = 0.5% demonstrate that our approach consistently
works better in both sparsity recovery and statistical performance.

1 INTRODUCTION

FL training algorithms are defined by the requirements of data privacy and the distributed nature
of learning algorithms (McMahan et al., 2017). The optimization in FL is challenging due to data
heterogeneity and the availability of clients or devices, making the averaging of models or gradients
inefficient. FL systems also eliminate the need for centralization of data, even in cases where there
is no privacy concern (Kairouz et al., 2021). The resources available at devices participating in FL
vary across different settings. In cross-device FL, where edge devices are often hardware-restricted,
reducing computational and communication overheads, either in training or inference, is beneficial
(Wang et al., 2021). A sparsity-inducing learning methodology is desirable to meet the system
requirements. A sparse model, as opposed to an overly trained dense model, is favored in machine
learning (ML) for its generalizability (Tibshirani, 1996). Previous works include sparse regression
(Bertsimas et al., 2020), and different algorithms on Lasso sparse regression (Frandi et al., 2016;
Šehić et al., 2022).

The standard approach for achieving sparsity is to utilize the Lp norm for regularization. The tra-
ditional Ridge (L2) and Lasso (L1) penalties depend on the magnitude of the weights, resulting in
varying levels of shrinkage. In contrast, the L0 regularizer has a constant penalty for non-zero pa-
rameters, making it a magnitude-independent penalizer. For this reason, we prefer to apply an L0

constraint in FL to learn a global model with the desired parameter density (ρ). Consider C clients
in FL holding data (D(c))Cc=1 : (Xc, Y c) where Xc ∈ Rnc×p, Y c ∈ Rnc and

∑C
c=1 nc = N . As-

suming a linear model h(x, θ) : Rp → R and loss ℓ(h(x; θ), y) where x ∈ Rp,y ∈ R, and θ ∈ Rp,
the L0 density constrained minimization problem and the associated Lagrangian can be written as

min
θ

C∑
c=1

nc

N
L(c)(θ) subject to

∥θ∥0
|θ|
≤ ρ, ∥θ∥0 =

|θ|∑
j=1

I[θj ̸= 0], and (1)
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L(θ, λ) =

C∑
c=1

nc

N
L(c)(θ) + λ

(
∥θ∥0
|θ|
− ρ

)
. (2)

Here, L(c)(θ) is a normalized loss at client c evaluated as

L(c)(θ) =
1

nc

nc∑
i=1

ℓ (h(xc
i ; θ), x

c
i )) . (3)

A min-max problem of Lagrangian associated with a constrained optimization problem can gener-
ally be solved using gradient descent-ascent, but the presence of a non-differentiable L0 pseudo-
norm poses a challenge for gradient descent-based optimization, a convenient choice for training
ML models.

Louizos et al. (2017) present an L0 regularized objective with a set of gates z ∈ Rp introduced in a
reparameterization of θ = θ̃ ⊙ z1. Assuming a Hard concrete distribution for sampling gates z, the
L0 pseudo norm can be approximated as the sum of probabilities of gates being active (P (zj = 1)),
enabling the application of the gradient-descent method for the minimization of L0 regularized ob-
jective. This method allows passing information about the desired sparsity target through initializa-
tion and regularization strength; however, tuning the regularization coefficient to achieve the desired
sparsity can be challenging. Gallego-Posada et al. (2022) utilize the same approach, except that they
use an L0 density constrained formulation and the min-max problem of the associated Lagrangian.
We adopt this approach for our optimization problem in FL due to its flexibility in accommodating
generic loss functions and learning controlled sparsity during training through simultaneous gradient
descent and ascent.

In this work, we show that the same Lagrangian formulation for the L0 constrained problem in
centralized machine learning can be derived from the entropy maximization of the stochastic gates.
We then propose a distributed algorithm for learning a sparse global model by aggregating repa-
rameterized gradients across clients. Experiments on synthetic data are used to test the sparsity
recovery and statistical performance, as well as the statistical performance at the desired parameter
density in real-world datasets. All experiments are conducted on data distributed heterogeneously
across clients by design, and with simulation of stagglers or client participation heterogeneity in the
training algorithm.

The latter part of the paper is organized into sections on L0- constrained formulation, followed by a
distributed algorithm, experiments, and a discussion.

2 L0 CONSTRAINED FORMULATION

2.1 CENTRALIZED ML

Assuming a linear model h(x, θ) : Rp → R and loss ℓ(h(x; θ), y) where x ∈ Rp,y ∈ R, and
θ ∈ Rp, with centralized data D : (X,Y ), X ∈ RN×p, and Y ∈ RN . The L0 density-constrained
minimization problem with a desired density of ρ can be described as shown below in a centralized
setting.

min
θ

1

N

N∑
i=1

ℓ(h(xi; θ), yi) subject to
∥θ∥0
|θ|
≤ ρ, ∥θ∥0 =

|θ|∑
j=1

I[θj ̸= 0] (4)

Since the presence of a non-differentiable pseudo-norm makes the application of gradient descent-
based methods infeasible on the min-max problem of the Lagrangian, Gallego-Posada et al. (2022)
use an alternate formulation with reparameterization of θ(θ̃ ⊙ z) using gates z ∈ [0, 1]p with hard
concrete distribution (Louizos et al., 2017) for zj with parameters ϕj . The minimization objective
is an expectation of the loss with respect to the distribution of gates, and the sum of the probabilities
of stochastic gates being non-zero is the continuous approximation of the L0 pseudo-norm. zj
being a deterministic transformation of a parameter-free noise allows for a joint optimization of
the Monte Carlo approximation of the expected loss over the noise, with respect to θ̃ and ϕ using

1⊙ stands for the Hadamard product (Horn, 1990)
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reparameterized gradients (Ranganath, 2017, ch. 3.3.3). The Lagrangian and the min-max problem
associated with the constrained optimization problem with this reparameterization are

L̂(θ̃, ϕ; {λ}) =
R∑

r=1

1

R

[
1

N

N∑
i=1

L
(
h(xi; θ̃ ⊙ z(r)), yi

)]
+ λ

 |θ|∑
j=1

Eq(z|ϕ)[zj ]

|θ|
− ρ

 , and (5)

θ∗, ϕ∗, λ∗ = argmin
θ̃,ϕ

argmax
λ≥0

(
L̂(θ̃, ϕ; {λ})

)
. (6)

2.2 ENTROPY MAXIMIZATION OF STOCHASTIC GATES

We use entropy (H(S) = −
∑

S∈Ω P (S) logP (S)) maximization of states S ∈ Ω = {0, 1}p given
a set of constraints to derive the Boltzmann distribution and free energy. Exploiting the connection
between free energy upper bound and evidence lower bound (ELBO) (Altosaar et al., 2019), we show
that the constrained optimization problem that Gallego-Posada et al. (2022) propose for controlled
sparsity naturally arises from the minimization of free energy upper bound with a constraint on the
density of micro states. The exploration of such a connection between statistical mechanics and
machine learning is not new. LeCun et al. (2006) introduce the energy-based models, where the
energy corresponds to the loss of a model. Carbone (2025) review theoretical and practical aspects
of energy-based models, connecting elements of statistical physics and machine learning. Lairez
(2023) provide a short introduction to the derivation of boltzmann distribution and free energy.

We assume P (S) drives the state of parameters θ ∈ Rp being non-zero with a parameterization
of θ = θ̃ ⊙ S (θ̃( ̸= 0)) and thus refer to S as gates. The Lagrangian associated with entropy
maximization of S, subject to normalization constraint for P (S), expected gate density constraint,
and a finite constraint on the normalized loss of a reparameterized model on data D : (X,Y ) where
X ∈ RN×p and Y ∈ RN , can be expressed as

L(P (S); {λi}) =
∑
Ω

P (S) logP (S) + λ0

(∑
Ω

P (S)− 1

)

+ λ1

∑
Ω

P (S)

|θ|∑
j=1

sj
|θ|
− ρ

+ λ2

∑
Ω

(
P (S)

[
1

N

N∑
i=1

ℓ
(
h(xi; θ̃ ⊙ S), yi

)]
− L∗

)
. (7)

Here, the Lagrange multiplier λ2 identified as inverse temperature β = 1/T is positive, λ1 is non-
negative, and L∗ is a finite constant. A detailed derivation of the following steps is provided in
Appendix A.

The probability distribution P (S) can be expressed in terms of the Hamiltonian (H(S)) or energy
function in S and the normalizing constant Z using the stationarity condition (Lairez, 2023, eq 17):

H(S) =
1

N

N∑
i=1

ℓ(h(xi; θ̃ ⊙ S), yi) + λ

|θ|∑
j=1

sj
|θ|

, P (S) =
e−

1
T H(S)

Z

Z =
∑
Ω

e−
1
T H(S) , where e−

1
T H(S) is the Boltzmann factor. (8)

This distribution is intractable because the normalizing constant is not factorizable in S, resulting
in combinatorial complexity. If a simpler H0(S) such as

∑
j λsjhj/|θ| that factorizes over S is

chosen as a trial Hamiltonian, then the associated trial distribution q(S) is a tractable mean field
approximation of P (S) and the marginal q(sj) is a Bernoulli distribution. Using the Bogoliubov
variational principle, an upper bound on the free energy can be derived (Kuzemsky, 2015, ch 8).
Altosaar et al. (2019) show that minimization of the free energy upper bound is the same as min-
imization of negative ELBO in the Bayesian variational principle, using the Boltzmann factor as
an unnormalized posterior and the trial distribution as the approximate posterior in ELBO. A lower
bound on the negative ELBO (FLB) can further be obtained using the positivity of Kullback-Leibler
divergence DKL (q(S) | p(S)) between the approximate posterior and the prior of the same form.
FLB contains expectations of the normalized loss of the reparameterized model and the gate den-
sity, with respect to q(S). The minimization of FLB involves discrete sampling of the gates from
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q(S). Since the gradients of the model with respect to parameters of the variational distribution q(S)
do not flow through the discrete sampling, a stochastic minimization procedure with Monte-Carlo
estimation (Carbone, 2025, eq.27) can be employed, leading to:

F̂LB =

R∑
r=1

1

R

[
1

N

N∑
i=1

ℓ
(
h(xi; θ̃ ⊙ S(r)), yi

)]
+ λEq(S)

 |θ|∑
j=1

sj
|θ|

 (9)

The expectation of
∑

j sj is the sum of the probabilities of non-zero gates, a differentiable re-
laxation of L0 pseudo-norm counting non-zero parameters given θ̃ ̸= 0. Choosing a continuous
approximation of the Bernoulli distribution and sampling, that can be expressed as a deterministic
transformation of a parameter-free noise such as hard concrete distribution, the Lagrangian for the
L0 constrained minimization of F̂LB is exactly the same as equation 5.

2.3 FL WITH REPARAMETERIZATION

In an FL setting with C clients holding data (D(c))Cc=1 : (Xc, Y c), a reparameterized linear model
h(x; θ̃ ⊙ z) : Rp → R, and loss ℓ(h(x; θ̃ ⊙ z), y) where Xc ∈ Rnc×p, Y c ∈ Rnc ,

∑C
c=1 nc = N ,

x ∈ Rp, y ∈ R, θ ∈ Rp ( θ = θ̃ ⊙ z), and gate parameters ϕ = logα ∈ Rp, the Lagrangian for the
L0 density constrained minimization problem can be written as

L̂(θ̃, ϕ;λ) =

C∑
c=1

nc

N
L(c)(θ̃, ϕ) + λ

 |θ|∑
j=1

Eq(z|ϕ)[zj ]

|θ|
− ρ

 . (10)

Here, L(c)(θ̃, ϕ) is Monte Carlo estimate of the normalized loss at client c evaluated as

L(c)(θ̃, ϕ) =
1

R

R∑
r=1

1

nc

nc∑
i=1

ℓ
(
h(xc

i ; θ̃ ⊙ z(r)), xc
i )
)
. (11)

A hard concrete distribution g(f(ϕ, ϵ)) for sampling of gates(z)is a hard-sigmoid transformation of
the stretched s̄ of the binary concrete random variable s. Louizos et al. (2017) proposed hard con-
crete as a closer approximation, allowing for zeros in z, of Bernoulli than the binary concrete (Mad-
dison et al., 2016).

Concrete: s = q(s|ϕ) = σ

(
log u

1−u + logα

β′

)
, u ∼ U(0, 1),

Stretch: s̄ = s(ζ − γ) + γ, Transform: z = min(1,max(0, s̄)). (12)
Using the cumulative distribution Q(s̄), presented at Louizos et al. (2017),the min-max problem can
be expressed as:

θ̃∗, ϕ∗, λ∗ = argmin
θ̃,ϕ

argmax
λ≥0

 C∑
c=1

nc

N
L(c)(θ̃, ϕ) + λ

 |θ|∑
j=1

Eq(z|ϕ)[zj ]

|θ|
− ρ

 (13)

where Eq(z|ϕ)[zj ] = 1−Q(s̄j ≤ 0|ϕj) = σ

(
logαj − β′ log

(
−γ

ζ

))
.

We can now perform a joint optimization of θ̃ and ϕ = logα using gradient descent with reparam-
eterized gradients, and a test-time ẑr without noise and smoothing (Louizos et al., 2017). We use
a gradient ascent updating rule for λ with restart (λ=0) when the constraint is satisfied (Gallego-
Posada et al., 2022).

3 DISTRIBUTED OPTIMIZATION ALGORITHM

We now introduce a short notation LCon(ϕ) representing the L0 density constraint in equation 10.
The Lagrangian in short notation can be expressed as

L̂(θ̃, ϕ; {λ}) =
C∑

c=1

nc

N
L(c)(θ̃, ϕ) + λLCon(ϕ). (14)
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McMahan et al. (2017) propose a distributed algorithm for learning a global model with syn-
chronous update using averaging of gradients. Assuming a central server that coordinates train-
ing with C clients holding data (Dc)Cc=1 locally, clients compute the gradients and the server
aggregates these gradients from the clients to update the global model. For all data at each
client, clients compute ∇θ̃L(c)(θ̃, ϕ) and ∇ϕL(c)(θ̃, ϕ) at time t and the server updates: θ̃t+1 ←
θ̃t − ηθ̃

∑C
c=1

nc

N ∇θ̃L(c)(θ̃t, ϕt), ϕt+1 ← ϕt − ηϕ(
∑C

c=1
nc

N ∇ϕL(c)(θ̃t, ϕt) − λ∇ϕLCon(ϕ
t)) and

λt+1 ← λt + LCon(ϕ
t).

We use mini-batches of uniform size B drawn randomly at all clients for a synchronous update of
global parameters, and repeat this process for n(B) iterations in each epoch/round. A fraction γc
of clients C is chosen at random for training in each epoch (K = ⌊γc · C⌋). For a mini-batch at
each client, clients compute∇θ̃L

(k)
B (θ̃, ϕ) and∇ϕL(k)

B (θ̃, ϕ), the gradients of mini-batch normalized
loss with respect to θ̃ and ϕ, and the server updates: θ̃t+1 ← θ̃t − ηθ̃

∑K
k=1 wk∇θ̃L

(k)
B (θ̃t, ϕt),

ϕt+1 ← ϕt − ηϕ(
∑K

k=1 wk∇ϕL(k)
B (θ̃t, ϕt) − λ∇ϕLCon(ϕ

t)) and same update for λ as before but
with a restart mechanism if the constraint is satisfied (Gallego-Posada et al., 2022). The weights for
aggregation in our case are wk = B

K·B . With this approach, we learn a global sparse model in FL
with an L0 constraint using probabilistic gates, which we refer to as FLoPS.

The learning rates ηθ̃ ∼ [1e−3, 1e−1], ηϕ ∼ [1e−3, 1e−1], and ηλ in the order of 1/|θ| are tuned
for stability in training. The gate parameters logα are sampled from normal distribution with mean
of log ρinit − log(1 − ρinit) and variance 0.01 and ρtarg = ρ is the desired density of parameters. A
high ρinit implies a dense initialization. The hyperparameters of hard concrete: γ, ζ, and β

′
are set

at −0.1, 1.1, and 0.66 as recommended (Louizos et al., 2017). The Lagrange parameter λ is set to 0
initially.

Algorithm 1 FLoPS. E is the number of epochs and B is the mini-batch size.

Server:
Initialize: (θ̃(0), ϕ(0) : logα(0))
for epoch t = 1, . . . , E do

St=random set of K clients (K = ⌊γc · C⌋)
for batch b = 1, . . . , n(B) do

for each participating client k ∈ St do
gradients with respect to (θ̃, ϕ): ClientCompute(k, θ̃t, ϕt)

end for
Aggregate gradients from clients w.r.t (θ̃, ϕ):

∑K
k=1 wkg

k
θ̃

and
∑K

k=1 wkg
k
ϕ

Compute gradients∇ϕLCon(ϕ
(t))

Update (θ̃(t+1), ϕ(t+1)) and the dual λ(t+1)

end for
If epoch > prune start:
scale up logα(b) at top-m indices of θ (m = ⌊(ρtarg · |θ|)⌋) and scale down for the remaining.
((logα(t) + r logα(t))mθ + (logα(t) − r logα(t))(1−mθ) where r and mθ

are decay factor and top-m mask respectively.)
end for
ClientCompute(k, θ̃, ϕ): // Run for each client k ∈ St

Draw a mini batch b← random(D(k), B) of size B

Compute gk
θ̃
= ∇θ̃L

(k)
B (θ̃t, ϕt) and gkϕ = ∇ϕL(k)

B (θ̃t, ϕt)

Send gk
θ̃

and gkϕ to server

By design, FLoPS gives test time sparsity with ẑ sampled without noise and smoothing. Gallego-
Posada et al. (2022) note that their approach results in a density closer to the targeted density. For
exact sparsity, while not breaking the assumption of θ̃ ̸= 0, we scale up logα at top-m indices
where m = ⌊ρtarg · |θ|⌋ and scale down for the rest of the indices in each epoch after a set threshold
called prune start. In an FL setting, since the data available at a client varies, applying a data
heterogeneity-aware method, such as the Reimannian aggregation scheme (Ahmad et al., 2023) or
simply choosing wk = nk

N , can be tested in the future. The fact that not all clients may qualify to

5
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participate in training is simulated by randomly choosing a fraction of clients for training in each
epoch.

4 EXPERIMENTS

The experiments conducted span both synthetic and real datasets. The sparse linear regression (LR),
logistic regression (LGR), and multiclass classification (MC) results on synthetically generated data
are included. The experimental results of LR, MC, and multi-label classification (MLC) on real
datasets e2006-tfidf, MNIST, and RCV1, respectively, are also included. We conducted all our
experiments on an Apple MacBook with an M4 Pro chip (12-core CPU) and 24 GB of unified
memory running macOS 15.5, using PyTorch (2.7.0) in Python (3.12.7).

4.1 EXPERIMENTS ON SYNTHETIC DATA SETS

For generating synthetic linear regression data, we use a sparse linear model following the method
described at Bertsimas et al. (2020). Each row xi ∈ R1000 of the design matrix X ∈ R10000×1000 is
drawn from a zero-mean Gaussian with a covariance matrix Σ. We use a Toeplitz covariance matrix
Σ where (Σij)

1000
i,j=1 = ρ

|i−j|
cor . An m-sparse (m = ⌊ρ · 1000⌋) coefficient vector wtrue ∈ R1000 is

constructed by randomly choosing a set of m indices (Sm ⊆ {1, ..1000} and sampling (wtrue)j ∼
Unif{−1, 1} for j ∈ Sm and (wtrue)j = 0 otherwise. This is the true sparsity of the model. The
responses or predictions are generated as y = Xwtrue + ε with i.i.d. noise ε ∼ N (0, σ2IN ) where
N = 10000. A signal-to-noise ratio defined by SNR = ∥Xwtrue∥22/∥ε∥22 is choosen and the noise
level σ = ∥Xwtrue∥2/(

√
SNR

√
N) is chosen accordingly. For generating synthetic sparse logistic

regression, the same procedure is used except the binary labels are obtained by thresholding noisy
logits (nl = Xwtrue + ε) by 0, i.e., yi = 1 if (nl)i > 0 and zero otherwise. In the case of multi-
class classification (nc classes), an m-sparse (m = ⌊ρ · 1000 · nc⌋) coefficient matrix is constructed
by randomly choosing m positions in the matrix to populate using samples from Unif{−1, 1} and
zero otherwise. The labels are generated by taking the index of the largest among the noisy logits
across classes (yi = argmaxc{((nl)i)c}).
We employ affine shifting and the Dirichlet partition protocol for simulating data heterogeneity, and
randomly sample a fraction of clients in each epoch for client participation heterogeneity in our ex-
periments (Solans et al., 2024; Reisizadeh et al., 2020). We refer readers to Appendix A for more
details. The True Discovery Rate (TDR) (Bertsimas et al., 2020) is used as a metric, along with mean
squared error (MSE) and R2 for linear regression, and cross-entropy (CE) loss and accuracy for clas-
sification, to compare the accuracy of sparsity recovery and statistical performance. We compare our
results with the federated iterative hard thresholding algorithm (FedIter-HT) proposed by Tong
et al. (2022), where a hard thresholding operator external to federated averaging with gradient de-
scent is used to iteratively impose top-m magnitude selection to minimize L0 regularized objective,
showing promising results in their experiments. We tested the sparsity recovery and performance
of all algorithms with varying correlation factor ρcor and SNR in synthetic data, ranging from high
to low. The results for the case with low ρcor and high SNR for LR, LG, and MC at true sparsity
of 5% are illustrated in Table 1. In all three cases, FLoPS performs better than FedIter-HT,
and 5% dense FLoPS performs better than 95% dense FLoPS. Since we observed similar compar-
ative results, the sparsity recovery results in other conditions are attached in Appendix A to avoid
redundancy.

We conducted experiments in homogeneous (IID) and heterogeneous (Non-IID) data distribution
with a 10% of client participation in both settings, controlled by the Dirichlet parameter αiid, at dif-
ferent levels of true sparsity, specifically 5% : ρtarg = 0.95 and 95% : ρtarg = 0.05. Here ρtarg is the
desired density of the model. The Table 2 illustrates that FLoPS has superior statistical performance
(R2/Accuracy(ACC)), and the sparsity recovery accuracy (TDR) consistently, especially at learning
models with very low density of parameters or high sparsity.

The desired property of gradually achieving the target density of parameters during training time
can be observed through a reduction in the expected number of gates, which is a continuous ap-
proximation of the L0 pseudo-norm in FLoPS, over the training epochs. The Figure 1 demonstrates
controlled sparsity learning for a target density of 0.05.
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Model Density (ρtrue)
TDR Epoch 50: Statistical performance (test time)

FLoPS(0.05) FLoPS(0.95) FedIter-HT FLoPS(0.05) FLoPS(0.95) FedIter-HT

R2/ACC MSE/CE R2/ACC MSE/CE R2/ACC MSE/CE

LR 0.05 1.00 0.05 0.18 0.91 4.62 0.85 7.65 0.16 42.57

LG 0.05 0.94 0.11 0.11 0.90 0.32 0.83 0.56 0.63 0.88

MC 0.05 0.99 0.38 0.51 0.68 0.82 0.52 2.25 0.24 2.24

Table 1: This table corresponds to synthetic data generated using a signal-to-noise (SNR) ratio of 20
and a covariance matrix generated using a 0.2 correlation factor with a true model density of 0.05. It
provides a comparison across models learned under data and client participation heterogeneity. On
the left: TDR for FLoPS trained to achieve densities 0.05 and 0.95, and FedIter-HT trained to
achieve true density; On the right: Statistical performance at test time for all models showing R2

and MSE for LR, and Accuracy (ACC) and CE loss for classification models after training for 50
epochs.

Model Density (ρtarg = ρtarg)
αiid = 1000 (IID) αiid = 0.5 (non-IID)

FLoPS FedIterHT FLoPS FedIterHT

R2/ACC TDR R2/ACC TDR R2/ACC TDR R2/ACC TDR

LR 0.95 0.83 0.98 0.86 0.97 0.69 0.96 0.74 0.96
0.05 0.90 1.00 0.37 0.37 0.91 1.00 0.27 0.18

LG 0.95 0.87 0.96 0.87 0.96 0.85 0.95 0.81 0.96
0.05 0.89 0.96 0.70 0.22 0.90 0.94 0.65 0.11

MC 0.95 0.52 1.00 0.53 1.00 0.50 1 0.50 1.00
0.05 0.71 0.99 0.28 0.51 0.68 0.99 0.24 0.5

Table 2: Comparison of FLoPS and FedIter-HT across models and densities (true model spar-
sity). Here, the sub-columns R2/ACC and TDR(true discovery rate) showcase the statistical per-
formance and accuracy in sparsity recovery, with client participation heterogeneity: 10% of clients
participate in training.

The dynamic sparsity learning in FLoPS can be understood from the change in the sparsity pattern
through soft Jaccard loss/ soft intersection over union (IOU) heat map (Wang et al., 2024) of test
time gates across epochs, in contrast to the IOU heat map of a binary mask in FedIter-HT where
a lower value indicates higher mobility in learning sparsity. The Figure 2b shows a stable, low
learning phase in the beginning, starting from a dense initialization, followed by an active learning
phase and a stable sparsity pattern towards the end in FLoPS as opposed to continuous change in
IOU in FedIter-HT. The heat maps correspond to learning a 0.05 target density of parameters.

4.2 EXPERIMENTS ON REAL DATASETS

We considered three publicly available datasets: (i) e2006-tfidf (Kogan et al., 2009) is a regression
dataset for predicting stock return volatility with tfidf vectors as features. (ii) RCV1 (Lewis et al.,
2004) is a multi-label classification dataset with a tfidf representation of Reuters newswire articles as
features; we used 34 labels that account for∼ 87% of all label assignments for the multi-label classi-
fication experiment. (iii) MNIST (LeCun, 1998) is a multi-class classification dataset of handwritten
digits with grayscale image pixel values as features.

For conducting FL experiments, the data needs to be decentralized. Tong et al. (2022) use k-means
clustering to group the data into 10 clusters and partition each cluster into 20 even parts for both
e2006-tfidf and RCV1 data. A random selection of two clusters is used to sample one partition
from each cluster to allocate to one of the 100 clients. We distribute two randomly selected cluster-
partition pairs to each of the 100 clients. In this way, each client sees at most two clusters simulating
heterogeneity. In the case of MNIST data, the Dirichlet partition protocol is applied to draw het-
erogeneous label proportions for each client, and the data is distributed accordingly to 100 clients
(Solans et al., 2024). In each epoch, only 5% of the clients are randomly sampled to simulate client
participation heterogeneity.
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(a) Expected gates (LR) (b) Expected gates (LG) (c) Expected gates (MC)

Figure 1: The figure corresponds to results for synthetic data generated using a signal-to-noise
(SNR) ratio of 20 and a covariance matrix generated using a 0.2 correlation factor. Here, (a) to (c)
correspond to the expected gates of FLoPS: achieving 5% target density of gates during training in
heterogeneous conditions of data and client participation (HTC) in LR, LG, and MC cases, respec-
tively. The blue dotted line corresponds to the round at which logα scaling starts, corresponding to
the target density.

(a) Soft IOU: FLoPS (0.05) (b) IOU : FedIter-HT

Figure 2: The figure corresponds to results for synthetic data generated using a signal-to-noise
(SNR) ratio of 20 and a covariance matrix generated using a 0.2 correlation factor. Here, (a) and (b)
correspond to the soft IOU heat map for test time gates in FLoPS for 5% target density of gates and
IOU heat map of binary masks in FedIter-HT for the same level target density during training in
heterogeneous conditions of data and client participation (HTC) in the LR case, respectively.

With 150360 and 47236 dimensions, the e2006-tfidf and RCV1 have high-dimensional and sparse
features, leading to models LR with 150360 parameters and MLC with ∼ 1.6 million parameters.
The MNIST data has 28× 28 pixel values as features, leading to MC with 7840 parameters.

The MSE-R2, binary CE (BCE)-micro-averaged F1, and CE-accuracy are used for comparing the
statistical performance of LR on e2006-tfidf, MLC on RCV1, and MC on MNIST, respectively. Fig-
ure 3 shows that FLoPS(0.005) has a superior test time performance compared to FedIter-HT
in the RCV1 multi-label classification task, with higher micro-averaged F1 and similar performance
in e2006-tfidf volatility prediction R2 and MNIST multi-class classification accuracy.

5 CONCLUSION

We introduced FLoPS, a federated learning algorithm for L0 density-constrained optimization,
which learns a global model with desired sparsity using a reparameterization with probabilistic
gates. We showed that the L0 regularized objective (Louizos et al., 2017) and the L0 constrained
formulation (Gallego-Posada et al., 2022) can be derived from entropy maximization of stochastic
gates introduced for inducing sparsity. We reformulated the min-max problem associated with the
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(a) Test R2 (e2006-tfidf) (b) Test MicroF1 (RCV1) (c) Test Accuracy (MNIST)

Figure 3: The figure corresponds to results of FLoPS and FedIter-HT with 0.5% target density
on e2006-tfidf and RCV1 datasets, and 5% target density on MNIST data in heterogeneous condi-
tions of data and client participation.

Lagrangian for L0 constrained optimization for FL and proposed the distributed optimization algo-
rithm FLoPS based on FedSGD. Through empirical evaluation using synthetically generated data
and high-dimensional real data, we showed that FLoPS achieves high sparsity recovery accuracy
and superior statistical performance under data and client participation heterogeneity. All the exper-
iments currently assume a central server coordinating the synchronous training in FL. In the future,
we aim to adapt the current approach to FL with decentralized coordination, eliminating the need
for reliance on a central server and asynchronous updates.
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A APPENDIX

DERIVATION OF OPTIMAL DISTRIBUTION P (S)

We start with the Lagrangian for maximizing entropy of the states S or gates with a normalizing
constraint, constraint on expectation of density of states, and a constraint on the loss ℓ(h(x; θ̃⊙ϕ), y)
of the reparameterized model (h(x; θ̃ ⊙ S) : Rp → R) normalized over data D : (X,Y ) where
x ∈ Rp, y ∈ R, X ∈ RN×p, Y ∈ RN and θ ∈ Rp(θ = θ̃ ⊙ S). The Lagrange multiplier λ2,
identified as inverse temperature β = 1/T, is positive, λ1 is non-negative, and L∗ is a finite constant.

L(P (S); {λi}) =
∑
Ω

P (S) logP (S) + λ0

(∑
Ω

P (S)− 1

)

+ λ1

∑
Ω

P (S)

|θ|∑
j=1

sj
|θ|
− ρ

+ λ2

∑
Ω

(
P (S)

[
1

N

N∑
i=1

ℓ
(
h(xi; θ̃ ⊙ S), yi

)]
− L∗

)
. (15)

Taking the functional derivative w.r.t. P (S) to zero, a stationarity condition, and solving for p(S)
gives the Gibbs-Boltzmann distribution.

∂L(P (S); {λi})
∂P (S)

=
1

N

N∑
i=1

ℓ
(
h(xi; θ̃ ⊙ S), yi

)
+ T (1 + logP (S)) + λ

|θ|∑
j=1

sj
|θ|

+ µ = 0.

Here, µ = λ0T and λ = λ1T . Solving for logP (S):

logP (S) = − 1

T

 1

N

N∑
i=1

ℓ
(
h(xi; θ̃ ⊙ S), yi

)
+ λ

|θ|∑
j=1

sj
|θ|

+ µ+ T



P (S) =
1

Z
exp

− 1

T

 1

N

N∑
i=1

ℓ
(
h(xi; θ̃ ⊙ S), yi

)
+ λ

|θ|∑
j=1

sj
|θ|


=

1

Z
exp

(
− 1

T
H(S)

)
. (16)

Equation 16 is the Gibbs-Boltzmann distribution over states for known parameters and data. Here Z
is the normalization constant and H(S) is the Hamiltonian or the energy function given by equation
17 and equation 18:

Z =
∑
Ω

exp

− 1

T

 1

N

N∑
i=1

ℓ
(
h(xi; θ̃ ⊙ S), yi

)
+ λ

|θ|∑
j=1

sj
|θ|

 . (17)

H(S) =
1

N

N∑
i=1

ℓ(h(xi; θ̃ ⊙ S), yi) + λ

|θ|∑
j=1

sj
|θ|

(18)
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GIBBS-BOGOLIUBOV INEQUALITY AND ELBO

The Helmholtz free energy functional F is defined using logarithmic transformation of the parti-
tion function Z and inverse temperature β. The minimization of free energy yields the probability
distribution with maximum entropy.

F = − 1

β
log(Z).

The partition function Z associated with P (S) in equation 17 is intractable. A distribution q(S)
with a partition function fully factorizable in states si ∀i ∈ {1, . . . |θ|} can be assumed as a trial
distribution.

q(S) =
1

Z0
exp

(
− 1

T
H0(S)

)
; F0 = − 1

β
log(Z0)

Using the Gibbs-Bogoliubov inequality

F ≤ F0 + EQ(S)[H(S)−H0(S)] (19)

and the relation between free energy and the entropy

F0 = EQ(S)[H0(S)]− TH[Q], (20)

an upper bound on true free energy can be obtained (Kuzemsky, 2015, eq 22, eq 122). This is the
variational free energy upper bound expressed in

F ≤ EQ(S)[H(S)]− TH[Q]. (21)

Altosaar et al. (2019) show the relation between the Gibbs-Bogoliubov inequality for a system with
null data using a mean field (MF) trial distribution and the evidence lower bound (ELBO), where
the unnormalized posterior distribution corresponds to the Boltzmann factor (e−

1
T E) in Gibbs-

Boltzmann distribution with energy function E. The ELBO can be expressed using the log joint
or the unnormalized posterior corresponding to the Gibbs-Boltzmann factor in our context:

L = Eq(S)[logP (D,S)]− Eq(S)[log q(S)]

= Eq(S)[logP (D|S)]− Eq(S)[log q(S)] + Eq(S)[log p(S)]

= Eq(S)[logP (D|S)]−DKL[q(S)|p(S)].

The minimization of negative ELBO or variational free energy is the same as the minimization of
the upper bound on the free energy described in equation equation 21 (Altosaar et al., 2019):

F = −L = Eq(S)[− logP (D|S)] +DKL[q(S) | p(S)]
≥ Eq(S)[− logP (D|S)] = FLB (22)

MINIMIZATION OF THE BAYESIAN VARIATIONAL FREE ENERGY

The minimization of the lower bound FLB on the Bayesian variational free energy derived using
the positivity of DKL(q(S) | p(S)) involves sampling the state variables from q(S). For a choice
of H0(S) =

∑
j λsjhj/|θ|, q(S) is a mean field approximation of P (S) and fully factorizable in

S. The probability distribution q(sj) is a Bernoulli probability. Since the gradients do not flow
through the discrete sampling from the Bernoulli distribution, a stochastic minimization procedure
with Monte-Carlo estimation, although inefficient, can be employed (Carbone, 2025, eq.27):

F̂LB =

R∑
r=1

1

R

[
− logP (D | S(r))

]
=

R∑
r=1

1

R

[
1

N

N∑
i=1

ℓ
(
h(xi; θ̃ ⊙ S(r)), yi

)]
+ λEq(S)

 |θ|∑
j=1

sj
|θ|

 (23)

Ranganath (2017) provide a recipe for efficiently working with stochastic optimization by employing
variance reduction methods such as reparametrized gradients. However, this approach excludes the
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usage of discrete latent random variables S and assumes access to the gradient of the log joint or
the model with respect to latent variables. Further assuming that the sampling of continuous latent
variables S or gates can be expressed as a deterministic transformation of a parameter-free noise ϵ,
one can simplify the stochastic optimization at hand as joint optimization of the model parameters
and the gate parameters using reparameterized gradients:

S(r = f(ϕ, ϵ(r))

ϵ(r) ∼ p(ϵ).

Louizos et al. (2017) propose a hard concrete distribution(g(f(ϕ, ϵ))) for continuous sampling of z,
allowing for a closer approximation of the Bernoulli distribution:

F̂LB =

R∑
r=1

1

R

[
1

N

N∑
i=1

ℓ
(
h(xi; θ̃ ⊙ z(r)), yi

)]
+ λEq(z|ϕ)

 |θ|∑
j=1

zj
|θ|

 . (24)

Here, z is a hard-sigmoid transformation of the stretched s̄ of the binary concrete random variable
s. Using the cumulative distribution Q(s̄) this expression can be expressed as (Louizos et al., 2017):

F̂LB =

R∑
r=1

1

R

[
1

N

N∑
i=1

ℓ
(
h(xi; θ̃ ⊙ z(r)), yi

)]
+ λ

 |θ|∑
j=1

σ
(
logαj − β′ log

(
−γ

ζ

))
|θ|

 , (25)

where, z(r) = min(1,max(0, s̄(r))), s̄(r) = s(r)(ζ − γ) + γ, s(r) = q(s(r) | ϕ) =

σ
(
logα(r) + log

(
u(r)

1−u(r)

))
, u(r) ∼ U(0, 1), and Eq(z|ϕ)[zj ] = 1 − Q(s̄j ≤ 0) =

σ
(
logαj − β′ log

(
−γ

ζ

))
.

LEARNING SPARSITY THROUGH TEST TIME GATES ẑ

Figure 4 illustrates how FLoPS learns the desired sparsity, using test time gates over epochs and
soft jaccard loss/IOU (Wang et al., 2024). The lower the soft IOU, the higher the change or learning
in the sparsity pattern.

(a) Test time gates ẑ (b) Soft IOU heat map

Figure 4: The figure corresponds to FLoPS(0.05) for synthetic linear regression data generated
using a signal-to-noise (SNR) ratio of 20 and a Covariance matrix generated using a 0.2 correlation
factor ρtarg = 0.05. Here, (a) and (b) correspond to the test time gates ẑ and Soft IOU (Intersection
Over Union) heat map of ẑ over epochs under data (non-IID) and client participation heterogeneity
(10%).
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MORE EXPERIMENTS ON SYNTHETIC DATA

(a) LR: low SNR low ρcor (b) LR: low SNR high ρcor (c) LR: high SNR high ρcor

(d) LG: low SNR low ρcor (e) LG: low SNR high ρcor (f) LG: high SNR high ρcor

(g) MC: low SNR low ρcor (h) MC: low SNR high ρcor (i) MC: high SNR high ρcor

Figure 5: The figure corresponds to sparsity recovery results of FLoPS and FedIter-HT in data
and client participation heterogeneous conditions for synthetic linear regression (LR), logistic (LG)
and multiclass classification (MC) data generated in low SNR (3) - low ρcor (0.2), low SNR (3) -
high ρcor (0.7), and, high SNR (20) - high ρcor (0.7).

Figure A shows the sparsity recovery accuracy (TDR) of FLoPS and FedIter-HT in additional
experimental conditions to those shown in the experiments section. We generated synthetic data by
varying the SNR and the Toeplitz covariance matrix (Σij = ρ

|i−j|
cor ) for various values of correlation

factor ρcor. We generated results in four regimes, varying SNR from 20 (high) to 3 (low) and ρcor
from 0.2 (low) to 0.7 (high): (i) high SNR-low ρcor (ii) low SNR-low ρcor (iii)low SNR-high ρcor (iv)
high SNR-high ρcor. The results for the first regime are discussed in the experiments section, and
the results for the remaining regimes are presented in Figure A. We see that the sparsity recovery is
consistently better with FLoPS in experiments for the LR, LG, and MC tasks. We also note that the
FLoPS with 95% target density is trivially poor in sparsity recovery, as we forced the higher density
of parameters despite our knowledge of the inherent sparsity. Cherepanova et al. (2023) show that
the statistical performance drops with an increase in corrupted or duplicated features. We suspect
that the significantly poor performance of FedIter-HT in our synthetic data with dense correlated
features, in contrast to real data with sparse features, could stem from the same reason and needs
further investigation.
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HETEROGENEITY

In FL, the data is neither centralized nor independent and identically distributed (IID). The data
that each client holds is private and may not have the same quantity or attributes of data as the
other clients. In practice, the same number of clients may not be eligible or available to participate
throughout the training time. Solans et al. (2024) reviews various reasons for the above-mentioned
forms of heterogeneity (non-IIDness) and different ways to simulate such conditions. To simulate
heterogeneity in the number of samples across clients or quantity skew, a Dirichlet distribution with
parameter α is used to sample proportions for each client. The samples are then allocated to clients
according to the sampled proportions, using a Dirichlet partition protocol to achieve quantity skew.
For a high αiid = 1000, the samples are uniformly distributed across 100 clients, whereas a low
αiid = 0.5 results in a heterogeneous distribution of samples. For achieving attribute skew, affine
shifts that are randomly sampled using a zero-mean Gaussian distribution with a standard deviation
σms are then used to shift features at a client by samples from a Gaussian distribution with an affine
shift as mean and standard deviation of 1. Reisizadeh et al. (2020) discuss the decline in performance
of the model in FL settings with attribute skew simulated using affine shifts. Finally, the client
participation skew is simulated by randomly sampling 5% of the 100 clients in each round/epoch.

CONCRETE DISTRIBUTION

Maddison et al. (2016) propose the binary concrete distribution with parameters logαj , using a
Gumbel max trick on the Bernoulli distribution. Huijben et al. (2022) present a review of the Gumbel
max trick in machine learning as a method to generate continuous samples from a deterministic
transformation of an IID noise that results in the categorical probabilities. By definition, logαj are
the logits of the Bernoulli probabilities πj and can be initialized using a normal distribution with a
mean of log(ρ/1− ρ) where ρ determines the expected number of non-zero parameters through the
reparameterization, implying dense to sparse and sparse to sparse model training is possible.

logα
(0)
j ∼ N

(
log

ρ

1− ρ
, σ2

)
where ρ ∈ (0, 1) (26)
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