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In-House Evaluation Is Not Enough: Towards Robust Third-Party Evaluation &
Flaw Disclosure for General-Purpose AI

Anonymous Authors1

Abstract
The widespread deployment of general-purpose
AI (GPAI) systems introduces significant new
risks. Yet the infrastructure, practices, and norms
for reporting flaws in GPAI systems remain seri-
ously underdeveloped, lagging far behind more
established fields like software security. Based on
a collaboration between experts from the fields
of software security, machine learning, law, so-
cial science, and policy, we identify key gaps in
the evaluation and reporting of flaws in GPAI
systems. We call for three interventions to ad-
vance system safety. First, we propose using
standardized AI flaw reports and rules of engage-
ment for researchers in order to ease the process
of submitting, reproducing, and triaging flaws in
GPAI systems. Second, we propose GPAI system
providers adopt broadly-scoped flaw disclosure
programs, borrowing from bug bounties, with le-
gal safe harbors to protect researchers. Third,
we advocate for the development of improved
infrastructure to coordinate distribution of flaw
reports across the many stakeholders who may be
impacted. These interventions are increasingly ur-
gent, as evidenced by the prevalence of jailbreaks
and other flaws that can transfer across different
providers’ GPAI systems. By promoting robust
reporting and coordination in the ecosystem, these
proposals contribute to technical AI governance.

1. Introduction
General-purpose AI (GPAI) systems—foundation model-
based software systems, with a wide variety of uses—have
become widely adopted, with prominent systems record-
ing over 300 million weekly users (Roth, 2025). These
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systems are now integrated across industries, including in
safety- and rights-impacting use cases (Maragno et al., 2023;
Young, 2024; Perez-Cerrolaza et al., 2024). They are prone
to probabilistic failures (Raji et al., 2022a), leading to myr-
iad safety, security, and trustworthiness risks (Weidinger
et al., 2022; Li et al., 2023). Reported examples include
AI broadcasting inaccurate information about electoral pro-
cesses (Angwin et al., 2024), corrupting medical records
(Vishwanath et al., 2024), and enabling image-based sexual
abuse (Cheng, 2024), among others. Third-party evaluation
of GPAI systems can surface behaviors that violate product
policies and expectations for safety. These evaluations, and
coordinated disclosure of results, are a critical mechanism
for measuring, understanding, and mitigating harm.

While providers of GPAI systems often conduct first-party
risk evaluations or contract external second parties to carry
out domain-specific evaluations, independent third-party
risk evaluations are uniquely necessary (Raji et al., 2022b).
Third-party risk evaluations have specific benefits: They
enhance (i) the scale of participation, given the much larger
set of potential evaluators outside of system providers’ or-
ganizations, (ii) the coverage of evaluations, given the in-
complete representation of perspectives and expertise within
providers, and (iii) evaluator independence, given absence
of conflicts of interest. Third-party evaluations after deploy-
ment can also help product safety keep pace with the breadth
of new, often unforeseen, risks that emerge as GPAI systems
are continuously deployed and adapted in new domains.

These benefits demonstrate the urgent need for infrastruc-
ture to enables third-party evaluation and reporting of the
many security, safety, and trustworthiness flaws in GPAI
systems. In this work, we outline these infrastructure needs
and propose designs for their implementation. We make
three recommendations to advance technical AI governance.
First, third-party evaluators should submit AI flaw reports
and abide by standardized rules of conduct. We provide
a report template (Figure A3), example reports, and stan-
dardized rules of conduct for responsible flaw reporting,
adapted from the computer security’s notion of “good-faith
research.” Second, GPAI system providers should adopt flaw
disclosure programs with safe harbors for third-party eval-
uation. For rule-abiding research, these protocols should
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Software Vulnerabilities 
code injection attacks  
cross-site scripting (XSS) 
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model weight exfiltration
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Figure 1. A depiction of the status quo and envisioned GPAI flaw reporting ecosystem. The top of the figure illustrates how flaw
disclosure for GPAI systems currently works (see Table A3 for existing disclosure options). Below is a depiction of how coordinated flaw
disclosure could work more effectively. On the left, we provide a non-exhaustive list of GPAI flaws, or their effects, that may warrant
disclosure (see flaw taxonomies in Table A4). These flaws are discovered by users, journalists, researchers, and white hat hackers, and
we propose they disclose them via standardized AI Flaw Reports to a Disclosure Coordination Center. The Disclosure Coordination
Center then routes AI Flaw Reports to affected stakeholders across the supply chain (Cen et al., 2023a), from data providers to distribution
platforms and enterprise users. Note that Illegal Media Flaws are a special case (see Appendix G.4).

waive restrictive terms of service, implement a broadly-
scoped flaw disclosure procedure, and specify a means to
grant researchers deeper access. Third, providers and evalu-
ators should partner on coordinated flaw disclosure. Since
flaws often transfer across GPAI systems, coordination is
needed to protect providers and other stakeholders across
the supply chain where mitigations may improve safety.

2. Improving GPAI Evaluation & Disclosure
To improve the processes and outcomes of third-party eval-
uations and flaw disclosure, we describe targeted changes
we recommend for evaluators and GPAI system providers.

2.1. Checklist for Third-Party AI Evaluators

Two key challenges for third-party evaluators are that they
(i) lack standardized procedures for reporting AI flaws and
(ii) often do not disclose flaws in a way that is actionable
for a provider. To address these challenges, we propose a
standardized AI flaw report template, as well as suggested
rules of engagement adapted from computer security.

AI Flaw Report In Figure A3 we outline a basic template
to report AI flaws, structured to convey the core informa-
tion required to quickly reproduce a flaw, coordinate with
stakeholders, and triage based on urgency. Our template is
derived from the set of common report fields across the AI
Incident Database (McGregor, 2021), MITRE’s AI Incident
form, OECD’s AI incident form, and the AI Vulnerability
Database. The template is also influenced by prior work
in standardizing security and cybersecurity vulnerability
reporting: MITRE’s STIX (MITRE, 2012), CISA’s VEX
(Cybersecurity & , CISA) or OASIS’s CSAF (OASIS, 2025).
Minimally, each report requires information on the relevant
systems, timestamps, a description of the flaw and how
to reproduce it, the policies or implicit expectations the
flaw violates, as well as a series of Tags, drawn from (Gol-
payegani et al., 2023; Pandit, 2022; ISO, 2022), aiming to
assist in flaw search, stakeholder routing, and prioritization.
For flaws associated with outputs a GPAI system generates,
we recommend that reports are accompanied by statistical
validity metrics that describe the frequency with which un-
desirable outputs appear for relevant prompts (McGregor
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et al., 2024b). See Appendix F.1 for example flaw reports.

As flaw reporting becomes a more common practice, user
sessions should become traceable and reproducible (as noted
in our proposed Session ID field). Providers of popular
GPAI systems should introduce a mechanism for evaluators
to share their sessions in a way that could improve trace-
ability, expedite reproduction, and broaden visibility. Once
these reports are made public, along with the traceable ses-
sion IDs, the public and civil society organizations could
aggregate and transparently assess a database of these flaws.

Good-Faith Rules of Engagement for AI. “Good-faith”
research is a core concept in the field of computer security.
The field has established rules for how researchers behave
(“rules of engagement”) that define what constitutes good-
faith research; those engaged in good-faith research qualify
for specific protections (e.g. safe harbors in Section 2.2).

We propose analogous rules of engagement for third-party
GPAI evaluators to help identify good-faith research. Re-
searcher conduct that adheres to these rules should be pro-
tected from legal or technical retaliation, and rewarded in
some cases. These rules are intended to help create positive
norms and should not be leveraged to construe research that
contravenes these provisions as unlawful.

• Evaluate only in-scope systems. In-scope systems are
deployed and accessible by the public, unless permission
has been granted for pre-deployment evaluation.

• Do not harm real users and systems. Take reasonable
steps to refrain from materially burdening the operations
of systems, destroying data, or harming the immediate
user experience as a result of the evaluation process.

• Protect privacy. Do not intentionally access, modify, or
use data belonging to others that is highly sensitive, pri-
vate, or confidential, without consent. If a flaw exposes
such data, only collect what is required to submit the re-
port, submit a report immediately, and do not disseminate
the data. Delete the information as soon as possible.

• Do not intentionally attempt to expose, generate or
store illegal content. Illegal media, such as child sexual
abuse material (CSAM), should not be intentionally ex-
posed or generated. Researchers should familiarize them-
selves with relevant laws and seek guidance from domain
experts before attempting to assess extremely harmful
content closely related to illegal media that is not itself
illegal. Consult Appendix G.4 for more information.

• Responsibly disclose flaws. Report the discovered flaw.
Keep flaw details confidential if releasing them would
violate the law or cause substantial harm to users or other
members of the public, or until a pre-agreed period of
time has passed after the flaw is reported.

• Do not threaten to leverage information against
providers or users for illegal or coercive purposes.
Note that disclosure in line with a provider’s policies

or a pre-agreed publication timeline is not coercive.

2.2. Checklist for GPAI Providers

Flaw disclosure can be contentious and historically has been
poorly received (Gamero-Garrido et al., 2017; Mulligan
et al., 2015; Gilbert et al., 2024). Recipients of flaw reports
often ignore them, demand non-disclosure agreements, treat
disclosed flaws as trade secrets, or responded with legal
threats (Householder et al., 2024a). It is widely recognized
that recipients should, at minimum, respond constructively
to reports of potential flaws in their systems, commit to a dis-
closure timeline, validate troubling reports, and actively col-
laborate on remediation (Householder et al., 2024a). In this
section we propose a checklist of practices GPAI providers
can adopt to make third-party evaluation more robust.

Legal Access Protections. GPAI system providers’ terms of
service and acceptable use policies can deter vital research
(Longpre et al., 2024b; Council, 2023), even when they may
not be enforceable (Klyman, 2024; Lemley & Henderson,
2024). Many standard provisions of these policies, such as
prohibitions on “reverse engineering” or “automatic data col-
lection” can inadvertently restrict key steps in the evaluation
pipeline. Morrow et al. (2019) caution that important secu-
rity testing may violate ToS. Even when a provider’s policies
are not enforced, they can be chilling to grant-dependent,
risk-averse research institutions (Council, 2023).

To address this, providers should explicitly include excep-
tions in their ToS for research that follows the good-faith
rules of engagement outlined in Section 2.1. Such assur-
ances do not inhibit continued moderation and enforcement
against misuse of products—but provide protections for ver-
ifiable good-faith research. Such exceptions would reassure
institutional review boards, publishers, legal teams, and fun-
ders, who often worry about authorizing or disseminating
research that might conflict with ToS (Longpre et al., 2024b;
Harrington & Vermeulen, 2024). System providers should
also couple ToS exemptions with a clear legal safe harbor,
as is the norm for security research (HackerOne, 2023; Et-
covich & van der Merwe, 2018; Pfefferkorn, 2022). If there
is no evidence that any of the rules of engagement were
violated, then providers should commit to refraining from
legal action. In Appendix B we provide recommended form
language that (i) waives contrary terms for good-faith re-
search and (ii) provides a legal safe harbor. This safe harbor
is closely derived from prior work (Abdo et al., 2022; Long-
pre et al., 2024b) and the disclose.io safe harbor template,
modified to accommodate AI flaws for safety, security or
trustworthiness concerns, which are broader than traditional
security vulnerabilities (see full definitions in Appendix E).

A GPAI Flaw Disclosure Program. We recommend sys-
tem providers support a dedicated disclosure program for
GPAI flaws. This entails an interface to report flaws, with
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an accompanying disclosure policy. The reporting interface
should provide a mechanism for evaluators to anonymously
send structured flaw reports, similar to Figure A3, engage
with the provider throughout the process of flaw reproduc-
tion and mitigation, and enable triage. A company email
address does not support these objectives. A provider’s
accompanying policy should detail (a) a broad scope for
GPAI flaws (see our definition, Appendix E.1) (b) the rules
of engagement for evaluators (see Section 2.1), and (c) an
exception to ToS and liability for evaluators who follow
these rules. As an example, Cattell et al. (2024b) proposed
a simple Coordinated Flaw Disclosure process, which was
tested using OLMo (Groeneveld et al., 2024) during the
Generative Red Teaming event at DEFCON 2024 (McGre-
gor et al., 2024b). Similarly, Anthropic uses HackerOne for
its “model safety bug bounty” (Anthropic, 2024).

Moderation-Exempt Research Access. Above, we sug-
gest GPAI providers apply legal access protections to reduce
chilling effects on good-faith research. However, these legal
assurances do not alter how providers moderate and enforce
against misuse of their system, for example through rate
limits or account suspensions, which are largely automated.
In cases where providers employ heavy enforcement against
misuse, or enforcement that can impede good-faith research
into misuse-related capabilities, we suggest providers fur-
ther commitment to establishing a moderation-exempt re-
search access plan. This has also been proposed in the form
of a “Technical Safe Harbor” (Longpre et al., 2024b), or
other forms of structured access (Bucknall & Trager, 2023).

While this proposal more comprehensively empowers good-
faith safety research against legal and technical obstacles, it
requires vetting of researchers. Vetting can happen before
or after moderation actions (i.e. pre-vetting, granting access
to a separate type of account, or post-vetting, involving an
appeals process for suspended accounts), and the vetting can
be conducted by the GPAI provider or delegated to an inde-
pendent, trusted organization. In either case, we recommend
considering what, not who: access should be determined
based on conduct, not identity. The process of determining
which academics, journalists, or civil society organizations
can receive access can easily be biased—setting verifiable
standards of conduct enables more inclusive and objective
access conditions and flaw reporting at scale (Abdo et al.,
2022). See Figure A7 for further details on safe harbor.

2.3. Checklist for a Disclosure Coordination Center

How should disclosure work for transferable AI flaws?
Two factors complicate disclosure of AI flaws: AI flaws are
often transferable across models and systems (Wallace et al.,
2019; Carlini et al., 2021; Zou et al., 2023; Nasr et al., 2023a;
Carlini et al., 2024b;a) and the AI supply chain is complex—
data providers, model developers, model hosting services,

app developers, and distribution platforms can all have a
role in flaw mitigation (Cen et al., 2023b). GPAI systems are
also integrated into products and services, often without the
public’s advanced knowledge, making it difficult to catalog
all impacted providers. In the status quo, transferable flaws
are often disclosed either to just one provider (but not other
affected providers or stakeholders), or directly to the public
via social media (without advanced notice for providers to
mitigate flaws). A coordination mechanism to responsibly
distribute flaw reports to affected stakeholders across the
supply chain would streamline and scale this process.

In Figure 1 we propose a lightweight implementation to fill
this disclosure coordination gap: An AI Disclosure Coor-
dination Center. Similar to the Cybersecurity and Infras-
tructure Security Agency’s (CISA) incident reporting hub
(Cybersecurity & Agency, 2024), this centralized mecha-
nism would enable communication and collective action
across the AI supply chain as well as with government agen-
cies and the public. In addition to government, industry
associations of developers and deployers like the Frontier
Model Forum or the AI Alliance could support the creation
of such a center by helping align members’ practices (Fron-
tier Model Forum, 2024; The AI Alliance, 2024).

An AI Disclosure Coordination Center can route reports
and streamline notification. An AI Disclosure Coordina-
tion Center would receive flaw reports and route them to the
relevant stakeholders: data providers, system developers,
model hubs or hosting services, app developers, model distri-
bution platforms, government agencies, and eventually, after
a disclosure period, the broader public (see Appendix G.4
for exceptions). We propose a lightweight design to mini-
mize personnel and infrastructure required to route of flaw
reports. Specifically, stakeholders could subscribe to spe-
cific tags in Flaw Report Cards, and they would receive
all reports with those tags. For instance, Meta could sub-
scribe to the “Meta” or “Llama 4” tags; data providers could
subscribe to the “Risk Source: Pre-Training Data” tag; and
government agencies such as CISA could subscribe to the
“Impacts: Cybersecurity” tag. Whenever a report is sub-
mitted to the Center, all subscribers to the reports’ listed
tags are notified via the Disclosure Coordination Center and
given a set period of time before the report is released to the
public. The Center should set appropriate public disclosure
periods (based on tags), and help facilitate responses to sub-
scribers who ask to extend disclosure periods in order to,
for example, implement appropriate flaw mitigations. This
level of coordination is unlikely to be necessary except for
a small number of highly sensitive flaw reports. In the long
run, we hope such a Center could produce a database of
historical Flaw Report Cards for the public to study. In the
appendices we provide policy proposals and examples of
flaw reports and legal language to make robust third-party
evaluation and flaw disclosure a reality.

4



220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

References
Abdo, A., Krishnan, R., Krent, S., Welber Falcón,

E., and Woods, A. K. A safe harbor for plat-
form research. Knight Columbia, 1 2022. URL
https://knightcolumbia.org/content/a-
safe-harbor-for-platform-research.

Ahmad, L., Agarwal, S., Lampe, M., and Mishkin, P.
Openai’s approach to external red teaming for ai mod-
els and systems, November 2024. URL https:
//cdn.openai.com/papers/openais-
approach-to-external-red-teaming.pdf.

Akgul, O., Eghtesad, T., Elazari, A., Gnawali, O.,
Grossklags, J., Votipka, D., and Laszka, A. The
hackers’ viewpoint: Exploring challenges and
benefits of bug-bounty programs. In 6th Work-
shop on Security Information Workers (WSIW),
2020. URL https://wsiw2020.sec.uni-
hannover.de/downloads/WSIW2020-
The%20Hackers%20Viewpoint.pdf.

Akgul, O., Eghtesad, T., Elazari, A., Gnawali, O.,
Grossklags, J., Mazurek, M. L., Votipka, D., and
Laszka, A. Bug Hunters’ perspectives on the chal-
lenges and benefits of the bug bounty ecosystem.
In 32nd USENIX Security Symposium (USENIX Se-
curity 23), pp. 2275–2291, Anaheim, CA, August
2023. USENIX Association. ISBN 978-1-939133-37-3.
URL https://www.usenix.org/conference/
usenixsecurity23/presentation/akgul.

Albert, K., Penney, J., and Kumar, R. S. S. Ignore
safety directions. violate the cfaa? In Proceedings
of the GenLaw Workshop 2024. GenLaw Workshop,
2024. URL https://blog.genlaw.org/pdfs/
genlaw_icml2024/39.pdf. Authors affiliated with
Harvard Law School, Osgoode Hall Law School, and the
Harvard Berkman Klein Center.

Anderson, C., Blili-Hamelin, B., Majumdar, S., and But-
ters, N. (comment on fr doc # 2023-07776) response
from the ai risk and vulnerability alliance to the ntia ai
accountability policy request for comment. Technical Re-
port NTIA-2023-0005-1144, AI Risk and Vulnerability
Alliance, 2023. URL https://www.regulations.
gov/comment/NTIA-2023-0005-1144.

Angwin, J., Nelson, A., and Palta, R. Seeking reliable
election information? don’t trust ai, 2024.

Anthropic. Claude 3.5 sonnet model
card addendum, June 20 2024. URL
https://www-cdn.anthropic.com/
fed9cc193a14b84131812372d8d5857f8f304c52/
Model_Card_Claude_3_Addendum.pdf.

Anthropic. Expanding our model safety bug bounty pro-
gram, aug 2024. URL https://www.anthropic.
com/news/model-safety-bug-bounty.

Arora, A., Krishnan, R., Telang, R., and Yang, Y. An empir-
ical analysis of software vendors’ patch release behavior:
impact of vulnerability disclosure. Information Systems
Research, 21(1):115–132, 2010.

Bengio, Y., Mindermann, S., Privitera, D., Besiroglu, T.,
Bommasani, R., Casper, S., Choi, Y., Goldfarb, D., Hei-
dari, H., Khalatbari, L., et al. International scientific
report on the safety of advanced ai (interim report). arXiv
preprint arXiv:2412.05282, 2024.

Bengio, Y., Mindermann, S., Privitera, D., Besiroglu, T.,
Bommasani, R., Casper, S., Choi, Y., Fox, P., Garfinkel,
B., Goldfarb, D., Heidari, H., Ho, A., Kapoor, S., Kha-
latbari, L., Longpre, S., Manning, S., Mavroudis, V.,
Mazeika, M., Michael, J., Newman, J., Ng, K. Y., Okolo,
C. T., Raji, D., Sastry, G., Seger, E., Skeadas, T., South,
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López Portillo, J. R., Ravindran, B., Pezoa Rivera, R.,
Riza, H., Rugege, C., Seoighe, C., Sheehan, J., Sheikh,
H., Wong, D., and Zeng, Y. International AI safety report.
arXiv preprint arXiv:2501.17805, 2025.

Bommasani, R., Klyman, K., Longpre, S., Kapoor, S.,
Maslej, N., Xiong, B., Zhang, D., and Liang, P. The
foundation model transparency index, 2023.

Bommasani, R., Klyman, K., Kapoor, S., Longpre, S.,
Xiong, B., Maslej, N., and Liang, P. The foundation
model transparency index v1.1: May 2024, 2024. URL
https://arxiv.org/abs/2407.12929.

Boucher, N. and Anderson, R. Talking trojan: Analyzing
an industry-wide disclosure. In Proceedings of the 2022
ACM Workshop on Software Supply Chain Offensive Re-
search and Ecosystem Defenses, pp. 83–92, 2022. doi:
10.1145/3560835.3564555. URL https://dl.acm.
org/doi/abs/10.1145/3560835.3564555.

5

https://knightcolumbia.org/content/a-safe-harbor-for-platform-research
https://knightcolumbia.org/content/a-safe-harbor-for-platform-research
https://cdn.openai.com/papers/openais-approach-to-external-red-teaming.pdf
https://cdn.openai.com/papers/openais-approach-to-external-red-teaming.pdf
https://cdn.openai.com/papers/openais-approach-to-external-red-teaming.pdf
https://wsiw2020.sec.uni-hannover.de/downloads/WSIW2020-The%20Hackers%20Viewpoint.pdf
https://wsiw2020.sec.uni-hannover.de/downloads/WSIW2020-The%20Hackers%20Viewpoint.pdf
https://wsiw2020.sec.uni-hannover.de/downloads/WSIW2020-The%20Hackers%20Viewpoint.pdf
https://www.usenix.org/conference/usenixsecurity23/presentation/akgul
https://www.usenix.org/conference/usenixsecurity23/presentation/akgul
https://blog.genlaw.org/pdfs/genlaw_icml2024/39.pdf
https://blog.genlaw.org/pdfs/genlaw_icml2024/39.pdf
https://www.regulations.gov/comment/NTIA-2023-0005-1144
https://www.regulations.gov/comment/NTIA-2023-0005-1144
https://www-cdn.anthropic.com/fed9cc193a14b84131812372d8d5857f8f304c52/Model_Card_Claude_3_Addendum.pdf
https://www-cdn.anthropic.com/fed9cc193a14b84131812372d8d5857f8f304c52/Model_Card_Claude_3_Addendum.pdf
https://www-cdn.anthropic.com/fed9cc193a14b84131812372d8d5857f8f304c52/Model_Card_Claude_3_Addendum.pdf
https://www.anthropic.com/news/model-safety-bug-bounty
https://www.anthropic.com/news/model-safety-bug-bounty
https://arxiv.org/abs/2407.12929
https://dl.acm.org/doi/abs/10.1145/3560835.3564555
https://dl.acm.org/doi/abs/10.1145/3560835.3564555


275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Bucknall, B. S. and Trager, R. F. Structured access for
third-party research on frontier ai models: Investigating
researchers’ model access requirements, 2023. URL
https://www.governance.ai/research-
paper/structured-access-for-third-
party-research-on-frontier-ai-models.

Bullwinkel, B., Minnich, A., Chawla, S., Lopez, G.,
Pouliot, M., Maxwell, W., de Gruyter, J., Pratt,
K., Qi, S., Chikanov, N., Lutz, R., Dheekonda, R.
S. R., Jagdagdorj, B.-E., Kim, E., Song, J., Hines,
K., Jones, D., Severi, G., Lundeen, R., Vaughan, S.,
Westerhoff, V., Bryan, P., Siva Kumar, R. S., Zunger,
Y., Kawaguchi, C., and Russinovich, M. Lessons
from red teaming 100 generative ai products, 2025.
URL https://airedteamwhitepapers.blob.
core.windows.net/lessonswhitepaper/
MS_AIRT_Lessons_eBook.pdf.

Carlini, N., Tramer, F., Wallace, E., Jagielski, M., Herbert-
Voss, A., Lee, K., Roberts, A., Brown, T., Song, D.,
Erlingsson, U., et al. Extracting training data from large
language models. In 30th USENIX Security Symposium
(USENIX Security 21), pp. 2633–2650, 2021.

Carlini, N., Jagielski, M., Choquette-Choo, C. A., Paleka,
D., Pearce, W., Anderson, H., Terzis, A., Thomas, K.,
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Ladish, J., Guha, N., Newman, J., Bengio, Y., South, T.,
Pentland, A., Koyejo, S., Kochenderfer, M. J., and Trager,
R. Open problems in technical ai governance, 2024. URL
https://arxiv.org/abs/2407.14981.

Roth, E. ChatGPT now has over 300 million weekly
users, 2025. URL https://www.theverge.
com/2024/12/4/24313097/chatgpt-300-
million-weekly-users.

Saini, H. and Luccioni, S. Gender bias in sentence comple-
tion tasks performed by bert-base-uncased using the hon-
est metric, 11 2022. URL https://avidml.org/
database/avid-2022-r0001/. AVID Database
Entry AVID-2022-R0001.

Sanger, D. Biden tightens cybersecurity rules, forcing
trump to make a choice, 2024. URL https://www.
nytimes.com/2025/01/16/us/politics/
biden-trump-cybersecurity.html.

Schmidt Sciences. Ai safety science, 2024. URL
https://www.schmidtsciences.org/
safetyscience/.

Schwartz, S., Ross, A., Carmody, S., Chase, P., Coley, S. C.,
Connolly, J., Petrozzino, C., and Zuk, M. The evolv-
ing state of medical device cybersecurity. Biomedical
instrumentation & technology, 52(2):103–111, 2018.

Shelby, R., Rismani, S., Henne, K., Moon, A., Rostamzadeh,
N., Nicholas, P., Yilla-Akbari, N., Gallegos, J., Smart,
A., Garcia, E., et al. Sociotechnical harms of algorithmic
systems: Scoping a taxonomy for harm reduction. In
Proceedings of the 2023 AAAI/ACM Conference on AI,
Ethics, and Society, pp. 723–741, 2023.

Slattery, P., Saeri, A. K., Grundy, E. A., Graham, J., Noetel,
M., Uuk, R., Dao, J., Pour, S., Casper, S., and Thompson,
N. The ai risk repository: A comprehensive meta-review,
database, and taxonomy of risks from artificial intelli-
gence. arXiv preprint arXiv:2408.12622, 2024.

Solaiman, I., Talat, Z., Agnew, W., Ahmad, L., Baker, D.,
Blodgett, S. L., Chen, C., III, H. D., Dodge, J., Duan, I.,
Evans, E., Friedrich, F., Ghosh, A., Gohar, U., Hooker, S.,
Jernite, Y., Kalluri, R., Lusoli, A., Leidinger, A., Lin, M.,
Lin, X., Luccioni, S., Mickel, J., Mitchell, M., Newman,

10

https://platform.openai.com/docs/supported-countries
https://platform.openai.com/docs/supported-countries
http://www.tara.tcd.ie/handle/2262/100132
http://www.tara.tcd.ie/handle/2262/100132
https://doi.org/10.1145/3626314
https://jolt.richmond.edu/files/2022/11/Pfefferkorn-Manuscript-Final.pdf
https://jolt.richmond.edu/files/2022/11/Pfefferkorn-Manuscript-Final.pdf
https://arxiv.org/abs/2403.13793
https://doi.org/10.1145/3531146.3533158
https://doi.org/10.1145/3531146.3533158
https://doi.org/10.1145/3514094.3534181
https://doi.org/10.1145/3514094.3534181
https://aiindex.stanford.edu/wp-content/uploads/2024/04/HAI_AI-Index-Report-2024_Chapter3.pdf
https://aiindex.stanford.edu/wp-content/uploads/2024/04/HAI_AI-Index-Report-2024_Chapter3.pdf
https://aiindex.stanford.edu/wp-content/uploads/2024/04/HAI_AI-Index-Report-2024_Chapter3.pdf
https://arxiv.org/abs/2407.14981
https://www.theverge.com/2024/12/4/24313097/chatgpt-300-million-weekly-users
https://www.theverge.com/2024/12/4/24313097/chatgpt-300-million-weekly-users
https://www.theverge.com/2024/12/4/24313097/chatgpt-300-million-weekly-users
https://avidml.org/database/avid-2022-r0001/
https://avidml.org/database/avid-2022-r0001/
https://www.nytimes.com/2025/01/16/us/politics/biden-trump-cybersecurity.html
https://www.nytimes.com/2025/01/16/us/politics/biden-trump-cybersecurity.html
https://www.nytimes.com/2025/01/16/us/politics/biden-trump-cybersecurity.html
https://www.schmidtsciences.org/safetyscience/
https://www.schmidtsciences.org/safetyscience/


550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

J., Ovalle, A., Png, M.-T., Singh, S., Strait, A., Struppek,
L., and Subramonian, A. Evaluating the social impact of
generative ai systems in systems and society, 2024. URL
https://arxiv.org/abs/2306.05949.

Srikumar, M., Chang, J., and Chmielinski, K. Risk mit-
igation strategies for the open foundation model value
chain. Technical report, Research report. Partnership on
AI. https://partnershiponai. org/resource . . . , 2024.

The AI Alliance. Ranking AI Safety Priorities by
Domain, September 25 2024. URL https://the-
ai-alliance.github.io/ranking-safety-
priorities/. Accessed January 31, 2025.

Thorn & All Tech Is Human. Safety by design for generative
ai: Preventing child sexual abuse, 2024. URL https:
//info.thorn.org/hubfs/thorn-safety-
by-design-for-generative-AI.pdf.

Tschider, C. Will a cybersecurity safe harbor raise all boats?,
2024. URL https://papers.ssrn.com/sol3/
papers.cfm?abstract_id=4784610. Available
on SSRN.

US AI Safety Institute and UK AI Safety Institute.
Joint pre-deployment test: Openai o1, December
2024a. URL https://www.nist.gov/system/
files/documents/2024/12/18/US_UK_
AI%20Safety%20Institute_%20December_
Publication-OpenAIo1.pdf.

US AI Safety Institute and UK AI Safety Institute.
Joint pre-deployment test: Anthropic’s claude
3.5 sonnet (october 2024 release), November
2024b. URL https://cdn.prod.website-
files.com/663bd486c5e4c81588db7a1d/
673b689ec926d8d32e889a8e_UK-US-
Testing-Report-Nov-19.pdf.

U.S. Copyright Office. 37 CFR § 201.40 - Exemp-
tions to prohibition against circumvention. URL
https://www.law.cornell.edu/cfr/text/
37/201.40.

U.S. Copyright Office. Section 1201 Rulemaking: Eighth
Triennial Proceeding to Determine Exemptions to the
Prohibition on Circumvention – Recommendation of the
Register of Copyrights – October 2021. October 2021.

U.S. Department of Justice. 9-48.000 - computer fraud and
abuse act, 2024.

Vishwanath, P. R., Tiwari, S., Naik, T. G., Gupta, S., Thai,
D. N., Zhao, W., KWON, S., Ardulov, V., Tarabishy, K.,
McCallum, A., and Salloum, W. Faithfulness hallucina-
tion detection in healthcare AI. In Artificial Intelligence
and Data Science for Healthcare: Bridging Data-Centric

AI and People-Centric Healthcare, 2024. URL https:
//openreview.net/forum?id=6eMIzKFOpJ.

Wachs, J. Making markets for information security: the
role of online platforms in bug bounty programs. arXiv
preprint arXiv:2204.06905, 2022.

Wallace, E., Feng, S., Kandpal, N., Gardner, M., and Singh,
S. Universal adversarial triggers for attacking and analyz-
ing nlp. arXiv preprint arXiv:1908.07125, 2019.

Walshe, T. and Simpson, A. C. Coordinated vulner-
ability disclosure programme effectiveness: Issues
and recommendations. Computers & Security, 123:
102936, 2022. doi: 10.1016/j.cose.2022.102936.
URL https://ora.ox.ac.uk/objects/
uuid%3A58b63628-8a00-4958-8d1f-
8c880bfc8d91/files/rdj52w5329.

Wang, B., Chen, W., Pei, H., Xie, C., Kang, M., Zhang, C.,
Xu, C., Xiong, Z., Dutta, R., Schaeffer, R., Truong, S. T.,
Arora, S., Mazeika, M., Hendrycks, D., Lin, Z., Cheng,
Y., Koyejo, S., Song, D., and Li, B. Decodingtrust: a com-
prehensive assessment of trustworthiness in gpt models.
In Proceedings of the 37th International Conference on
Neural Information Processing Systems, NIPS ’23, Red
Hook, NY, USA, 2023. Curran Associates Inc.

Weidinger, L., Mellor, J., Rauh, M., Griffin, C., Uesato,
J., Huang, P.-S., Cheng, M., Glaese, M., Balle, B.,
Kasirzadeh, A., et al. Ethical and social risks of harm
from language models. arXiv preprint arXiv:2112.04359,
2021.

Weidinger, L., Uesato, J., Rauh, M., Griffin, C., Huang,
P.-S., Mellor, J., Glaese, A., Cheng, M., Balle, B.,
Kasirzadeh, A., et al. Taxonomy of risks posed by lan-
guage models. In Proceedings of the 2022 ACM Confer-
ence on Fairness, Accountability, and Transparency, pp.
214–229, 2022.

Weidinger, L., Rauh, M., Marchal, N., Manzini, A.,
Hendricks, L. A., Mateos-Garcia, J., Bergman, S.,
Kay, J., Griffin, C., Bariach, B., Gabriel, I., Rieser,
V., and Isaac, W. S. Sociotechnical safety evalua-
tion of generative ai systems. ArXiv, abs/2310.11986,
2023. URL https://api.semanticscholar.
org/CorpusID:264289156.

Widder, D. G. and Goues, C. L. What is a “bug”? on sub-
jectivity, epistemic power, and implications for software
research. Technical Report arXiv:2402.08165, arXiv,
2024.

Young, S. D. A hazard analysis framework for code
synthesis large language models. White House Office
of Management and Budget publications, Memoranda,

11

https://arxiv.org/abs/2306.05949
https://the-ai-alliance.github.io/ranking-safety-priorities/
https://the-ai-alliance.github.io/ranking-safety-priorities/
https://the-ai-alliance.github.io/ranking-safety-priorities/
https://info.thorn.org/hubfs/thorn-safety-by-design-for-generative-AI.pdf
https://info.thorn.org/hubfs/thorn-safety-by-design-for-generative-AI.pdf
https://info.thorn.org/hubfs/thorn-safety-by-design-for-generative-AI.pdf
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4784610
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4784610
https://www.nist.gov/system/files/documents/2024/12/18/US_UK_AI%20Safety%20Institute_%20December_Publication-OpenAIo1.pdf
https://www.nist.gov/system/files/documents/2024/12/18/US_UK_AI%20Safety%20Institute_%20December_Publication-OpenAIo1.pdf
https://www.nist.gov/system/files/documents/2024/12/18/US_UK_AI%20Safety%20Institute_%20December_Publication-OpenAIo1.pdf
https://www.nist.gov/system/files/documents/2024/12/18/US_UK_AI%20Safety%20Institute_%20December_Publication-OpenAIo1.pdf
https://cdn.prod.website-files.com/663bd486c5e4c81588db7a1d/673b689ec926d8d32e889a8e_UK-US-Testing-Report-Nov-19.pdf
https://cdn.prod.website-files.com/663bd486c5e4c81588db7a1d/673b689ec926d8d32e889a8e_UK-US-Testing-Report-Nov-19.pdf
https://cdn.prod.website-files.com/663bd486c5e4c81588db7a1d/673b689ec926d8d32e889a8e_UK-US-Testing-Report-Nov-19.pdf
https://cdn.prod.website-files.com/663bd486c5e4c81588db7a1d/673b689ec926d8d32e889a8e_UK-US-Testing-Report-Nov-19.pdf
https://www.law.cornell.edu/cfr/text/37/201.40
https://www.law.cornell.edu/cfr/text/37/201.40
https://openreview.net/forum?id=6eMIzKFOpJ
https://openreview.net/forum?id=6eMIzKFOpJ
https://ora.ox.ac.uk/objects/uuid%3A58b63628-8a00-4958-8d1f-8c880bfc8d91/files/rdj52w5329
https://ora.ox.ac.uk/objects/uuid%3A58b63628-8a00-4958-8d1f-8c880bfc8d91/files/rdj52w5329
https://ora.ox.ac.uk/objects/uuid%3A58b63628-8a00-4958-8d1f-8c880bfc8d91/files/rdj52w5329
https://api.semanticscholar.org/CorpusID:264289156
https://api.semanticscholar.org/CorpusID:264289156


605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

2024. URL https://www.whitehouse.gov/wp-
content/uploads/2024/03/M-24-10-
Advancing-Governance-Innovation-and-
Risk-Management-for-Agency-Use-of-
Artificial-Intelligence.pdf.

Zou, A., Wang, Z., Kolter, J. Z., and Fredrikson, M. Uni-
versal and transferable adversarial attacks on aligned lan-
guage models. arXiv preprint arXiv:2307.15043, 2023.

12

https://www.whitehouse.gov/wp-content/uploads/2024/03/M-24-10-Advancing-Governance-Innovation-and-Risk-Management-for-Agency-Use-of-Artificial-Intelligence.pdf
https://www.whitehouse.gov/wp-content/uploads/2024/03/M-24-10-Advancing-Governance-Innovation-and-Risk-Management-for-Agency-Use-of-Artificial-Intelligence.pdf
https://www.whitehouse.gov/wp-content/uploads/2024/03/M-24-10-Advancing-Governance-Innovation-and-Risk-Management-for-Agency-Use-of-Artificial-Intelligence.pdf
https://www.whitehouse.gov/wp-content/uploads/2024/03/M-24-10-Advancing-Governance-Innovation-and-Risk-Management-for-Agency-Use-of-Artificial-Intelligence.pdf
https://www.whitehouse.gov/wp-content/uploads/2024/03/M-24-10-Advancing-Governance-Innovation-and-Risk-Management-for-Agency-Use-of-Artificial-Intelligence.pdf


660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

Appendix

Table of Contents

A Problem Statement 14

B Building Better GPAI Flaw Disclosure 15

C Alternatives to Safe Harbor and Coordinated Flaw Disclosure 17

D Future Work 18

E Terminology & Definitions 18

E.1 Key Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

E.2 Related Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

E.3 Differences between Incident Reporting and AI Flaw Reporting . . . . . . . . . . . . . . . . . . . . . . 19

F AI Flaw Reports 20

F.1 Flaw Report Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

F.1.1 AI Flaw Report 1: Training Data Extraction Attack . . . . . . . . . . . . . . . . . . . . . . . . . 20

F.1.2 AI Flaw Report 2: Gender Bias Flaw . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

F.2 Detailed Flaw Reports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

F.3 Options for Flaw Report Tags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

G Policy Recommendations and Details 25

G.1 Recommendations for Policymakers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

G.2 Overview of Relevant Policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

G.3 Understanding Legal & Technical Safe Harbors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

G.4 Illegal Media Flaws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

H AI Risk Taxonomy & Reporting Details 29

H.1 Existing Vulnerability & Reporting Options for GPAI Systems . . . . . . . . . . . . . . . . . . . . . . . 29

H.2 Taxonomies of AI harms, risks, and safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

13



715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

A. Problem Statement
There are significant gaps in AI evaluation practices compared to software security practices. Throughout this work, we refer
to AI flaws, broadly referring to conditions in a system that lead to undesirable effects or policy violations. We intentionally
define AI flaws more broadly than traditional software security vulnerabilities to reflect the range of potential sociotechnical
risks with GPAI systems (Solaiman et al., 2024). Our analysis focuses on third-party AI evaluators (see Figure A2), for
which reporting infrastructure, norms, and procedures are less mature. More detailed definitions and their justifications are
available in Appendix E.1.

Ensuring security, safety, and trustworthiness of GPAI systems is an open challenge. In short order, GPAI systems
have been deployed to hundreds of millions of users (Roth, 2025), across the public and private sector, and in hundreds of
countries (OpenAI, 2025). However, the risk profiles of GPAI systems once they are deployed are opaque (Bommasani
et al., 2023), and applications incorporating such systems come with a wide variety of risks that can be difficult to foresee
(Weidinger et al., 2021; 2022; Marchal et al., 2024a; Cattell et al., 2024b; Kapoor et al., 2024). Third-party AI researchers
have identified a large number of serious flaws relating to the security, safety, and trustworthiness of GPAI systems (Carlini
et al., 2024b;a; Reuel et al., 2024; Cattell et al., 2024b) (see Table A4 for relevant flaw taxonomies), but resources are
overwhelmingly concentrated on accelerating productization of GPAI systems rather than addressing these challenges
(Schmidt Sciences, 2024).

Third-party evaluation is needed to identify and address the breadth of flaws in GPAI systems. Policy discussions
on AI safety often center around pre-deployment evaluation by internal first-party evaluators or contracted second parties.
However, this overlooks the growing importance of independent, third-party scrutiny, which provides unique benefits:
broader researcher participation, diversity of subject matter experts, novel approaches, independence, and greater evaluation
speed. Developers and deployers of GPAI systems alone cannot identify all of the critical flaws in their systems. Third-party
evaluation is essential to identifying, mitigating, and preventing flaws in GPAI systems.
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Figure A2. Spectrum of independence in GPAI evaluations. Evaluations can be stratified by their level of independence from the
provider of the GPAI system. This ranges from entirely in-house evaluation (first-party) to contracted research (second-party) and research
without a contractual relationship with the system provider (third-party). There are grey areas throughout the spectrum, and we provide
examples for each gradation. First party (limited) refers to evaluations that are carried out by the team within a system provider that is
responsible for building and validating the system’s performance, such as a product team. First party (expansive) refers to evaluations
carried out by a team dedicated to unearthing system flaws that was not responsible for building the system, such as Microsoft’s AI Red
Team (Bullwinkel et al., 2025). Second party (limited) refers to evaluations carried out by a specific contracted party that are limited
in time and scope, such as those carried out by the UK AI Security Institute (US AI Safety Institute & UK AI Safety Institute, 2024b).
Second party (expansive) refers to evaluations carried out by a wide array of contracted parties for various different, such as the OpenAI
Red Teaming Network (Ahmad et al., 2024). Third party (pre-approved) refers to evaluations carried out by external parties with no
contractual relationship with the provider where the provider vets those parties ahead of time, such as Anthropic’s Model Safety Bug
Bounty (Anthropic, 2024). Third party (limited) refers to evaluations carried out by external parties with no contractual relationship with
the provider that are limited in time and lack safe harbor, such as the Allen Institute for AI’s participation in the Generative Red Team 2
event at DEFCON 2024 (McGregor et al., 2024a). Third party (expansive) refers to our proposal for an improved evaluation ecosystem:
evaluations carried out by third parties where there is safe harbor for evaluators and coordinated flaw disclosure infrastructure.

Software security offers best practices for third-party evaluation and flaw reporting. While flaw reporting covers
both security and non-security flaws, software security practitioners have well-established reporting processes that can be
extended to the more general case of flaw reporting. Software security provides a template for flaw reporting (Dixon &
Frase, 2024b) to address three core flaw reporting gaps. These gaps include:

1. Absence of a reporting culture: Security vulnerability reporting has amassed millions of volunteer researchers
worldwide, thousands of organizations hosting disclosure and bug bounty programs, and millions in paid rewards
annually. In contrast, the norms and practices of the AI flaw reporting community are in their infancy. Figure 1
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illustrates how AI flaws are generally reported ad hoc to only a limited set of affected stakeholders, if at all. Even
prior to the widespread adoption of general-purpose AI models, scholars have called for the adoption of bug bounties
beyond software security, e.g. in the context of social media or other algorithms (Eslami et al., 2019; Elazari, 2018).
Paradoxically, flaw reporting processes must be defined before the culture surrounding those practices can develop to
reinforce the value of new processes supporting flaw reporting.

2. Limited disclosure infrastructure: While software security has established reporting infrastructure, there are limited
and disparate reporting options for AI flaws. Most disclosure pathways are invite-only, or exclude important AI flaws
from their scope entirely (Longpre et al., 2024b) (Table A3 shows the limited disclosure options for GPAI systems
pertain mainly to security).

3. No legal and technical protections for evaluators: Safe harbors have enabled the protection of good-faith research
for software security. They are widely adopted by corporations (HackerOne, 2023), and the Department of Justice
has provided guidance to mitigate legal action against codified good-faith security research (Department of Justice,
2022). However, GPAI system providers often dissuade flaw evaluations, and offer no such legal assurances. GPAI
developers’ acceptable use policies often block users from probing their systems (Klyman, 2024), but in doing so block
safety, security, and trustworthiness researchers. The potential legal ramifications of violating a company’s terms of
service or being held liable under copyright or anti-hacking statutes presents a substantial chilling effect for third-party
researchers (Harrington & Vermeulen, 2024; Council, 2023; Albert et al., 2024). Moreover, third-party evaluators may
be subject to account restrictions that could prevent them from conducting future research in other areas (Klyman et al.,
2024a).

B. Building Better GPAI Flaw Disclosure
We identify six principles from the field of coordinated vulnerability disclosure that can inform evaluation practices for
GPAI systems. We frame these principles as correctives to common misconceptions, which provide prescriptions that inform
our position.

Misconception 1: Third-party evaluation and flaw disclosure is not an effective use of resources.

There is significant empirical evidence that coordinated disclosure has substantially improved safety and security across
industries. With respect to software security, vulnerability disclosure by third parties has improved security (Gal-Or et al.,
2024; Walshe & Simpson, 2022; Boucher & Anderson, 2022; Wachs, 2022), and greatly accelerated corporate patch releases
(Arora et al., 2010). Other industries have adopted vulnerability disclosure programs for a range of sociotechnical issues
pertaining to both software and hardware, including the US Department of Defense (DoD Cyber Crime Center, 2022) and
US Food and Drug Administration (Schwartz et al., 2018).

Misconception 2: GPAI systems are unique from existing software and require special disclosure rules.

GPAI systems are software systems. While GPAI systems have distinctive characteristics, these features are not necessarily
new to software. In particular, GPAI systems produce probabilistic outputs that can be challenging to reproduce, statistically
validate, or fully remediate (McGregor et al., 2024b). Additionally, their flaws may transfer across similar systems,
increasing the number stakeholders who may benefit from disclosure (Wallace et al., 2019). Lastly, GPAI systems serve
many niche uses, so their flaws may require subject matter expertise to adequately interpret (e.g. with respect to national
security concerns). However, many software systems share these characteristics: having fuzzy, stochastic, and hard to
mitigate flaws, with both security and sociotechnical implications (Leveson & Turner, 1992; Fenton & Neil, 1999; Duvall
et al., 2007). Organizations like the U.S. Cybersecurity and Infrastructure Security Agency and Carnegie Mellon University’s
CERT have run coordinated flaw disclosure programs for flaws with these characteristics (Boucher & Anderson, 2022;
Cattell et al., 2024b). Householder et al. (2024a) suggest software vulnerability disclosure programs can help inform best
practices for AI flaw disclosure.

Misconception 3: Flaw disclosure is for the system developer, not the public.

Disclosure is for all stakeholders who can play a role in mitigating the flaw, which can even include the public. Disclosure
should often include system developers, deployers, and other stakeholders along the supply chain for that system (Srikumar
et al., 2024). Some categories of flaws should also be routed to the appropriate government agencies or civil society
organizations respectively engaged in making policy or organizing communities to limit harm associated with these types of
flaws. The public, including journalists, system users, and non-users can make safer choices if provided with details of flaws

15



825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

Figure A3. AI Flaw Report Card Schema. The flaw report card contains common elements of disclosure from software security, used to
improve reproducibility of flaws and triage among them. It includes: ID of the reporter; a unique identification number of the flaw; system
versions involved; the flaw report’s status; information for a session that shows the flaw; flaw report submission time; relevant context
such as other software or platforms involved; a detailed flaw description; a description of how the flaw implicitly or explicitly violates a
policy; tags (some of them optional) for triage. Green fields are automatically completed upon submission, gray fields are optional. More
details and flaw report examples can be found in Appendix F.

(Householder et al., 2024a). Public awareness also fosters market pressures to produce safer and more secure AI products.

Misconception 4: Flaw disclosure is for those in the supply chain that helped develop or use the reported GPAI system.

Transferable flaws can affect many systems, implicating more than one system developer, deployer, or distributor (Wallace
et al., 2019). Broader disclosure can help avert the same issue in other AI supply chains. For instance, flaws that impact
OpenAI’s o1 might also impact previous (and future) OpenAI systems, along with Gemini, Llama, OLMo and other systems.
Such flaws may not be identifiable as transferable ex ante. Infrastructure for coordinated disclosure is necessary to raise
awareness of flaws and enable timely mitigation by developers and deployers. Without third-party evaluation to unearth and
broadly disclose GPAI flaws, awareness of flaws will be siloed across developers (McGregor, 2024).

Misconception 5: It is not always feasible to determine if a GPAI systems’ behavior is unintended.

Stakeholders often disagree about whether a candidate flaw report evidences a real flaw, but recent case studies show that
flaw identification is more tractable when grounded in alleged violations of policy or related documentation (McGregor
et al., 2024a). Ambiguity regarding whether a flaw report shows a violation is then an opportunity to clarify the intent
and capabilities of the GPAI system. Flaw reporting should be grounded in policies of GPAI system providers—including
terms of service (ToS) and associated acceptable use policies (AUP). Documentation from a system provider, including
model cards or model specs, may also give a clear indication of the intended behavior for a system (McGregor et al., 2024a;
OpenAI, 2024b). Flaw reports can help system developers improve their policies and practices even when the developer
makes no changes to the system itself.

Misconception 6: Protections for good-faith third-party evaluation may enable malicious use.

A legal safe harbor is a commitment to researchers that they will not be subject to legal action if they can demonstrate they
abided by rigorous rules that codify “good-faith research.” We provide suggested language in Appendix B. These rules have
been developed in information security and cybersecurity communities (Oakley, 2019; Department of Justice, 2022). They
protect research based on the “what not who” principle: a user’s conduct, not their identity/authority, determines if they
are protected. The former is possible to verify, whereas affordances for the latter is subjective and can result in favoritism.
Prior research into the effectiveness of such safe harbors suggests they collectively improve the resilience and quality of
technology products (Tschider, 2024). See Figure A7 for more details.
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Template: Legal Safe Harbor
When conducting AI flaw research in accordance with and under this policy, we consider this research to be:

a. Exempt from restrictions in our terms of service and acceptable use policy that would interfere with conducting security,
safety, or trustworthiness research, and we waive those restrictions on a limited basis;

b. Authorized concerning any applicable anti-hacking laws, and we will not initiate or support legal action against you for
accidental, good-faith violations of this policy;

c. Authorized concerning any relevant anti-circumvention laws, and we will not bring a claim against you for circumvention of
technology controls; and

d. Lawful, helpful to the overall security, safety, and trustworthiness of the AI systems, and conducted in good faith.

You are expected to comply with all applicable laws. If legal action is initiated by a third party against you and you have complied
with this policy, we will take steps to make it known that your actions were conducted in compliance with this policy.

C. Alternatives to Safe Harbor and Coordinated Flaw Disclosure
There are two common alternative views to our position in favor of expanding third-party evaluation and coordinated
vulnerability disclosure for GPAI systems.

First, some argue that first- and second-party evaluation, in tandem with inexpensive commercial access to deployed systems
for third parties, is sufficient to surface and address major flaws. GPAI system providers frequently report that they have
identified and mitigated dozens of flaws before deploying their systems (Bommasani et al., 2024), including by contracting
expert evaluators to red team their systems for flaws related to CBRN, cyber, autonomy, and other high-priority areas
(OpenAI, 2024a; Anthropic, 2024; Phuong et al., 2024; US AI Safety Institute & UK AI Safety Institute, 2024a; Meinke
et al., 2025; METR, 2024). Third-party evaluators can access GPAI systems through inexpensive APIs (or locally for
open-weight systems), and like second parties they have also identified and responsibly reported major flaws in deployed
systems (e.g., Carlini et al. (2024b)).

However, this alternative fails to account for the many third-party researchers who would conduct safety research if not for
fear of reprisals, the large number of flaws that are reported on social media (or not at all), and the lack of infrastructure for
taking collective action in response to serious flaws (described in Appendix A). Legal or procedural uncertainty regarding
flaw discovery and disclosure presents a wide range of barriers, including potential issues with receiving approval to
carry out research from funders or institutional review boards (Longpre et al., 2024b). The machine learning community,
policymakers, and civil society have expertise and concerns regarding a wider range of risks than those that GPAI system
providers and second-parties evaluate, resulting in major gaps.

Second, others argue that efforts to enable third-party evaluation and coordinated vulnerability disclosure present difficult
tradeoffs for companies with limited resources dedicated to researcher access. They suggest that the context of a highly
competitive commercial environment, GPAI system providers have limited bandwidth to administer researcher access
programs, and often employ just a handful of individuals who are responsible for coordinating access to systems for
thousands of interested researchers. Whereas major social media companies did not provide researchers with access to their
systems for many years and only after substantial political pressure, GPAI system providers large and small have elected to
do so. The implementation of safe harbors requires changes in policies and practices, time that might otherwise be spent
meeting with interested researchers or reviewing applications; similarly, contributing to and helping stand up a Disclosure
Coordination Center is time consuming, and may distract from ongoing efforts to triage incoming jailbreaks. Safe harbors
are seen as a major policy shift for many companies, requiring significant legal review and approval from executives, while
smaller shifts to bolster researcher access programs could be accomplished without significant organizational repositioning.

Scarcity of time and resources is an insufficient counterargument to our position—leading GPAI system developers have
billions of dollars at their disposal, more than enough to hire additional staff who can help researchers unearth additional
flaws in their systems. A well-designed ecosystem for flaw disclosure in the vein of Figure 1 would pose minimal costs to
each actor across the supply chain, with each being able to benefit from common infrastructure. If these tradeoffs are in fact
present, then they likely hold only in the immediate term as the return on investment for contributing to infrastructure for
coordinated vulnerability disclosure will be substantial. It is worth prioritizing flaw discovery, mitigation, and disclosure in
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the present as AI systems become more powerful and their use across society balloons.

D. Future Work
We identify three major areas for future work. First, there is substantial room for improvement in terms of aligning the views
of flaw reporters and GPAI system providers regarding what constitutes a flaw, or who is responsible for it. For instance,
certain prompts may enable users to generate images that may appear to constitute copyright infringement—and both
providers and users may contend that the other party is responsible for the infringement (Lee et al., 2024). Disagreements
over responsibility for flaws or whether a flaw requires mitigation are a long-standing open problem. To clarify these
disputes, we suggest system providers maintain clear policies and system documentation, and that GPAI flaw reports ground
their justifications in these policies and pieces of documentation (see Appendix B, Misconception 5). Future work should
address how companies’ can best adjust and update their policies and documentation over time to facilitate coordinated flaw
disclosure.

Second, the process for mitigating or remediating flaws once they are disclosed remains uncertain. An effective coordinated
flaw disclosure regime would substantially increase the number of flaw reports system providers receive and make it easier
to observe if providers actually mitigate or remediate those flaws. Future work should help providers choose how to triage
flaws and identify options for the scope of mitigations.

Third, it is unclear how best to adequately govern a Disclosure Coordination Center. Securing buy-in from key private sector
players across the AI ecosystem while maintaining credibility with third-party evaluators poses potential challenges. Future
work should build the key functions of a disclosure coordination center and move towards greater accountability.

E. Terminology & Definitions
E.1. Key Definitions

In Appendix E.1 we outline key definitions for terms used in this work, along with their justifications.

E.2. Related Definitions

Additionally, we discuss the difference between related terms used in the safety and security profession. Security engineers
have developed this rich terminology to distinguish types of problems:

Incident An “incident” describes real-world events that have resulted in harm, loss, or policy violations (OECD, 2024;
Dixon & Frase, 2024a; Mcgregor, 2020).

Adverse Event An “adverse event” constitutes a subset of incidents where real harm has been caused, rather than only the
potential for harm, near-harm, or a policy violation.

Hazard A “hazard” describes the set of conditions that may lead to an incident, as commonly used by safety engineers.

Vulnerability In this work, we follow prior art which considers vulnerabilities analogous to hazards (Leveson, 2019). A
“vulnerability” is similar to a “hazard”, but for security professionals: the set of conditions that may lead to an “incident”
(Leveson, 2019; Khlaaf, 2023; Householder et al., 2017). Some definitions restrict vulnerabilities to security threats, or
conditions that are exploited specifically by threat actors. Alternatively, vulnerabilities can be conceptualized in relationship
to incidents. For instance, according to CERT/CC “a vulnerability is a set of conditions or behaviors that allows the violation
of an explicit or implicit security policy.” (Householder et al., 2017). Similarly, the AI Risk and Vulnerability Alliance
defines vulnerabilities as “any weakness in an AI system that has the potential to result in an incident” (Anderson et al.,
2023).

Flaw A “flaw” unifies the possible the security and safety implications of vulnerabilities and hazards, as they can broadly
manifest in incidents of either variety. This definition is intentionally broad, so as not to exclude safety or security conditions
that may lead to real-world issues. Building on Cattell et al. (2024a); Householder et al. (2017), we define flaw as “a set
of conditions or behaviors that allow the violation of an explicit or implicit policy related to the safety, security, or other
undesirable effects from the use of the system.” Here, undesirable effects is analogous to real-world harm, loss or policy
violations.
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Key Definitions
In-scope GPAI system. We adopt the EU AI Act’s definition of “General-Purpose AI System” (European Union).
We focus on AI systems that are deployed to the public, rather than internal or pre-deployment. Specifically, an
in-scope GPAI system is a deployed AI system based on a foundation model and serving a variety of purposes.

Third-party evaluation. Third-party evaluation is conducted by a party with no direct contractual or obligatory
relationship to the system provider. While independence exists along a spectrum, third-party evaluations rank among
the most independent (Costanza-Chock et al., 2022). They may occur even when unsolicited and without advance
notice to the system provider. This is distinct from first-party (in-house) and second-party (contracted) evaluations.

Flaw. We define a flaw as a set of conditions or behaviors that allow the violation of an explicit or implicit policy
related to the safety, security, or other undesirable effects from use of the system. This encompasses traditional
software vulnerabilities, as well as sources of broader sociotechnical risks. Flaws do not depend on intentionality
or agreement about what constitutes an undesirable effect (CERT; Walshe & Simpson, 2022). To be clear, our
definition of flaws does not necessitate agreement from developers that a given issue violates their policy. Instead, it
just might not comply with a flaw reporters’ implicit expectations of the system policy.

Good-faith. Good-faith research or evaluation aims solely to identify, investigate, or correct flaws, carried out in
a manner designed to avoid harm to individuals or the public. It is aligned with the “good faith security research”
exception in the DMCA (U.S. Copyright Office; 2021), and excludes activities intended to cause harm or advance
solely commercial interests.

Coordinated flaw disclosure. Coordinated flaw disclosure is the process of gathering information from flaw
finders and sharing that information among relevant stakeholders, including the public, in order to mitigate and
remediate AI or software vulnerabilities. Its emphasis is on coordination and disclosure for effective problem
resolution (CERT; Householder et al., 2024b).

Safe harbor. A safe harbor provides legal or technical protections for researchers conducting “good faith”
evaluations of AI systems. It can include promises not to pursue legal action against researchers abiding by
established rules of engagement or disclosure policies, as well as steps to ensure researchers’ accounts are not
suspended for their testing activities (Abdo et al., 2022; HackerOne; Longpre et al., 2024b).

Bug A “bug” is a generic colloquialism to describe defects in engineering, closely related to our definition of a flaw (Widder
& Goues, 2024).

E.3. Differences between Incident Reporting and AI Flaw Reporting

In this work we propose flaw reports and coordinated disclosure. It is important to distinguish between these proposals
and prior art on incident and adverse reporting databases, such as the AI Vulnerability Database (AVID). Here are the key
distinguishing factors:

• Incidents vs Flaws. Our proposal pertains to flaws, not incidents (definitions are detailed in Appendix E). A flaw is a
set of conditions which can manifest in harm or incidents. In our framework, most incidents may also be reported as
flaws, if they can be grounded in a set of conditions which broadly constitute a flaw in the system. AVID for instance
has not implemented coordinated disclosure.

• Focus on General-Purpose AI. Incident databases often pertain to a broad set of software systems, or all AI, rather
than focusing on general-purpose AI systems.
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F. AI Flaw Reports
F.1. Flaw Report Examples

To illustrate what flaw reports may look like for actual flaws discovered by the AI community, we show two examples of
how our flaw report cards could have been used for flaws discovered in the past.

F.1.1. AI FLAW REPORT 1: TRAINING DATA EXTRACTION ATTACK

The first example concerns a security flaw discovered by Nasr et al. (2023b). At the time, the researchers contacted OpenAI
directly to inform the company about a flaw in there system that allowed to extract training data. Later, they wrote a paper
about the flaw discovered (Nasr et al., 2023b). With our suggested coordinated flaw disclosure system, the researchers could
instead have filed a report card like the one shown in Figure A4.

Figure A4. Example of a flaw report filed for a privacy risk in an OpenAI model. This example builds on a true flaw report documented in
Nasr et al. (2023b).

F.1.2. AI FLAW REPORT 2: GENDER BIAS FLAW

The second example concerns a flaw involving gender bias discovered by Saini & Luccioni (2022) in a BERT model on
Hugging Face. Had this report been filed through the coordinated flaw disclosure system we propose, a minimal report
could have looked like the one shown in Figure A5.
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Figure A5. Example of a flaw report filed for a bias risk in an open source BERT model on Hugging Face. This example builds on a true
flaw report documented in Saini & Luccioni (2022).
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F.2. Detailed Flaw Reports

As described in Appendix E, we use flaw as a unifying concept. Thus, a flaw report can involve different types of flaws, e.g.
differentiated by whether they involve real-world harm events and malign actors. In Figure A6, we show which type of
detailed flaw report (i.e., including which optional fields) may be most appropriate for these different types of flaws. The
different colors in the matrix in Figure A6 indicate which fields, in addition to the fields that apply to all flaws, should be
considered for specific types of flaws.

In Table A1, we list all relevant fields, with the colors corresponding to the type of flaw report as described in Figure A6.

These fields may not be exhaustive, and best practices for flaw reports may evolve. For example, it may be helpful to
have more structured fields in the flaw report description. We also imagine that the coordination center would collect
messages associated with the flaw report that show exchanges between the flaw reporter and the receiver (e.g., the model
developer). The usability of implemented version will be important to test, also with regards to the trade-off between
comprehensiveness—which may help better understand and mitigate the flaw—and length—which may discourage flaw
reporters from filing a report and make processing more effortful.

Figure A6. Flaw Report Matrix. The different matrix cells guide which parts of a detailed flaw report card should be filled out, depending
on whether a real-world event occurred and whether malign actors are involved. In terms of implementation in the proposed coordinated
flaw disclosure system, a web form could include fields that expand as needed depending on existing data entries.
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Table A1. AI Flaw Report Card Schema. The different colors indicate which fields should be considered in addition to the fields that
apply to all flaws.

Report Type Field Name Field Description

Collected for
All Flaw Reports

Reporter ID Anonymous or real identity of flaw reporter

Report ID
Unique flaw report ID. The flaw report ID can be referenced in future submissions
or mitigation efforts, similar to vulnerability identifiers such as CVE identifiers in
computer security (Cybersecurity and Infrastructure Security Agency, 2022).

System Version(s) AI system(s) and version(s) involved; multiple systems can be selected

Report Status

Current status of the report, recorded with timestamps as updated by the submitter
or receiving company. Initially, the status of a report is “Submitted”, but once it
is submitted the status field will be updated to reflect current status of addressing
the flaw (e.g., “Under investigation” or “Fixed”) (Cybersecurity and Infrastructure
Security Agency, 2022).

Session ID System session ID(s) for tracing flaw environment
Report Timestamp Report submission timestamp
Flaw Timestamp(s) Time(s) where flaws occurred
Context Info Versions of other software or hardware systems involved

Flaw Description Description of the flaw, its identification, reproduction, and how it violates system
policies or user expectations

Policy Violation
Detail of how the expectations of the system are violated or undocumented, pointing
to the terms of use, acceptable use policy, system card, or other documentation.
Policies may be explicitly or implicitly violated.

Developer Triage tag with name of system developer
System Triage tag with name and version of system

Severity Triage tag with worst-case scenario estimate of how negatively stakeholders will
be impacted

Prevalence Triage tag with rough estimate of how often the flaw might be expressed across
system deployments

Impacts Triage tag indicating how impacted stakeholders may suffer if the flaw is not
addressed

Impacted Stakeholder(s) Triage tag(s) indicating who may be harmed if the flaw is not addressed

Risk Source Triage tag indicating worst-case scenario estimate of how negatively stakeholders
will be impacted

Bounty Eligibility Triage tag indicating whether the submitter believes the flaw report meets the
criteria for bounty programs

Collected for
Real-World Events

Description of the Incident(s) Details on specific real-world event(s) that have occurred
Implicated Systems Systems involved in real-world event(s) which generalized flaw reports might cover

Submitter Relationship How the submitter is related to the event (e.g., ”affected stakeholder” or ”indepen-
dent observer”)

Event Date(s) Date when the incident(s) occurred
Event Location(s) Geographical location of the incident(s)

Experienced Harm Types Physical; psychological; reputational; economic/property; environmental; public
interest/critical infrastructure; fundamental rights; other

Experienced Harm Severity Maximum severity of harm experienced in the real world

Harm Narrative Justification of why the event constitutes harm and how system flaws contributed
to it

Malign
Actor

Tactic Select Tactics observed or used (e.g., from MITRE’s ATLAS Matrix)
Impact Confidentiality/privacy, integrity, availability, abuse

Security
Incident Report

Threat Actor Intent Deliberate, unintentional, unknown

Detection How the reporter knows about the security incident, including observation methods
Vulnerability Report Proof-of-Concept Exploit A code and documentation archive proving the existence of a vulnerability

Hazard
Report

Examples A list of system inputs/outputs to help understand the replication packet

Replication Packet Files evidencing the flaw statistically, including test data, custom evaluators, and
structured datasets

Statistical Argument Argument supporting sufficient evidence of a flaw
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F.3. Options for Flaw Report Tags

While not comprehensive, we suggest a set of options for each type of Tag in the flaw report card. The user should be able
to select these or similar options from a drop down menu, or select “Other” if none fit appropriately. The below list is for
illustration purposes.

• Developer

– Amazon
– Anthropic
– DeepSeek
– Google
– Meta
– Microsoft
– OpenAI
– xAI
– . . .

• System

– GPT-4 Turbo
– GPT-4 Vision
– GPT-4
– GPT-3.5 Turbo
– GPT-3.5 (text-davinci-003)
– GPT-3
– GPT-2
– DALL-E 3
– DALL-E 2
– DALL-E
– Claude 3 Opus
– Claude 3.5 Sonnet
– Claude 3 Haiku
– Claude 2.1
– Claude 2.0
– Claude 1.2
– Claude 1.0
– Claude Instant
– . . .

• Severity

– High
– Medium
– Low

• Prevalence

– High
– Medium
– Low

• Impacts
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– Privacy exposure
– Bias or discrimination
– Misinformation
– Non-consensual imagery
– Model or data exposure
– Environmental impact
– Economic consequences
– . . .

• Impacted Stakeholder(s)

– Users
– Children
– Model developers
– Model hosting services
– Model deployers
– Distribution platforms
– Data providers
– . . .

• Risk Source

– Model
– Guardrails
– Training data
– Deployment environment
– User interface
– . . .

• Bounty Eligibility

– Yes
– No

G. Policy Recommendations and Details
G.1. Recommendations for Policymakers

Policymakers play a pivotal role in fostering an effective ecosystem for third-party AI evaluation. We provide seven
recommendations to policymakers, and in Table A1, we specify which existing regulations may serve as relevant guideposts.

Issue guidance on third-party AI evaluation. Policymakers should provide clear guidance to researchers on when and
how to conduct third-party evaluations of GPAI systems. This guidance should define best practices that include rules of
engagement for evaluations and standardized forms of reporting, including special protocols for inherently illegal content.

Extend legal protections to AI safety and trustworthiness research. Legal frameworks should be adapted to extend
protections currently available for AI security research to include AI safety research (Council, 2023) that abides by the
criteria outlined in Section 2.1. For example, policymakers should clarify the applicability of the Digital Millennium
Copyright Act Section 1201 (Office, 2017) and the Computer Fraud and Abuse Act (U.S. Department of Justice, 2024) in
the context of AI safety and trustworthiness, as well as consider amending state computer access laws and analogous laws
outside of the U.S (Klyman et al., 2024b).

Require transparency from GPAI providers. GPAI systems providers disclose little information about the resources
used to build their systems, their internal evaluations of their systems, or the scale and impact of the deployment of their
systems (Bommasani et al., 2024). Governments should explore disclosure frameworks for GPAI providers to share details
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about their first-party evaluations, the processes and outcomes for second-party evaluations, and any major flaws they have
identified and patched. Guidance from NIST, including NIST AI 600-1 and NIST AI 800-1 (outlined in Table A1), provides
relevant principles for risk management and misuse mitigation.

Require platforms to offer safe harbors. Platforms that distribute GPAI systems to millions of users, such as cloud
service providers or major closed developers, can substantially increase the strength of the third-party evaluation ecosystem
by offering legal and technical safe harbor for third-party researchers. Often, platforms’ terms of service, meant to deter
malicious actors, also preclude researchers from accessing their systems. Governments should require that such platforms
offer a safe harbor to researchers that comply with the rules of engagement, and that such researchers should be eligible
for deeper access to GPAI systems. While voluntary commitments by companies may create some positive momentum,
voluntary measures have often fallen short in cybersecurity and AI, motivating governments to impose mandatory measures
(Sanger, 2024).

Fund and develop centralized disclosure infrastructure. Policymakers should support the creation of a centralized
disclosure and coordination hub for AI flaws as described in section 2, ensuring independent evaluators and researchers can
systematically report vulnerabilities and track mitigation efforts. Centralized disclosure infrastructure has proven effective
in other safety-critical domains (Dixon & Frase, 2024b). This includes providing funding to organizations that carry out
second- and third-party evaluations, aggregate and analyze flaws, and build or implement standards.

Encourage adoption of flaw bounties. Financial incentives, such as flaw bounty programs for GPAI systems, can
encourage proactive identification of flaws, enhancing security outcomes. Policymakers should establish clear guidelines for
implementing a flaw bounty programs, for GPAI systems drawing on their success in bug bounties for software systems.
Following our recommendations in Appendix G.4, flaw bounty programs should exclude flaws related to child sexual abuse
or exploitation, as this case has additional legal and wellness considerations. Anthropic’s model safety bug bounty program
is an early example of this, though it is invite-only (Anthropic, 2024). For bounty design suggestions based on bug bounty
hunter insights, see Akgul et al. (2023; 2020).

Prioritize procurement of systems subject to third-party evaluation. Government agencies across jurisdictions should
be mandated to prioritize procurement of GPAI systems that are subject to third-party evaluation. This requirement aligns
with broader goals of accountability and risk management and can be modeled after procurement policies under frameworks
such as the U.S. Federal Acquisition Regulation, incorporating principles of accountability and rigorous evaluation into
public sector GPAI deployment. By incentivizing providers to encourage third-party evaluation, governments can benefit
from the work of third-party evaluators to mitigate potential risks associated with government-procured GPAI systems.

G.2. Overview of Relevant Policies

Table A2 provides an overview of relevant policies when it comes to third-party AI evaluation.

G.3. Understanding Legal & Technical Safe Harbors

Figure A7. How forms research of access protection impact the AI provider, researchers, and malicious uses. The legal safe harbor
and moderation-exempt research access (also known as a technical safe harbor are proposed in the Provider Checklist, Section 2.2. This
is to illustrate that these access protections do not encourage or enable malicious use, nor change a provider’s AUP enforcement. A legal
safe harbor provides partial protections for third-party safety research, but requires no additional infrastructure. Whereas a legal and
technical safe harbor fully protect researcher access, this combination requires infrastructure to vet research—either internally, or from an
independent organization.

In Figure A7 we discuss how legal and technical safe harbors impact the AI providers, good-faith researchers, and malicious
users.

Legal and technical safe harbors offer a structured approach to balancing AI security, transparency, and accountability
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Table A2. A list of standards and laws, as of January 2025, that pertain to Third-Party AI.

ORGANIZATION PURPOSE KEY SECTIONS

STANDARDS AND BEST PRACTICES

NIST AI 600-1: AI Risk
Management Framework

Provide a structured approach to AI governance, risk
management, and mitigation across its lifecycle.

Appendix A (A.1.2-A.1.8),
GOVERN 1.1, 1.4, 1.5, 3.2

NIST AI 800-1 2pd:
Managing Misuse Risk for
Dual-Use Foundation Models

Guidelines to mitigate misuse risks in dual-use AI
models. Promoting proactive risk management,
transparency, and collaboration for safe AI deployment.

Objective 6 (Practices 6.3-6.5)

NIST SP 800-53 r5: Security
and Privacy Controls for
Information Systems and
Organizations

Catalog of customizable security and privacy controls
to protect organizations from cyber, human, and privacy
risks within a broader risk management framework.

Section 3.16 Risk Assessment

NIST Cybersecurity
Framework 2.0

This risk-based framework helps organizations manage
cybersecurity by aligning core functions with enterprise
risk.

Identify (ID.RA)

NTIA Safety Working
Group Vulnerability
Disclosure Template v1.1

Helps organizations improve vulnerability disclosure in
safety-critical industries by offering policy guidance
and best practices for managing software risks.

N/A

LAWS

The Digital Millennium
Copyright Act (DMCA)

Protect copyrighted works in digital environment. See
exemption from October 28, 2024

Section 1201

DOJ New Policy for
Charging Cases under the
Computer Fraud and Abuse
Act (CFAA)

The policy shields good-faith security research under
the CFAA, recognizing its role in cybersecurity while
barring exploitative misuse.

Section B: Charging Policy for
CFAA cases (3)

CISA Binding Operational
Directive 20-01

Requires federal agencies to establish a Vulnerability
Disclosure Policy (VDP), standardize reporting,
encourage good-faith research, and strengthen
cybersecurity.

Required Actions (3a, 3b)

Cyber Incident Reporting
for Critical Infrastructure
Act (CIRCIA) Reporting
Requirements

Mandates critical infrastructure to report cyber
incidents and ransomware payments, enhancing threat
visibility, intelligence sharing, and preparedness with
liability protections.

Section IV, (A(ii) Cyber
Incident); IV (B(iv) Specific
Proposed); IV (E(iii) Content
of Reports); IV (G.
Enforcement); IV (H (i)
Treatment of Information)

IoT Cybersecurity
Improvement Act

Strengthen federal cybersecurity for IoT security. Sections 5, 6

EU LAWS

EU Cyber Resilience Act Mandates strong cybersecurity for digital products,
requiring lifecycle security, robust safeguards, and
third-party assessments for critical items.

Subsection 36, Article 10 (6)

EU NIS 2 Directive Enhances EU cybersecurity by expanding coverage,
tightening requirements, and improving incident
reporting and cooperation to strengthen resilience.

Sections 51, 57, 58, 59, 60, 62,
Articles 7 (2c), 12
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while protecting both AI providers and good-faith researchers. Many platforms’ current terms of service, meant to deter
malicious actors, also preclude researchers from accessing their systems. A legal safe harbor ensures that researchers who
abide by responsible disclosure protocols and do not harm users or systems are not subject to legal action, fostering a
cooperative environment between providers and the research community.

Meanwhile, a technical safe harbor provides a mechanism for vetted accounts to be reinstated if they are mistakenly
moderated against, reducing the chilling effect on ethical AI evaluations. These measures help AI providers mitigate legal
risks, encourage responsible research, and establish clear boundaries for external scrutiny while maintaining security controls.
However, implementing these frameworks requires dedicated vetting resources and efficient enforcement mechanisms to
prevent misuse.

For good-faith researchers, these safe harbors create a safer and more predictable environment for engaging in third-party
AI evaluations. By regulating conduct rather than identity, these policies allow a broader range of researchers—including
independent experts and those outside traditional institutions—to contribute without facing arbitrary barriers. Legal
protections ensure that ethical researchers can disclose vulnerabilities without fear of legal retaliation, while technical
safe harbors prevent wrongful suspensions that could hinder their work. However, researchers still bear the burden of
proving compliance with documented protocols, and inconsistent enforcement across AI companies may create uncertainty.
An efficient and standardized appeal process is necessary to prevent undue delays in reinstating accounts and addressing
wrongful moderation.

G.4. Illegal Media Flaws

One category of AI flaws relates to their potential to generate extremely harmful or illegal media: including the storage,
distribution, or generation of CSAM, AIG-CSAM, and other forms of online child sexual exploitation and abuse (OCSEA).
This category of flaw has additional stipulations, as required by law, to protect victims and survivors.

• First, due to its sensitive nature, extremely harmful or illegal media, such as AIG-CSAM, should not be intentionally
produced by third-party researchers. This form of research requires special training, wellness support, and legal
permissions, that are typically not suitable for general third-party evaluation. Note that the authors of this work are
unaware of any existing umbrella immunity in the United States to directly attempt to generate AIG-CSAM, even in
good-faith for capabilities and evaluation purposes.

• If illegal media is unintentionally generated or exposed in the course of good-faith research, the reporting requirements
are different to other flaws. Developers which are electronic communication services providers (ECSs) or providers of
remote computing services (RCSs) have both preservation and reporting obligations under U.S. federal law, 18 USC §
2258A. Developers and researchers who do not have reporting and preservation obligations should consider all of the
applicable risks and adopt appropriate behaviors that are in line with Section 4.1, based on those risks. When reporting
to the appropriate authorities (e.g. in the United States, the National Center for Missing and Exploited Children), the
report should follow a specific template (Thorn & All Tech Is Human, 2024).1

• Subsequent disclosures of this flaw, to other stakeholders, have specific considerations around the reproduction and
mitigation of the flaw. Any report should seek guidance from NCMEC on how to disclose the flaw to other relevant
stakeholders, should not include the illegal media itself, and should refrain from public disclosure (of the method) until
the issue is sufficiently mitigated, and authorities authorize it.

Note that AIG-CSAM pertains primarily to visual media, whereas, to the best of the authors’ knowledge, the good-faith
research of models generating text which provides guidance/information on strategies to facilitate the sexual exploitation of
children may be within legal bounds.2

1See also: https://www.technologycoalition.org/newsroom/tech-coalition-announces-new-
generative-ai-research

2Additional resources include: https://www.justice.gov/criminal/criminal-ceos/citizens-guide-us-
federal-law-child-pornography and https://www.frontiersin.org/journals/psychology/articles/
10.3389/fpsyg.2023.1142106/full
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H. AI Risk Taxonomy & Reporting Details
H.1. Existing Vulnerability & Reporting Options for GPAI Systems

Table A3. Summary of AI Flaw Disclosure Mechanisms. This table outlines organizations and programs for disclosing AI vulnerabilities,
highlighting scope, submission processes, and limitations.

ORGANIZATION DISCLOSURE MECHANISM

GPAI Developers

System Developer: OpenAI Bug bounty program administered by BugCrowd. Focuses on security flaws in APIs, ChatGPT,
Playground, and third-party corporate targets. Content issues like hallucinations or harmful
generations are out of scope. Separately, they support a feedback form for model behavior.

System Developer: Google Bug Hunter Program includes AI systems. Covers privacy/security attacks and AI-specific
vulnerabilities like weight extraction and prompt injections. Content issues are out of scope for
the bounty but reportable via dedicated in-product channels.

System Developer: Anthropic Model safety bug bounty program via HackerOne, invite-only. Targets critical vulnerabilities in
cybersecurity and high-risk domains (e.g., CBRN). Reports focus on novel, universal jailbreaks.

System Developer: Meta Bug bounty program for Meta AI. Focuses on training data leakage or extraction attacks. Content
issues and misuse are out of scope; feedback redirected to the Llama team. Reports submitted
through Meta’s bug bounty portal.

Platform: Hugging Face Open discussion encouraged for issues with hosted models or datasets via the Discussions tab.
For platform or library vulnerabilities, a private bug bounty program runs on HackerOne.

Civil Society & Independent Organizations

AI Incident Database Hosts a publicly accessible database of AI-related incidents reported in media. Submissions
reviewed by editors before inclusion; primarily links to online news articles.

AI Vulnerability Database Maintains user-submitted vulnerabilities inspired by CVE procedures, covering Security, Ethics,
and Performance (SEP) issues across the AI lifecycle.

OECD AI Incidents Monitor Tracks and classifies AI incidents and hazards using machine learning to monitor global news.
Incidents include harm caused by AI; hazards are potential risks. Plans to expand with court
judgments, regulatory decisions, and direct submissions. Focuses on injury, infrastructure
disruption, rights violations, and property/environmental harm.

MITRE MITRE assists in maintaining the Common Vulnerability Enumeration (CVE) database for
security flaws, including some ML-related vulnerabilities.

Government Agencies

CISA Offers cybersecurity evaluations via penetration testing, vulnerability scanning, risk assessment,
and other services. Focuses on cybersecurity issues and AI vulnerabilities with a cybersecurity
impact. Treats AI as a subset of software systems.

CERT Offers the Vulnerability Information and Coordination Environment (VINCE), which accepts
vulnerability reports for coordination and disclosure in coordination with CISA.

NIST Provides frameworks like AI RMF and evaluation platforms such as ARIA for AI risk assessment.
Focused on research-oriented collaboration for testing and improving AI flaws through systematic
evaluation.

US AI Safety Institute and UK
AI Security Institute

Offer AI safety evaluations via capability assessments and safeguard testing, including collabora-
tion with national security subject matter experts. Issue guidance on best practices for conducting
safety evaluations and reporting results. UK AISI has a bounty program for novel evaluations
and agent scaffolding, and US AISI and UK AISI can also issue contracts in these areas. AI
Safety Institutes across other jurisdictions, including Singapore’s Digital Trust Center, the EU
AI Office, and Japan’s AI Safety Institute also carry out such evaluations.

We have compiled a list of options to report AI flaws, or at least the subset of flaws which pertain to security vulnerabilities,
for AI systems. In Table A3 we enumerate the options provided by common GPAI developers, civil societies, and
government agencies. AI flaw disclosure remains fragmented across developers, civil society, and government agencies,
with no standardized mechanism for reporting vulnerabilities. While major GPAI developers like OpenAI, Google, and
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Meta have bug bounty programs, their scope is often limited to traditional cybersecurity flaws, excluding broader AI risks
like bias, hallucinations, or adversarial robustness.

Civil society initiatives, such as the AI Incident Database and MITRE’s CVE system, provide some degree of transparency
but lack real-time security response capabilities. Government agencies, including CISA, NIST, and AI Safety Institutes,
have begun incorporating AI security evaluations, yet their efforts remain largely research-focused rather than establishing a
structured disclosure framework. The lack of a centralized reporting entity creates inefficiencies in addressing transferable
AI vulnerabilities that can impact multiple models and developers.

To improve AI flaw disclosure, a coordinated reporting system should be established, similar to the Common Vulnerabilities
and Exposures (CVE) framework in traditional cybersecurity. A centralized AI vulnerability database would help standardize
flaw reporting, facilitate triage based on risk, and enable cross-developer coordination for flaws that affect multiple systems.
Expanding bug bounty programs to include concerns about fairness, safety, and trustworthiness would incentivize security
researchers while providing AI developers with a more comprehensive understanding of risks. Additionally, public-private
partnerships should support civil society initiatives by integrating technical validation mechanisms, ensuring reported AI
flaws are properly assessed and mitigated.

As AI adoption expands, a proactive and collaborative approach to AI flaw disclosure will be critical to mitigating security
risks, ensuring public trust, and fostering long-term AI resilience.

H.2. Taxonomies of AI harms, risks, and safety

In Table A4 we enumerate various AI harm, risk, and safety taxonomies, each offering a distinct approach to categorizing
and addressing the challenges posed by AI systems. The challenge of categorizing AI harms, risks, and safety lies in the
diversity of threats AI systems pose, spanning governance, security, and sociotechnical concerns. Different taxonomies
attempt to map these risks, yet they vary significantly in focus and methodology. For example, NIST’s AI Risk Management
Framework and the OECD AI Incident Taxonomy provide structured methodologies for assessing risks, ensuring compliance,
and mitigating unintended consequences.

Other governance models, like the Stanford AI Index Responsible AI Taxonomy, classify real-world AI risks, such as privacy
threats in AI-driven chatbots or safety concerns in autonomous systems. These frameworks help organizations develop
proactive risk management strategies while aligning AI deployment with regulatory and ethical standards.

Beyond governance, the discussion around AI harms extends into sociotechnical and security risks, where taxonomies
attempt to capture both measurable harms and more abstract, systemic issues. For instance, Weidinger et al. (2023) and
Shelby et al. (2023) categorize harms such as bias, misinformation, and fairness concerns, which are difficult to quantify
but crucial to address. On the other hand, security-focused taxonomies like NVIDIA’s Garak Framework and Marchal et
al. (2024) focus on the tactics of AI exploitation, including adversarial manipulation and system integrity threats. These
classifications highlight both observable risks (e.g., algorithmic bias and misinformation) and latent vulnerabilities (e.g.,
adversarial attacks and data poisoning), underscoring the need for a multi-layered approach to AI security.

Ultimately, ensuring AI safety and trustworthiness requires an integrated approach that synthesizes these taxonomies rather
than treating them in isolation. While repositories like the MIT AI Risk Repository aggregate diverse risk perspectives, they
also reveal the fragmentation in current risk frameworks—each with its own scope, biases, and priorities. The Decoding
Trust initiative and Gabriel et al. (2024) on AI Assistants demonstrate that trust-related AI risks are as much about perception
and social acceptance as they are about technical failures.

This raises a critical question: Should AI risk taxonomies not only categorize harms, but also offer mechanisms for
continuous adaptation, ensuring they remain relevant as AI capabilities evolve? A truly effective taxonomy would not just
enumerate risks, but create a dynamic framework for evaluating and mitigating harms in an AI landscape that is constantly
evolving.
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Table A4. A list of prominent AI harm, risk, & safety taxonomies. We enumerate popular taxonomies for AI risk, with different
focuses and methods of developing their ontologies.

TAXONOMY DESCRIPTION REFERENCE

NIST AI Risk Management Frame-
work

A framework to understand and address the various risks, im-
pacts, and harms of AI systems.

NIST (2023)

UK AI International Scientific Report A United Kingdom official report on the capabilities and risks of
advanced AI systems.

Bengio et al. (2025;
2024)

Ethical and Social Risks of Harm
from LMs

A catalogue of anticipated risks from language models, across six
areas: discrimination, exclusion and toxicity, information Haz-
ards, misinformation harms, malicious uses, human-Computer
interaction harms, as well as automation, access, and environ-
mental harms.

Weidinger et al. (2021;
2022)

Sociotechnical Safety Evaluation of
Generative AI

Provides a taxonomy of harm (Appendix A.1) with a focus on
sociotechnical challenges and evaluations for AI systems.

Weidinger et al. (2023)

A Taxonomy of Tactics from Real-
World Data

A taxonomy of generative AI misuse tactics, segmented by ex-
ploitation of AI capabilities, and compromise of the systems
themselves.

Marchal et al. (2024b)

Sociotechnical Harms of Algorithmic
Systems

A survey of sociotechnical harms, including representational
harms, allocative harms, quality of service harms, interpersonal
harms and social system harms.

Shelby et al. (2023)

Evaluating the social impact of gener-
ative ai systems in systems and society

A guide that moves toward a standard approach in evaluating a
base generative AI system for any modality in two overarching
categories: what can be evaluated in a base system independent
of context and what can be evaluated in a societal context.

Solaiman et al. (2024)

MIT AI Risk Repository A database of nearly 800 risks of AI systems, aggregated from
40 risk taxonomies.

Slattery et al. (2024)

The Ethics of Advanced AI Assistants An examination of the variety of challenges presented by AI
assistants, including those related to value, alignment, misuse,
safety, anthroporphism among others.

Gabriel et al. (2024)

Decoding Trust A comprehensive assessment of trustworthiness in AI systems. Wang et al. (2023)

FM Responsible Development Cheat-
sheet

The Foundation Model Responsible Development Cheatsheet
provides a catalogue of tools and resources. It lists 26 risk and
harm taxonomies for foundation models.

Longpre et al. (2024a)

CSET AI Harm Framework The CSET AI Harm Framework divides harms into tangible
(observable, measurable) and intangible (subjective, harder to
measure) categories, relevant for tracking incident types.

Hoffmann & Frase
(2023)

Stanford AI Index: Responsible AI
Taxonomy

The AI Index categorizes concerns into dimensions, and high-
lights rea-world examples of each, such as data privacy risks
with romantic AI chatbots, and safety risks with autonomous
vehicles.

Reuel (2024)

NVIDIA Garak Framework A framework for security probing of large language models.
Focuses on probabilistic and transferable flaws that affect inter-
connected AI systems.

Derczynski et al. (2024)

OECD AI Incident Taxonomy A taxonomy for global monitoring of AI incidents, emphasizing
ethical misuse and unintended consequences.
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