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Abstract

Large-scale conditional diffusion models (DMs) have demonstrated exceptional1

ability in generating high-quality images from textual descriptions, gaining2

widespread use across various domains. However, these models also carry the risk3

of producing harmful, sensitive, or copyrighted content, creating a pressing need to4

remove such information from their generation capabilities. While retraining from5

scratch is prohibitively expensive, machine unlearning provides a more efficient6

solution by selectively removing undesirable knowledge while preserving utility. In7

this paper, we introduce COncept REconditioning (CORE), a simple yet effective8

approach for unlearning diffusion models. Similar to some existing approaches,9

CORE guides the noise predictor conditioned on forget concepts towards an anchor10

generated from alternative concepts. However, CORE introduces key differences11

in the choice of anchor and retain loss, which contribute to its enhanced perfor-12

mance. We evaluate the unlearning effectiveness and retainability of CORE on13

UnlearnCanvas. Extensive experiments demonstrate that CORE surpasses state-of-14

the-art methods including its close variants and achieves near-perfect performance,15

especially when we aim to forget multiple concepts. More ablation studies show16

that CORE’s careful selection of the anchor and retain loss is critical to its superior17

performance.18

1 Introduction19

In recent years, large-scale text-to-image generative models, especially Diffusion Models (DM), have20

made remarkable advancements in artificial intelligence by exhibiting an unprecedented ability to21

create high-resolution, high-quality images from text descriptions (Sohl-Dickstein et al., 2015; Ho22

et al., 2020; Rombach et al., 2022). The versatility and accessibility of diffusion models have led23

to their widespread adoption across various industries (Croitoru et al., 2023; Kazerouni et al., 2023;24

Yang & Hong, 2022; Xu et al., 2022).25

Despite their broad utility, diffusion models come with inherent risks due to their extensive training26

on diverse datasets. These models have the potential to generate inappropriate, harmful, or legally27

sensitive content. For example, Stable Diffusion can produce images that involve pornography,28

malign stereotypes, and gender and race biases based on the embedded prejudices in their training29

data, even conditional on non-harmful prompts (Birhane et al., 2021; Schramowski et al., 2023;30

Larrazabal et al., 2020). They can memorize and reproduce realistic yet inappropriate depictions31

of individuals without their consent, posing huge privacy risks (Somepalli et al., 2023a,b; Carlini32

et al., 2023). They can also create misleading or harmful media involving real individuals, such as33

deepfakes (Mirsky & Lee, 2021). Moreover, they can mimic potentially copyrighted content and34

replicate styles of real artists, raising legal concerns related to copyright infringement and intellectual35
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Figure 1: Overview of Concept Reconditioning. pf , pr, pa are the concepts targeted to be forgotten (i.e.,
forget concepts), to be remembered (i.e., retain concepts), and to guide unlearning (i.e., alternative concepts),
respectively. t is the number of steps in the denoising process and is uniformly sampled within [0, T ], where T
denotes the total number of denoising steps in diffusion models. εθ is the noise predictor function we aim to
optimize, while εθ∗ is the noise predictor in the pre-trained diffusion models.
property rights, as well as undermining artistic originality (Shan et al., 2023; Roose, 2022; Liu, 2022;36

Popli, 2022; Scenario, 2022; Brittan, 2023).37

To address these concerns, legislative frameworks such as the European Union’s General Data38

Protection Regulation (GDPR) (Mantelero, 2013; Voigt & Von dem Bussche, 2017) and the US’s39

California Consumer Privacy Act (CCPA) (CCPA, 2018) have established the Right to be Forgotten.40

These laws mandate that applications must support the deletion of personal information contained in41

training samples upon user request. Consequently, there is a pressing need for effective methods to42

mitigate these risks by enabling diffusion models to unlearn such undesirable content, ensuring that43

their deployment is both responsible and aligned with societal values.44

A straightforward method is to retrain the model from scratch using a filtered dataset devoid of45

inappropriate content. However, this approach is computationally intensive and often impractical due46

to the enormous resources required. For instance, training Stable Diffusion 2.0 on a filtered image47

set (Schuhmann et al., 2022; Rombach & Esser, 2022) demands approximately 150,000 GPU hours48

on 256 A100 GPUs. Early attempts to unlearn large-scale generative models include decoding-time49

guidance and post-generation filtering (Rando et al., 2022; Schramowski et al., 2023); however, these50

methods do not modify the model weights and can be easily bypassed during deployment. Recent51

research has pivoted towards more robust fine-tuning-based unlearning approaches that modify a52

model’s weights to effectively forget specific undesirable elements (Gandikota et al., 2023; Fan et al.,53

2023; Heng & Soh, 2024; Kumari et al., 2023; Wu et al., 2024; Zhang et al., 2024a; Wu & Harandi,54

2024; Li et al., 2024b). These methods aim to steer the noise predictor in diffusion models away from55

the target concepts intended to be forgotten by efficiently fine-tuning a small fraction of parameters.56

In this work, we propose COncept REconditioning (CORE), a novel, simple, but effective unlearn-57

ing method for diffusion model. This method leverages a fixed, non-trainable noise to guide the58

unlearning process, circumventing the need for dual noise predictors or the use of Gaussian noise as a59

target. CORE specifically alters the noise prediction mechanism for the target images conditioned on60

concepts in the forget set (i.e., forget concepts), aligning them closer to concepts in the retain set (i.e.,61

retain concepts), thereby blurring the distinction between correctly generated images from forget62

concepts and incorrectly generated ones from retain concepts. We position CORE within a more63

general framework of Concept Erasing, and compare our method with other baselines that fit into this64

framework. Despite its simplicity, we demonstrate its superiority over existing methodologies through65

rigorous testing on the UnlearnCanvas framework, and show CORE excels in overall performance66

including unlearning ability, retainability, and generalization ability, especially when we aim to forget67

multiple concepts.68

Our contributions are summarized as follows.69

• We introduce COncept REconditioning (CORE) as a new efficient and effective unlearning70

method on diffusion models, and position it in a broader conceptual framework of concept erasing.71

• Extensive empirical validations on UnlearnCanvas showcase that CORE significantly outperforms72

existing baselines, achieving nearly perfect scores and setting new state-of-the-arts for the over-73

all performance in unlearning diffusion models on UnlearnCanvas. CORE also shows strong74

capabilities of generalization in unlearning styles.75
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• Ablation studies highlight the benefits of using a fixed, non-trainable target noise over other76

methods. Additionally, our findings emphasize the superiority of one-to-one concept reconditioning77

over other schemes of selecting reconditioning concepts.78

2 Preliminaries79

Machine Unlearning. Machine Unlearning (MU) refers to the process of systematically removing80

the influence of specific data points from a trained machine learning model, ensuring that the model81

forgets information as if the data points were never included in its training set. In this context, let82

D represent the training dataset, and let Df ⊂ D denote the forget set, the subset of data that needs83

to be unlearned. The retain set, denoted as Dr ⊂ D, is the complement of the forget set. The goal84

of machine unlearning is to produce a new model that closely approximates the performance of85

retraining from scratch on Dr while also ensuring that the model does not retain any knowledge86

of Df . Unlearning has traditionally been explored in the context of classification models, where87

the model aims to either forget the influence of specific classes of data or forget some random88

samples (Cao & Yang, 2015; Bourtoule et al., 2021). In recent developments, machine unlearning89

has been extended to large generative models, where the model must unlearn specific objectives to90

ensure that certain generated outputs, such as sensitive, private, copyrighted, or harmful content, will91

not be generated.92

Unlearning Diffusion Models. Diffusion models are a class of generative models that have gained93

significant attention for their ability to generate high-quality images. They work by transforming94

data distributions through T forward and reverse steps, gradually adding noise to the data and then95

learning to reverse this process to generate new samples. Mathematically, this can be described by a96

series of noisy images x0,x1, ...,xT ∈ Rd, where x0 is the original image, and xT is the Gaussian97

noise. Latent Diffusion Model (LDM) (Rombach et al., 2022) first compresses high-dimensional98

pixel-based data into a low-dimensional latent space using an encoder E . It then simulates the99

diffusion process on the space of latent variables z = E(x) and reconstructs the image through a100

decoder D. For notational simplicity, we do not differentiate between latent variables and pixel-based101

data, denoting both as x. In this context, let εθ (xt, p) represent the noise estimator parameterized by102

θ, where xt is the noisy observation at step t, and p is a conditioning variable such as a class label or103

text description. The training objective of latent diffusion models is the mean squared error (MSE)104

between the predicted noise and the true noise across all diffusion steps, expressed as:105

LMSE(θ) = Ep,t,ε∼N (0,I)

[
∥ε− εθ (xt, p)∥22

]
, (1)

where p is sampled from a distribution over all prompts and t is sampled uniformly from [0, T ]. Given106

a pre-trained latent diffusion model, the objective of unlearning this diffusion model is to ensure that107

harmful or sensitive content, such as depictions of nudity or violence, can no longer be produced by108

the model when prompted with the corresponding text descriptions. The challenge lies in balancing109

the removal of unwanted generations while preserving the model’s ability to generate high-quality,110

appropriate content for normal prompts. The most common unlearning process in diffusion models111

involves updating the noise estimator to ensure that harmful concepts associated with Df are no112

longer learned or reinforced during the reverse diffusion process. This form of unlearning, often113

referred to as “concept erasure", is critical for ensuring the safe deployment of generative models in114

real-world applications. More details are included in Section 3.2.115

3 Concept Reconditioning116

In this section, we propose COncept REconditionng (CORE), a simple yet effective algorithm117

for unlearning in diffusion models. Our approach focuses on reconditioning the model’s learned118

representations by substituting concepts from the forget set with selected alternative concepts from119

the retain set. First, we introduce the objective function and key designs within. Then, we position it120

within the broader framework of Concept Erasing and compare it with similar algorithms in prior121

works to showcase its advantage.122

3.1 Proposed Method123

Unlearn objective. In the context of unlearning in diffusion models, we denote the noise predictor in124

Latent Diffusion Models by εθ(xt, p), where xt is the noisy version of the input image x0 at time125
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step t generated during the forward diffusion process, p is the prompt associated with the image (e.g.,126

“A cat in the style of Van Gogh”), and θ represents the model parameters. We use εθ∗(xt, p) and θ∗127

to denote the pre-trained diffusion model and its parameter. In CORE, we aim to recondition images128

from the forget set onto alternative concepts. This is achieved by aligning the noise estimator for129

images in the forget set, conditioned on their original concepts pf ∈ Df , toward the ground truth130

noise estimator for the same image but conditioned on an alternative concept pa. Mathematically, the131

unlearn objective function is formulated as132

Lf (θ) := E(pf ,x0)∼Df ,pa ̸=pf ,t

[
∥εθ (xt, pf )− εθ∗ (xt, pa) ∥22

]
, (2)

where the expectation is taken over the concept-image pairs (pf ,x0) from the forget set, alternative133

concepts pa different from pf , and time steps t uniformly sampled from [0, T ]. Intuitively, this134

process effectively weakens the association between the images and their original concepts in the135

model, steering it away from the initial pre-trained associations.136

Alternative concepts. A key design choice in CORE is the selection of alternative concepts pa137

in equation (2). In the unlearning objective, pa acts as an anchor concept to recondition images138

from the forget set onto. Previous works typically use an empty string or a single base concept for139

pa consistently across all concepts to be unlearned (Zhang et al., 2024c; Gandikota et al., 2023).140

In contrast, CORE adopts a different approach by pairing each forget concept pf with a specific141

alternative concept pa. Our pairing scheme imposes minimal restrictions: the alternative concept pa142

does not necessarily have to come from the retain set; it can even be another forget concept different143

from pf . In our implementation, when the number of concepts to forget is smaller than the number of144

retain concepts, we map each forget concept to a unique concept in the retain set, rather than using a145

single base concept for all forget concepts. Meanwhile, when the retain concepts are limited and there146

are more concepts to forget, we create a one-to-one mapping among the forget concepts themselves.147

This means that each forget concept pf is paired with another forget concept pa (where pa ̸= pf ) to148

serve as its alternative concept during unlearning. Empirically, we show that this one-to-one mapping149

strategy significantly outperforms methods that consistently use a base concept or randomly sample150

alternative concepts at each step.151

Retain objective and the full loss function. To ensure the model continues generating high-quality152

images for the retain concepts, we introduce a retain loss to regularize the unlearning process.153

Traditionally, the retain loss is defined as the Mean Squared Error (MSE) between the noise prediction154

for the retain set and the Gaussian noise vector used to generate the noisy images, similar to the155

objective used in training a diffusion model (see equation 1). However, in CORE, rather than fine-156

tuning the noise predictions to match a Gaussian random vector, we instead align them with those157

generated by the pre-trained diffusion model itself. Mathematically, the retain objective is defined as158

Lr(θ) := E(pr,x0)∼Dr,t

[
∥εθ (xt, pr)− εθ∗ (xt, pr) ∥22

]
, (3)

where t is uniformly sampled in [0, T ] and (pr,x0) are concept-image pairs sampled from the159

retain set. Using εθ∗ (xt, pr) as the target helps ensure the model does not deviate too far from its160

original capabilities, as it leverages the pre-trained model’s learned knowledge. Empirical results (see161

Section 4) demonstrate that aligning the noise predictions with εθ∗ (xt, pr), rather than the Gaussian162

noise, yields better performance. This improvement arises potentially because using the estimated163

noise from the pre-trained model reduces variance in the unlearned model and stabilize the training164

process. Interestingly, this phenomenon, where using estimated signals outperforms true signals, has165

also been observed in other domains in statistics (Robins et al., 1992; Henmi & Eguchi, 2004; Hitomi166

et al., 2008; Su et al., 2023).167

Finally, the complete loss function in CORE combines both the unlearn and retain objectives:168

L(θ) := Lf (θ) + α · Lr(θ), (4)

where α > 0 controls the regularization strength. Intuitively, CORE ensures that the model is169

steered away from generating images associated with forget concepts while preserving its overall170

performance on other concepts.171

3.2 Rethinking Concept Erasing and Reconditioning172

At first glance, our proposed objective might seem similar to existing methods for unlearning in173

diffusion models, as it also involves steering the error predictor on the forget set while keeping it174
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unchanged on the retain set. However, under closer scrutiny, Concept Reconditioning introduces175

several key distinctions that set it apart and enable it to outperform previous approaches. Take a176

broader view of the framework of unlearning diffusion models: unlearning methods for diffusion177

models that are based on fine-tuning the error predictor εθ(x, p) can generally be categorized into178

two classes: ❶ Concept Erasing (CE): This method works by shifting the noise prediction network179

for images corresponding to the forget concepts towards an alternative noise distribution. Intuitively,180

by doing so, it directly acts on εθ(x
f
t , pf ), where xf

t is the noisy observation for images in the forget181

set, and misleads them away. ❷ Image Relabeling (IR): In this approach, alternative images that do182

not match the forget concepts are selected, and the model is fine-tuned on the forget concepts paired183

with these mismatched images. The model directly acts on εθ(x
r
t , pf ) where xr

t is the noisy images184

constructed from the retain set, and effectively overwrites the old knowledge with new associations,185

forcing it to forget by learning new, incorrect pairings. Mathematically, these two classes can be186

formulated as187

LCE(θ) := λ · E(pf ,x0)∼Df ,t

[
∥εθ (xt, pf )− yCE∥22

]
, (5)

LIR(θ) := λ · Epf∼Df ,x0∼Dr,t

[
∥εθ (xt, pf )− yIR∥22

]
. (6)

Here, λ ∈ {±1} controls the direction of the objective function. In the CE method, images are drawn188

from the forget set, while in IR, images come from the retain set. The target noises yCE and yIR can189

be either random vectors (e.g., Gaussian or Uniform) or derived from a trainable noise predictor.190

Many existing unlearning methods fit within this framework. For example, Heng & Soh (2024)191

suggests λ = −1 and yCE ∼ N (0, Id) in equation (5) in the unlearning objective, while proposing192

a surrogate objective with λ = 1 and yIR ∼ N (0, Id) in equation (6). The former corresponds to193

a gradient ascent loss applied to the pre-training objective on forget concepts, while the surrogate194

objective simply mirrors the standard training loss applied to the forget concepts with retain images.195

Fan et al. (2023) takes yCE in equation (5) as a trainable noise predictor εθ(xt, pa) where pa ̸= pf is196

an alternative concept coming from the retain set. Wu et al. (2024) also proposes this target noise, as197

well as suggesting an alternative with yCE as a uniformly distributed random vector. Kumari et al.198

(2023) takes yIR in equation (6) to be either a standard Gaussian random vector or the error predictor199

at the last iterate, evaluated at retain images paired with corresponding retain concepts. Even when200

the objective function appears divergent from this framework, as seen in Gandikota et al. (2023), it201

can still be decomposed into a linear combination of objective functions in the framework above (see202

Appendix C).203

Although these prior works often include additional techniques such as weight decay (Heng & Soh,204

2024), saliency map (Fan et al., 2023), or even applying a monotonic function to the squared loss (Park205

et al., 2024), the backbone of their unlearning objectives can be positioned into this simple framework206

or its simple variants. Our method distinguishes itself from prior approaches by its simplicity. Unlike207

previous methods, CORE requires no auxiliary techniques, and simply optimizing the objective L(θ)208

in equation (4) achieves state-of-the-art results.209

Another key distinction is that CORE uses a fixed, non-trainable noise predictor from the pre-trained210

diffusion model as the target noise. This fixed anchor provides a clearer target noise compared211

to a trainable network or a random vector with a fixed distribution (e.g., a uniformly distributed212

random vector). Let us compare the three types of target noises. With a random vector from a213

fixed distribution (Kumari et al., 2023; Heng & Soh, 2024), there is no guarantee that this manually214

designed random vector will effectively disrupt the noise predictor conditioned on the forget concepts.215

A trainable, non-fixed noise (Fan et al., 2023; Kumari et al., 2023; Wu et al., 2024) is unstable during216

the unlearning process, particularly when aiming to forget many concepts over a long training period,217

since this target may drift towards an undesired direction. While methods using trainable target noises218

include a retain term in their loss function, this retain objective directly influences εθ(xr
t , pr) but not219

εθ(x
f
t , pr), where xr

t and xf
t are noisy observations from the retain and forget sets, respectively. In220

contrast, CORE’s use of a non-trainable target noise ensures that the noise predictor always learns221

from a reference “incorrect” noise estimator derived from the pre-trained model.222

4 Experiments223

In this section, we show CORE outperforms baselines on UnlearnCanvas (Zhang et al., 2024c).224
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4.1 Experiment Setup225
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Figure 2: Generated images from the unlearned model. The first
column is generated by the fine-tuned Stable Diffusion model be-
fore any unlearning. Other columns are generated by the model
unlearned by our proposed method and five baseline methods. More
images are included in Appendix D.

Dataset and Tasks. UnlearnCanvas226

is a high-resolution stylized image227

dataset designed to evaluate diffusion228

model unlearning methods (Zhang229

et al., 2024c). The dataset consists230

of images across 50 unique styles and231

20 distinct objects, with 20 images for232

each style-object combination. Each233

image is labeled with both a style and234

an object, making it particularly well-235

suited for measuring the unlearning ef-236

fectiveness and the retainability both237

within a single domain and across do-238

mains. In this paper, we mainly fo-239

cus on style unlearning within the Un-240

learnCanvas dataset. We define three241

unlearning tasks, each progressively forgetting more styles: Forget01 (forgetting 1 style), Forget06242

(forgetting 6 styles), and Forget25 (forgetting 25 styles).243

Models and Baselines.244
Algorithm UA

(↑)
IRA
(↑)

CRA
(↑)

SFID
(↑)

Total
(↑)

Forget01

Original 0.00 100.00 96.67 100.00 296.67
Ediff 93.33 84.00 98.33 100.00 375.66

CA-model 96.67 80.00 92.78 100.00 369.45
CA-noise 100.00 100.00 96.11 100.00 396.11

SalUn 53.33 98.67 92.78 95.74 340.52
ESD 100.00 66.00 96.11 96.95 359.06

CORE (ours) 93.33 98.00 96.11 100.00 387.44

Forget06

Original 0.00 100.00 98.33 100.00 298.33
Ediff 45.00 80.00 99.17 100.00 324.17

CA-model 85.00 81.67 88.33 88.09 343.09
CA-noise 85.00 91.67 85.83 92.46 354.96

SalUn 90.00 83.33 98.33 88.52 360.18
ESD 100.00 75.00 100.00 93.47 368.47

CORE (ours) 90.00 100.00 97.50 99.56 387.06

Forget25

Original 1.20 96.54 95.29 100.00 293.03
Ediff 54.00 78.46 95.10 84.48 312.04

CA-model 68.60 78.85 95.69 81.73 324.87
CA-noise 47.20 86.15 90.59 82.09 306.03

SalUn 51.60 77.31 87.65 82.34 298.90
ESD 90.40 46.54 99.02 88.12 324.08

CORE (ours) 91.60 95.38 97.65 100.00 384.63

Table 1: Performance of CORE and five baseline methods using
Stable Diffusion v-1.5 on Forget01, Forget06, and Forget25 in
UnlearnCanvas. Unlearning accuracy, In-domain and cross-domain
retain accuracy, and scaled FID value serve as main metrics and are
summarized in Section 4.1. For details about the scaled FID value,
see Appendix B. The best total score is highlighted in bold.

We use a Stable Diffusion v1.5245

model (Rombach et al., 2022) to per-246

form the fine-tuning and unlearning,247

and we also use a vision Transformer248

(ViT-Large) (Dosovitskiy, 2020) on249

UnlearnCanvas for style and object250

classification. Before unlearning the251

model, the base Stable Diffusion252

model is fine-tuned on all images253

from UnlearnCanvas. After complet-254

ing the unlearning phase, we prompt255

the unlearned model to generate im-256

ages conditioned on concepts from257

both forget and retain sets. The vi-258

sion Transformer is then used to clas-259

sify the generated images and calcu-260

late the relevant metrics. We compare261

CORE with several state-of-the-art un-262

learning methods for diffusion mod-263

els, including ESD (Gandikota et al.,264

2023), SalUn (Fan et al., 2023), Ed-265

iff (Wu et al., 2024), CA-model and266

CA-noise (Kumari et al., 2023). See267

Appendix C for more details.268

Metrics. Following Zhang et al.269

(2024c), we use Unlearning Accuracy270

(UA) to assess the unlearning effec-271

tiveness. UA is the percentage of272

images generated by the unlearned273

model, conditioned on the forget con-274

cepts, which are incorrectly classified275

by the vision Transformer. A higher276

UA indicates stronger unlearning ca-277

pabilities. We measure retainability using two metrics: In-domain Retain Accuracy (IRA) and278

1There are 60 styles in UnlearnCanvas dataset, but in its latest codebase only 50 styles are used. See
https://github.com/OPTML-Group/UnlearnCanvas.
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Cross-domain Retain Accuracy (CRA). IRA refers to the classification accuracy of generated images279

prompted with retain concepts, within the same domain (e.g., when forgetting “Van Gogh’s style",280

an in-domain prompt might be “A painting in crayon style"). CRA measures accuracy for retain281

prompts across domains (e.g., for the same task, a cross-domain prompt might be “A painting of282

a cat," specifying the object). Additionally, we evaluate the quality of generated images using the283

scaled FID (SFID) score, which maps the original FID score (Heusel et al., 2017) onto a 0–100 scale,284

where higher SFID values indicate better generation quality. We also present the summation of all285

four scores on a scale of 0-100, as a comprehensive measurement of the unlearning capacity and286

retainability. For more experimental details, see Appendix B.287

4.2 Results288

CORE achieves the best overall performance. In Table 1, we present the unlearning effectiveness289

and retainability of CORE compared to five baseline methods across Forget01, Forget06 and Forget25290

tasks from UnlearnCanvas. The “Original" row refers to the performance of the pre-trained model291

without any unlearning. On Forget01, CORE ranks second overall based on the total score. However,292

in the more challenging tasks Forget06 and Forget25, CORE consistently achieves the highest total293

score among all methods, with an increasing performance gap over the baseline methods. Notably,294

CORE is the only method that maintains strong performance as the size of the forget set grows. In295

the most difficult task, where 25 out of 50 concepts are targeted for forgetting, CORE achieves the296

highest unlearning accuracy, in-domain retain accuracy, and scaled FID score, while securing the297

second-best cross-domain retain accuracy. Compared to its close variants, ESD, CORE achieves298

similar unlearning accuracy but significantly outperforms in retainability, particularly in cross-domain299

tasks, due to the adoption of an additional retain loss. Compared to baseline methods that use a300

trainable noise predictor, such as SalUn and CA-model, CORE excels in forgetting more concepts301

due to the stability of its non-trainable target, which proves more reliable over longer unlearning302

periods. Figure 2 shows some generated images using CORE and five baseline methods.303

Algorithm UA (↑) IRA (↑) CRA (↑) SFID (↑) Total (↑)

Ediff 36.67 81.67 92.50 100.00 310.84
CA-model 85.00 83.33 96.67 86.67 351.67
CA-noise 81.67 91.67 87.50 87.62 348.46

SalUn 95.00 65.00 90.83 86.37 337.20
ESD 100.00 46.67 99.17 86.11 331.95

CORE (ours) 83.33 100.00 96.67 99.67 379.67

Table 2: Generalization ability of CORE and baseline methods
using Stable Diffusion v-1.5 on Forget06 of UnlearnCanvas. Un-
learning accuracy, In-domain and cross-domain retain accuracy,
and scaled FID value serve as main metrics and are summarized in
Section 4.1. The best total score is highlighted in bold.

CORE shows better generalization304

ability in unlearning styles. We fur-305

ther investigate CORE’s ability to gen-306

eralize in unlearning styles, aiming307

to verify that CORE can effectively308

unlearn specific target styles, instead309

of simply overfitting to the training310

objects. To assess this, we train the311

model on only 10 objects for each for-312

get concept and then evaluate the un-313

learning accuracy on 10 unseen ob-314

jects. This tests the model’s ability315

to generalize beyond the specific ob-316

jects used during training. As shown317

in Table 2, CORE outperforms all baseline methods in terms of generalization ability.318

The role of non-trainable target noise. A key design choice in CORE is the use of non-trainable319

target noise from the pre-trained diffusion model in both the unlearn and retain objectives. This is320

contrary to other approaches that use trainable noise predictors as targets in the unlearn loss and321

Gaussian noise vectors as targets in the retain loss. To isolate the specific effects of the non-trainable322

target noise, excluding the influence of auxiliary techniques like saliency maps, we evaluate several323

variants of CORE: ❶ We replace εθ∗(xt, pa) with εθ(xt, pa) in equation (2), where xt are noisy324

images from the forget set and pa is the alternative concept. This variant mirrors the backbone of325

the unlearn loss used in SalUn (Fan et al., 2023). ❷ We replace εθ∗(xt, pa) with a Gaussian noise326

ε in equation (2) and apply a negative sign to the unlearn loss. This variant follows the gradient327

ascent-based method, similar to the unlearn loss in CA-noise (Kumari et al., 2023). ❸ We replace328

εθ∗(xt, pr) with a Gaussian noise ε in equation (3), where xt is noisy observations of images from329

the retain set. This variant is aligned with the retain loss employed in many baseline methods (Heng330

& Soh, 2024; Kumari et al., 2023; Wu et al., 2024). The results are shown in Table 3.331

Anchor Selection: How do we approach it? Another key distinction between CORE and other332

baseline methods lies in how anchors pa are selected in the unlearning objective (as defined in333

equation 2). In CORE, each forget concept pf is paired with a distinct alternative concept. This334
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Unlearn Loss Retain Loss UA (↑) IRA
(↑)

CRA
(↑)

SFID
(↑)

Total
(↑)

CORE CORE 95.00 100.00 97.08 100.00 392.08
E∥εθ(x

f
t , pf )−εθ∗(x

f
t , pa)∥22 CORE 43.33 98.33 95.00 100.00 336.66

−E∥εθ(x
f
t , pf )− ε∥22 CORE 85.00 61.67 60.00 79.48 286.15

CORE E∥εθ(x
r
t , pr)−ε∥22 83.33 93.33 96.67 99.92 373.25

Table 3: Performance of CORE and its variants on the Forget06 task from UnlearnCanvas. In each variant, one
component of the loss function remains unchanged, while the non-trainable target noise in the other component
is replaced with alternative approaches. Metrics and are summarized in Section 4.1. The best total score is
highlighted in bold. Here, xf

t and xr
t are the noisy observations for images in the forget set and retain set,

respectively; pf , pa, pr correspond to forget concepts, alternative concepts, and retain concepts, respectively. ε
denotes the standard Gaussian random vector used to generate xf

t . Here, we pair each forget concept with one
distinct retain concept in all experiments above.

Scheme for reconditioned concepts UA (↑) IRA (↑) CRA (↑) SFID (↑) Total (↑)

Default (one-to-one) 91.60 95.38 97.65 100.00 384.63
One base concept (all-to-one) 82.40 60.00 98.33 93.06 333.79

Five base concepts (five-to-one) 93.40 84.04 98.43 96.52 372.39
Random concept (one-to-all) 56.60 95.77 96.96 100.00 349.33

Random from five concepts (one-to-five) 56.40 95.58 97.75 99.78 349.51

Table 4: Comparison of different alternative concept selection schemes. All experiments are done in the
Forget25 task from UnlearnCanvas. In CORE (referred to as “Default"), each forget concept is paired one-to-one
with a distinct alternative concept. One base concept: all forget concepts are reconditioned onto a single base
concept. Five base concepts: forget concepts are grouped into sets of five, with each group reconditioned to
one base concept. Random concept: a random alternative concept is selected for each forget concept at every
gradient step. Random from five concepts: each forget concept is paired with five alternative concepts, with one
randomly sampled at each step. The best total score is highlighted in bold. Significant underperforming results
are highlighted in green.

contrasts with other methods that recondition all forget concepts to a single base concept or the empty335

string. To demonstrate the effectiveness of CORE’s one-to-one pairing, we compare different selection336

schemes: One approach involves pairing each forget concept with a set of alternative concepts (or337

even the entire retain set) and randomly sampling one at each gradient step to recondition the target338

images. Another approach reconditions images from multiple or even all forget concepts onto a339

single base concept. As shown in Table 4, CORE’s one-to-one reconditioning scheme significantly340

outperforms these strategies. Specifically, unlearning accuracy declines sharply when forget concepts341

are paired with multiple alternatives (one-to-all or one-to-five) and a random alternative is sampled342

at each step. Conversely, the model’s stylistic retainability suffers when all forget concepts are343

reconditioned to just one or a few base concepts.344

5 Conclusion and Future Directions345

In this paper, we introduce COncept REconditioning (CORE), a novel and effective method for346

unlearning in diffusion models. CORE leverages a non-trainable target noise from the pre-trained dif-347

fusion model to guide both the unlearning and retain objectives, thereby avoiding the pitfalls of using348

trainable noise predictors or random Gaussian noise targets. Through extensive experiments on the349

UnlearnCanvas dataset, we demonstrate that CORE consistently outperforms state-of-the-art baseline350

methods in terms of unlearning effectiveness, retainability, and generalization ability, particularly in351

challenging tasks involving multiple forget concepts. Moreover, we highlight the importance of a352

one-to-one concept reconditioning scheme, which proves superior to other anchor selection strategies.353

There are several promising directions for future research. One key area is improving the efficiency354

of unlearning, particularly when dealing with a large number of forget concepts. Current methods355

can still be time-consuming when unlearning many concepts simultaneously. Exploring accelerated356

unlearning methods while maintaining performance is an exciting avenue. Additionally, future work357

could investigate the robustness of unlearning methods in dynamic environments, where new concepts358

might continuously be added to the model, requiring continuous updates without retraining from359

scratch.360
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A Related Works542

Malicious Behavior of Diffusion Models. Diffusion models have demonstrated impressive ca-543

pabilities in generating high-quality, efficient text-to-image outputs (Ho et al., 2020; Song et al.,544

2020; Rombach et al., 2022). However, these large-scale trained models can pose significant privacy545

and ethical risks. They are capable of memorizing private images and reproducing objectionable546

content, such as pornography, private personal photos, malign stereotypes, gender and race bi-547

ases (Schramowski et al., 2023; Larrazabal et al., 2020; Carlini et al., 2023; Somepalli et al., 2023a;548

Rando et al., 2022). This mainly stems from the contaminated data sources which involves problem-549

atic image-text pairs (Birhane et al., 2021). Furthermore, diffusion models can cause potential issues550

about copyright infringement by mimicking, or even replicatiing the styles of some specific artistic551

and their copyrighted work (Shan et al., 2023). Reports showed that AI-generated arts can sometimes552

be published commercially (Liu, 2022; Popli, 2022; Scenario, 2022) and even awarded prizes (Roose,553

2022), raising more serious social concerns about intellectual property violations (Brittan, 2023;554

Somepalli et al., 2023b; Shan et al., 2023).555

Diffusion Model Unlearning. The goal of unlearning diffusion models is to eliminate unwanted556

concepts and their influence on model outputs. Directly retraining a model to remove such concepts is557

highly resource-intensive and thus inefficient for large diffusion models (Nichol et al., 2021; Rombach558

et al., 2022; Schuhmann et al., 2022). Recent research has explored more efficient unlearning559

techniques. One approach focuses on inference-time methods, which attempt to filter or steer the560

model away from undesirable outputs during generation (Rando et al., 2022; Schramowski et al.,561

2023). However, these methods are often limited in effectiveness and can be bypassed, particularly in562

open-source models (SmithMano, 2023). A more robust alternative involves fine-tuning the model’s563

parameters to actively remove undesirable concepts from its learned representations (Zhang et al.,564

2024a; Li et al., 2024b; Lyu et al., 2024; Heng & Soh, 2023; Vyas et al., 2023; Gandikota et al., 2024).565

Some methods are similar to ours: Gandikota et al. (2023); Wu et al. (2024) match the denoising566

network of correct images given a target concept to another distribution. Fan et al. (2023) additionally567

adds a saliency map to fine-tune only a small fraction of parameters. Heng & Soh (2024) does gradient568

ascent on the training loss of diffusion models. Kumari et al. (2023) minimizes the distribution569

mismatch between the target concept and another anchor concept. We will discuss the difference570

between our algorithm and theirs in more detail in Section 3.2. Effective though, achieving robust571

unlearning on complex tasks still remains challenging (Zhang et al., 2024c,d). For a comprehensive572

review of unlearning techniques in generative models, see Liu et al. (2024a).573

Machine Unlearning. Machine unlearning has been extensively explored within classification574

tasks (Cao & Yang, 2015; Bourtoule et al., 2021; Sekhari et al., 2021; Izzo et al., 2021; Thudi et al.,575

2022) and is now being applied to large generative models. One popular class of unlearning methods576

stems from Gradient Ascent(GA) (Jang et al., 2022; Yao et al., 2023; Chen & Yang, 2023; Zhang et al.,577

2024b). More methods include preference optimization (Zhang et al., 2024b; Maini et al., 2024; Park578

et al., 2024), model-editing (Meng et al., 2022; Mitchell et al., 2022; Eldan & Russinovich, 2023),579

knowledge negation (Liu et al., 2024b), representation control (Li et al., 2024a), logits difference580

method (Ji et al., 2024), random labeling, saliency map (Dou et al., 2024; Tian et al., 2024), and581

in-context unlearning approaches (Pawelczyk et al., 2023), etc. Some other methods are developed582

for adversarial unlearning or sequential unlearning tasks (Zhang et al., 2024e; Yuan et al., 2024; Gao583

et al., 2024). These unlearning methods for language models are orthogonal to our proposed method584

for unlearning diffusion models.585
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B Experiment Details586

Hyperparameter. All experiments are done using one 80GB NVIDIA A100 GPU. We use an open-587

sourced Stable Diffusion v-1.5 for all experiments (Rombach et al., 2022), which is first fine-tuned588

on all data in UnlearnCanvas before any unlearning process, and the fine-tuned model is provided589

by Zhang et al. (2024c). As suggested in prior works (Gandikota et al., 2023; Zhang et al., 2024c),590

we only fine-tune the cross-attention in U-Nets in the Stable Diffusion and freeze all other parameters591

when doing unlearning. Following Zhang et al. (2024c), we use the first three images for each style592

and object for training. For CORE, we run 25 epochs in Forget01 and Forget06, and 100 epochs in593

Forget25. In testing the generalization ability of unlearning styles, where the testing and training594

objects are distinct, we double the epochs in Forget06. We use Adam with a constant learning595

rate of 1 × 10−5 in CORE, and the batch size is set to 4. We set α = 1.0 in equation (4). The596

hyperparameters used for training the baseline methods are described in Appendix C.597

Scaled FID Values. Scaled FID (SFID) is a modified version of Fréchet Inception Distance598

(FID) (Heusel et al., 2017), which ranges from zero to infinity and measures the quality of generated599

images. A lower FID value indicates a higher generation quality. To measure the overall performance600

of unlearning algorithms, we convert the original FID value into Scaled FID value, which ranges601

from 0 to 100 and increases when the generation quality grows. We compute the original FID value602

for the base model and the unlearned model, denoted as FID0 and FIDM , respectively. SFID is then603

defined as604

SFIDM = min

{
100× FID0

FIDM
, 100

}
(7)

A model with better retainability tends to have higher SFID values. In our experiments, we compute605

SFID values on the retain set.606
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C Baseline Methods Overview607

In this section, we introduce baseline methods, discuss how they relate to our proposed approach, and608

describe their training procedures. For the most part, the training setup for these baseline methods609

follows Zhang et al. (2024c). We set the alternative concept as one common base concept (one base610

style) in Forget01. For each step, we randomly sample one alternative concept from the retain set in611

Forget06. In Forget25, we create a bijection from the 25 concepts in the forget set and the other 25612

concepts in the retain set. In Forget25, we have also tried to pick a random alternative concept at613

each step, but this worsens the performance for all baselines by a large margin.614

ESD (Gandikota et al., 2023). ESD is the first method that offers both efficiency and effectiveness615

in unlearning for diffusion models. It utilizes a more complex unlearning objective without incorpo-616

rating a retain objective. As a result, ESD’s retainability is generally outperformed by other methods.617

The objective function for ESD is defined as follows:618

LESD(θ) := E(x0,pf )∼Df ,t

∥∥∥εθ(xt, pf )−
(
εθ∗(xt, p0)− η

(
εθ∗(xt, pf )− εθ∗(xt, p0)

))∥∥∥2
2
, (8)

where (x0, pf ) are sampled from the forget set, t is uniformly sampled from [0, T ], εθ and εθ∗ are619

the current and pre-trained noise predictors in diffusion models. Here, p0 is a base concept, which620

can be an empty string (Gandikota et al., 2023) or a base style in UnlearnCanvas. In our experiments,621

according to Gandikota et al. (2023), we set η = 1.0, batch size to 1, and the learning rate to 1×10−5,622

and we run 1000 gradient steps.623

Although the objective in ESD seems to be very different from our framework of concept erasing, we624

can still fit it into our framework in Section 3.2 via proper decomposition. Namely,625

LESD(θ) : = E(x0,pf )∼Df ,t

∥∥∥εθ(xt, pf )−
(
εθ∗(xt, p0)− η

(
εθ∗(xt, pf )− εθ∗(xt, p0)

))∥∥∥2
2

= E(x0,pf )∼Df ,t ∥εθ(xt, pf )− (1 + η)εθ∗(xt, p0) + ηεθ∗(xt, pf )∥22
= E(x0,pf )∼Df ,t

(
εθ(xt, pf )

2 + (1 + η)2 · εθ∗(xt, p0)
2 + η2 · εθ∗(xt, pf )

2

+ 2η · εθ(xt, pf ) · εθ∗(xt, pf )− 2(1 + η) · εθ(xt, pf ) · εθ∗(xt, p0)

− 2η(1 + η) · εθ∗(xt, p0) · εθ∗(xt, pf )
)

= E(x0,pf )∼Df ,t

(
(1 + η) ·

(
εθ(xt, pf )− εθ∗(xt, p0)

)2 − η ·
(
εθ(xt, pf )− εθ∗(xt, pf )

)2
+ η(1 + η) ·

(
εθ∗(xt, p0)− εθ∗(xt, pf )

)2)
= (1 + η)E(x0,pf )∼Df ,t

(
εθ(xt, pf )− εθ∗(xt, p0)

)2︸ ︷︷ ︸
(a)

−ηE(x0,pf )∼Df ,t

(
εθ(xt, pf )− εθ∗(xt, pf )

)2︸ ︷︷ ︸
(b)

+ η(1 + η)E(x0,pf )∼Df ,t

(
εθ∗(xt, p0)− εθ∗(xt, pf )

)2︸ ︷︷ ︸
(c)

.

Since term (c) in the last line is a constant independent of θ, we can omit it in the loss function. The626

remaining two terms (a) and (b) can both fit into the Concept Erasing framework (see equation 5).627

Term (a) is equivalent to choosing λ = (1 + η) and yCE = εθ∗(xt, p0), while term (b) is equivalent628

to choosing λ = −η and yCE = εθ∗(xt, pf ).629

SalUn (Fan et al., 2023). Saliency Unlearning (SalUn) introduces a saliency mask to the diffusion630

model parameters before unlearning. This mask, based on the absolute gradient scale for the forget631

concept, identifies the most important parameter subsets for unlearning targeted concepts, enabling632

efficient unlearning that edits only a small portion of the model. The loss function for SalUn is given633
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by:634

LSalUn(θ) := E(x0,pf )∼Df ,t,pr ̸=pf
∥εθ(xt, pf )− εθ(xt, pr)∥22︸ ︷︷ ︸

unlearn objective

+β · E(x0,pr)∼Dr,t,ε ∥ε− εθ(xt, pr)∥22︸ ︷︷ ︸
retain objective

,

(9)
where ε is the standard Gaussian random vector used to generate xt, and pf and pr are forget concepts635

and retain concepts, respectively. t is sampled uniformly from [0, T ]. In contrast to CORE, which636

uses εθ∗ as the target for the retain objectives, SalUn uses the Gaussian random vector ε. Their637

unlearn objective can fit in the framework in equation (5) with a trainable network as the target noise.638

This can lead to target degradation during the unlearning process, especially when multiple concepts639

need to be unlearned. Following Fan et al. (2023) and Zhang et al. (2024c), we take β = 1.0. We use640

a learning rate of 1× 10−5 and a batch size of 4. We run 10 epochs in Forget01 and 100 epochs in641

Forget06 and Forget25.642

EDiff (Wu et al., 2024). EraseDiff (EDiff) formulates the objective as follows:643

LEDiff(θ) := E(x0,pf )∼Df ,t,εf
∥εθ(xt, pf )− εf∥22︸ ︷︷ ︸

unlearn objective

+β · E(x0,pr)∼Dr,t,ε ∥ε− εθ(xt, pr)∥22︸ ︷︷ ︸
retain objective

. (10)

The retain objective is similar to that in SalUn, but the unlearn objective differs. Here, εf is a uni-644

formly distributed random vector, which serves as the target noise. This unlearn objective aligns with645

the concept erasing framework (equation 5), where yCE is uniformly distributed. EraseDiff simplifies646

the diffusion process by solving it as a first-order optimization problem, reducing computational647

complexity. In our experiments, we use a batch size of 4 and a learning rate of 5× 10−5. We run 5648

epochs in Forget01 and 50 epochs in Forget06 and Forget25.649

CA (Kumari et al., 2023). Concept Ablation (CA) matches the image distribution from the forget650

set to an anchor concept. They design two objective functions: a model-based one and a noise-based651

one. The model-based CA objective is defined as652

LCA−model(θ) := E(x0,pf )∼Df ,t

[
ωt ∥εθ(xt, pf )− εθ(xt, p0).sg()∥2

]︸ ︷︷ ︸
unlearn objective

+ λ · E(x0,pr)∼Dr,t,ε ∥ε− εθ(xt, pr)∥22︸ ︷︷ ︸
retain objective

. (11)

Here, ωt is a time-dependent weight applied to the loss, p0 is a fixed base concept from the retain set,653

and .sg() denotes the stop-gradient operator. The noise-based objective is defined as654

LCA−noise(θ) := E(x0,pf )∼Df ,t,ε

[
ωt ∥εθ(xt, pf )− ε∥2

]︸ ︷︷ ︸
unlearn objective

+ λ · E(x0,pr)∼Dr,t,ε ∥ε− εθ(xt, pr)∥22︸ ︷︷ ︸
retain objective

. (12)

In both objectives, ε is the standard Gaussian random vector used to generate xt. In our experiments,655

we use a batch size of 4 and a learning rate of 1.6× 10−5. We run 200 gradient steps in Forget01 and656

100 epochs in Forget06 and Forget25.657

16



Blossom Season Butterfly
(Forget)

Original CORE (ours) CA-model CA-noise EDiff ESD SalUn

Color Fantasy Frogs
(Forget)

Cubisim Bear
(Forget)

Dadaism Cat
(Forget)

Vibrant Flow Cat
(Retain)

Warm Smear Flame
(Retain)

Water Color Horse
(Retain)

Winter Flower
(Retain)

Figure 3: Additional generated images from the unlearned model. The first column is generated by
the fine-tuned Stable Diffusion model before any unlearning. Other columns are generated by the
model unlearned by our proposed method and five baseline methods.

D More results658

In this section, we present more images generated from our experiments on UnlearnCanvas in Figure 3.659

660
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