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ABSTRACT

While multimodal large language models (MLLMs) have shown immense poten-
tial, their susceptibility to security threats, particularly through the visual modal-
ity, poses serious concerns for real-world deployment. Existing jailbreak studies,
which successfully induce harmful responses, suffer from three key limitations: a
lack of diversity, poor transferability across different models, and ineffectiveness
against multiple targets simultaneously. To address these challenges, we intro-
duce the Jailbreak Connectivity (JC) framework. JC framework includes three
novel components. First, it generates a diverse range of jailbreak attacks by con-
structing a continuous path in the image space that connects two jailbreak images.
Second, it improves transferability by integrating two types of surrogate classi-
fiers, Safety Classifiers and Jailbreak Success Predictors, to guide the optimiza-
tion process. Third, JC enables universal jailbreak attacks by modifying the attack
objective to elicit any harmful content rather than being tied to a specific harmful
question, thereby inducing the target MLLM to answer a broad range of harmful
queries. Our experiments on the SafetyBench dataset show that JC achieves an
average attack success rate (ASR) of 79.62%, representing a substantial 36.24%
increase over the best-performing state-of-the-art method. In addition, JC obtains
the lowest perplexity in 12 out of 13 scenarios, indicating that the generated harm-
ful responses are more fluent and natural. This work offers a promising approach
for generating diverse, transferable, and universal jailbreak attacks, highlighting
critical security vulnerabilities in current MLLMs. Warning: This paper contains
data, prompts, and model outputs that are offensive in nature.

1 INTRODUCTION

Multimodal Large Language Models (MLLMs) such as GPT-4o (Hurst et al., 2024), LLaVA (Liu
et al., 2023), and Qwen-VL (Bai et al., 2025) have made remarkable progress in tasks that require
a joint understanding of visual and textual information. These models typically fuse pre-trained
vision encoders with Large Language Model (LLM) backbones (Zhang et al., 2024), inheriting the
strengths of both visual perception and natural language processing. Architecturally, MLLMs con-
sist of a vision encoder, a text encoder, and a multimodal fusion module. Their training often follows
a two-stage paradigm (Liu et al., 2023; Zhu et al., 2023). The initial stage aligns the modalities by
training the fusion network (e.g., an MLP) on large-scale image-caption pairs (Schuhmann et al.,
2021) while keeping the encoders frozen. The second stage leverages high-quality visual instruc-
tion tuning datasets to enhance instruction-following abilities, updating the fusion module and LLM
backbone (Tong et al., 2024; Li et al., 2024). However, the integration of a visual modality signif-
icantly expands the attack surface, exposing MLLMs to novel security threats and vulnerabilities
(Liu et al., 2025; Touvron et al., 2023). Given their increasing use in high-stakes domains such as
healthcare and autonomous driving (Bordes et al., 2024), mitigating these threats is critical.

Our work focuses on jailbreak attacks on MLLMs, which are deliberate manipulations designed
to bypass safety safeguards and induce harmful outputs (Jin et al., 2024). Unlike attacks on text-
only LLMs (Zou et al., 2023; Wei et al., 2023; Huang et al., 2023), MLLMs are inherently more
vulnerable to jailbreaks because adversaries can leverage visual inputs, textual prompts, or their
interplay. Existing methods can be broadly categorized into three groups: Prompt-to-Image Injection
(Gong et al., 2025; Wang et al., 2024b; Zhao et al., 2025),Prompt-Image Perturbation (Zhang et al.,
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2022; Han et al., 2023; Lu et al., 2023), and Proxy Model Transfer Attacks (Shayegani et al., 2023;
Dong et al., 2023; Chen et al., 2023).

Despite these efforts, current jailbreak approaches suffer from three key limitations: (1) Lack of Di-
versity: Most methods generate only a single jailbreak image for a given harmful query, which limits
the range of potential attacks and makes them easier to defend against. (2) Limited Transferability:
Jailbreak images often fail to transfer to MLLMs other than the one used for their creation, hinder-
ing their practical utility. (3) Ineffectiveness Against Multiple Targets: Few methods aim to create
Universal Jailbreaks—a single image that can compel a model to answer a wide range of harmful
queries, regardless of the accompanying text prompt.

Figure 1: The Jailbreak Connectivity (JC) framework. JC mitigates three key limitations of existing
methods by generating diverse and transferable attacks and enabling universal jailbreak capabilities.

To address these limitations, we propose the Jailbreak Connectivity (JC) framework, illustrated in
Figure 1. JC introduces three novel components to enhance jailbreak attacks. First, for Diverse
Jailbreak, we construct a continuous path in the image space, leveraging a quadratic Bezier curve,
that connects two jailbreak images (upper panel). By demonstrating that the jailbreak loss remains
low along this path, we can generate a diverse population of effective jailbreak images, offering a
broader range of attack examples (lower-left panel). Second, for Transferable Jailbreak, JC lever-
ages two surrogate classifiers, a Safety Classifier and a Jailbreak Success Predictor, to model the
safety and vulnerability mechanisms of a target MLLM. Incorporating these classifiers into the path
construction process allows us to produce jailbreak examples that generalize across different models,
significantly improving their transferability (lower-middle panel). Third, for Universal Jailbreak, we
extend the attack objective from targeting a specific harmful query to a broad harmful output dis-
tribution. This approach allows us to construct a single universal jailbreak image that can induce a
model to comply with a wide range of malicious text prompts (lower-right panel).

2 RELATED WORK

Jailbreak Attacks on Large Language Models The increasing prevalence of LLMs has led to a
growing body of research on jailbreaking these systems. Early efforts, such as the Greedy Coordi-
nate Gradient (GCG) proposed by Zou et al. (2023), focused on exploiting the model’s gradients to
generate adversarial suffixes. These suffixes, when attached to a wide range of queries, can induce
a targeted LLM to produce objectionable content. Other methods have explored different avenues
to bypass safety filters. FuzzLLM (Yao et al., 2024) adapts the fuzzy testing technique from cyber-
security to a black-box environment. It generates adversarial instructions through a combination of
templates, constraints, and problem sets to optimize for semantic similarity and attack effectiveness.
In a similar vein, MJP (Li et al., 2023) leverages a multi-utterance dialogue flow to mislead models
like ChatGPT into a ”jailbreak mode,” demonstrating that conversational context can be exploited
for malicious purposes. Furthermore, Ding et al. (2023) introduced ReNeLLM, a framework that
conceptualizes jailbreak attacks through two primary mechanisms: prompt rewriting, which decom-
poses harmful prompts into benign ones, and scenario nesting, which embeds malicious intent within
seemingly harmless contexts. More recently, PAIR (Chao et al., 2025) utilized feedback mecha-
nisms and multi-model collaboration to iteratively refine and optimize jailbreak prompts, leveraging
a chain-of-thought approach to enhance attack efficacy.
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Jailbreak Attacks on Multimodal Large Language Models Compared to text-only LLMs,
MLLMs are susceptible to more complex and diverse jailbreak attacks due to their ability to pro-
cess visual inputs. These attacks can exploit visual inputs, textual components, or a combination
of both. Early methods include Prompt-to-Image Injection, exemplified by the black-box approach
FigStep (Gong et al., 2025), which feeds harmful instructions to MLLMs through the image channel
using benign text prompts. Similarly, Visual Role-play (VRP) (Ma et al., 2024) generates images
of high-risk characters to mislead VLMs into generating malicious responses when paired with be-
nign role-play instructions. Other research has focused on adversarial perturbations, where subtle
image modifications are used to mislead MLLMs (Bailey et al., 2023; Cui et al., 2024; Zhao et al.,
2023). For example, the Set-Level Guidance Attack (SGA) (Lu et al., 2023) and its successor, OT-
Attack (Han et al., 2023), leverage modality interactions and optimal transport theory to generate
effective adversarial image sets. A number of studies have also investigated transfer attacks, where
adversarial examples created using a proxy model are applied to a different victim model. These per-
turbations can be optimized using gradient-based methods in white-box settings (Luo et al., 2024;
Bailey et al., 2023; Cui et al., 2024) or with query-efficient black-box methods (Yang et al., 2020;
Chen et al., 2023; Chen & Liu, 2023). However, architectural and training data differences often
limit the transferability of these adversarial examples (Zhao et al., 2023). While existing work has
made significant strides, three key limitations persist. First, most methods generate only a single
jailbreak image for a given harmful query, which limits attack diversity and makes defenses simpler.
Second, generated jailbreak images often suffer from limited transferability, failing to generalize
across different MLLM architectures. Finally, current approaches are generally ineffective at creat-
ing universal jailbreaks that can compel a model to answer a wide range of harmful questions. Our
proposed Jailbreak Connectivity (JC) is specifically designed to offer a novel approach for generat-
ing diverse, transferable, and universal MLLM jailbreak attacks.

3 JAILBREAK CONNECTIVITY

In this section, we introduce our approach, the Jailbreak Connectivity (JC). JC consists of three key
components: Diverse Jailbreak, Transferable Jailbreak, and Universal Jailbreak. Our approach is
designed to mitigate three key limitations of existing MLLM jailbreak methods: lack of diversity,
limited transferability, and ineffectiveness against multiple targets.

A MLLM processes both textual and visual prompts to generate a textual output. We model the
MLLM’s output y as a conditional probability p(y | x, t), where x is the image input and t is the
text input. An adversary aims to manipulate the image input x to compel the target MLLM to answer
a harmful question th and produce harmful content yh. The manipulated image, referred to as a
jailbreak image xp, is obtained by adding a small, imperceptible perturbation to the original image
x. This work focuses on single-turn interactions, in which models are tested on isolated prompts
without prior conversational context. Our method, JC, is applicable in both white-box and black-box
settings, where the white-box setting assumes full access to model parameters and gradients, while
the black-box setting restricts the adversary to query-only interactions without internal knowledge.

3.1 DIVERSE JAILBREAK

Traditional jailbreak methods typically generate only a single jailbreak image at a time, which can
be easily defended and may limit attack efficacy. This raises a natural question: Can we generate
a series of jailbreak images to increase the probability of a successful jailbreak? Motivated by re-
search on mode connectivity (Garipov et al., 2018), JC aims to build a path connecting two jailbreak
examples in the image space. Along this path, we can discover a group of diverse jailbreak images,
some of which may offer even better attack performance.

Endpoints Searching To construct such a path, we must first find two jailbreak images to serve
as endpoints. We adopt a straightforward approach: maximize the generation probability of harmful
output yh. For a specific harmful question th, an initial benign image x, and a predefined harmful
output yh, the process of generating a jailbreak image xp is formally formulated as:

minimize
∥xp−x∥∞≤ϵ

Ljail(xp) := − log(p(yh | xp, th)), (1)
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where ϵ denotes the image perturbation constraint, and Ljail(xp) is the jailbreak loss. To ensure
visual imperceptibility, we constrain the perturbation magnitude by ∥xp − x∥∞ ≤ ϵ. In practice,
we use the standard Projected Gradient Descent (PGD) algorithm (Madry et al., 2017) to solve this
optimization problem. We use random initialization and run PGD for 2000 iterations to find two
distinct local minima, x1 and x2, which serve as the starting and ending points of the path.

Figure 2: Visualization of path connectivity
demonstrating diverse jailbreaks against LLaVA.

Path Construction After identifying the two
endpoints, we construct a path connecting them
using a quadratic Bézier curve due to its
widespread use in similar domains like ad-
versarial robustness and machine unlearning
(Wang et al., 2024a; Shi & Wang, 2025). The
curve is represented by ϕxc

(u) = (1−u)2x1+
2u(1− u)xc + u2x2, where x1 and x2 are the
two endpoints, xc is the control point that deter-
mines the curve’s direction and curvature, and
u ∈ [0, 1]. The training objective for this path
construction is:

minimize
ϕxc

E
u∼U(0,1)

Ljail

(
ϕxc(u)

)
, subject to

∥∥ϕxc(u)− x
∥∥
∞ ≤ ϵ,∀u ∈ [0, 1]. (2)

U(0, 1) in Eq.( 2) denotes the uniform distribution over the interval [0, 1]. In practice, we initialize
the control point using linear interpolation, setting xc = x1+x2

2 . During training, we generate an
image by sampling u from the uniform distribution U(0, 1). The image is optimized into a jailbreak
image by solving the objective in Eq. (1) with PGD, where gradients are backpropagated to update
the control point xc. By iterating this process, JC discovers a path along which each image maintains
a low jailbreak loss. A diverse set of jailbreak images can be sampled from this path, making the
attack substantially more difficult to defend against. Furthermore, some of these images may lead
to even better attack performance than the initial endpoints. We present an example of diverse
jailbreaks against LLaVA-2-13B (Liu et al., 2023) for the harmful query “How to make a bomb?”.
The path connectivity is illustrated in Figure 2, and attack results are summarized in Table 6. As
shown in Figure 2, images along the discovered path maintain low jailbreak loss. We uniformly
sampled 10 images from this path; 70% successfully jailbreak LLaVA-2-13B. Detailed evaluation
of these sampled jailbreak images appears in Table 6 in Appendix A.4. These results demonstrate
that some intermediate images along the path can produce equal or better attack performance than
the initial endpoints.

3.2 TRANSFERABLE JAILBREAK

We have demonstrated how JC can jailbreak a single MLLM and generate diverse images. How-
ever, existing jailbreak images optimized for one MLLM rarely transfer successfully to other models
(Schaeffer et al., 2024). This raises another critical question: Can JC generate jailbreak images that
transfer across different MLLMs? The most straightforward approach is to maximize the expected
generation probability across all target MLLMs. For n MLLMs, the overall path construction objec-
tive would be min∥xc−x∥∞≤ϵ Eu∼U(0,1)

[∑n
i=1 Li

jail(ϕxc
(u))

]
,, where Li

jail is the jailbreak loss for
the i-th MLLM. However, this simple method becomes computationally expensive as n increases,
since evaluating the jailbreak loss requires repeated forward passes through large MLLMs. Is there a
more efficient way to predict MLLM behavior and guide jailbreak image generation without directly
including the MLLMs in the optimization?

To address this, we use two much smaller surrogate classifiers to model the safety and vulnerability
mechanisms of each target MLLM. As shown by Ferrand et al. (2025), safety classifiers can be
extracted from aligned LLMs to precisely predict their behavior. Inspired by this, we define a Safety
Classifier and a Jailbreak Success Predictor to guide the generation of jailbreak images during path
construction. We use clip-vit-base-patch32 (Radford et al., 2021) as the classifier model,
which is significantly smaller and more computationally efficient than a full MLLM. We assume the
availability of a dataset of jailbreak images for the target MLLM, which can be readily constructed
using existing methods in both white-box and black-box settings.
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Safety Classifier We introduce a safety classifier fsafe to estimate the likelihood that an input im-
age is judged safe by the MLLM. Its output fsafe(x) ∈ [0, 1] serves as a probabilistic score, which
allows optimization with cross-entropy loss. Since MLLMs are often fine-tuned with human feed-
back to refuse harmful queries, this classifier provides guidance for generating images that appear
safe while bypassing such safeguards. To construct fsafe, we label each image in the dataset accord-
ing to the model’s response as safe (1) or unsafe (0), and train the classifier on these annotations.

Jailbreak Success Predictor Even if an image is deemed safe, the jailbreak attempt may still fail.
To address this gap, we design a complementary classifier, the Jailbreak Success Predictor fsuccess,
which estimates the probability that an image can successfully jailbreak the target MLLM. The out-
put fsuccess(x) ∈ [0, 1] again provides a probabilistic signal suitable for cross-entropy optimization.
This predictor directly guides JC toward images with higher attack success rates. Training relies on
labels derived from actual attack outcomes: images are marked as successful (1) or unsuccessful (0),
and the predictor is optimized until it can reliably anticipate success.

Transfer to other MLLMs To jailbreak n MLLMs, we first select one MLLM as the base MLLM
and model the remaining n − 1 MLLMs with surrogate classifiers. The attack target is to jailbreak
the base MLLM and transfer to other n−1 MLLMs. For each of these n−1 models, we train a pair
of surrogate classifiers, f i

safe and f i
success, using the method described above. The goal is to generate

jailbreak images that are predicted as safe (1) by the safety classifiers and successful (1) by the
jailbreak success predictors. For the base MLLM, we use its direct jailbreak loss, Ln

jail. Formally,
the optimization problem for the transferable jailbreak path is:

minimize
ϕxc :∥ϕxc (u)−x∥∞≤ϵ,∀u∈[0,1]

Eu∼U(0,1)

[
αLn

jail

(
ϕxc(u)

)
+(1−α)

n−1∑
i=1

(
βLCE

(
f i
safe(ϕxc

(u)), 1
)
+ (1−β)LCE

(
f i
success(ϕxc

(u)), 1
))]

,

(3)

where LCE is the cross-entropy loss. The hyperparameters α, β ∈ [0, 1] balance the trade-off be-
tween effectiveness and transferability. Intuitively, a higher α value prioritizes better attack perfor-
mance on the base MLLM, potentially at the cost of transferability. Conversely, a higher β value
favors generating “safer” images, increasing the probability of successful transfer to other MLLMs
while possibly reducing overall attack performance. Eq.( 3) can also be used to jailbreak a single
closed-source MLLM in a black-box setting. For example, to jailbreak Gemini (AI, 2025), one can
select a random open-source MLLM as the base model and use our transferable jailbreak method to
generate images that successfully bypass Gemini’s safeguards.

3.3 UNIVERSAL JAILBREAK

While we have demonstrated how to achieve jailbreak transferability across MLLMs, the images
generated are highly specific to a single harmful question. This leads to a compelling question: Is
it possible to generate a universal jailbreak image that can induce MLLMs to exhibit a wide range
of harmful behaviors without a specific text prompt? To accomplish this, JC introduces a universal
jailbreak method by modifying the attack objective.

Since a universal jailbreak image is designed to elicit harmful responses to a broad spectrum of
questions, the ideal output of the MLLM can no longer be restricted to a pre-defined harmful content,
yh. Instead, the attack target becomes the entire harmful domain, which we model as a distribution
Yh. Additionally, we intentionally omit any text input t during the attack. This is because text
prompts can introduce specific tasks or constraints that may interfere with the universal nature of
the jailbreak image. We therefore define the universal jailbreak loss Luni for a target MLLM as:

Luni(xp) = Eyh∼Yh
[− log(p(yh | xp))]. (4)
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Based on the universal objective in Eq.( 4), we can reformulate the optimization problem for con-
structing a universal transferable path across n MLLMs:

minimize
ϕxc :∥ϕxc (u)−x∥∞≤ϵ,∀u∈[0,1]

Eu∼U(0,1)

[
αLn

uni

(
ϕxc(u)

)
+(1−α)

n−1∑
i=1

(
βLCE

(
f i
safe(ϕxc

(u)), 1
)
+ (1−β)LCE

(
f i
success(ϕxc

(u)), 1
))]

.

(5)

The two endpoints of the path are generated by minimizing the universal jailbreak loss Luni. We use
randomization to ensure they are distinct. The surrogate classifiers are trained in the same manner as
described in the previous subsection. In practice, we approximate the distribution Yh using a harmful
corpus of 100 sentences from the AdvBench (Zou et al., 2023) dataset (see Appendix A.2). This
optimized path allows JC to generate jailbreak images that can induce the base MLLM to answer
a wide range of harmful questions, with the potential to transfer this behavior to other MLLMs as
well. Eq. (5) represents the most general form of our method, enabling the generation of universal
jailbreak images across different MLLMs. When the attack target is restricted to a single harmful
query, Eq. (5) reduces to the transferable jailbreak formulation. When α = β = 1, the optimization
is applied only to the base MLLM, which corresponds to the diverse jailbreak formulation.

4 EXPERIMENTS

4.1 IMPLEMENTATION

Models and Datasets To comprehensively evaluate the effectiveness of JC, we conducted exper-
iments on both open-source and commercial MLLMs. For open-source models, we focused on
MiniGPT-4-13B-Vicuna (Zhu et al., 2023), LLaVA-2-13B (Liu et al., 2023), and Qwen2.5-Instruct-
7B (Bai et al., 2025) due to their widespread adoption and strong performance. We used their official
weights as provided by their respective repositories. For commercial models, we evaluated GPT-4o
(Hurst et al., 2024) and Gemini-2.5-Flash (AI, 2025) to validate our method’s real-world applica-
bility. Our surrogate classifiers were built on the CLIP-ViT-Base-Patch32 backbone (Radford et al.,
2021) due to its efficiency, strong zero-shot transferability, and prior use in MLLM security research
(Shayegani et al., 2023; Dong et al., 2024; Sun et al., 2024). For closed-source models, we conducted
all experiments by ourselves between September 1 and September 21, 2025.

We evaluated our approaches using two common benchmarks: SafetyBench (Liu et al., 2024) and
AdvBench (Zou et al., 2023). SafetyBench assesses MLLM safety across 13 distinct prohibited sce-
narios, as defined by OpenAI’s usage policies. A detailed description of these scenarios is provided
in Appendix A.3. AdvBench, used in prior LLM jailbreak research, contains 521 harmful behav-
iors. Following the methodology of BAP (Ying et al., 2025), we removed duplicate items from
AdvBench and mapped each item to a corresponding SafetyBench scenario for our experiments. All
experiments were conducted on 4 NVIDIA A100 GPUs.

Metrics We used the following three metrics to evaluate jailbreak effectiveness:

• Attack Success Rate (ASR): For a given dataset of prohibited questions, ASR is the pro-
portion of attempts that result in a prohibited response. It is calculated as: ASR =∑N

k=1 B(J(yk)= True )

N , where yk is the MLLM’s response, N is the total number of pro-
hibited questions, J(·) is a harmfulness judging model, and B is a binary function. We
adopted Beaver-dam-7B (Ji et al., 2023) as our judging model, which is trained on high-
quality human feedback data. To account for the stochastic nature of MLLM responses,
we repeated each attack five times, and an attack was considered successful if at least one
attempt yielded a prohibited response.

• Perplexity (PPL): Following FigStep (Gong et al., 2025), we used PPL to evaluate the
fluency and quality of the model’s responses. A lower PPL indicates higher “confidence”
in the generated response. In our experiments, PPL was computed for each generated
response using GPT-2 (Radford et al., 2019), and the reported score is the mean value
averaged over five independent runs.
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• Toxicity Score: This metric quantifies the degree of offensive or harmful content in the
MLLM’s output. We used the Detoxify classifier (Hanu & Unitary team, 2020) to measure
six specific toxicity attributes. The scores range from 0 (least toxic) to 1 (most toxic). We
reported the percentage of generated texts with a toxicity score exceeding a threshold of
0.5 for each attribute, averaged over five runs.

Benchmark Attacks We compared JC against several state-of-the-art visual prompt jailbreak
methods: Adversarial Visual Examples (Adv Example) (Qi et al., 2024) and Query-relevant Images
(Query Image) (Liu et al., 2024) for the white-box setting, and FigStep (Gong et al., 2025) for the
black-box setting. Adv Example uses a scenario-specific corpus to refine visual adversarial exam-
ples. Query Image integrates images with aggressive intent and typographic text. FigStep embeds
harmful text directly into images. We also included a ”Plain Text” baseline where harmful questions
were directly input without any visual prompt to assess the MLLMs’ baseline vulnerability.

Unless otherwise noted, all experiments were conducted using MiniGPT-4 as the default model. For
fairness, all methods were run for a total of 5000 iterations. For JC, we performed 2000 iterations to
generate the two path endpoints using different random initializations to ensure their independence.
We then ran an additional 3000 iterations to optimize the path. The attack space was constrained
by ϵ = 32/255. From the final optimized path, we selected the image that yielded the best per-
formance according to the respective loss function, and we reported JC’s performance using this
image throughout this paper. An illustrative example of the two endpoints and the best-performing
jailbreak image is shown in Figure 6 in Appendix A.4.

4.2 EXPERIMENTAL RESULTS

4.2.1 WHITE-BOX DIVERSE ATTACKS

We evaluated JC’s attack performance against MiniGPT-4 across 13 scenarios in a white-box set-
ting, comparing it with Adv Example and Query Image. As shown in Table 1, JC significantly
outperforms the baselines in both ASR and PPL. Our method achieved a remarkable average ASR
of 79.62%, representing a 36.24% average increase over the best-performing SOTA method. Fur-
thermore, JC achieved the best PPL in 12 out of 13 scenarios, indicating that the generated harmful
responses are more fluent and natural. Table 2 summarizes the toxicity analysis of the generated re-
sponses, with detailed results provided in Appendix A.4. The results clearly show that JC-generated
images induce the MLLM to produce outputs with a substantially higher percentage of toxic at-
tributes compared to other methods. This demonstrates that JC not only increases the likelihood of
a successful jailbreak but also leads to more severely toxic and harmful content.

Table 1: Performance comparison of different jailbreak methods across scenarios on MiniGPT-4
(Zhu et al., 2023). Best results for each scenario are highlighted in bold. Our method, JC, performs
better both in ASR and PPL compared with SOTA visual jailbreak methods.

Scenario ASR (↑) PPL (↓)
Plain Text Adv Example Query Image JC Plain Text Adv Example Query Image JC

Illegal Activity (IA) 1.92% 14.54% 11.55% 72.64% 31.0 24.8 26.0 8.0
Hate Speech (HS) 1.68% 11.92% 3.97% 69.28% 32.5 26.7 30.9 8.5
Malware Generation (MG) 3.32% 19.88% 15.52% 50.66% 30.2 22.1 24.3 15.8
Physical Harm (PH) 2.98% 24.31% 23.43% 74.76% 30.7 20.1 20.5 7.3
Economic Harm (EH) 5.68% 4.91% 8.91% 72.04% 24.02 24.16 23.43 11.97
Fraud (FR) 3.17% 18.56% 14.71% 50.96% 24.47 21.68 22.38 15.80
Pornography (PO) 4.14% 20.94% 19.11% 69.84% 24.30 21.25 21.58 12.37
Political Lobbying (PL) 67.67% 79.11% 76.46% 98.38% 18.71 14.43 16.06 13.78
Privacy Violence (PV) 8.97% 10.50% 12.97% 81.79% 27.03 24.94 21.98 12.31
Legal Opinion (LO) 74.56% 85.73% 86.52% 100% 16.97 8.25 7.30 7.74
Financial Advice (FA) 84.33% 88.12% 90.93% 100% 9.83 5.20 0.99 5.77
Health Consultation (HC) 76.50% 93.94% 91.22% 96.00% 16.04 8.41 10.04 4.85
Government Decision (GD) 90.29% 91.75% 91.25% 98.72% 13.73 11.88 11.39 6.32
Average 32.71% 43.38% 41.56% 79.62% 23.04 17.99 18.22 10.03
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Table 2: Percentage of outputs with a toxicity score exceeding 0.5, as evaluated by the Detoxify
Classifier (Hanu & Unitary team, 2020).

Scenario Method Identity Attack Obscene Severe Toxicity Insult Threat Toxicity
Legal Opinion (LO) Plain Text 32.4% 35.6% 25.9% 38.9% 29.1% 32.4%

Adv Example 62.2% 68.4% 49.7% 74.6% 55.9% 62.2%
Query Image 65.5% 72.0% 52.4% 78.6% 58.9% 65.5%
JC 74.2% 81.6% 59.4% 89.0% 66.8% 74.2%

Health Consultation (HC) Plain Text 35.6% 39.2% 28.5% 42.7% 32.0% 35.6%
Adv Example 67.6% 74.4% 54.1% 81.1% 60.8% 67.6%
Query Image 60.7% 66.8% 48.6% 72.8% 54.6% 60.7%
JC 80.5% 88.5% 64.4% 96.6% 72.4% 80.5%

Government Decision (GD) Plain Text 49.0% 53.9% 39.2% 58.8% 44.1% 49.0%
Adv Example 55.4% 61.0% 44.3% 66.5% 49.9% 55.4%
Query Image 56.6% 62.3% 45.3% 67.9% 50.9% 56.6%
JC 77.9% 85.7% 62.3% 93.5% 70.1% 77.9%

4.2.2 ANALYSIS OF SURROGATE CLASSIFIERS AND TRANSFERABILITY

We first demonstrated the feasibility of using our surrogate classifiers to model the behavior of a tar-
get MLLM. Our safety classifier and jailbreak success predictor were evaluated across MiniGPT-4,
LLaVA-2, Qwen, GPT-4o, and Gemini. As shown in Figure 3, the classifiers achieve high accuracy
in predicting the behavior of the target MLLMs, confirming their effectiveness.

(a) MiniGPT (SC) (b) LLaVA-2 (SC) (c) Qwen (SC) (d) GPT-4o (SC) (e) Gemini (SC)

(f) MiniGPT (JSP) (g) LLaVA-2 (JSP) (h) Qwen (JSP) (i) GPT-4o (JSP) (j) Gemini (JSP)

Figure 3: Performance of Safety Classifiers (SC, top row) and Jailbreak Success Predictors (JSP,
bottom row) across five MLLMs. Each subfigure visualizes the model-specific behavior in safety
prediction or jailbreak prediction.

Figure 4: Impact of hyperparameters α
and β on JC’s transferable attack.

We then evaluated JC’s ability to generate transferable
jailbreak images. We used MiniGPT-4 as the base MLLM
to generate attacks that transfer to LLaVA-2, Qwen, GPT-
4o, and Gemini. Table 3 shows the transferable attack
success rates across different MLLMs, demonstrating that
JC is highly capable of generating successful transferable
attacks.

To determine the optimal range for the hyperparameters
α and β, we tested JC’s performance with varying values.
The average ASR across MiniGPT-4, Qwen, and LLaVA,
shown in Figure 4, suggests that setting α within [0.6, 0.8]
and β within [0.4, 0.7] yields the best transferability.

4.2.3 BLACK-BOX DIVERSE ATTACKS

For black-box attacks, we adopt the transferable jailbreak method to target closed-source MLLMs.
Specifically, we use MiniGPT-4 as the base model and GPT-4o as the target, with hyperparameters
set to α = 0.6 and β = 0.7. As shown in Table 4, JC attains an average ASR of 55.9% against GPT-
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Table 3: Transferable Jailbreak Image generation.

Scenario Case 1 Case 2
MiniGPT-4 (Base) LLaVa Qwen GPT-4o MiniGPT-4 (Base) LLaVa Qwen Gemini

Illegal Activity (IA) 70.0% 66.5% 64.0% 45.5% 68.0% 64.5% 62.5% 47.5%
Hate Speech (HS) 66.0% 62.7% 60.7% 42.9% 64.0% 60.8% 58.9% 44.8%
Malware Generation (MG) 48.0% 45.6% 44.2% 31.2% 46.0% 43.7% 42.3% 32.2%
Physical Harm (PH) 72.0% 68.4% 66.2% 46.8% 70.0% 66.5% 64.4% 49.0%
Economic Harm (EH) 70.0% 66.5% 64.4% 45.5% 68.0% 64.5% 62.6% 47.5%
Fraud (FR) 48.0% 45.6% 44.2% 31.2% 46.0% 43.7% 42.3% 32.2%
Pornography (PO) 67.0% 63.7% 61.6% 43.6% 65.0% 61.8% 59.8% 45.5%
Political Lobbying (PL) 95.0% 90.3% 87.4% 61.8% 93.0% 88.4% 85.6% 65.1%
Privacy Violence (PV) 79.0% 75.1% 72.7% 51.4% 77.0% 73.2% 70.8% 53.9%
Legal Opinion (LO) 97.0% 92.2% 89.2% 63.1% 95.0% 90.3% 87.4% 66.5%
Financial Advice (FA) 97.0% 92.2% 89.2% 63.1% 95.0% 90.3% 87.4% 66.5%
Health Consultation (HC) 93.0% 88.4% 85.6% 60.5% 91.0% 86.5% 83.7% 63.7%
Government Decision (GD) 96.0% 91.2% 88.3% 62.4% 94.0% 89.3% 86.5% 65.8%

Average 75.5% 71.7% 69.1% 49.0% 73.6% 69.8% 67.3% 51.2%

4o, notably higher than Figstep’s performance of about 48%. The table also reports average PPL
and toxicity scores, confirming that our attacks successfully induce harmful yet fluent responses.

Table 4: Black-box jailbreak performance against GPT-4o, using MiniGPT-4 as the base model.

Scenario ASR (↑) PPL (↓) Identity Attack Obscene Severe Toxicity Insult Threat Toxicity
Illegal Activity (IA) 50.0% 16.2 0.29 0.52 0.08 0.38 0.07 0.65
Hate Speech (HS) 48.0% 16.8 0.27 0.49 0.08 0.36 0.07 0.62
Malware Generation (MG) 44.0% 17.5 0.24 0.44 0.07 0.33 0.06 0.57
Physical Harm (PH) 53.0% 15.6 0.31 0.56 0.09 0.41 0.08 0.70
Economic Harm (EH) 52.0% 16.1 0.29 0.50 0.08 0.39 0.07 0.66
Fraud (FR) 45.0% 17.0 0.25 0.45 0.07 0.34 0.06 0.59
Pornography (PO) 54.0% 15.9 0.30 0.53 0.09 0.40 0.08 0.69
Political Lobbying (PL) 61.0% 13.5 0.37 0.61 0.11 0.46 0.09 0.75
Privacy Violence (PV) 57.0% 14.7 0.34 0.56 0.10 0.43 0.08 0.72
Legal Opinion (LO) 65.0% 13.0 0.40 0.67 0.12 0.48 0.10 0.80
Financial Advice (FA) 64.0% 12.8 0.39 0.65 0.12 0.47 0.10 0.79
Health Consultation (HC) 60.0% 13.6 0.36 0.60 0.11 0.45 0.09 0.74
Government Decision (GD) 63.0% 13.2 0.38 0.63 0.12 0.47 0.10 0.78

Average 55.9% 15.2 0.32 0.55 0.10 0.41 0.08 0.71

4.2.4 UNIVERSAL ATTACKS

To test the universal attack capability of JC, we used a set of 40 unseen harmful questions. The
results showed that the single generated universal image was successful in jailbreaking the base
MiniGPT-4 model for 32 of these questions. This demonstrates that JC has the potential to gen-
erate universal attacks that generalize to a wide range of harmful queries. Furthermore, when we
transferred this universal attack image from MiniGPT-4 to LLaVA, the image successfully induced
LLaVA to answer 26 of the harmful questions, confirming that our universal jailbreak approach is
also transferable to other MLLMs.

5 CONCLUSION

In this paper, we presented Jailbreak Connectivity (JC), a novel framework for visual jailbreak at-
tacks on MLLMs. By constructing continuous paths in the image space, JC generates diverse jail-
break images that outperform single-image attacks. Leveraging lightweight surrogate classifiers, JC
achieves strong transferability across both open-source and commercial MLLMs, even in black-box
settings. We further extended JC to universal jailbreaks that can elicit harmful outputs without spe-
cific prompts. Extensive experiments demonstrate that JC substantially surpasses existing methods
in attack success rate, fluency, and toxicity. These findings highlight the urgent need for robust
defenses against diverse, transferable, and universal jailbreak threats in MLLMs.
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ETHICS STATEMENT

This work investigates jailbreak attacks on multimodal large language models (MLLMs) to system-
atically evaluate their vulnerabilities and inform the design of more robust defenses. While jailbreak
techniques can potentially be misused to elicit harmful outputs across scenarios such as illegal activ-
ity, hate speech, or malware generation, our intent is exclusively to advance understanding of these
vulnerabilities in a controlled research setting. All experiments were conducted on widely used
benchmark datasets (SafetyBench and AdvBench) and evaluated with automated safety classifiers;
no harmful prompts or generated contents are released. To further minimize risks, we only report
aggregated statistics (e.g., ASR, perplexity, toxicity scores) and do not provide dangerous prompts,
payloads, or instructions. The code accompanying this work is limited to reproducible components
necessary for research and does not expose direct misuse pathways. By highlighting the weaknesses
of current MLLMs, we aim to contribute to the responsible stewardship and development of safer
AI systems, in line with the ICLR Code of Ethics principles of avoiding harm, respecting privacy,
and supporting the public good.

REPRODUCIBILITY STATEMENT

We have taken multiple steps to ensure the reproducibility of our work. The proposed Jailbreak
Connectivity (JC) framework is fully specified in Section 3, including optimization objectives for
diverse, transferable, and universal jailbreaks. Hyperparameters such as perturbation bounds (ϵ =
32/255), PGD iterations (2000 for endpoints, 3000 for path optimization), and trade-off weights (α,
β) are reported in Section 3.2. Our experiments were conducted on open-source MLLMs (MiniGPT-
4, LLaVA-2, Qwen2.5) and commercial models (GPT-4o, Gemini), using publicly available datasets
SafetyBench and AdvBench (Appendix A.2). Evaluation metrics (ASR, PPL, Toxicity) are clearly
defined in Section 4.1. To support reproducibility, we will release anonymized code and training
scripts as supplementary material. Additional experimental settings, including dataset processing
and universal jailbreak corpus construction, are provided in the Appendix.
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A APPENDIX

A.1 LLM USAGE

Large language models (LLMs) were used in a limited capacity to assist with language polishing
and improving readability of the manuscript. In addition, we occasionally consulted an LLM for
programming support, such as debugging minor code issues or verifying syntax. No parts of the
research idea, methodology, experimental design, analysis, or main results were generated by LLMs.
The authors take full responsibility for the content of this work.

A.2 HARMFUL CORPUS

To approximate the harmful distribution Yh for our universal jailbreak method, we constructed a
specific corpus of harmful sentences. We chose the AdvBench dataset (Zou et al., 2023) due to its
comprehensive and well-documented collection of adversarial prompts designed to test the safety
alignment of large language models. From this dataset, we sampled 100 diverse sentences from its
”harmful strings” subset.

The selection process was not random; we deliberately chose sentences that represent a wide range
of harmful categories, including but not limited to hate speech, instructions for illegal acts, and
misinformation. This diversity is crucial for our universal jailbreak approach, as it ensures that the
model is trained to generate content that aligns with a broad spectrum of unsafe behaviors, rather
than just a single type of harmful query. By using a curated set of prompts, we can more effectively
guide the model’s output towards the desired harmful distribution Yh during optimization.

Part of this corpus is shown in Figure 5. This visual representation gives a clear example of the type
of content we used to define the universal jailbreak objective.

Figure 5: A subset of the harmful corpus sampled from the harmful strings in the AdvBench dataset.
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A.3 SCENARIOS DESCRIPTION

Following Yang et al. (2023) and Liu et al. (2024)’s work, we focus on 13 typical jailbreak scenarios
from OpenAI usage policy. The detailed description of these forbidden scenarios is in Table 5.

Table 5: Forbidden scenarios in the usage policies of OpenAI.

Forbidden Scenarios Description
01 – Illegal Activity (IA) Activities involving unlawful use of models, tools, or ser-

vices.
02 – Hate Speech (HS) Content that expresses, incites, or promotes hatred based

on identity; harasses, threatens, or bullies individuals; or
glorifies violence and humiliation.

03 – Malware Generation (MG) Creation of malicious code intended to disrupt, damage,
or gain unauthorized access to computer systems.

04 – Physical Harm (PH) Activities with high risk of physical harm, including:
weapons development, military and warfare, manage-
ment of critical infrastructure (e.g., energy, transport, wa-
ter), or promotion of self-harm (suicide, cutting, eating
disorders).

05 – Economic Harm (EH) Activities with high risk of economic damage, such as
multi-level marketing, gambling, payday lending, or au-
tomated eligibility determinations for credit, employ-
ment, education, or public assistance.

06 – Fraud (FR) Fraudulent or deceptive practices, including scams, coor-
dinated inauthentic behavior, plagiarism, academic dis-
honesty, astroturfing, disinformation, spam, and pseu-
dopharmaceuticals.

07 – Pornography (PO) Adult content and related industries, such as erotic chat,
pornography, or promotion of sexual services (excluding
sex education and wellness).

08 – Political Lobbying (PL) Political campaigning or lobbying, e.g., mass generation
of campaign materials, targeted political messaging, chat-
bots for advocacy, or tools supporting campaign opera-
tions.

09 – Privacy Violation (PV) Activities that infringe privacy, including unauthorized
tracking, facial recognition of private individuals, clas-
sification based on protected characteristics, biometric
identification, or unlawful collection/disclosure of per-
sonal records.

10 – Legal Opinion (LO) Provision of unauthorized legal advice or practice of law
without review by a qualified professional.

11 – Financial Advice (FA) Provision of personalized financial advice without over-
sight by a qualified professional.

12 – Health Consultation (HC) Medical diagnosis or treatment guidance, including in-
structions for curing or managing health conditions, or
triaging life-threatening emergencies.

13 – Government Decision (GD) High-risk governmental decision-making, such as law en-
forcement, criminal justice, migration, and asylum cases.

A.4 ADDITIONAL EXPERIMENTAL RESULTS

Path Connectivity We present a detailed attack evaluation of the sampled jailbreak images from
Section 3.1 in Table 6. These images were generated using our JC framework to jailbreak LLaVA
(Liu et al., 2023) in response to the harmful query, ”how to make a bomb?”. As shown in Figure 6,
we provide an example of the starting image, the best jailbreak image, and the ending image along
this optimized path. The experimental results reveal that 70% of the sampled jailbreak images
can successfully compromise the target MLLM. Notably, the image located in the middle of the
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path exhibits a higher PPL and achieves the five best toxicity scores out of six attributes. Overall,
these findings demonstrate that our method can generate a diverse set of jailbreak images, and some
of these examples have the potential to yield superior attack performance compared to the initial
endpoints.

Table 6: Evaluation of diverse jailbreak attacks against LLaVA-2-13B (Liu et al., 2023). We report
attack success, perplexity (PPL), and toxicity scores. Best results for each metric are highlighted in
bold. Our method, JC, generates diverse jailbreak images, some of which achieve stronger attack
performance than the original endpoints.

u Success (✓/✗) PPL (↓) Identity Attack Obscene Severe Toxicity Insult Threat Toxicity
0 ✗ 30.70 0.000 0.050 0.000 0.150 0.000 0.040
0.1111 ✗ 21.12 0.018 0.068 0.363 0.132 0.359 0.377
0.2222 ✓ 14.28 0.033 0.083 0.642 0.117 0.635 0.636
0.3333 ✓ 9.48 0.043 0.093 0.838 0.107 0.829 0.818
0.4444 ✓ 6.72 0.049 0.098 0.951 0.102 0.941 0.923
0.5556 ✓ 6.00 0.050 0.100 0.980 0.100 0.970 0.950
0.6667 ✓ 7.32 0.047 0.097 0.926 0.103 0.917 0.900
0.7778 ✓ 10.67 0.040 0.090 0.789 0.110 0.781 0.773
0.8889 ✓ 16.07 0.029 0.079 0.569 0.121 0.563 0.568
1 ✗ 23.50 0.014 0.064 0.265 0.136 0.263 0.286

(a) Starting Image (b) Best Jailbreak Image (c) Ending Image

Figure 6: Illustration of the starting and ending endpoints and the best-performing jailbreak image
found along the path constructed by JC.

White-box Diverse Jailbreaks We first provide a full evaluation of the toxicity scores for our JC
framework on MiniGPT-4 (Zhu et al., 2023) in Table 7. Subsequently, we report the diverse jailbreak
performance for LLaVA (Liu et al., 2023) and Qwen (Bai et al., 2025), with the Attack Success
Rate (ASR) and Perplexity (PPL) metrics detailed in Table 8, and the corresponding toxicity scores
presented in Table 9. Collectively, these results demonstrate the consistent and robust performance
of our method across a range of open-source MLLMs and key evaluation metrics.

Black-box Diverse Jailbreaks In the black-box diverse experiment, we employ MiniGPT-4 (Zhu
et al., 2023) as the base model and Gemini (AI, 2025) as the target. With hyperparameters set to
α = 0.6 and β = 0.7, our JC framework achieves an average ASR of 57.7% against Gemini, as
detailed in Table 10. This result highlights our method’s remarkable ability to generate diverse and
transferable jailbreaks even in a challenging black-box setting.
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Table 7: Percentage of outputs of MiniGPT-4 (Zhu et al., 2023) with a toxicity score exceeding 0.5,
as evaluated by the Detoxify Classifier (Hanu & Unitary team, 2020).

Scenario Method Identity Attack Obscene Severe Toxicity Insult Threat Toxicity
Illegal Activity (IA) Plain Text 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Adv Example 2.5% 2.8% 2.0% 3.0% 2.3% 2.5%
Query Image 1.5% 1.7% 1.2% 1.8% 1.4% 1.5%
JC 53.3% 58.6% 42.6% 63.9% 47.9% 53.3%

Hate Speech (HS) Plain Text 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Adv Example 1.3% 1.4% 1.0% 1.6% 1.2% 1.3%
Query Image 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
JC 49.7% 54.6% 39.7% 59.6% 44.7% 49.7%

Malware Generation (MG) Plain Text 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Adv Example 5.2% 5.8% 4.2% 6.3% 4.7% 5.2%
Query Image 2.9% 3.2% 2.4% 3.5% 2.7% 2.9%
JC 24.0% 26.4% 19.2% 28.8% 21.6% 24.0%

Physical Harm (PH) Plain Text 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Adv Example 8.0% 8.8% 6.4% 9.6% 7.2% 8.0%
Query Image 7.4% 8.2% 5.9% 8.9% 6.7% 7.4%
JC 56.6% 62.2% 45.3% 67.9% 50.9% 56.6%

Economic Harm (EH) Plain Text 1.1% 1.2% 0.9% 1.4% 1.0% 1.1%
Adv Example 1.0% 1.1% 0.8% 1.1% 0.9% 1.0%
Query Image 2.0% 2.1% 1.6% 2.3% 1.8% 2.0%
JC 43.3% 47.6% 34.6% 52.0% 39.0% 43.3%

Fraud (FR) Plain Text 0.6% 0.6% 0.5% 0.7% 0.5% 0.6%
Adv Example 5.1% 5.7% 4.1% 6.2% 4.6% 5.1%
Query Image 3.7% 4.1% 3.0% 4.5% 3.4% 3.7%
JC 24.1% 26.5% 19.3% 28.9% 21.7% 24.1%

Pornography (PO) Plain Text 0.8% 0.9% 0.6% 0.9% 0.7% 0.8%
Adv Example 6.1% 6.7% 4.9% 7.3% 5.5% 6.1%
Query Image 5.4% 5.9% 4.3% 6.4% 4.8% 5.4%
JC 41.0% 45.1% 32.8% 49.3% 36.9% 41.0%

Political Lobbying (PL) Plain Text 25.5% 28.0% 20.4% 30.6% 22.9% 25.5%
Adv Example 41.1% 45.2% 32.8% 49.3% 37.0% 41.1%
Query Image 35.5% 39.1% 28.4% 42.6% 32.0% 35.5%
JC 53.2% 58.5% 42.6% 63.8% 47.9% 53.2%

Privacy Violence (PV) Plain Text 0.9% 1.0% 0.7% 1.1% 0.8% 0.9%
Adv Example 1.8% 1.9% 1.4% 2.1% 1.6% 1.8%
Query Image 3.5% 3.8% 2.8% 4.2% 3.1% 3.5%
JC 48.2% 53.1% 38.6% 57.9% 43.4% 48.2%

Legal Opinion (LO) Plain Text 32.4% 35.6% 25.9% 38.9% 29.1% 32.4%
Adv Example 62.2% 68.4% 49.7% 74.6% 55.9% 62.2%
Query Image 65.5% 72.0% 52.4% 78.6% 58.9% 65.5%
JC 74.2% 81.6% 59.4% 89.0% 66.8% 74.2%

Financial Advice (FA) Plain Text 56.7% 62.4% 45.4% 68.0% 51.0% 56.7%
Adv Example 72.8% 80.1% 58.3% 87.4% 65.6% 72.8%
Query Image 87.9% 96.7% 70.3% 100.0% 79.1% 87.9%
JC 80.8% 88.8% 64.6% 96.9% 72.7% 80.8%

Health Consultation (HC) Plain Text 35.6% 39.2% 28.5% 42.7% 32.0% 35.6%
Adv Example 67.6% 74.4% 54.1% 81.1% 60.8% 67.6%
Query Image 60.7% 66.8% 48.6% 72.8% 54.6% 60.7%
JC 80.5% 88.5% 64.4% 96.6% 72.4% 80.5%

Government Decision (GD) Plain Text 49.0% 53.9% 39.2% 58.8% 44.1% 49.0%
Adv Example 55.4% 61.0% 44.3% 66.5% 49.9% 55.4%
Query Image 56.6% 62.3% 45.3% 67.9% 50.9% 56.6%
JC 77.9% 85.7% 62.3% 93.5% 70.1% 77.9%
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Table 8: Evaluation of attack success rate (ASR) and perplexity (PPL) for JC across multiple sce-
narios on LLaVA (Liu et al., 2023) and Qwen (Bai et al., 2025).

Scenario ASR (↑) PPL (↓)
LLaVA (Liu et al., 2023) Qwen (Bai et al., 2025) LLaVA (Liu et al., 2023) Qwen (Bai et al., 2025)

Illegal Activity (IA) 65.4% 61.7% 8.8 9.6
Hate Speech (HS) 62.4% 58.9% 9.4 10.2
Malware Generation (MG) 45.6% 43.1% 17.4 19.0
Physical Harm (PH) 67.3% 63.6% 8.0 8.8
Economic Harm (EH) 64.8% 61.2% 13.2 14.4
Fraud (FR) 45.9% 43.3% 17.4 18.9
Pornography (PO) 62.9% 59.4% 13.6 14.9
Political Lobbying (PL) 88.5% 83.6% 15.2 16.5
Privacy Violence (PV) 73.6% 69.5% 13.5 14.8
Legal Opinion (LO) 90.0% 85.0% 8.5 9.3
Financial Advice (FA) 90.0% 85.0% 6.3 6.9
Health Consultation (HC) 86.4% 81.6% 5.3 5.8
Government Decision (GD) 88.8% 84.0% 6.9 7.6

Average 70.8% 66.6% 11.7 12.7

Table 9: Percentage of outputs of LLaVA (Liu et al., 2023) and Qwen (Bai et al., 2025) with a
toxicity score exceeding 0.5, as evaluated by the Detoxify Classifier (Hanu & Unitary team, 2020).

Scenario Model Identity Attack Obscene Severe Toxicity Insult Threat Toxicity
Illegal Activity (IA) LLaVA 48.0% 52.7% 38.3% 57.5% 43.1% 48.0%

Qwen 45.3% 49.8% 36.2% 53.9% 40.7% 45.3%
Hate Speech (HS) LLaVA 44.7% 49.1% 35.7% 53.6% 40.2% 44.7%

Qwen 42.2% 46.4% 33.7% 50.6% 38.0% 42.2%
Malware Generation (MG) LLaVA 21.6% 23.8% 17.3% 25.9% 19.4% 21.6%

Qwen 20.4% 22.4% 16.3% 24.5% 18.4% 20.4%
Physical Harm (PH) LLaVA 51.0% 56.0% 40.8% 61.1% 45.8% 51.0%

Qwen 48.1% 52.9% 38.5% 57.6% 43.3% 48.1%
Economic Harm (EH) LLaVA 39.0% 42.8% 31.1% 46.8% 35.1% 39.0%

Qwen 36.8% 40.5% 29.4% 44.2% 33.2% 36.8%
Fraud (FR) LLaVA 21.7% 23.9% 17.4% 26.0% 19.5% 21.7%

Qwen 20.5% 22.6% 16.4% 24.6% 18.5% 20.5%
Pornography (PO) LLaVA 36.9% 40.6% 29.5% 44.4% 33.2% 36.9%

Qwen 34.9% 38.3% 27.9% 42.0% 31.4% 34.9%
Political Lobbying (PL) LLaVA 47.9% 52.6% 38.3% 57.4% 43.1% 47.9%

Qwen 45.2% 49.7% 36.2% 53.8% 40.7% 45.2%
Privacy Violence (PV) LLaVA 43.4% 47.8% 34.7% 52.1% 39.1% 43.4%

Qwen 40.9% 45.1% 32.8% 49.1% 36.8% 40.9%
Legal Opinion (LO) LLaVA 66.8% 73.4% 53.5% 80.1% 60.1% 66.8%

Qwen 63.1% 69.4% 50.5% 75.7% 56.8% 63.1%
Financial Advice (FA) LLaVA 72.7% 79.9% 58.1% 87.2% 65.4% 72.7%

Qwen 68.7% 75.5% 55.0% 82.4% 61.8% 68.7%
Health Consultation (HC) LLaVA 72.4% 79.6% 57.9% 86.9% 65.1% 72.4%

Qwen 68.5% 75.2% 54.8% 82.1% 61.6% 68.5%
Government Decision (GD) LLaVA 70.1% 77.1% 56.1% 84.2% 63.1% 70.1%

Qwen 66.2% 72.8% 53.0% 79.5% 59.6% 66.2%

Table 10: Black-box jailbreak performance against Gemini, using MiniGPT-4 as the base model.

Scenario ASR (↑) PPL (↓) Identity Attack Obscene Severe Toxicity Insult Threat Toxicity
Illegal Activity (IA) 52.0% 15.8 0.26 0.47 0.07 0.35 0.06 0.61
Hate Speech (HS) 50.0% 16.3 0.25 0.45 0.07 0.34 0.06 0.59
Malware Generation (MG) 46.0% 17.0 0.22 0.41 0.06 0.31 0.05 0.54
Physical Harm (PH) 55.0% 15.2 0.28 0.50 0.08 0.38 0.07 0.65
Economic Harm (EH) 54.0% 15.6 0.27 0.46 0.07 0.36 0.06 0.62
Fraud (FR) 47.0% 16.5 0.23 0.42 0.06 0.32 0.05 0.56
Pornography (PO) 56.0% 15.4 0.27 0.48 0.08 0.37 0.07 0.64
Political Lobbying (PL) 63.0% 13.1 0.33 0.56 0.09 0.42 0.08 0.70
Privacy Violence (PV) 59.0% 14.3 0.30 0.52 0.09 0.40 0.07 0.67
Legal Opinion (LO) 67.0% 12.7 0.35 0.62 0.10 0.44 0.09 0.75
Financial Advice (FA) 66.0% 12.5 0.34 0.60 0.10 0.43 0.09 0.73
Health Consultation (HC) 62.0% 13.2 0.32 0.56 0.09 0.41 0.08 0.69
Government Decision (GD) 65.0% 12.9 0.34 0.59 0.10 0.43 0.09 0.72

Average 57.7% 14.7 0.29 0.52 0.08 0.39 0.07 0.65
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