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Abstract

Recent advancements in self-supervised audio-
visual representation learning have demonstrated
its potential to capture rich and comprehensive
representations. However, despite the advantages
of data augmentation verified in many learning
methods, audio-visual learning has struggled to
fully harness these benefits, as augmentations
can easily disrupt the correspondence between
input pairs. To address this limitation, we intro-
duce EquiAV, a novel framework that leverages
equivariance for audio-visual contrastive learn-
ing. Our approach begins with extending equiv-
ariance to audio-visual learning, facilitated by a
shared attention-based transformation predictor.
It enables the aggregation of features from di-
verse augmentations into a representative embed-
ding, providing robust supervision. Notably, this
is achieved with minimal computational overhead.
Extensive ablation studies and qualitative results
verify the effectiveness of our method. EquiAV
outperforms previous works across various audio-
visual benchmarks. The code is available on
https://github.com/JongSuk 1/EquiAV

1. Introduction

Audio and visual modalities play a pivotal role in how hu-
mans perceive their surroundings. Despite the differences in
their characteristics, there exists an inherent correspondence
between the two modalities. Learning such audio-visual
correspondence from large-scale unlabeled video data in
a self-supervised manner has recently become a major in-
terest in the deep-learning research community. Among
various approaches for audio-visual self-supervised learn-
ing, Audio-Visual Contrastive Learning has been popular
due to its simplicity and effectiveness (Ma et al., 2021a;b;
Morgado et al., 2021a;b; Patrick et al., 2021; Recasens et al.,
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Figure 1. Conceptual illustration of EquiAV. Within the intra-
modal latent space, the model learns augmentation-related infor-
mation by leveraging equivariance. Extending equivariance to the
inter-modal space provides robust cross-modal supervision.

2021; Wang et al., 2021; Sarkar & Etemad, 2023b). A key
challenge in audio-visual contrastive learning is to enhance
representational capability and diversity while maintaining
the correspondence between two different modalities. The
most straightforward and effective way to enrich the rep-
resentation is to utilize data augmentation. However, data
augmentation has not been extensively applied in the field of
audio-visual contrastive learning. This is because correspon-
dence between audio and visual modalities can be easily
distorted due to data augmentations. For this reason, previ-
ous works utilize a very limited range of data augmentation
and adopt alternatives to learn richer representations, such
as incorporating masked data modeling (Gong et al., 2023;
Huang et al., 2023) or utilizing temporal supervision (Sarkar
& Etemad, 2023b; Jenni et al., 2023).

Meanwhile, there have been several recent studies (Dan-
govski et al., 2022; Devillers & Lefort, 2023; Garrido et al.,
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2023) on learning single-modal representations by employ-
ing equivariance, which can be complementary to learn-
ing representations that are invariant to data augmentations.
Equivariant latent space learns to capture augmentation-
related information, thereby enhancing the representational
capability. In Particular, EquiMod (Devillers & Lefort,
2023) proposes the transformation predictor to estimate
the displacement in the latent space that corresponds to the
transformation applied to the input space.

In this paper, we analyze the impact of applying equivari-
ance to the learning audio-visual correspondence and joint
representations and then discuss the optimal way to incorpo-
rate it into the self-supervised audio-visual contrastive learn-
ing framework. We demonstrate that applying the equivari-
ance in the intra-modal latent space is helpful for learning
rich modality-unique information, thereby enhancing rep-
resentational capability. However, it still cannot directly
resolve the negative effects of distorted audio-visual corre-
spondence caused by augmentations.

To address this issue, we propose EquiAV, a novel frame-
work that efficiently leverages equivariance for audio-visual
contrastive learning. Firstly, we discover that equivariant
representation learned in the intra-modal latent space can be
transferred to the inter-modal latent space via a shared trans-
formation predictor. Taking advantage of this characteristic,
we compute the centroid of a set of equivariant embed-
dings generated by the transformation predictor for each
modality and use it for inter-modal contrastive learning. We
verify that supervision from centroids improves represen-
tational capability while reducing the undesirable effect of
augmentations. This approach requires minimal additional
computational cost since the equivariant embeddings are
produced from the single original inputs instead of encoding
all augmented inputs. Besides, we devise the attention-based
transformation predictor that accurately encodes the param-
eterized augmentation vector to the latent space. We demon-
strate the effectiveness of each component of our framework
through extensive ablation studies. EquiAV outperforms
the existing state-of-the-art audio-visual self-supervised pre-
training methods in diverse downstream tasks, including
audio-visual event classification and zero-shot audio-visual
retrieval tasks.

The contribution of our paper is summarized as follows:

* We propose EquiAV, a novel framework that incorpo-
rates equivariance to audio-visual contrastive learning.

e We effectively transfer equivariant representations
from the intra-modal latent space to the inter-modal
latent space with a shared transformation predictor. Us-
ing the centroid of equivariant embeddings enables the
model to learn rich joint representations while avoiding
the adverse effect of augmentations.

* We design the attention-based transformation predictor
to encode the parameterized augmentation vector into
the latent space.

* EquiAV outperforms existing audio-visual self-
supervised learning methods in audio-visual event clas-
sification and zero-shot audio-visual retrieval tasks.

2. Related Works

Audio-Visual Representation Learning. Audio-visual
contrastive learning has been one of the most popular ap-
proaches for learning the natural correspondence between
audio and visual modalities, due to its simple intuition and
powerful performance on the downstream tasks (Ma et al.,
2021a;b; Morgado et al., 2021a;b; Patrick et al., 2021; Re-
casens et al., 2021; Wang et al., 2021; Owens & Eftros,
2018; Sarkar & Etemad, 2023b). A common approach
to audio-visual contrastive learning is to learn the context
of the synchronous relationship between audio and visual
inputs (Korbar et al., 2016; Alwassel et al., 2020a; Mor-
gado et al., 2021b; Sarkar & Etemad, 2023b). On the other
hand, several works (Georgescu et al., 2023; Haliassos et al.,
2022) adopt masked modeling techniques that are designed
to reconstruct the masked raw inputs or predict the masked
context features. Recently, CAV-MAE (Gong et al., 2023)
and MAVIL (Huang et al., 2023) have combined contrastive
learning and masked data modeling techniques to learn com-
plementary representations.

Self-supervised Equivariant Representation Learning.
Self-supervised learning (Chen et al., 2020b; He et al., 2020;
Oord et al., 2018; He et al., 2022; Tong et al., 2022; Huang
etal., 2022; Caron et al., 2021; Chen & He, 2021; Grill et al.,
2020) with large-scale datasets has demonstrated promis-
ing performance across various domains. Many of these
methods employ a joint-embedding framework, where the
objective is to maximize the similarity between the em-
beddings of two augmented views derived from a single
input. They focus on learning representations that are invari-
ant to such augmentations. Recently, several studies (Lee
et al., 2021; Dangovski et al., 2022; Devillers & Lefort,
2023; Garrido et al., 2023) have illustrated that models can
achieve better representation learning by incorporating the
principle of equivariance. Equivariance ensures that the
semantic contents of representations adapt in response to
the input data augmentation, thereby effectively capturing
augmentation-related information within the representations.
One approach to learning equivariance is to use the auxil-
iary task of predicting the specific augmentations applied
to the input data (Dangovski et al., 2022; Lee et al., 2021).
Another strategy is to model the mapping between the trans-
formation in the latent space and the augmentations in the
input space (Devillers & Lefort, 2023; Garrido et al., 2023).
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Figure 2. Overview of the proposed EquiAV framework. Given an audio-visual input pair and its augmented version, the audio encoder
and the visual encoder encode them into representations. The transformation predictor takes the original representation h,, and the
parameterized augmentation vector ¢,, as inputs and outputs the equivariant representation B In the intra-modal latent space, the
model is learned to maximize the similarity of the equivariant embedding and the augmented embedding. In the inter-modal latent space,
we sample multiple augmentation vectors {tm, }ic{1,...,s} and generate the corresponding equivariant representations {fzmi Yieg1,... 53+
Then, the centroid h,, is computed and used for inter-modal contrastive learning.

3. Methods

3.1. Preliminary

One effective approach for providing self-supervision is
to utilize the concept of invariance. It targets to align the
representations of augmented inputs in the feature space.
Given the encoder f and the augmentation distribution 7T,
the objective function can be described as

Vi1, ta €T mfin E(f(t1($>7f(t2($>)), (1)

where the function £(-,-) measures the dissimilarity be-
tween two inputs. On the other hand, some recent
works (Dangovski et al., 2022; Devillers & Lefort, 2023;
Garrido et al., 2023) have suggested that considering the dis-
crepancy of input pairs in the feature space can lead to better
representation learning. This concept, known as equivari-
ance, aims to capture the variations between the original
input and its augmented version in a way that preserves the
underlying structure. To implement equivariance, a transfor-
mation predictor u along with augmentation ¢ is employed
to match the intra-modal pair in the feature space. The ob-
jective function of equivariant self-supervised learning can

be represented as follows:

Ve T, minLl(u(f(z),t), f(t())- )

Through this approach, the model can learn to encode not
only the invariant features but also the specific transforma-
tions applied to input data.

3.2. EquiAV

Data Augmentations and Their Parameterization. In
our framework, typical visual-based augmentations are em-
ployed for visual inputs. However, unlike the abundant
augmentations available for an image or video, the options
for the audio modality are relatively limited. To address this
issue, we convert the audio signal into a spectrogram, fol-
lowed by the application of visual-based augmentations in
the same manner. The augmentation information is encoded
into real vectors, denoted as t, and t,. These augmenta-
tion vectors parameterize how much each augmentation is
applied to the input data. A detailed explanation of data
augmentation parameterization is provided in Appendix C.

Encoding Audio-Visual Representations. Given an
audio-visual input pair (z,, 2, ) and its augmented version
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(«!,,x,), the audio encoder f, and the visual encoder f,
encode them into representations. The encoding process can
be represented as follows:

hom = fm(xm)a hfm = fm(x;n) = fm(tm(x'rn)) 3)

where m € {a,v} and t,, refers to the data augmentation
applied to the input data. Note that a and v represent au-
dio and visual modalities, respectively. We employ Vision
Transformer (Dosovitskiy et al., 2021) for both encoders.

Equivariant Transformation. To predict the displace-
ment in the latent space caused by the transformation in the
input data space, a transformation predictor u(-) is required.
In this paper, we design the architecture of u(-) based on
the attention mechanism. First of all, we define an augmen-
tation vector t € R¥*% where S and d; denote the number
and the dimension of data augmentations ¢, respectively.
The augmentation encoder f; encodes the augmentation
vector into the feature so that it can serve as the query of the
attention layer. The representation h of the original input
serves as the key and value of the attention layer to obtain
the equivariant representation h as follows:

h =wu(h,t) @
= FFN(MHA(f:(t), h, h) + MeanPool(h)),
MHA(q, k,v) = Concat (01, ...,0p) w@,

Vg 0

where H is the number of heads, dy is dimension of each
attention head, wg,w{f,w}‘f € Rixdn 0 ¢ RHdunxd
and j € {1,...,H}. The Multi-Head Attention (MHA)
layer calculates the score through query and key to identify
the relevance of the augmentation feature in a patch-wise
manner. These values are incorporated into the value to
determine the displacement within the feature space. Then,
the output of the multi-head attention layer is added to
the representation of the original input image and passed
through the Feed Forward Network (FFN).

Q KT
w? (kw? &)
where o, = Softmax (W) vy

Intra-modal Equivariant Learning. The goal of intra-
modal representation learning is to learn the equivariant
latent space so that augmentation-related information can
be passed to inter-modal representation learning. To this
end, the equivariant representation A, and representation
h.. of augmented input are projected into the intra-modal
latent space to get the equivariant embedding Z,,, and the

augmented embedding z;, as follows:
2 = givrrlltm(ilm) = ginri,tm(um(hma tm)) (6)
2! = g (MeanPool(h!)), (7

where gi"" denotes the intra-modal projection head.

For intra-modal equivariant contrastive learning, the batch
consisting of NV equivariant embeddings {2};1}1-6{ 1,...,N} Ob-
tained by incorporating the augmentation information and
original inputs, as well as N embeddings {2’ :n}ie{l,..., N}
of the augmented inputs is used. The pair (¢, 2") gener-
ated from the same image forms a positive pair, while the
remaining 2(/N — 1) embeddings within the batch serve as
negative pairs. The set of embeddings for the negative pairs
can be represented as follows:

N N
Zh = UJEIN L) pu g U
j=1 j=1

®)
The NT-Xent loss (Chen et al., 2020b) is employed to com-
pute the contrastive loss. The loss for equivariant embed-
dings of the augmented input can be expressed as follows:

exp(sim(2! | Z/in)/T)
ez Uy €xXP(sim(Z],, 2/7) ’
©))
where 7 > 0 is temperature. Then, the intra-modal loss is
described by combining the losses of adopting the original
and augmented inputs as anchors respectively,

N
Eintra(gﬁ] P ) _ _i Zlog
Ly “m N ‘ Z
i=1

. 1 . .
cmtra — 5 (gmlra(zcm’ Z;n) + glntra (Z;—n, 73m))~ (10)
The process of aligning these two embeddings not only
enhances the representation capability but also benefits in
acquiring a representative vector for inter-modal correspon-
dence learning.

Inter-modal Contrastive Learning. The most important
factor in learning inter-modal correspondences is how to
draw representative vectors from input data. A basic ap-
proach is to use the embedding of the original data as the
representative value. It has the advantage of maximizing
the correspondence information of the given data but suffers
from the lack of input diversity. On the other hand, using
the embedding of augmented input strengthens the represen-
tation capability, but may disrupt the correspondence of the
given pair. Then, we can think of the expectation value of
h' over the set Dy, of representations of augmented inputs
as follows:

B = Epop, [B]. (11)

The vector h™P integrates information from multiple aug-
mented data, securing more general features while also pro-
viding robustness against undesirable effects of augmen-
tation. However, it is not feasible to generate all transfor-
mations and obtain the representative vector h™P, we aim
to approximate it with the centroid of sampled equivariant
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representations.

S
hﬁpmﬁm—;zl ,‘nzszum Rl th). (12)

Note that the weight of u,, is shared between the intra-
modal transformation predictor and the inter-modal transfor-
mation predictor. This allows the transfer of equivariance
learned in the intra-modal space to the inter-modal space.
Furthermore, since we use equivariant representations in-
stead of augmented representations generated by passing
through the encoder, there is minimal impact on computa-
tional cost. Lastly, the centroid is projected into the inter-
modal latent space via the projection head g™ and gi"*" as
follows:

Zm mter(}’l ) (13)

In the training phase, the batch consisting of N paired em-
beddings {(z", U)}ie{l,..., N7 Which are extracted without
applying any augmentation to preserve the correspondence
between input pairs, is used. Then, the contrastive loss for
audio-visual learning can be expressed as follows:

inter / =
[ (Zaa ZU

ZN: oxp (sim(zg, 2,)/7)

SN exp(sim(zi, 2) /1)
(14)

where 7 > 0 is temperature. Then, the inter-modal loss is

represented by combining the losses of adopting the audio

and visual embeddings as anchors respectively,

. 1 i
[inter _ 5 (gmter(z Zy) + émter(zv’ Za)). (15)

Finally, the loss function of EquiAV can be expressed by in-
corporating scaling factors, it can be formulated as follows:
EE Ay = )\inter Einter + )\imra Eintra + )\inlra L:inlra (16)
qui - a a v v o
where £ and £ denote intra-modal loss for audio and
visual modalities, respectively.

Through these methods, EquiAV can maximize the benefits
of equivariant representation learning while avoiding any
detrimental impact on the learning of inter-modal pairs. In
the next section, we will provide experimental evidence
supporting our design choices along with benchmark perfor-
mance. Algorithm 1 summarizes our method.

4. Experiments

The model is pre-trained on the AudioSet-2M in a self-
supervised manner, without the use of labels. The audio
encoder f, and visual encoder f,, are initialized with the self-
supervised pre-trained ViT-B/16 model of MAE (He et al.,

Algorithm 1 EquiAV
Input: backbone encoder f,, fo,

intra-modal projection head gi'™, gi'™,

inter-modal projection head g™", giner,
augmentation predictor uq, Uy,
audio, visual augmentation distribution 7, 7o
weight scaling factors \IMer, yinter - yinter
batch size N, temperature 7
for sampled mini-batch {(z¥, %)}~ | do
for m € {a,v} do
forallk € {1,...,N}do

sample augmentation vectors t™™ ~ 7.,
. k i
R = fn(@p), W = (00 (@7))

Bk —u (hk timra)
2k—1 __ 1mra(7hk )

zZ m m

22k = gi,r,'fr"(MeanPool(h'Ifn))

sample augmentation vectors {tjn" }ic(1,.s} ~ Tms
ti;;;er = [t:nl?t;w o t;rrts} '
Rk, = MeanPool(um (hfn, ginter))
—Ic mter(hk )
end for
forallic {1,...,2N}andj € {1,...,2N} do

Syl = exp (ZZsz (Tllzmllllz1D)

end for
define /" (i, 7) as
émlra i —_lo Siﬁ] _
4 (i:5) = & SN L sit
Lo = S SOV [ (2k — 1,2k) + 657 (2k, 2k — 1)]
end for

forallie {1,...,N}andje{l,...
s =exp (22" 2 /(|| zll|IZ1))

end for

define /™" (7) as

gmter( ) — _1 (log(ZN *llk) +log (ﬁ))
i N 1
[iner L Z Znter( )
L= )\mter Emter + )\gm'a Eg)tra + )\i:tra ﬁilx}nra
update networks to minimize £
end for

,N}do

2022). We employ 3-layer MLP with layer normalization
for intra-modal and inter-modal projection heads. Note
that the multi-head attention layer and the feed-forward
layer of the transformation predictor are similar to those
used in Transformers (Vaswani et al., 2017; Chen et al.,
2021), which include layer normalization layer and residual
connection. We set A\IMer, \Iner apd \iner a] the same as
1. More detailed experimental settings are explained in
Appendix C and Appendix D.

4.1. Main Results

Audio-Visual Event Classification. We evaluate the rep-
resentational capability of our model through fine-tuning on
multi-modal benchmark datasets, AudioSet and VGGSound,
in three settings: audio-only, visual-only, and audio-visual.
During the fine-tuning process, intra-modal and inter-modal
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Table 1. Audio-visual event classification performance on AudioSet and VGGSound. A: Audio-only, V: Visual-only, A-V: Audio-visual.
IN SL: ImageNet supervised learning, SSL: Self-supervised learning, * Non-standard train/test split.

AudioSet-20K (mAP) AudioSet-2M (mAP) VGGSound (acc.)

Pretrain
Method A \" A-V A \" A-V A vV AV
GBlend (Wang et al., 2020) - 29.1 22.1 37.8 324 18.8 41.8 - - -
Perceiver (Jaegle et al., 2021) - - - - 384 258 442 - - -
Attn AV (Fayek & Kumar, 2021) IN SL - - - 38.4 257 46.2 - - -
MBT* (Nagrani et al., 2021) IN2IK SL 313 27.7 439 415 313 496 523 512 64.1
CAV-MAE (Gong et al., 2023) SSL 377 19.8 42.0 46.6 262 512 595 470 655
AudiovisualMAE* (Georgescu et al., 2023) SSL - - - 46.6 31.1 51.8 572 50.3 65.0
MAVIL (Huang et al., 2023) SSL 41.8 24.8 44.9 48.7 303 533 608 509 67.1
EquiAV (ours) SSL 424 257 46.6 49.1 30.1 546 61.0 50.7 67.1

Table 2. Audio classification accuracy of finetuning on ESC-50,
SPC-v1, and FSD-50K. TResults reproduced on our environment.

Table 4. Zero-shot audio-visual retrieval results on the MSR-VTT,
AudioSet, and VGGSound. TResults reproduced on our environ-
ment. *Models pre-trained on the much larger dataset.

Method ESC-50 SPC-vl FSD-50K
CAV-MAE-Scale++! (Gong et al., 2023) 832 97.1 455 Video-to-Audio Audio-to-Video
MAVIL (Huang et al., 2023 94.4 97.4 -
XKD (Sgrkar 5% Etemad, 20>24) 96.5 . 58.5 Method Rel R@5 Rel0 Rel R@5 Rel0
EquiAV (ours) 96.0 97.8 62.6 MSR-VTT
Boggust* 9.3 20.7 28.8 7.6 21.1 28.3
. .. . Aranjelovic* 119 259 34.7 126 263 33.7
Table 3. Action recognition accuracy of transfer learning on AVLnet* 172 266 466 178 355 43.6
UCF101, HMDB51, and Kinetics400. *High temporal resolu- CAV-MAE 133 290 405 7.6 198 302
tion with industry-level computational resources. EquiAV (ours) 13.8 314 43.0 144 333  43.0
— AudioSet
Method UCFI01 HMDBST  Kinetics400 CAV-MAE-Scale++T 166 370 459 143 320 407
XDC (Alwassel et al., 2020b) 85.3 56.0 CAV-MAE 18.8 39.5 50.1 15.1 34.0 43.0
MMV (Alayrac et al., 2020) 83.9 60.0 EquiAV (ours) 301 533 629 296 537 63.1
BraVe* (Recasens et al., 2021) 90.0 63.6 -
AVID (Morgado et al., 2021c) - - 48.9 VGGSound
CrissCross (Sarkar & Etemad, 2023a)  87.7 56.2 50.1 CAV-MAE-Scale++! 155 353 451 164 350 447
XKD (Sarkar & Etemad, 2024) 88.4 62.2 56.5 CAV-MAE 148 342 440 128 304 403
EquiAV (ours) 89.7 64.4 573 EquiAV (ours) 28,5 515 61.7 284 518 62.3

projection heads are removed and a linear classifier is added
on top of encoders. For audio-visual fine-tuning tasks, out-
puts of modality-specific encoders are concatenated to form
the joint representation and used as the input for the lin-
ear classifier. As shown in Table 1, EquiAV outperforms
previous methods by solely relying on contrastive learning.

Comparison on the Single-modal Benchmarks. To
demonstrate the performance of our framework on the
single-modal downstream tasks, we fine-tune the audio
branch of EquiAV on audio classification datasets, including
the ESC-50 (Piczak, 2015), SPC-v1 (Warden, 2018), and
FSD-50K (Fonseca et al., 2021). According to the results
reported in Table 2, our method shows superior performance
compared to other self-supervised learning-based methods.
We also evaluate the video branch of EquiAV on various
action recognition datasets, including UCF101 (Soomro
et al., 2012), HMDB51 (Kuehne et al., 2011), and Kinet-

*Weights from https://github.com/YuanGongND/
cav-mae

ics400 (Kay et al., 2017). As demonstrated in Table 3, our
method surpasses previous SOTA audio-visual SSL methods
on uni-modal visual benchmark datasets. The comparison is
based on results from other audio-visual SSL methods that
also utilize the same pre-training dataset, AudioSet-2M.

Zero-Shot Audio-Visual Retrieval. Table 4 reports the
performance of zero-shot retrieval on audio-visual datasets,
based on the similarity between the audio-visual embed-
dings. The sample lists used in the experiments for Au-
dioSet and VGGSound are the same as those used in CAV-
MAE (Gong et al., 2023). Additionally, to demonstrate
the robustness of our model across different datasets, we
perform further zero-shot retrieval experiments on MSR-
VTT. Our model consistently outperforms existing methods
pre-trained on AudioSet and achieves comparable results to
models pre-trained on HowTo100M, such as Boggust (Bog-
gust et al., 2019), Aranjelovic (Arandjelovic & Zisserman,
2017), and AVLnet (Noroozi & Favaro, 2016).
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Table 5. Zero-shot retrieval results on AudioSet and audio-visual
event classification performance on AudioSet-20K with the vari-
ants of pre-training methods. V2A: Video-to-audio zero-shot re-
trieval R@1, A2V: Audio-to-video zero-shot retrieval R@1. Inv.:
Invariant learning, Equi.: Equivariant learning, (zq, 2,): Original
embeddings, (2, z,,): Augmented embeddings, (24, 2,): Equivari-
ant embeddings, (Z., Z»): Centroids of equivariant representations.

7S Retrieval Fine-Tuning (mAP)
Intra. V2A A2V A \Y% A-V
Inv. (Za,2zv) 252 243  40.1 229 423

Inter.

Table 6. Zero-shot retrieval results on AudioSet and audio-visual
event classification performance on AudioSet-20K with the number
of equivariant representations used for computing the centroid in
the inter-modal latent space.

ZS Retrieval Fine-Tuning (mAP)
# representations V2A A2V A v A-V
1 27.8 274 41.2 23.6 434
4 28.3 29.0 414 244 44.9
8 29.4 29.2 41.9 24.9 45.5
16 30.1 29.6 424 25.7 46.6

Equi.  (z4,2,) 287 285 419 248 449 . .
Equi. 2 28.1 275 415 240 43.9 Table 7. Averaged cosine similarity score and Event classification
Equi (;7 2”) 278 274 412 236 434 performance on AudioSet-20K based on varying architectures of
. ay ~v . . . . M . .
Equi. (Z.,%,) 301  29.6 424 257 46.6 transformation predictor.
Similarity ZS Retrieval Fine-Tuning (mAP)
4.2. Ablation Studies Method A V. V2A A2V A VAV
This section presents ablation studies aimed at verifying I]:[inear . 8‘2? g‘gg ;g'é g;'g jé'(s) 5‘5‘; ﬁg
. . ypernet. . . . . . . .
the effectiveness of our framework. Firstly, we demon- MHA 090 092 301 296 424 257  46.6

strate the impact of employing equivariance and centroids
of audio-visual embeddings produced by the transformation
predictor in audio-visual contrastive learning. Next, we ex-
plore different architectures of the transformation predictor
and training strategy. Lastly, we analyze the impact of the
employed intra-modal equivariant loss function.

Impact of Single-modal Equivariance. As presented in
Table 5, employing equivariance in the intra-modal latent
space results in better zero-shot retrieval and fine-tuning per-
formances compared to the invariance-based method. This
underlines the role of intra-modal equivariance in capturing
the modality-unique information, which in turn facilitates
the learning of audio-visual correspondence and joint repre-
sentation. When using the augmented inputs for inter-modal
contrastive learning, there is a slight decrease in both zero-
shot retrieval and fine-tuning performances. The result sug-
gests the augmentation-related information learned through
intra-modal equivariance cannot entirely compensate for
the distortion of audio-visual correspondence caused by the
data augmentations.

On the other hand, utilizing the centroids of the equivari-
ant embeddings in the inter-modal latent space shows both
enhanced zero-shot retrieval and fine-tuning performances.
This provides two critical insights. Firstly, the equivariant
representation is successfully transferred from the intra-
modal latent space to the inter-modal latent space via the
shared proposed transformation predictor. Moreover, al-
though the individual augmented input pair may provide
inaccurate supervision regarding the audio-visual correspon-
dence, the centroid of these embeddings offers better super-
vision compared to the embeddings of the original input pair.
Note that we use 16 equivariant embeddings for computing
the centroid in this experiment.

Number of Representations for Computing Centroid.
As explained in Section 3.2, the centroid gets closer to
the true mean of the representations generated from the
augmented inputs by increasing the number of equivariant
representations. Table 6 shows that both zero-shot retrieval
and fine-tuning performance consistently improve as the
number of representations increases. However, since there
still exists a variance in the centroids, our method can suc-
cessfully overcome the trade-off between providing accurate
audio-visual correspondence and increasing the diversity of
training data. In addition, an advantage of our method is
that the equivariant representations are generated from the
representation of the original input using the transformation
predictor, instead of passing the augmented inputs through
the modality-specific encoders one by one. This can save
the significant overhead of computation and training time.
In our experiments, using 16 equivariant representations to
compute the centroids increases the computational cost and
training time by less than 1%, as illustrated in Appendix A.

Transformation Predictor Architectures. We explore
different architectures of the transformation predictor that
models the transformation in the latent space caused by in-
put augmentations. Equimod (Devillers & Lefort, 2023)
takes a concatenation of parameterized augmentation vector
and embedding as the input to a linear layer. SIE (Garrido
et al., 2023) points out that the predictor with such a simple
architecture can collapse to the identity function and sug-
gests a hypernetwork-based design that predicts the weights
of the predictor. In Table 7, we compare the cosine similar-
ity between the embedding of the augmented input z/,, and
the equivariant embedding predicted by the predictor Z,,, for
each architecture. The proposed attention-based architecture
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(a) child singing (b) playing electronic organ

(c) playing tympani (d) children shouting

Figure 3. Qualitative results of EquiAV using VGGSound. Top Left: Original input image, Top Right: Zero-shot sound source localization
result for the original input image. Bottom Left: Augmented image whose embedding is the closest to the centroid of equivariant
embeddings, Botton Right: Zero-shot sound source localization result for the augmented image.

Table 8. Zero-shot retrieval results on AudioSet and audio-visual
event classification performance on AudioSet-20K with the differ-
ent training strategies.

7S Retrieval Fine-Tuning (mAP)

Training Strategy V2A A2V A v A-V
Two-Stage 270 256 410 231 438
Alternating iterative ~ 28.5 29.0 416 248 447
Joint 301 29.6 424 257 46.6

predicts displacement more precisely than others. Moreover,
the well-trained equivariance leads to better performance in
downstream tasks.

Training Strategies. We also conduct an ablation study
on different training strategies for our framework. First, the
two-stage training strategy divides the intra-modal equiv-
ariant representation learning phase and the inter-modal
representation learning phase. In the first stage, the au-
dio and visual encoders are trained using the intra-modal
loss (Eq. 10), and in the second stage, both encoders un-
dergo combined training through inter-modal loss (Eq. 15).
Another training strategy employs an alternating iterative
weight update of intra-modal loss and inter-modal loss. For
a fair comparison, all strategies are trained with the same
epoch. In Table 8, the two-stage and alternating iterative
training strategies provide suboptimal results compared to
the joint training. The result demonstrates joint training
allows sufficient learning of intra-modal and inter-modal
representations simultaneously without forgetting salient
information.

Equivariant Loss Functions. Table 9 shows the results
of using different equivariant loss functions for intra-modal
pairs. The first row excludes the positive pair in the de-
nominator according to Equation A, while the second row
includes it as in Equation 9. When Equation 9 is used for
the intra-modal contrastive loss, the weight updates due to

Table 9. Zero-shot retrieval results on AudioSet and audio-visual
event classification performance on AudioSet-20K with different
loss functions.

Zero-shot Retrieval Fine-Tuning (mAP)

Intra-modal Loss V2A A2V A v A-V
without pos (Eq. A) 21.9 21.0 39.5 22.0 42.6
with pos (Eq. 9) 30.1 29.6 42.4 25.7 46.6

hard positives are relatively larger than those due to easy
positives. In the context of equivariant contrastive learn-
ing, learning from hard positive with the transformation
predictor is more effective, leading to better representation
quality. Consequently, the semantically rich intra-modal
representation promotes effective learning of audio-visual
correspondence and audio-visual joint representations. The
experimental results support our hypothesis. For further
analytical insights, refer to Appendix B.

4.3. Qualitative Results

The evaluation results and ablation studies indicate that the
proposed representative embedding effectively captures the
salient information of audio-visual inputs. We also explore
how the relationship between the original embedding and the
representative embedding is manifested in the input space.
To this end, 1,000 augmentation vectors are randomly gen-
erated for each sample and then the equivariant embedding
nearest to the centroid is selected as the substitute for the
centroid. The corresponding transformation for this equiv-
ariant embedding is likely the one that best represents the
image in the input space. The qualitative results in Figure 3
further validate our hypothesis, specifically by highlighting
the parts of the image corresponding to the paired audio.
In addition, the zero-shot sound source localization task is
performed on the original images and the images selected by
the above method. While the attention map on the original
images is dispersed to parts beyond the main elements, the
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attention for the augmented images, which correspond to
the substitute embeddings of the centroids, is precisely and
intensively concentrated on the areas that make the sound.

5. Conclusion

In this paper, we propose EquiAV, a novel self-supervised
audio-visual contrastive learning framework that incorpo-
rates the principle of equivariance. EquiAV overcomes the
limitations of applying augmentation in multi-modal repre-
sentation learning by deriving a representative embedding
with a proposed shared transformation predictor. Extensive
quantitative and qualitative results support the validity of
our approach. Furthermore, our approach can be adopted
in other multi-modal domains, such as vision-language. In
particular, a multi-modal dataset with paired data augmenta-
tions enables the diverse approaches of applying equivari-
ance in multi-modal representation learning. We leave it as
future work and we hope that EquiAV will help to push the
boundaries in multi-modal representation learning.
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A. Appendix
A. Additional Ablation Studies

Weight-Scales of Loss Function. To understand how audio-visual contrastive learning is influenced by learning from
each data modality, we explored the effects of setting Ag intrq and Ay inirq in Table A. When self-supervision is derived
solely from the audio domain (i.e. A, = 0), it yielded the highest performance in audio-only tasks but showed suboptimal
performance in visual-only and audio-visual tasks, and vice versa. Furthermore, adjusting the values of A\, and A, to be
either higher or lower relative to ;. also resulted in relatively lower performance. Consequently, we found that using
equal X values for both modalities and inter-modality learning produced balanced results.

Table A. Audio-visual event classification performance on AudioSet-20K with varying weights scales of loss function.

Fine-Tuning

)\inteT /\a;intra /\U;intra A \Y% A-V
1 1 0 42.9 24.0 434
1 0 1 41.2 26.3 43.2
1 2 2 42.2 25.5 45.5
1 0.5 0.5 413 25.1 46.0
1 1 1 424 25.7 46.6

Computational Cost & Scalability. Table B reports the computational costs required by generating equivariant represen-
tations and Table C shows how the size of the pre-training dataset affects performance on downstream tasks. The results
demonstrate the computational efficiency and scalability of our framework.

Table B. Computation cost for generating equivariant representations in audio and visual domains.

# representations Audio(GFLOPs) Visual(GFLOPs)

Baseline 97.80 35.20

1 98.21 (+0.41) 35.36 (+0.16)
4 98.23 (+0.43) 35.38 (+0.18)
8 98.25 (+0.45) 35.40 (+0.20)
16 98.30 (+0.50) 35.44 (+0.24)

Table C. Zero-shot retrieval results on AudioSet and audio-visual event classification performance on AudioSet-20K with the variants of
pre-training datasets.

Zero-shot Retrieval Fine-Tuning (mAP)
Pre-training Dataset V2A A2V A \'% A-V
AudioSet-20K 3.9 42 33.7 17.3 35.2
VGGSound 11.2 10.5 37.6 21.3 40.8
AudioSet-2M 30.1 29.6 42.4 25.7 46.6

B. Analysis on Equivariant Loss Functions

As mentioned in the ablation study on Table 9, our equivariant loss function differs from the equivariant contrastive loss
function used in EquiMod (Devillers & Lefort, 2023), regarding whether a positive pair similarity is included in the
denominator. The equivariant loss of EquiMod is the same as applying an indicator function to both summation terms in the
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denominators of Equation 9, which can be represented as follows:

frema(2 ) = zleog exp(sim(;, ;) /7) N
uiMod\%, 2 ) = — 7= y
Fauitod N &0 SN 1 exp(sim (2, 2'5) /) + exp(sim (2, ) /7)]
1 2 ’ ! 2
LEquiMod = §(£EquiM0d(zv 2") 4 lequimod (2, 2)). B)

Consider intra-modal training batch embeddings as {z;} = {2;} U {#/; }. For each i-th embedding, let’s denote the positive
sample as p; and the set of negative samples as NV;. Then, the equivariant loss terms of EquiMod and EquiAV can be simply
rewritten as

EquiMod __ _ Si,p;
L, = —log S —— ©)
nen; Sin
EliiQuiAv — _log Si,pi (D)

’
Sivpi + ZnENi Sivn

where s; ; = exp(sim(z;, z;)/7). Differentiating the above equations with respect to s; ,,, yields the following expressions:

9 EEquiMod B 1 (E)
asiyl’z Siapi ’
EquiAV
oLy 2 nen; Sim
851'-1)1' Si,p; (Siﬁﬂi + ZneNi Si,n) (F)
EquiMod
o aﬁiqm © ZneNi 87;1”

Bsip (s + Lnen, in)

When we compare the EquiAV loss to the EquiMod loss through Equ.F and Equ. E, the EquiAV loss puts relatively more
weight on hard positive compared to easy positive. This becomes particularly advantageous when stronger augmentations
lead to an increased frequency of hard positives. Training with more hard positives and applying equivariance substantially
enhances the model’s capability to comprehend detailed features in single-modal contexts. As a result, models enhanced
with this function show improved performance and effectively integrate different modalities.

C. Implementation Details

Datasets We utilize two prominent audio-visual datasets for our experiments: AudioSet (Gemmeke et al., 2017) and
VGGSound (Chen et al., 2020a). AudioSet comprises 2 million 10-second YouTube clips, designed to classify events into
527 distinct classes, with each data having multiple labels. We download 1,893,278 clips for the AudioSet-2M, 21,074 clips
for the AudioSet-20K, and 19,446 clips for evaluation. Particularly, AudioSet-20K is a subset of AudioSet-2M. VGGSound
includes 200,000 10-second YouTube clips, encompassing 309 classes. The training and test splits of VGGSound consist of
183,730 and 15,446 downloaded clips, respectively. Unlike AudioSet, it has only one label for each clip. For the zero-shot
retrieval evaluation, we collect 1,722 and 1,545 clips from AudioSet and VGGSound’s evaluation set respectively. In
addition, MSR-VTT (Xu et al., 2016) test set is also used in the zero-shot retrieval task.

Input Pre-processing. We follow AST (Gong et al., 2021) and ViT (Dosovitskiy et al., 2021) for pre-processing of
audio and visual inputs, respectively. For audio, each 10-second audio waveform is transformed into a sequence of 128-
dimensional log Mel filterbank features by using a 25-ms Hanning window and a 10-ms hop size, resulting in a 1024(time)
x 128(frequency) spectrogram. For visual inputs, 10 frames are uniformly extracted from each 10-second video, and one
frame is randomly selected as the input. Then the audio spectrogram and the video frame are tokenized to 16 x 16 patches
and fed to the audio and visual encoders. In terms of input data augmentation for the visual modality, the typical visual-based
augmentations are used; Random Resized Crop (RRC), Color Jitter (CJ), Gaussian Blur (GB), Horizontal Flip (HF), and

13



EquiAV: Leveraging Equivariance for Audio-Visual Contrastive Learning

Gray Scale (GS). On the other hand, both audio- and visual-based augmentations are applied to the audio spectrogram.
Specifically, SpecAugment (SA) (Park et al., 2019) and Time Shifting (TS) are utilized as audio-based augmentations.
Meanwhile, the same augmentations pool used for the visual modality excluding GS is applied to audio spectrograms, as the
spectrogram has only one channel.

Augmentation Parameterization. Audio and visual augmentations as well as their parameterization used in this work are
listed as follows:

* Random resized crop (4 elements for both audio & visual): x and y coordinates of the top-left point, as well as the
width and height of the crop (<0, 0, 0, 0>, is used as a default encoding).

* Color jitter (8 elements for visual & 4 elements for audio): the jitter factors for brightness, contrast, saturation, and hue
of video frames, as well as the order of the application of transformation. We use the following mapping to encode the
order of transformation: {0: brightness, 1: contrast, 2: saturation, 3: hue}. For instance, an encoding <2, 1, 3, 0>
indicates that the saturation jitter is first applied, and then contrast, hue, and brightness (<0, 1, 2, 3> is used as default).
On the other hand, we only use brightness and contrast jitters for audio spectrograms, as the audio spectrograms are
originally grayscale. Then, we use the following mapping to encode the order of jitter transformation: 0: brightness, 1:
contrast (<0, 1> is used as default).

* Gaussian blur (1 element for both audio & visual): the value of ¢ for Gaussian blurring kernel (0 as default).

* Horizontal flip (1 element for both audio & visual): 1 if an image or an audio spectrogram is horizontally flipped and 0
otherwise.

* Grayscale (1 element, for visual only): 1 if an image is converted to grayscale and O otherwise.
* Random time shifting (1 element, for audio only): the value of temporal shift of the audio spectrogram.

* SpecAug (Park et al., 2019) (4 elements, for audio only): starting and end points of the masking along the time and
frequency axis of the audio spectrogram.

All augmentations except random resized crop (which is always applied) are applied with pre-defined probability. Therefore
for each augmentation, we add an element, whose value is 1 when the augmentation is actually applied and O otherwise,
to a parameterized vector. Consequently, the audio and visual augmentations are encoded into 24-dimensional and 18-
dimensional vectors respectively.
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D. Hyperparameter Details

The hyperparameter settings used in this paper are listed in Table D.

Table D. Hyperparameters used in pre-training and fine-tuning phase.

Stage Pre-training Fine-Tuning

Dataset AudioSet-2M AudioSet-20K  AudioSet-2M  VGGSound ESC-50 SPC-vl FSD-50K UCF101 HMDB51 K400
Optimizer AdamW

Optimizer momentum $£1=0.9, 32=0.95

Weight decay le-5

Learning rate scheduler half-cycle cosine annealing (Loshchilov & Hutter, 2017)

Initial learning rate le-6

Peak learning rate le-4 le-4 le-4 le-4 Se-4 le-3 Se-4 le-3 Se-4 Se-4
‘Warm-up epochs 2 1 1 1 4 1 4 0 0 4
Epochs 20 50 50 50 60 10 60 100 100 100
Batch size 256 256 512 256 64 256 64 32 32 512
Class Balancing Weight No No Yes Yes No No No No No No
Mixup No Yes Yes Yes No Yes No No No Yes
Loss Function EquiAV Loss (Eq. 16) BCE BCE CE CE BCE BCE CE CE CE
Temperature (7) 0.07 - - - - - - - - -
Input Norm Mean -4.346 -4.346 -4.346 -4.956 -6.627 -6.702 -6.627 - - -
Input Norm STD 4.332 4.332 4.332 4.486 5.359 5.448 5.359 - - -
GPUs 8 A6000 8 A5000 8 A6000 8 A5000 8 A5000 8 A5000 8AS5000 8A5000 8A5000 8 A5000

15



