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Abstract
We study the multiple-policy evaluation prob-
lem where we are given a set of K policies and
the goal is to evaluate their performance (ex-
pected total reward over a fixed horizon) to an
accuracy ϵ with probability at least 1 − δ. We
propose an algorithm named CAESAR for this
problem. Our approach is based on computing
an approximately optimal sampling distribution
and using the data sampled from it to perform
the simultaneous estimation of the policy values.
CAESAR has two phases. In the first phase, we
produce coarse estimates of the visitation dis-
tributions of the target policies at a low order
sample complexity rate that scales with Õ( 1ϵ ).
In the second phase, we approximate the opti-
mal sampling distribution and compute the im-
portance weighting ratios for all target policies
by minimizing a step-wise quadratic loss func-
tion inspired by the DualDICE (Nachum et al.,
2019) objective. Up to low order and logarith-
mic terms CAESAR achieves a sample complex-

ity Õ

(
H4

ϵ2

∑H
h=1 maxk∈[K]

∑
s,a

(dπk

h (s,a))2

µ∗
h(s,a)

)
,

where dπ is the visitation distribution of policy π,
µ∗ is the optimal sampling distribution, and H is
the horizon.

1. Introduction
This paper delves into the problem of policy evaluation, a
fundamental problem in RL (Sutton and Barto, 2018) of
which the goal is to estimate the expected total rewards of a
given policy. This process serves as an integral component
in various RL methodologies, such as policy iteration and
policy gradient approaches (Sutton et al., 1999), wherein the
current policy undergoes evaluation followed by potential
updates. Policy evaluation is also paramount in scenarios
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where prior to deploying a trained policy, thorough evalua-
tion is imperative to ensure its safety and efficacy.

Broadly speaking there exist two scenarios where the prob-
lem of policy evaluation has been considered, known as on-
line and offline data regimes. In online scenarios, a learner is
interacting sequentially with the environment and is tasked
with using its online deployments to collect helpful data
for policy evaluation. The simplest method for online pol-
icy evaluation is Monte-Carlo estimation (Fonteneau et al.,
2013). One can collect multiple trajectories by following
the target policy, and use the empirical mean of the rewards
as the estimator. These on-policy methods typically require
executing the policy we want to estimate which may be
unpractical or dangerous in many cases. For example, in a
medical treatment scenario, implementing an untrustworthy
policy can cause unfortunate consequences (Thapa et al.,
2005). In these cases, offline policy evaluation may be
preferable.

In the offline case, the learner has access to a batch of data
and is tasked with using it in the best way possible to esti-
mate the value of a target policy. Many works focus on this
problem leveraging various techniques, such as importance-
sampling, model-based estimation, and doubly-robust esti-
mators (Yin and Wang, 2020; Jiang and Li, 2016; Yin et al.,
2021; Xie et al., 2019; Li et al., 2015). In the context of
offline evaluation, the theoretical guarantees depend on the
overlap between the offline data distribution and the visita-
tions of the evaluated policy (Xie et al., 2019; Yin and Wang,
2020; Duan et al., 2020). These coverage conditions, which
ensure that the data logging distribution (Xie et al., 2022)
adequately covers the state space, are typically captured by
the ratio between the densities corresponding to the offline
data distribution and the policy to evaluate, also known as
importance ratios.

Motivated by applications where one has multiple policies
to evaluate, e.g., multiple policies trained using different
hyperparameters, Dann et al. (2023) considered multiple-
policy evaluation which aims to estimate the performance
of a set of K target policies instead of a single one. At
first glance, multiple-policy evaluation does not pose chal-
lenges beyond single-policy evaluation since one can always
use K instances of single-policy evaluation to evaluate the
K policies. However, since the sample complexity of this
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procedure scales linearly as a function of K, this can be
extremely sample-inefficient as it neglects potential similar-
ities among the K target policies.

Dann et al. (2023) proposed an online algorithm that lever-
ages the similarity among target policies based on an idea
related to trajectory synthesis (Wang et al., 2020). The basic
technique is that if more than one policy take the same ac-
tion at a certain state, then only one sample is needed at that
state which can be reused to synthesize trajectories for these
policies. Their algorithm achieves an instance-dependent
sample complexity which gives much better results when
target policies have many overlaps while it requires estima-
tion of generative models as an intermediate step which can
be unpractical.

Different from Dann et al. (2023), in this work, we tackle
multiple-policy evaluation problem from the offline perspec-
tive1. In the context of single-policy evaluation, an offline
dataset is typically given and assumed to provide good cover-
age over the state space of the target policy. Nevertheless, in
our scenario, such a dataset does not exist. To overcome this
issue, we design our algorithm based on the idea of firstly
calculating a behavior distribution with enough coverage
of the target policy set. Once this distribution is computed,
independently and identically distributed (i.i.d.) samples
from the behavior distribution can be used to estimate the
value of the target policies using ideas inspired in the of-
fline policy optimization literature. Briefly speaking, our
algorithms consist of two phases:

1. Build coarse estimators of the policy visitation distri-
butions and use them to compute a mixture policy that
achieves a low visitation ratio with respect to all K
policies to evaluate.

2. Sample from this approximately optimal mixture pol-
icy and use these to construct mean reward estimators
for all K policies by importance weighting.

Coarse estimation refers to estimating a target value up to
constant multiplicative accuracy (see Definition 4.1). We
show that coarse estimation of the visitation distributions
can be achieved at a cost that scales linearly, instead of
quadratically with the inverse of the accuracy parameter.
This ensures that the sample cost in the first phase of our
algorithm is of lower order and can therefore be considered
negligible (see Section 4.1). We then show that estimat-
ing the policy visitation distributions up to multiplicative
accuracy is enough to find an approximately optimal be-
havior distribution that minimizes the maximum visitation
ratio among all policies to estimate (see Section 4.2). In

1We say offline here to emphasize that the final evaluation is
conducted in an offline fashion rather than implying there is no
interaction with the environment.

the second phase, the samples generated from this behavior
distribution are used to estimate the target policy values via
importance weighting. Since the importance weights are
not known to sufficient accuracy, we propose the IDES or
Importance Density EStimation algorithm (see Algorithm 1)
for estimating these distribution ratios by minimizing a se-
ries of loss functions inspired by the DualDICE (Nachum
et al., 2019) method (see Section 4.3). Combining these
steps we arrive at our main algorithm (CAESAR) or Coarse
and Adaptive EStimation with Approximate Reweighing al-
gorithm (see Algorithm 2) that achieves a high probability
finite sample complexity for the problem of multi-policy
evaluation.

We summarize our contributions as the following,

• We propose a novel, sample-efficient algorithm,
CAESAR , for the multiple-policy evaluation problem
which achieves a non-asymptotic, instance-dependent
sample complexity. CAESAR provides new results
and valuable insights to the existing literature while
sharing several advantages compared to existing ap-
proaches (see Section 5).

• We introduce the technique of coarse estimation and
demonstrate its effectiveness in solving the multiple-
policy evaluation problem. We believe this technique
has potential applications beyond the scope of this
work.

• We propose an algorithm, IDES , as a subroutine of
CAESAR to accurately estimate the marginal impor-
tance ratios by minimizing a carefully designed step-
wise loss function. IDES is a non-trivial extension
of DualDICE to finite-horizon Markov Decision Pro-
cesses (MDPs).

• We propose a novel notion termed β-distance along
with an algorithm MARCH , which achieves coarse
estimation of the visitation distribution for all determin-
istic policies, with a sample complexity scales polyno-
mially in parameters such as the size of the state and
action spaces, despite the fact of exponential number
of deterministic policies.

2. Related Work
There is a rich family of off-policy estimators for policy
evaluation (Liu et al., 2018; Jiang and Li, 2016; Dai et al.,
2020; Feng et al., 2021; Jiang and Huang, 2020). But none
of them is effective in our setting. Importance-sampling
is a simple and popular method for off-policy evaluation
but suffers exponential variance in the horizon (Liu et al.,
2018). Marginalized importance-sampling has been pro-
posed to get rid of the exponential variance. However, ex-
isting works all focus on function approximations which
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only produce approximately correct estimators (Dai et al.,
2020) or are designed for the infinite-horizon case (Feng
et al., 2021). The doubly robust estimator (Jiang and Li,
2016; Hanna et al., 2017; Farajtabar et al., 2018) also solves
the exponential variance problem, but no finite sample re-
sult is available. Our algorithm is based on marginalized
importance-sampling and addresses the above limitations in
the sense that it provides non-asymptotic sample complex-
ity results and works for finite-horizon Markov Decision
Processes (MDPs).

Another popular estimator is called model-based estima-
tor, which evaluates the policy by estimating the transition
function of the environment (Dann et al., 2019; Zanette and
Brunskill, 2019). Yin and Wang (2020) provide a similar
sample complexity to our results. However, there are some
significant differences between their result and ours. First,
our sampling distribution; calculated based on the coarse
distribution estimator, is optimal. Second, our sample com-
plexity is non-asymptotic while their result is asymptotic.
Third, the true distributions appearing in our sample com-
plexity can be replaced by known distribution estimators
without inducing additional costs, that is, we can provide a
known sample complexity while their result is always un-
known since we do not know the true visitation distributions
of target policies.

The work that most aligns with ours is Dann et al. (2023),
which proposed an on-policy algorithm based on the idea of
trajectory synthesis. The authors propose the first instance-
dependent sample complexity analysis of the multiple-
policy evaluation problem. Different from their work, our
algorithm uses off-policy evaluation based on importance-
weighting and achieves a better sample complexity with
simpler techniques and analysis. Concurrently, Russo and
Pacchiano (2025) studied the multiple-policy evaluation
problem in discounted settings from the lower bound per-
spective.

Analogous to our two-stage pipeline, Amortila et al. (2024)
proposed an exploration objective for downstream reward
maximization, similar to our goal of computing an optimal
sampling distribution. However, our approximate objective,
based on coarse estimation is easier to solve, which is a
significant contribution while they need layer-by-layer in-
duction. They also introduced a loss function to estimate
ratios, similar to how we estimate the importance densi-
ties. However, our ratios are defined differently from theirs
which require distinct techniques.

Several existing works have utilized estimates of visitation
distributions up to multiplicative constant accuracy (Zhang
and Zanette, 2023; Li et al., 2023). We formally formulate
the technique of coarse estimation and present clean results
that are ready to use in general scenarios while the existing
results have more additional complex terms and are limited

to the specific tasks. Moreover, our coarse estimation re-
sults are based on simple concentration inequalities and the
multiplicative constant can be any value, leading to more
flexible and elegant formulations.

Our algorithm also uses some techniques modified from
other works which we summarize here. DualDICE is a
technique for estimating distribution ratios by minimizing
some loss functions proposed by (Nachum et al., 2019).
We build on this idea and make some modifications to
meet the need in our setting. Besides, we utilize stochastic
gradient descent algorithms and their convergence rate for
strongly-convex and smooth functions from the optimiza-
tion literature (Hazan and Kale, 2011). Finally, we adopt
the Median of Means estimator (Minsker, 2023) to convert
in-expectation results to high-probability results.

3. Preliminaries
Notations We denote the set {1, 2, . . . , N} by [N ].
{Xn}Nn=1 represents the set {X1, X2, . . . , XN}. Eπ[·] de-
notes the expectation over the trajectories induced by policy
π while Eµ[·] represents the expectation over the trajectories
sampled from distribution µ. Õ(·) hides constants, logarith-
mic and lower-order terms. We use V[X] to represent the
variance of random variable X . Πdet is the set of all deter-
ministic policies and conv(X ) represents the convex hull
of the set X . If not explicitly specified, ∀s, a, h, k stands
for ∀s ∈ S, a ∈ A, h ∈ [H], k ∈ [K]. Finally, Median(·)
denotes the median of a set of numbers.

Reinforcement learning framework We consider
episodic tabular Markov Decision Processes (MDPs)
defined by a tuple {S,A, H, {Ph}Hh=1, {rh}Hh=1, ν}, where
S and A represent the state and action spaces, respectively,
with S and A denoting the respective cardinality of these
sets. H is the horizon which defines the number of
steps the agent can take before the end of an episode.
Ph(·|s, a) ∈ ∆S is the transition function which represents
the probability of transitioning to the next state if the
agent takes action a at state s. And rh(s, a) is the reward
function, accounting for the reward the agent can collect
by taking action a at state s. In this work, we assume that
the reward is deterministic and bounded rh(s, a) ∈ [0, 1],
which is consistent with prior work (Dann et al., 2023). We
denote the initial state distribution by ν ∈ ∆S.

A policy π = {πh}Hh=1 is a mapping from the state space
to the probability distribution space over the action space.
πh(a|s) denotes the probability of taking action a at state s
and step h. The value function V π

h (s) of a policy π is the
expected total reward the agent can receive by starting from
step h, state s, and following the policy π, i.e., V π

h (s) =

Eπ[
∑H

l=h rl|s]. The performance J(π) of a policy π is
defined as the expected total reward the agent can obtain.
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Figure 1. The scheme of CAESAR . In Phase I, we collect Õ(1/ϵ) trajectories for each target policies π1, . . . , πK and obtain coarse
estimators of their visitation distributions d̂π1 , . . . , d̂πK . Based on the coarse estimator, we can generate an approximately optimal
sampling dataset which has good coverage over the visitations of target policies. In Phase II, we sample data from the approximately
optimal dataset and leverage the coarse estimators from Phase I to perform importance density estimation for each target policies
by implementing IDES . With the estimated importance density ŵπ1 , . . . , ŵπK , we can output the final performance evaluators
V̂ π1 , . . . , V̂ πK .

By the definition of the value function, we have J(π) =
V π
1 (s|s ∼ ν). For simplicity, in the following context, we

use V π
1 to denote V π

1 (s|s ∼ ν).

The state visitation distribution dπh(s) of a policy π repre-
sents the probability of reaching state s at step h if the
agent starts from a state sampled from the initial state
distribution ν at step l = 1 and follows policy π subse-
quently, i.e., dπh(s) = P[sh = s|s1 ∼ ν, π]. Similarly,
the state-action visitation distribution dπh(s, a) is defined as
dπh(s, a) = dπh(s)π(a|s). Based on the definition of the vis-
itation distribution, the performance of policy π can also be
expressed as J(π) = V π

1 =
∑H

h=1

∑
s,a d

π
h(s, a)rh(s, a).

Multiple-policy evaluation problem setup In multiple-
policy evaluation, we are given a set of known policies
{πk}Kk=1 and a pair of factors {ϵ, δ}. The objective is to
evaluate the performance of these given policies such that
with probability at least 1−δ, ∀π ∈ {πk}Kk=1, |V̂ π

1 −V π
1 | ≤

ϵ, where V̂ π
1 is the performance estimator.

4. Main Results and Algorithm
In this section, we introduce our main algorithm, CAESAR
step-by-step and present the main results. CAESAR is
sketched out in Algorithm 2 as well as in Figure 1 for
easy reference. We try to build a single sampling dataset
with good coverage over target policies, with which we can
estimate the performance of all target policies simultane-
ously using importance weighting. To that end, we first

coarsely estimate the visitation distributions of target poli-
cies at the cost of a lower-order sample complexity. Based
on these coarse distribution estimators, we can build an
approximately optimal sampling distribution by solving a
convex optimization problem. Finally, we utilize the idea of
DualDICE (Nachum et al., 2019) with some modifications
to estimate the importance-weighting ratio.

4.1. Coarse estimation of visitation distributions

It is well known that to estimate a quantity up to ϵ-accuracy,
approximately Õ( 1

ϵ2 ) samples are needed, e.g., as indicated
by Hoeffding′s inequality. However, it does not serve our
need since it is too expensive in terms of sample complexity.
In other words, if we can estimate the visitations of target
policies with ϵ-accuracy, the value functions derived from
these estimated visitations will already be sufficiently accu-
rate. At the same time, designing a sampling distribution
that ensures good coverage of the target policy set requires
certain knowledge about the visitations of the target policies.
To that end, we introduce the concept of coarse estimators
which is defined below.
Definition 4.1 (Coarse Estimator). Given an accuracy ϵ, An
estimator x̂ is a coarse estimator to the true value x if it
satisfies |x̂− x| ≤ max{ϵ, |x|/c} where c is a constant.

We next show that coarse estimation of the visitation distri-
butions can be achieved by paying sample complexity of just
Õ( 1ϵ ) which is much cheaper compared to Õ( 1

ϵ2 ). And we
will show in the next section that the coarse estimator pro-

4



Multiple-policy Evaluation via Density Estimation

vides us enough information to construct an approximately
optimal sampling distribution that minimizes the maximum
visitation ratio among all policies to estimate.

The idea behind the feasibility of computing these coarse es-
timators is based on the following lemma which shows that
estimating the mean value of a Bernoulli random variable
up to constant multiplicative accuracy only requires Õ( 1ϵ )
samples.

Lemma 4.2. Let Zℓ be i.i.d. samples Zℓ
i.i.d.∼ Ber(p). Set-

ting t ≥ C log(C/ϵδ)
ϵ , for some known constant C > 0, it fol-

lows that with probability at least 1− δ, the empirical mean
estimator p̂t = 1

t

∑t
ℓ=1 Zℓ satisfies, |p̂t − p| ≤ max{ϵ, p

4}.

Let {(si1, ai1), (si2, ai2), . . . , (siH , aiH)} denote a trajectory
collected by following policy π. Then the random variable
Zi(h, s, a) defined below is a Bernoulli random variable
such that Zi(h, s, a)

i.i.d.∼ Ber(dπh(s, a)).

Zi(h, s, a) =

{
1, sih, a

i
h = s, a,

0, otherwise.

We can construct such random variables for each (h, s, a).
Together with Lemma 4.2, we are able to coarsely estimate
the visitation distributions of a policy by sampling Õ( 1ϵ )
trajectories.

Proposition 4.3. With number of trajectories n ≥
CK log(CK/ϵδ)

ϵ = Õ( 1ϵ ), we can estimate d̂π
k

= {d̂πk

h }Hh=1

such that with probability at least 1 − δ, |d̂πk

h (s, a) −

dπ
k

h (s, a)| ≤ max{ϵ, dπk

h (s,a)
4 }, ∀s, a, h, k.

In Appendix B, we propose an algorithm, MARCH (Multi-
policy Approximation via Ratio-based Coarse Handling),
which computes coarse estimators of visitation distribu-
tions for all deterministic policies with sample complexity
Õ(poly(H,S,A)

ϵ ). This is a significant result since the num-
ber of deterministic policies scales exponentially with the
size of the state space and horizon. The result is achieved
through a novel analysis based on our proposed notion
named β−distance. Due to space constraints, we refer read-
ers to Appendix B for further details.

Before proceeding to the next section, notice that states and
actions with low estimated visitation probabilities can be
ignored without inducing significant errors based on the
following lemma.

Lemma 4.4. Suppose we have an estimator d̂(s, a) of
d(s, a) such that |d̂(s, a) − d(s, a)| ≤ max{ϵ′, d(s,a)

4 }.
If d̂(s, a) ≥ 5ϵ′, then max{ϵ′, d(s,a)

4 } = d(s,a)
4 , and if

d̂(s, a) ≤ 5ϵ′, then d(s, a) ≤ 7ϵ′.

Lemma 4.4 tells us if we replace ϵ′ by ϵ
14SA , the error

induced by ignoring those state-action pairs which satisfy

d̂(s, a) ≤ 5ϵ′ is at most ϵ
2 . For simplicity of presentation,

we can set d̂πh(s, a) = dπh(s, a) = 0 if d̂πh(s, a) < 5ϵ
14SA .

Finally, we have coarse estimators of the visitations for
target policies such that,

|d̂π
k

h (s, a)− dπ
k

h (s, a)| ≤ dπ
k

h (s, a)

4
, ∀s, a, h, k. (1)

4.2. Approximately optimal sampling distribution

In this section, we validate the claim from the previous
section that the coarse estimator provides sufficient informa-
tion (i.e., accurate enough) to construct an approximately
optimal sampling distribution that minimizes the maximum
visitation ratio among all policies to estimate.

Suppose that we have a dataset with distribution
{µh}Hh=1, from which we can sample trajectories
{si1, ai1, si2, ai2, . . . , siH , aiH}ni=1, then we can evaluate the
expected total rewards of target policies by importance
weighting. Specifically,

V̂ πk

1 =
1

n

n∑
i=1

Xπk

i , k ∈ [K]. (2)

where Xπk

i =
∑H

h=1
dπk

h (sih,a
i
h)

µh(sih,a
i
h)

rh(s
i
h, a

i
h) is the total re-

ward gained in a trajectory. Note that the above estimators
rely on an unknown quantity dπh(s, a), i.e., the true visita-
tion distribution. In the next section, we will show how to
accurately estimate these importance-weighting ratios.

It can be shown that the variance of the value function
estimator Xπk

i is bounded by (see Appendix A.2),

Vµ[X
πk

i ] ≤ H ·
H∑

h=1

E
dπk

h

[
dπ

k

h (sh, ah)

µh(sh, ah)

]
. (3)

We aim to identify the optimal sampling distribution by
minimizing the variance (3) of the value function estimator
across all target policies, resulting in the following convex
optimization problem:

µ∗
h = argmin

µh∈conv(Dh)

max
k∈[K]

∑
s,a

(dπ
k

h (s, a))2

µh(s, a)
, h ∈ [H]. (4)

We constrain µh in the convex hull of Dh = {dπk

h : k ∈
[K]}, since in some cases, the optimal µ∗ may not be real-
ized by any policy (see Appendix A.3). One can also set
Dh = {dπh : π ∈ Πdet} which allows any feasible distri-
bution, ensuring a globally optimal sampling distribution
at the cost of more computations towards solving the opti-
mization problem. We denote the optimal solution to (4) as
µ∗
h =

∑K
k=1 α

∗
kd

πk

h .

It is impossible to solve (4) since the true visitations dπh
are unknown to us. Therefore, we utilize the coarse estima-
tors obtained in the last section to replace these unknown
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distributions which leads to the following approximate opti-
mization problem,

µ̂∗
h = argmin

µh∈conv(D̂h)

max
k∈[K]

∑
s,a

(d̂π
k

h (s, a))2

µh(s, a)
, h ∈ [H], (5)

where D̂h = {d̂πk

h : k ∈ [K]}. We denote the optimal solu-
tion to (5) by µ̂∗

h =
∑K

k=1 α̂
∗
K d̂π

K

h . Consequently, our true
sampling distribution from which trajectories are sampled
is µ̃∗

h =
∑K

k=1 α̂
∗
kd

πk

h . And based on (1), we also have the
relationship,

|µ̃∗
h(s, a)− µ̂∗

h(s, a)| ≤
µ̃∗
h(s, a)

4
(6)

Finally, we conclude this section by showing µ̃∗
h is approxi-

mately optimal.

Lemma 4.5. The sampling distribution µ̃∗ is approximately
optimal such that,

max
k∈[K]

∑
s,a

(dπ
k

h (s, a))2

µ̃∗
h(s, a)

≤ C max
k∈[K]

∑
s,a

(dπ
k

h (s, a))2

µ∗
h(s, a)

where C is a constant and µ∗ is the optimal solution to (4).

4.3. Estimation of importance-weighting ratios

In the previous section, we constructed a sampling dataset
with distribution µ̃∗, from which we can draw trajecto-
ries. The remaining challenge is that estimating the value
function using (2) requires knowledge of the importance-
weighting ratios. To address this, we introduce an algorithm,
IDES, outlined in Algorithm 1, for estimating these ratios.
IDES is inspired by the idea of DualDICE (Nachum et al.,
2019). In DualDICE, they propose the following loss func-
tion,

ℓπ(w) =
1

2
Es,a∼µ

[
w2(s, a)

]
− Es,a∼dπ [w(s, a)] . (7)

The minimum of ℓπ(·) is achieved at wπ,∗(s, a) = dπ(s,a)
µ(s,a) ,

the importance weighting ratio. By applying a variable trans-
formation based on Bellman’s equation, they derive a final
loss function that eliminates the need for on-policy samples
in infinite-horizon MDPs. The importance-weighting ratios
are then obtained by optimizing this loss function.

We extend this approach to finite-horizon MDPs by propos-
ing a step-wise loss function, which we define below. It
is important to emphasize that IDES is not a trivial exten-
sion of DualDICE. While IDES adopts the quadratic loss
function from DualDICE, it applies fundamentally different
techniques and analyses.

First, IDES leverages coarse distribution estimators to ad-
dress the on-policy limitation of the second term in (7),

Algorithm 1 Importance Density Estimation (IDES )
Input: Horizon H , accuracy ϵ, target policy π, coarse
estimator {d̂πh}Hh=1 , {µ̂h}Hh=1 and dataset µ
Define feasible sets {Dh}Hh=1 where Dh(s, a) =

[0, 2d̂πh(s, a)].
Initialize w0

h = 0, h = 1, . . . ,H , and set µ0(s0, a0) =
1, P0(s|s0, a0) = ν(s), ŵ0 = µ̂0 = 1.
for h = 1 to H do

Set the iteration number of optimization, nh =

Ch

(
H4

ϵ2

∑
s,a

(d̂π
h(s,a))

2

µ̂h(s,a)
+

(d̂π
h−1(s,a))

2

µ̂h−1(s,a)

)
, where Ch

is a known constant.
for i = 1 to nh do

Sample {sih, aih} from µh and {sih−1, a
i
h−1, s

i′

h}
from µh−1.
Calculate gradient g(wi−1

h ),

g(wi−1
h )(s, a) =

wi−1
h (s, a)

µ̂h(s, a)
I(sih = s, aih = a)

−
ŵh−1(s

i
h−1, a

i
h−1)

µ̂h−1(sih−1, a
i
h−1)

π(a|s)I(si
′

h = s).

Update wi
h = Projw∈Dh

{wi−1
h − ηihg(w

i−1
h )}.

end for
Output the estimator ŵh = 1∑nh

i=1 i

∑nh

i=1 w
i
h.

end for

whereas DualDICE relies on a variable transformation based
on Bellman’s equation, which is only applicable to infinite-
horizon MDPs. Second, IDES employs a step-wise ob-
jective function, requiring sequential step-to-step optimiza-
tion and analysis, whereas DualDICE formulates a single
loss function. Third, although both IDES and DualDICE
achieve a sample complexity of Õ(C/ϵ2), the value of C in
DualDICE’s bound is not sufficiently tight for our purposes,
which involve deriving instance-dependent guarantees. In
contrast, we offer a precise analysis linking the value of C
in IDES to the expected visitation ratios. Lastly, IDES pro-
vides high-probability results for visitation ratio estimation,
whereas DualDICE’s results hold only in expectation.

Our step-wise loss function of a policy π at each step h is
defined as,

ℓπh(w) =
1

2
Es,a∼µ̃∗

h

[
w2(s, a)

µ̂∗
h(s, a)

]
− E s′,a′∼µ̃∗

h−1
s∼Ph−1(·|s′,a′)

[∑
a

ŵh−1(s
′, a′)

µ̂∗
h−1(s

′, a′)
w(s, a)π(a|s)

]

where µ̃∗
h =

∑K
k=1 α̂

∗
kd

πk

h is the sampling distribution, and
µ̂∗
h =

∑K
k=1 α̂

∗
kd̂

πk

h is the optimal solution to the approxi-
mate optimization problem (5) (see Appendix 4.2). And for
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notation simplicity, we set µ̃∗
0(s0, a0) = 1, P0(s|s0, a0) =

ν(s), ŵ0 = µ̂∗
0 = 1.

Although it may appear complex at first glance, it possesses
favorable properties that allow us to derive importance-
weighting ratios iteratively, as formalized in the following
two lemmas.
Lemma 4.6. Suppose we have an estimator ŵh−1 at step
h− 1 such that,∑

s,a

∣∣∣∣µ̃∗
h−1(s, a)

ŵh−1(s, a)

µ̂∗
h−1(s, a)

− dπh−1(s, a)

∣∣∣∣ ≤ ϵ,

then by minimizing the loss function ℓπh(w) at step h to
∥∇ℓπh(ŵh(s, a))∥1 ≤ ϵ, we have,∑

s,a

∣∣∣∣µ̃∗
h(s, a)

ŵh(s, a)

µ̂∗
h(s, a)

− dπh(s, a)

∣∣∣∣ ≤ 2ϵ.

Lemma 4.6 shows that the importance-weighting ratio es-
timator from the previous step enables the estimation of
the ratio at the current step, introducing only an additive
error. Consequently, by optimizing iteratively, we can accu-
rately estimate the importance-weighting ratios at all steps,
as formalized in the following lemma.
Lemma 4.7. Implementing Algorithm 1 with πk, we have

the importance density estimator ŵπk

h (s,a)
µ̂∗
h(s,a)

such that,

E

[∑
s,a

∣∣∣∣∣µ̃∗
h(s, a)

ŵπk

h (s, a)

µ̂∗
h(s, a)

− dπ
k

h (s, a)

∣∣∣∣∣
]
≤ ϵ

4H
, ∀h.

(8)

The above result holds in expectation. To obtain a high-
probability guarantee, we introduce a Median-of-Means
(MoM) estimator (Minsker, 2023), formalized in the fol-
lowing lemma, along with a data-splitting technique. To-
gether, these methods enable us to transform (8) into a
high-probability result (see Appendix A.8).
Lemma 4.8. Let x ∈ R and suppose we have a stochastic
estimator x̂ such that E[|x̂− x|] ≤ ϵ

4 . Then, if we generate
N = O (log(1/δ)) i.i.d. estimators {x̂1, x̂2, . . . , x̂N} and
choose x̂MoM = Median(x̂1, x̂2, . . . , x̂N ), we have with
probability at least 1− δ,

|x̂MoM − x| ≤ ϵ.

Another noteworthy property of our loss function is
that it is γ-strongly convex and ξ-smooth where γ =

mins,a
µ̃∗
h(s,a)

µ̂∗
h(s,a)

, ξ = maxs,a
µ̃∗
h(s,a)

µ̂∗
h(s,a)

. From property (6), it
follows that γ and ξ are bounded from both sides, as is their
ratio ξ

γ . This property plays a crucial role in analyzing the
sampling complexity of the minimization of the loss func-
tion via stochastic gradient descent, which we discuss in
Appendix A.6.

Algorithm 2 Coarse and Adaptive EStimation with
Approximate Reweighing for Multi-Policy Evaluation
(CAESAR )

Input: Accuracy ϵ, confidence δ, target policies
{πk}Kk=1.
Coarsely estimate visitation distributions of all target poli-
cies and get {d̂πk

: k ∈ [K]}.
Solve the approximate optimization problem (5) and con-
struct the dataset µ̃∗.
Implement IDES (Algorithm 1) to get importance-
weighting ratios {ŵπk}Kk=1.
Build the final performance estimator {V̂ πk

1 }Kk=1 by (9).
Output: {V̂ πk

1 }Kk=1.

4.4. Main results

We are now ready to present our main sample complexity re-
sult for the multiple-policy evaluation problem, building on
the findings from previous sections. Using the importance-

weighting ratio estimator ŵπk

h (s,a)
µ̂∗
h(s,a)

, we can evaluate the per-

formance of the target policy πk by,

V̂ πk

1 =
1

n

n∑
i=1

H∑
h=1

ŵπk

h (sih, a
i
h)

µ̂∗
h(s

i
h, a

i
h)

rh(s
i
h, a

i
h). (9)

where {sih, aih}ni=1 is drawn from our approximately optimal
sampling distribution µ̃∗

h.

The following theorem presents our main results on the
sample complexity of CAESAR. We will leave the detailed
derivation to Appendix A.8.

Theorem 4.9. Implementing Algorithm 2. Then, with prob-
ability at least 1 − δ, for all target policies, we have that
|V̂ πk

1 − V πk

1 | ≤ ϵ. And the total number of trajectories
sampled is,

n = Õ

(
H4

ϵ2

H∑
h=1

max
k∈[K]

∑
s,a

(dπ
k

h (s, a))2

µ∗
h(s, a)

)
. (10)

where µ∗
h is the optimal solution to (4) (refer to Section 4.2).

Furthermore, the above bound still holds if replacing the
unknown true visitation distributions {{dπk}Kk=1, µ

∗} by
the coarse estimators {{d̂πk}Kk=1, µ̂

∗} which can provide
us a concrete value of the sample complexity.

We provide an instance-dependent result that characterizes
the complexity of the multiple-policy evaluation problem
based on the overlap of the visitation distributions of the
target policies, aligning with intuitions. In the special case
where all target policies are identical, i.e., single-policy eval-
uation, our sample complexity is Õ( poly(H)

ϵ2 ), independent
of S and A, which is consistent with the result of Monte

7



Multiple-policy Evaluation via Density Estimation

Carlo estimation. Furthermore, if the target policies are
deterministic, we can establish an instance-independent up-
per bound on our sample complexity, as formalized in the
following corollary.

Corollary 4.10. If the target policies to be evaluated are
deterministic, the sample complexity of CAESAR is always
bounded by Õ

(
poly(H)S2A

ϵ2

)
.

Corollary 4.10 tells us that with at most Õ
(

poly(H)S2A
ϵ2

)
trajectories, by implementing CAESAR , we can evaluate
all deterministic policies up to ϵ accuracy under any reward
which means we can identify an ϵ− optimal policy for any
reward. This is consistent with the result in Jin et al. (2020),
which proposes a reward-free exploration algorithm with
the same sample complexity of Õ

(
poly(H)S2A

ϵ2

)
.

5. Discussions
In this section, we first compare our results with the existing
work (Dann et al., 2023). Additionally, we explore the
application of CAESAR to policy identification beyond
policy evaluation.

5.1. Comparison with existing result

Dann et al. (2023) proposes an algorithm for multiple-policy
evaluation based on the idea of trajectory stitching and
achieved an instance-dependent sample complexity,

Õ

H2

ϵ2
E

 ∑
(s,a)∈K1:H

1

dmax(s)

 , (11)

where dmax(s) = maxk∈[K] d
πk

(s) and Kh ⊆ S × A
keeps track of which state-action pairs at step h are visited
by target policies in their trajectories.

A significant issue with the result by Dann et al. (2023) is
the presence of the unfavorable 1

dmax(s) , which can induce
an undesirable dependency on K.

To illustrate this, consider an example of an MDP with two
layers: a single initial state s1,1 in the first layer and two
terminal states in the second layer s2,1, s2,2. The transition
function is the same for all actions, i.e., P (s2,1|s1,1, a) = p
and p is sufficiently small. Agents only receive rewards at
state s2,1, regardless of the actions they take. Hence, to
evaluate the performance of a policy under this MDP, it is
sufficient to consider only the second layer. Now, suppose
we have K target policies to evaluate, where each policy
takes different actions at state s1,1 but the same action at any
state in the second layer. Since the transition function at state
s1,1 is the same for any action, the visitation distribution
at state s2,1 of all target policies is identical. Given that

p is sufficiently small, the probability of reaching s2,1 is
P[s2,1 ∈ K2] = 1− (1− p)K ≈ pK.

According to the result (11) by Dann et al. (2023), the
sample complexity in this scenario is Õ(Kϵ2 ) which depends
on K. In contrast, since the visitation distribution at the
second layer of all target policies is identical, our result
provides a sample complexity of Õ( 1

ϵ2 ) without dependency
on K.

Beyond sample complexity, our work tackles the problem
from a different perspective, which complements the exsit-
ing results. Our algorithm first constructs an approximately
optimal dataset and then uses it to perform offline evaluation.
In other words, we extend the offline evaluation framework
to multiple-policy setting. In contrast, (Dann et al., 2023)
evaluates policies in an online and on-policy manner.

5.2. Near-optimal policy identification

Besides policy evaluation, CAESAR can also be applied to
identify a near-optimal policy. Fixing the high-probability
factor, we denote the sample complexity of CAESAR by
Õ(Θ(Π)

γ2 ), where Π is the set of policies to be evaluated
and γ is the estimation error. We provide a simple algo-
rithm based on CAESAR in Appendix D that achieves an
instance-dependent sample complexity Õ(maxγ≥ϵ

Θ(Πγ)
γ2 )

to identify a ϵ−optimal policy, where Πγ = {π : V ∗
1 −

V π
1 ≤ 8γ}. This result is interesting as it offers a different

perspective beyond the existing gap-dependent results (Sim-
chowitz and Jamieson, 2019; Dann et al., 2021). Further-
more, this result can be easily extended to the multi-reward
setting. Due to space constraints, we leave the detailed
discussion to Appendix D.

6. Conclusion and Future Work
In this work, we consider the problem of multi-policy eval-
uation. We propose an algorithm, CAESAR, based on
computing an approximately optimal sampling dataset and
using the data sampled from it to perform the simultaneous
estimation of the policy values. The algorithm consists of
three techniques. First, we obtain coarse distribution esti-
mators at a lower-order sample cost. Second, based on the
coarse estimator, we obtain an approximately optimal sam-
pling dataset. Lastly, we propose a step-wise loss function
to estimate the importance weighting ratios.

Beyond the results of this work, there are still some open
questions of interest. First, our sample complexity has a
dependency on H4 which is induced by the error propaga-
tion in the estimation of the importance weighting ratios.
We conjecture a dependency on H2 is possible by consid-
ering a comprehensive loss function instead of step-wise
loss functions. Second, considering a reward-dependent

8
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and variance-aware sample complexity is also an interesting
direction. Third, it is still a challenging problem to derive
the lower bound for multiple-policy evaluation. Finally, we
are interested to see what other uses the research community
may find for coarse distribution estimation.
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A. Proof of theorems and lemmas in Section 4
A.1. Proof of Lemma 4.2

Our results relies on the following variant of Bernstein inequality for martingales, or Freedman’s inequality (Freedman,
1975), as stated in e.g., (Agarwal et al., 2014; Beygelzimer et al., 2011).

Lemma A.1 (Simplified Freedman’s inequality). Let X1, ..., XT be a bounded martingale difference sequence with
|Xℓ| ≤ R. For any δ′ ∈ (0, 1), and η ∈ (0, 1/R), with probability at least 1− δ′,

T∑
ℓ=1

Xℓ ≤ η

T∑
ℓ=1

Eℓ[X
2
ℓ ] +

log(1/δ′)

η
. (12)

where Eℓ[·] is the conditional expectation2 induced by conditioning on X1, · · · , Xℓ−1.

Lemma A.2 (Anytime Freedman). Let {Xt}∞t=1 be a bounded martingale difference sequence with |Xt| ≤ R for all t ∈ N.
For any δ′ ∈ (0, 1), and η ∈ (0, 1/R), there exists a universal constant C > 0 such that for all t ∈ N simultaneously with
probability at least 1− δ′,

t∑
ℓ=1

Xℓ ≤ η

t∑
ℓ=1

Eℓ[X
2
ℓ ] +

C log(t/δ′)

η
. (13)

where Eℓ[·] is the conditional expectation induced by conditioning on X1, · · · , Xℓ−1.

Proof. This result follows from Lemma A.1. Fix a time-index t and define δt = δ′

12t2 . Lemma A.1 implies that with
probability at least 1− δt,

t∑
ℓ=1

Xℓ ≤ η

t∑
ℓ=1

Eℓ

[
X2

ℓ

]
+

log(1/δt)

η
.

A union bound implies that with probability at least 1−
∑t

ℓ=1 δt ≥ 1− δ′,

t∑
ℓ=1

Xℓ ≤ η

t∑
ℓ=1

Eℓ

[
X2

ℓ

]
+

log(12t2/δ′)

η

(i)

≤ η

t∑
ℓ=1

Eℓ

[
X2

ℓ

]
+

C log(t/δ′)

η
.

holds for all t ∈ N. Inequality (i) holds because log(12t2/δ′) = O (log(tδ′)).

Proposition A.3. Let δ′ ∈ (0, 1), β ∈ (0, 1] and Z1, · · · , ZT be an adapted sequence satisfying 0 ≤ Zℓ ≤ B̃ for all ℓ ∈ N.
There is a universal constant C ′ > 0 such that,

(1− β)

T∑
t=1

Et[Zt]−
2B̃C ′ log(T/δ′)

β
≤

T∑
ℓ=1

Zℓ ≤ (1 + β)

T∑
t=1

Et[Zt] +
2B̃C ′ log(T/δ′)

β

with probability at least 1− 2δ′ simultaneously for all T ∈ N.

Proof. Consider the martingale difference sequence Xt = Zt − Et[Zt]. Notice that |Xt| ≤ B̃. Using the inequality of

2We will use this notation to denote conditional expectations throughout this work.
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Lemma A.2 we obtain that for all η ∈ (0, 1/B2)

t∑
ℓ=1

Xℓ ≤ η

t∑
ℓ=1

Eℓ[X
2
ℓ ] +

C log(t/δ′)

η

(i)

≤ 2ηB2
t∑

ℓ=1

Eℓ[Zℓ] +
C log(t/δ′)

η
,

for all t ∈ N with probability at least 1− δ′. Inequality (i) holds because Et[X
2
t ] ≤ B2E[|Xt|] ≤ 2B2Et[Zt] for all t ∈ N.

Setting η = β
2B2 and substituting

∑t
ℓ=1 Xℓ =

∑t
ℓ=1 Zℓ − Eℓ[Zℓ],

t∑
ℓ=1

Zℓ ≤ (1 + β)

t∑
ℓ=1

Eℓ[Zℓ] +
2B2C log(t/δ′)

β
(14)

with probability at least 1−δ′. Now consider the martingale difference sequence X ′
t = E[Zt]−Zt and notice that |X ′

t| ≤ B2.
Using the inequality of Lemma A.2 we obtain for all η ∈ (0, 1/B2),

t∑
ℓ=1

X ′
ℓ ≤ η

t∑
ℓ=1

Eℓ[(X
′
ℓ)

2] +
C log(t/δ′)

η

≤ 2ηB2
t∑

ℓ=1

Eℓ[Zℓ] +
C log(t/δ′)

η
.

Setting η = β
2B2 and substituting

∑t
ℓ=1 X

′
ℓ =

∑t
ℓ=1 E[Zℓ]− Zℓ we have,

(1− β)

t∑
ℓ=1

E[Zℓ] ≤
t∑

ℓ=1

Zℓ +
2B2C log(t/δ′)

β
(15)

with probability at least 1− δ′. Combining Equations 14 and 15 and using a union bound yields the desired result.

Let the Zℓ be i.i.d. samples Zℓ
i.i.d.∼ Ber(p). The empirical mean estimator, p̂t = 1

t

∑t
ℓ=1 Zℓ satisfies,

(1− β)p− 2C ′ log(t/δ′)

βt
≤ p̂t ≤ (1 + β)p+

2C ′ log(t/δ′)

βt

with probability at least 1−2δ′ for all t ∈ N where C ′ > 0 is a (known) universal constant. Given ϵ > 0 set t ≥ 8C′ log(t/δ′)
βϵ

(notice the dependence of t on the RHS - this can be achieved by setting t ≥ C log(C/βϵδ′)
βϵ for some (known) universal

constant C > 0).

In this case observe that,
(1− β)p− ϵ/8 ≤ p̂t ≤ (1 + β)p+ ϵ/8.

Setting β = 1/8,
7p/8− ϵ/8 ≤ p̂t ≤ 9p/8 + ϵ/8,

so that,
p− p̂t ≤ p/8 + ϵ/8,

and
p̂t − p ≤ p/8 + ϵ/8,

which implies |p̂t − p| ≤ p/8 + ϵ/8 ≤ 2max(p/8, ϵ/8) = max(p/4, ϵ/4).
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A.2. Derivation of the optimal sampling distribution

Our performance estimator is,

V̂ πk

1 =
1

n

n∑
i=1

H∑
h=1

dπ
k

h (sih, a
i
h)

µh(sih, a
i
h)

r(sih, a
i
h), k ∈ [K].

Denote
∑H

h=1
dπk

h (sih,a
i
h)

µh(sih,a
i
h)

rh(s
i
h, a

i
h) by Xi. And for simplicity, denote E(s1,a1)∼µ1,...,(sH ,aH)∼µH

by Eµ, the variance of
our estimator is bounded by,

Eµ[X
2
i ] = Eµ

( H∑
h=1

dπ
k

h (sih, a
i
h)

µh(sih, a
i
h)

rh(s
i
h, a

i
h)

)2


≤ Eµ

H ·
H∑

h=1

(
dπ

k

h (sih, a
i
h)

µh(sih, a
i
h)

rh(s
i
h, a

i
h)

)2


≤ Eµ

H ·
H∑

h=1

(
dπ

k

h (sih, a
i
h)

µh(sih, a
i
h)

)2


= H ·
H∑

h=1

E
dπk

h

[
dπ

k

h (sih, a
i
h)

µh(sih, a
i
h)

]
.

The first inequality holds by Cauchy − Schwarz inequality. The second inequality holds due to the assumption rh(s, a) ∈
[0, 1].

Denote
∑H

h=1 Edπk

h

[
dπk

h (sih,a
i
h)

µh(sih,a
i
h)

]
by ρµ,k. Applying Bernstein’s inequality, we have that with probability at least 1 − δ

and n samples, it holds,

|V̂ πk

1 − V πk

1 | ≤
√

2Hρµ,k log(1/δ)

n
+

2Mk log(1/δ)

3n
,

where Mk = maxs1,a1,...,sH ,aH

∑H
h=1

dπk

h (sh,ah)
µh(sh,ah)

rh(sh, ah).

To achieve an ϵ accuracy of evaluation, we need samples,

nµ,k ≤ 8Hρµ,k log(1/δ)

ϵ2
+

4Mk log(1/δ)

3ϵ
.

Take the union bound over all target policies,

nµ ≤
8Hmaxk∈[K] ρµ,k log(K/δ)

ϵ2
+

4M log(K/δ)

3ϵ
,

where M = maxk∈[K] Mk.

We define the optimal sampling distribution µ∗ as the one minimizing the higher order sample complexity,

µ∗
h = argmin

µh

max
k∈[K]

E
dπk

h (s,a)

[
dπ

k

h (s, a)

µh(s, a)

]

= argmin
µh

max
k∈[K]

∑
s,a

(
dπ

k

h (s, a)
)2

µh(s, a)
, h = 1, . . . ,H.

13
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A.3. An example of unrealizable optimal sampling distribution

Here, we give an example to illustrate the assertation that in some cases, the optimal sampling distribution cannot be realized
by any policy.

Consider such a MDP with two layers, in the first layer, there is a single initial state s1,1, in the second layer, there are
two states s2,1, s2,2. The transition function at state s1,1 is identical for any action, P(s2,1|s1,1, a) = P(s2,2|s1,1, a) = 1

2 .
Hence, for any policy, the only realizable state visitation distribution at the second layer is d2(s2,1) = d2(s2,2) =

1
2 .

Suppose the target policies take K ≥ 2 different actions at state s2,1 while take the same action at state s2,2.

By solving the optimization problem, we have the optimal sampling distribution at the second layer,

µ∗
2(s2,1) =

K2

1 +K2
, µ∗

2(s2,2) =
1

1 +K2
,

which is clearly not realizable by any policy.

A.4. Proof of Lemma 4.5

By property (1) and (6), we have 4
5 d̂

πk

h (s, a) ≤ dπ
k

h (s, a) ≤ 4
3 d̂

πk

h (s, a) and 4
5 µ̂

∗
h(s, a) ≤ µ̃∗

h(s, a) ≤ 4
3 µ̂

∗
h(s, a). Hence,

max
k∈[K]

∑
s,a

(dπ
k

h (s, a))2

µ̃∗
h(s, a)

≤ 25

12
max
k∈[K]

∑
s,a

(d̂π
k

h (s, a))2

µ̂∗
h(s, a)

Remember µ∗ is of the form
∑K

k=1 α
∗
kd

πk

. Let µ′ be
∑K

k=1 α
∗
kd̂

πk

. Then we have |µ′ − µ∗| ≤ max{ϵ, µ∗

4 } and µ′ is in the
feasible set D̂h = {d̂πk

h : k ∈ [K]}. Since µ̂∗ is the optimal solution to the approximate optimization problem (5), we have,

max
k∈[K]

∑
s,a

(d̂π
k

h (s, a))2

µ̂∗
h(s, a)

≤ max
k∈[K]

∑
s,a

(d̂π
k

h (s, a))2

µ′
h(s, a)

≤ 25

12
max
k∈[K]

∑
s,a

(dπ
k

h (s, a))2

µ∗
h(s, a)

The second inequality is again based on the property of coarse estimators. Together, we have,

max
k∈[K]

∑
s,a

(dπ
k

h (s, a))2

µ̃∗
h(s, a)

≤ C max
k∈[K]

∑
s,a

(dπ
k

h (s, a))2

µ∗
h(s, a)

.

A.5. Proof of Lemma 4.6

Proof. The gradient of ℓπh(w) is,

∇w(s,a)ℓ
π
h(w) =

µ̃h(s, a)

µ̂h(s, a)
w(s, a)−

∑
s′,a′

µ̃h−1(s
′, a′)P (s|s′, a′)π(a|s) ŵh−1(s

′, a′)

µ̂h−1(s′, a′)
.

Suppose by some SGD algorithm, we can converge to a point ŵh such that the gradient of the loss function is less than ϵ,

∥∇ℓπh(ŵh)∥1 =
∑
s,a

∣∣∣∣∣∣ µ̃h(s, a)

µ̂h(s, a)
ŵh(s, a)−

∑
s′,a′

µ̃h−1(s
′, a′)P (s|s′, a′)π(a|s) ŵh−1(s

′, a′)

µ̂h−1(s′, a′)

∣∣∣∣∣∣ ≤ ϵ.

14
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By decomposing,∣∣∣∣∣∣ µ̃h(s, a)

µ̂h(s, a)
ŵh(s, a)−

∑
s′,a′

µ̃h−1(s
′, a′)P (s|s′, a′)π(a|s) ŵh−1(s

′, a′)

µ̂h−1(s′, a′)

∣∣∣∣∣∣
=

∣∣∣∣∣∣ µ̃h(s, a)

µ̂h(s, a)
ŵh(s, a)− dπh(s, a) + dπh(s, a)−

∑
s′,a′

µ̃h−1(s
′, a′)P (s|s′, a′)π(a|s) ŵh−1(s

′, a′)

µ̂h−1(s′, a′)

∣∣∣∣∣∣
≥
∣∣∣∣ µ̃h(s, a)

µ̂h(s, a)
ŵh(s, a)− dπh(s, a)

∣∣∣∣−
∣∣∣∣∣∣dπh(s, a)−

∑
s′,a′

µ̃h−1(s
′, a′)P (s|s′, a′)π(a|s) ŵh−1(s

′, a′)

µ̂h−1(s′, a′)

∣∣∣∣∣∣
=

∣∣∣∣µ̃h(s, a)
ŵh(s, a)

µ̂h(s, a)
− dπh(s, a)

∣∣∣∣
−

∣∣∣∣∣∣
∑
s′,a′

P (s|s′, a′)π(a|s)
(
dπh−1(s

′, a′)− µ̃h−1(s
′, a′)

ŵh−1(s
′, a′)

µ̂h−1(s′, a′)

)∣∣∣∣∣∣ .
Hence, we have, ∑

s,a

∣∣∣∣µ̃h(s, a)
ŵh(s, a)

µ̂h(s, a)
− dπh(s, a)

∣∣∣∣
≤ ϵ+

∑
s,a

∣∣∣∣∣∣
∑
s′,a′

P (s|s′, a′)π(a|s)
(
dπh−1(s

′, a′)− µ̃h−1(s
′, a′)

ŵh−1(s
′, a′)

µ̂h−1(s′, a′)

)∣∣∣∣∣∣
≤ ϵ+

∑
s′,a′

∣∣∣∣dπh−1(s
′, a′)− µ̃h−1(s

′, a′)
ŵh−1(s

′, a′)

µ̂h−1(s′, a′)

∣∣∣∣
≤ 2ϵ.

A.6. Proof of Lemma 4.7

Proof. The minimum w∗
h of the loss function ℓπh(w) is w∗

h(s, a) =
dπ
h(s,a)

µ̃h(s,a)
µ̂h(s, a) if ŵh−1 achieves optimum. By the

property of the coarse distribution estimator, we have,

w∗
h(s, a) =

dπh(s, a)

µ̃h(s, a)
µ̂h(s, a) ≤

4
3 d̂

π
h(s, a)

4
5 µ̂h(s, a)

µ̂h(s, a) =
5

3
d̂πh(s, a).

We can define a feasible set for the optimization problem, i.e. wh(s, a) ∈ [0, Dh(s, a)], Dh(s, a) = 2d̂πh(s, a).

Next, we analyse the variance of the stochastic gradient. We denote the stochastic gradient as gh(w), {si1, ai1, . . . , siH , aiH}
a trajectory sampled from µ̃h and {sj1, a

j
1, . . . , s

j
H , ajH} a trajectory sampled from µ̃h−1.

gh(w)(s, a) =
w(s, a)

µ̂h(s, a)
I(sih = s, aih = a)−

ŵh−1(s
j
h−1, a

j
h−1)

µ̂h−1(s
j
h−1, a

j
h−1)

π(a|s)I(sjh = s).

The variance bound becomes

V[gh(w)] ≤ E[∥gh(w)∥2] ≤
∑
s,a

µ̃h(s, a)

(
w(s, a)

µ̂h(s, a)

)2

+ µ̃h−1(s, a)

(
ŵh−1(s, a)

µ̂h−1(s, a)

)2

≤ O

(∑
s,a

(d̂πh(s, a))
2

µ̂h(s, a)
+

(d̂πh−1(s, a))
2

µ̂h−1(s, a)

)
, (16)
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where the last inequality is due to the bounded feasible set for w and the property of coarse distribution estimator
µ̃h(s, a) ≤ 4

3 µ̂h(s, a).

Based on the error propagation lemma 4.6, if we can achieve ∥∇ℓπh(ŵh)∥1 ≤ ϵ
4H2 from step h = 1 to step h = H , then we

have, ∑
s,a

∣∣∣∣µ̃h(s, a)
ŵh(s, a)

µ̂h(s, a)
− dπh(s, a)

∣∣∣∣ ≤ ϵ

4H
,∀h = 1, 2, . . . ,H,

which can enable us to build the final estimator of the performance of policy π with at most error ϵ.

By the property of smoothness, to achieve ∥∇ℓπh(ŵh)∥1 ≤ ϵ
4H2 , we need to achieve ℓπh(ŵh)− ℓπh(w

∗
h) ≤ ϵ2

32ξH4 where ξ is
the smoothness factor, because,

∥∇ℓπh(ŵh)∥21 ≤ 2ξ(ℓπh(ŵh)− ℓπh(w
∗
h)) ≤

ϵ2

16H4
.

Lemma A.4. For a λ−strongly convex loss function L(w) satisfying ∥w∗∥ ≤ D for some known D, there exists a stochastic
gradient descent algorithm that can output ŵ after T iterations such that,

E[L(ŵ)− L(w∗)] ≤ 2G2

λ(T + 1)
,

where G2 is the variance bound of the stochastic gradient.

Invoke the convergence rate for strongly-convex and smooth loss functions, i.e. Lemma A.4, we have that the number of
samples needed to achieve ℓπh(ŵh)− ℓπh(w

∗
h) ≤ ϵ2

32ξH4 is,

n = O

(
ξ

γ

H4G2

ϵ2

)
.

We have shown in Section 4.3 that ξ
γ ≤ 5

3 , this nice property helps us to get rid of the undesired ratio of the smoothness

factor and the strongly-convexity factor, i.e. maxs,a µ(s,a)
mins,a µ(s,a) of the original loss function (7) which can be extremely bad.

Replacing G2 by our variance bound (16), we have,

nπ
h = O

(
H4

ϵ2

(∑
s,a

(d̂πh(s, a))
2

µ̂h(s, a)
+

(d̂πh−1(s, a))
2

µ̂h−1(s, a)

))
.

For each step h, we need the above number of trajectories, sum over h, we have the total sample complexity,

nπ = O

(
H4

ϵ2

H∑
h=1

∑
s,a

(d̂πh(s, a))
2

µ̂h(s, a)

)
.

To evaluate K policies, we need trajectories,

n = O

(
H4

ϵ2

H∑
h=1

max
k∈[K]

∑
s,a

(d̂π
k

h (s, a))2

µ̂h(s, a)

)
.

A.7. Proof of Lemma 4.8

Proof. By Markov’s inequality, we have,

P(|µ̂− µ| ≥ ϵ) ≤ E[|µ̂− µ|]
ϵ

≤ 1

4
.

16



Multiple-policy Evaluation via Density Estimation

The event that |µ̂MoM − µ| > ϵ belongs to the event where more than half estimators µ̂i are outside of the desired range
|µ̂i − µ| > ϵ, hence, we have,

P(|µ̂MoM − µ| > ϵ) ≤ P(
N∑
i=1

I(|µ̂i − µ| > ϵ) ≥ N

2
).

Denote I(|µ̂i − µ| > ϵ) by Zi and E[Zi] = p,

P(|µ̂MoM − µ| > ϵ) = P(
N∑
i=1

Zi ≥
N

2
)

= P(
1

N

N∑
i=1

(Zi − p) ≥ 1

2
− p)

≤ e−2N( 1
2−p)2

≤ e−
N
8 ,

where the first inequality holds by Hoeffding’s inequality and the second inequality holds due to p ≤ 1
4 . Set δ = e−

N
8 , we

have, with N = O(log(1/δ)), with probability at least 1− δ, it holds |µ̂MoM − µ| ≤ ϵ.

A.8. Proof of Theorem 4.9

Here, we explain how Theorem 4.9 is derived. We first show how the Median-of-Means (MoM) estimator and data splitting
technique can conveniently convert Lemma 4.7 to a version holds with high probability.

For step h, Algorithm 1 can output a solution ŵh such that E[ℓπh(ŵh) − ℓπh(w
∗
h)] ≤ ϵ2

32ξH4 . We can ap-
ply Lemma 4.8 on our algorithm which means that we can run the algorithm for N = O (log(1/δ)) times.
Hence, we will get N solutions {ŵh,1, ŵh,2, . . . , ŵh,N}. Set ŵh,MoM as the solution such that ℓπh(ŵh,MoM ) =
Median(ℓπh(ŵh,1), ℓ

π
h(ŵh,2), . . . , ℓ

π
h(ŵh,N )). Based on Lemma 4.8, we have that with probability at least 1 − δ, it holds

ℓπh(ŵh,MoM )− ℓπh(w
∗
h) ≤ ϵ2

32ξH4 . With a little abuse of notation, we just denote ŵh,MoM by ŵh in the following content.

Now we are ready to estimate the total expected rewards of target policies, With the importance weighting ratio estimator
ŵh(s,a)
µ̂h(s,a)

from Algorithm 1, we can estimate the performance of policy πk,

V̂ πk

1 =
1

n

n∑
i=1

H∑
h=1

ŵπk

h (sih, a
i
h)

µ̂h(sih, a
i
h)

rh(s
i
h, a

i
h), (17)

where {sih, aih}ni=1 is sampled from µ̃h.

Lemma A.5. With samples n = Õ

(
H2

ϵ2

∑H
h=1 maxk∈[K]

∑
s,a

(d̂πk

h (s,a))2

µ̂h(s,a)

)
, we have with probability at least 1 − δ,

|V̂ πk

1 − V πk

1 | ≤ ϵ
2 , k ∈ [K].

Proof. First, we can decompose the error |V̂ πk

1 − V πk

1 | = |V̂ πk

1 − E[V̂ πk

1 ] + E[V̂ πk

1 ] − V πk

1 | ≤ |V̂ πk

1 − E[V̂ πk

1 ]| +

|E[V̂ πk

1 ]− V πk

1 |. Then, by Bernstein’s inequality, with samples n = Õ

(
H2

ϵ2

∑H
h=1 maxk∈[K]

∑
s,a

(d̂πk

h (s,a))2

µ̂h(s,a)

)
, we have,

|V̂ πk

1 − E[V̂ πk

1 ]| ≤ ϵ
4 . Based Lemma 4.7, we have, |E[V̂ πk

1 ]− V πk

1 | ≤ ϵ
4 .

Remember that in Section 4.1, we ignore those states and actions with low estimated visitation distribution for each target
policy which induce at most ϵ

2 error. Combined with Lemma A.5, our estimator V̂ πk

1 finally achieves that with probability at
least 1− δ, |V̂ πk

1 − V πk

1 | ≤ ϵ, k ∈ [K].

And for sample complexity, in our algorithm, we need to sample data in three procedures. First, for the coarse estimation
of the visitation distribution, we need Õ( 1ϵ ) samples. Second, to estimate the importance-weighting ratio, we need

17



Multiple-policy Evaluation via Density Estimation

samples Õ
(

H4

ϵ2

∑H
h=1 maxk∈[K]

∑
s,a

(dπk

h (s,a))2

µ∗
h(s,a)

)
. Last, to build the final performance estimator (9), we need samples

Õ

(
H2

ϵ2

∑H
h=1 maxk∈[K]

∑
s,a

(d̂πk

h (s,a))2

µ̂h(s,a)

)
. Therefore, the total trajectories needed,

n = Õ

(
H4

ϵ2

H∑
h=1

max
k∈[K]

∑
s,a

(dπ
k

h (s, a))2

µ∗
h(s, a)

)
.

Moreover, notice that,

max
k∈[K]

∑
s,a

(d̂π
k

h (s, a))2

µ̂h(s, a)
≤ max

k∈[K]

∑
s,a

(d̂π
k

h (s, a))2

µ∗
h(s, a)

≤ 25

16

∑
s,a

(dπh(s, a))
2

µ∗
h(s, a)

, (18)

where µ∗
h is the optimal solution of the optimization problem (4), the first inequality holds due to µ̂h is the minimum of the

approximate optimization problem (5) and the second inequality holds due to d̂πh(s, a) ≤ 5
4d

π
h(s, a). Based on (18), we can

substitute the coarse distribution estimator in the sample complexity bound by the exact one,

n = Õ

(
H4

ϵ2

H∑
h=1

max
k∈[K]

∑
s,a

(dπ
k

h (s, a))2

µ∗
h(s, a)

)
.

A.9. Proof of Corollary 4.10

Let the sampling distribution µ′
h be 1

SA

∑
s,a d

πs,a

h , where πs,a = argmaxk∈[K] d
πk

h (s, a). Since µ∗
h is the optimal solution

and µ′
h is a feasible solution, we have ∀h ∈ [H],

max
k∈[K]

∑
s,a

(dπ
k

h (s, a))2

µ∗
h(s, a)

≤ max
k∈[K]

∑
s,a

(dπ
k

h (s, a))2

µ′
h(s, a)

≤ SA.

Notice that there is a logarithm term log(K) hidden in Õ notation. Remember K is the number of target policies. If they are
deterministic, then K is bounded by ASH which leads to log(K) ≤ SH log(A).

Together, we have the sample complexity is bounded by Õ
(

poly(H)S2A
ϵ2

)
.
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B. Lower order coarse estimation

Algorithm 3 Multi-policy Approximation via Ratio-based Coarse Handling (MARCH)
Input: Horizon H , accuracy ϵ, policy π.
Coarsely estimate d1 such that distβ(d̂1, d1) ≤ ϵ, where β = 1

H .
for h = 1 to H − 1 do

1. Coarsely estimate µh such that |µ̂h(s, a)− µh(s, a)| ≤ max{ϵ′, c · µh(s, a)}, where ϵ′ = ϵ
2H2S2A2 and c = β

2 .
2. Sample {sih, aih, sih+1}ni=1 from µh.
3. Estimate dh+1(s, a) by d̂h+1(s, a) =

1
n

∑n
i=1 I(sih+1 = s)ŵh(s

i
h, a

i
h).

end for
Output: {d̂h}Hh=1.

In this section, we first provide our algorithm MARCH for coarse estimation of all the deterministic policies and then
conduct an analysis on its sample complexity.

MARCH is based on the algorithm EULER proposed by Zanette and Brunskill (2019).

Lemma B.1 (Theorem 3.3 in Jin et al. (2020)). Based on EULER, with sample complexity Õ(poly(H,S,A)
ϵ ), we can construct

a policy cover which generates a dataset with the distribution µ such that, with probability 1− δ, if dmax
h (s) ≥ ϵ

SA , then,

µh(s, a) ≥
dmax
h (s, a)

2HSA
, (19)

where dmax
h (s) = maxπ d

π
h(s), d

max
h (s, a) = maxπ d

π
h(s, a).

With this dataset, we estimate the visitation distribution of deterministic policies by step-to-step importance weighting,

d̂h+1(s, a) =
1

n

n∑
i=1

I(sih+1 = s)ŵh(s
i
h, a

i
h),

where {sih, aih, sih+1}ni=1 are sampled from µ and ŵh(s, a) =
d̂h(s,a)
µ̂h(s,a)

.

We state that MARCH can coarsely estimate the visitation distributions of all the deterministic policies by just paying a
lower-order sample complexity which is formalized in the following theorem.

Theorem B.2. Implement Algorithm 3 with the number of trajectories n = Õ(poly(H,S,A)
ϵ ), with probability at least 1− δ,

it holds that for any deterministic policy π,

|d̂πh(s, a), dπh(s, a)| ≤ max{ϵ, d
π
h(s, a)

4
}, ∀s ∈ S, a ∈ A, h ∈ [H],

where d̂π is the distribution estimator.

Proof. Our analysis is based a notion of distance defined in the following.

Definition B.3 (β−distance). For x, y ≥ 0, we define the β−distance as,

distβ(x, y) = min
α∈[ 1β ,β]

|αx− y|.

Correspondingly, for x, y ∈ Rn,

distβ(x, y) =

n∑
i=1

distβ(xi, yi).

Based on its definition, we show in the following lemma that β−distance has some properties.
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Lemma B.4. The β−distance possesses the following properties for (x, y, z, γ ≥ 0):

1. distβ(γx, γy) = γdistβ(x, y); (20)

2. distβ(x1 + x2, y1 + y2) ≤ distβ(x1, y1) + distβ(x2, y2); (21)

3. distβ1·β2(x, z) ≤ distβ1(x, y) · β2 + distβ2(y, z). (22)

Proof. See Appendix C.1.

The following lemma shows that if we can control the β−distance between x̂, x, then we can show x̂ achieves the coarse
estimation of x.

Lemma B.5. Suppose dist1+β(x, y) ≤ ϵ, then it holds that,

|x− y| ≤ βy + (1 +
β

1 + β
)ϵ ≤ 2max{(1 + β

1 + β
)ϵ, βy}.

Proof. See Appendix C.2.

The logic of the analysis is to show the β−distance between d̂h and dh can be bounded at each layer by induction. Then by
Lemma B.5, we show {d̂h}Hh=1 achieves coarse estimation.

Suppose at layer h, we have d̂h such that dist(1+β)h(d̂h, dh) < ϵh where β = 1
H . For notation simplicity, we omit the

superscript π. The analysis holds for any policy.

We use importance weighting to estimate d̂h+1,

d̂h+1(s, a) =
1

n

n∑
i=1

I(sih+1 = s)π(a|s)ŵh(s
i
h, a

i
h),

where ŵh(s, a) =
d̂h(s,a)
µ̂h(s,a)

.

We also denote,

dh+1(s, a) = E(sh,ah,sh+1)∼µh
[I(sh+1 = s)ŵh(sh, ah)].

By (22) in Lemma B.4, we have,

dist(1+β)h+2

(d̂h+1, dh+1) ≤ dist(1+β)(d̂h+1, dh+1)(1 + β)h+1︸ ︷︷ ︸
A

+ dist(1+β)h+1

(dh+1, dh+1)︸ ︷︷ ︸
B

. (23)

Next, we show how we can bound these two terms (A) and (B). Note that for (s, h) where dmax
h (s) < ϵ

SA , the induced
β−distance error is at most ϵ. Therefore, we can just discuss state-action pairs which satisfy Lemma B.1.

Bound of (A) We first show the following lemma tells us that the importance weighting is upper-bounded.

Lemma B.6. Based on the definition of µ, the importance weighting is upper bounded,

wh(s, a) =
dh(s, a)

µh(s, a)
≤ 2HSA

dh(s, a)

dmax
h (s, a)

≤ 2HSA.

Hence, we can clip ŵh(s, a) at 2HSA such that ŵh(s, a) ≤ 2HSA.

Let’s define the random variable Zh+1(s, a) = I(sh+1 = s)ŵh(sh, ah), then d̂h+1(s, a) = 1
n

∑n
i=1 Z

i
h+1(s, a). Since

ŵh(sh, ah) is bounded by Lemma B.6, we have,

V[Zh+1(s, a)] ≤ E[Zh+1(s, a)
2] ≤ 2HSAE[Zh+1(s, a)].
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By Berstein′s inequality, we have with probability at least 1− δ,

|d̂h+1(s, a)− E[d̂h+1(s, a)]| ≤
√

2V[Zh+1(s, a)] log(1/δ)

n
+

2HSA log(1/δ)

3n

≤

√
4HSAE[d̂h+1(s, a)] log(1/δ)

n
+

2HSA log(1/δ)

3n
,

to achieve the estimation accuracy |d̂h+1(s, a) − E[d̂h+1(s, a)]| ≤ max{ϵ, c · E[d̂h+1(s, a)]}, we need samples n =
Õ
(
HSA
c·ϵ
)
.

Based on the above analysis, we can achieve,

|d̂h+1(s, a), dh+1(s, a)| ≤ max{ϵ′, β
2
dh+1(s, a)}

at the cost of samples Õ
(

HSA
βϵ′

)
.

We now show dist1+β(d̂h+1, dh+1) ≤ SAϵ′. We discuss it in two cases,

1. |d̂h+1(s, a), dh+1(s, a)| ≤ ϵ′ (24)

2. |d̂h+1(s, a), dh+1(s, a)| ≤
β

2
dh+1(s, a). (25)

For those (s, a) which satisfies (25), since [1− β
2 , 1 +

β
2 ] ∈ [ 1

1+β , 1 + β], by the definition of β−distance, we have,

dist1+β(d̂h+1(s, a), dh+1(s, a)) = 0. (26)

For other (s, a) which satisfies (24), we have,

dist1+β(d̂h+1(s, a), dh+1(s, a)) ≤ |d̂h+1(s, a), dh+1(s, a)| ≤ ϵ′.

Since there are at most SA state-action pairs, the error in the second case is at most SAϵ′. Combine these two cases, we
have,

dist1+β(d̂h+1, dh+1) ≤ SAϵ′.

By setting ϵ = ϵ′

SA , we have,

(A) = dist1+β(d̂h+1, dh+1)(1 + β)h+1 ≤ (1 + β)h+1ϵ, (27)

and the sample complexity is Õ
(

(HSA)2

ϵ

)
.

Bound of (B) Next we show how to bound term (B). Denote µh(s, a)
d̂h(s,a)
µ̂h(s,a)

by d̃h(s, a), we have,

(B) = dist(1+β)h+1

(dh+1, dh+1)

=
∑
s,a

dist(1+β)h+1

(dh+1(s, a), dh+1(s, a))

=
∑
s,a

dist(1+β)h+1

(
∑
s′,a′

Pπ
h (s, a|s′, a′)d̃h(s′, a′),

∑
s′,a′

Pπ
h (s, a|s′, a′)dh(s′, a′))

≤
∑
s,a

∑
s′,a′

dist(1+β)h+1

(Pπ
h (s, a|s′, a′)d̃h(s′, a′), Pπ

h (s, a|s′, a′)dh(s′, a′))

=
∑
s,a

∑
s′,a′

Pπ
h (s, a|s′, a′)dist(1+β)h+1

(d̃h(s
′, a′), dh(s

′, a′))

= dist(1+β)h+1

(d̃h, dh),
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where the first two equality holds by definition, the inequality holds by (21) in Lemma B.4, the third equality holds by (20)
in Lemma B.4 and the last one holds by

∑
s,a P

π
h (s, a|s′, a′) = 1.

Now we analyse dist(1+β)h+1

(d̃h, dh).

dist(1+β)h+1

(d̃h, dh) =
∑
s,a

µh(s, a)dist
(1+β)h+1

(
d̂h(s, a)

µ̂h(s, a)
,
dh(s, a)

µh(s, a)
).

By coarse estimation, we have |µ̂h(s, a)− µh(s, a)| ≤ max{ϵ′, c · µh(s, a)}. Similarly, we discuss it in two cases,

1. |µ̂h(s, a), µh(s, a)| ≤ ϵ′, (28)
2. |µ̂h(s, a), µh(s, a)| ≤ c · µh(s, a). (29)

For those (s, a) which satisfies (28), by Lemma B.6, we have,

dist(1+β)h+1

(
d̂h(s, a)

µ̂h(s, a)
,
dh(s, a)

µh(s, a)
) ≤ | d̂h(s, a)

µ̂h(s, a)
− dh(s, a)

µh(s, a)
| ≤ 2HSA.

Hence, we have,

dist(1+β)h+1

(d̃h(s, a), dh(s, a)) = µh(s, a)dist
(1+β)h+1

(
d̂h(s, a)

µ̂h(s, a)
,
dh(s, a)

µh(s, a)
)

≤ 2HSAµh(s, a) ≤
2HSAϵ′

c
,

where the last inequality holds by c · µh(s, a) ≤ ϵ′.

Next, For those (s, a) which satisfies (29), we have,

(1− c)
1

µ̂h(s, a)
≤ 1

µh(s, a)
≤ (1 + c)

1

µ̂h(s, a)
.

Set c = β
2 , since [1− β

2 , 1 +
β
2 ] ∈ [ 1

1+β , 1 + β], by definition of β−distance, we have,

dist(1+β)(
1

µ̂h(s, a)
,

1

µh(s, a)
) = 0. (30)

And we assume by induction that dist(1+β)h(d̂h(s, a), dh(s, a)) ≤ ϵh, together with (30) we have,

dist(1+β)h+1

(
d̂h(s, a)

µ̂h(s, a)
,
dh(s, a)

µh(s, a)
) ≤ ϵh. (31)

Combine the results of two cases together, we have,

(B) = dist(1+β)h+1

(d̃h, dh) ≤ ϵh + 4H2S2A2ϵ′

Set ϵ′ = ϵ
4H2S2A2 , we have,

(B) ≤ ϵh + ϵ (32)

at the cost of samples Õ(H
3S2A2

ϵ ).

Now we are ready to show the bound of β−distance at layer h+ 1. Plug (27)(32) into (23), we have,

dist(1+β)h+2

(d̂h+1, dh+1) ≤ dist(1+β)(d̂h+1, dh+1)(1 + β)h+1 + dist(1+β)h+1

(dh+1, dh+1)

≤ (1 + β)h+1ϵ+ ϵ+ ϵh.
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Start from dist(1+β)(d̂1, d1) ≤ ϵ, we have,

dist(1+β)2h−1

(d̂h, dh) ≤ hϵ+ ϵ

h−1∑
l=1

(1 + β)2h. (33)

Remember that β = 1
H and due to (1 + 1

H )h ≤ e (h ≤ H), we have,

diste
2

(d̂h, dh) ≤ H(1 + e2)ϵ. (34)

Recall Lemma B.5, and based on (34), we have,

|d̂h(s, a)− dh(s, a)| ≤ 2max{H(1 + e2)ϵ, (e2 − 1)dh(s, a)}.

By just paying multiplicative constant, we can adjust the constant above to meet our needs, i.e. in Theorem B.2.
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C. Proof of lemmas in Section B
C.1. Proof of Lemma B.4

Proof. 1. The first property is trivial.

distβ(γx, γy) = min
α∈[ 1β ,β]

|αγx− γy|

= min
α∈[ 1β ,β]

γ|αx− y|

= γdistβ(x, y).

2. Let αi be such that,

dist1+β(xi, yi) = |αixi − yi|, i = 1, 2.

Notice that α3 = α1 · x1

x1+x2
+ α2 · x2

x1+x2
satisfies α3 ∈ [α1, α2] ∈ [ 1β , β] and α3(x1 + x2) = α1x1 + α2x2, therefore,

distβ(x1 + x2, y1 + y2) = min
α∈[ 1β ,β]

|α(x1 + x2)− y1 − y2|

≤ |α3(x1 + x2)− y1 − y2|
= |α1x1 + α2x2 − y1 − y2|
≤ |α1x1 − y1|+ |α2x2 − y2|
= distβ(x1, y1) + distβ(x2, y2).

The first inequality holds due to the definition of β−distance. The second inequality is the triangle inequality.

3. We prove the third property through a case-by-case discussion.

(1). x
β1β2

≤ z ≤ β1β2x. In this case, the result is trivial, since distβ1β2(x, z) = 0 and β−distance is always non-negative.

(2). β1β2x < z. If y ≤ x, then,

distβ1β2(x, z) ≤ distβ2(x, z) ≤ distβ2(y, z).

We are done.

If x < y ≤ β1x, then distβ1 (x, y) = 0, and z > β1β2x ≥ β2y, hence,

distβ2(y, z) = z − β2y ≥ z − β1β2x = distβ1β2(x, z).

We are done.

If y > β1x, z ∈ [ y
β2
, β2y], then,

distβ1(x, y)β2 + distβ2(y, z) = β2(y − β1x)

≥ z − β1β2x

= distβ1β2(x, z).

We are done.

If y > β1x, z /∈ [ y
β2
, β2y], then,

distβ1(x, y)β2 + distβ2(y, z) ≥ β2(y − β1x)

≥ z − β1β2x

= distβ1β2(x, z).

We are done.
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(3). z < x
β1β2

. A symmetric analysis can be done by replacing β1, β2 by 1
β1
, 1
β2

which gives the result,

distβ1β2(x, z) ≤ distβ1(x, y)
1

β2
+ distβ2(y, z)

Since β2 ≥ 1 and distβ1(x, y) ≥ 0, we have distβ1(x, y) 1
β2

≤ distβ1(x, y)β2, hence,

distβ1β2(x, z) ≤ distβ1(x, y)β2 + distβ2(y, z),

which concludes the proof.

C.2. Proof of Lemma B.5

Proof. We prove the lemma through a case-by-case study.

(1). x ≤ y. If dist1+β(x, y) = 0, then x(1 + β) ≥ y ≥ x, therefore,

|x− y| = y − x ≤ βx ≤ βy.

If dist1+β(x, y) > 0, then dist1+β(x, y) = y − (1 + β)x, therefore,

|x− y| = y − x = dist1+β(x, y) + βx ≤ ϵ+ βx ≤ ϵ+ βy.

(2). y < x. If dist1+β(x, y) = 0, then x
1+β ≤ y < x, therefore,

|x− y| = x− y ≤ x− x

1 + β
≤ y(1 + β)(1− 1

1 + β
) = βy.

If dist1+β(x, y) > 0, then y < x
1+β ≤ x and dist1+β(x, y) = x

1+β − y. Moreover, since dist1+β(x, y) ≤ ϵ, we have
x

1+β ≤ ϵ+ y. Therefore,

|x− y| = x− y

= dist1+β(x, y) + (1− 1

1 + β
)x

= dist1+β(x, y) + β
x

1 + β

≤ ϵ+
β

1 + β
ϵ+ βy

= (1 +
β

1 + β
)ϵ+ βy.

Combine the results above together, we have,

|x− y| ≤ βy + (1 +
β

1 + β
)ϵ ≤ 2max{(1 + β

1 + β
)ϵ, βy}.
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D. Discussion on policy identification
In this section, we discuss on the application of CAESAR to policy identification problem, its instance-dependent sample
complexity and some intuitions related to the existing gap-dependent results.

We first provide a simple algorithm that utilizes CAESAR to identify an ϵ−optimal policy. The core idea behind the
algorithm is we can use CAESAR to evaluate all candidate policies up to an accuracy, then we can eliminate those policies
with low estimated performance. By decreasing the evaluation error gradually, we can finally identify a near-optimal policy
with high probability.

For notation simplicity, fixing the high-probability factor, we denote the sample complexity of CAESAR by Θ(Π)
γ2 , where Π

is the set of policies to be evaluated and γ is the estimation error.

Algorithm 4 Policy Identification based on CAESAR

Input: Alg CAESAR , optimal factor ϵ, candidate policy set Π.
for i = 1 to ⌈log2(4/ϵ)⌉ do

1. Run CAESAR to evaluate the performance of policies in Π up to accuracy γ = 1
2i .

2. Eliminate πi if ∃πj ∈ Π, V̂ πj

1 − V̂ πi

1 > 2γ, update Π.
end for
Output: Randomly pick πo from Π.

Theorem D.1. Implement Algorithm 4, we have that, with probability at least 1− δ, πo is ϵ−optimal, i.e.,

V ∗
1 − V πo

1 ≤ ϵ.

And the instance-dependent sample complexity is Õ(maxγ≥ϵ
Θ(Πγ)

γ2 ), where Πγ = {π : V ∗
1 − V π

1 ≤ 8γ}.

Proof. On the one hand, based on the elimination rule in the algorithm, by running CAESAR with the evaluation error γ, the
optimal policy π∗ will not be eliminated with probability at least 1−δ. Since maxπ∈Π V̂ π

1 −V̂ π∗

1 ≤ V ∗
1 +γ−(V π∗

1 −γ) ≤ 2γ.

On the other hand, if V ∗
1 −V πi

1 > 4γ, then πi will be eliminated with probability at least 1− δ. Since maxπ∈Π V̂ π
1 − V̂ πi

1 >

V ∗
1 − γ − (V πi

1 + γ) > 2γ.

Therefore, by running Algorithm 4, the final policy set is not empty and for any policy π in this set, it holds, V ∗
1 − V π

1 ≤ ϵ
with probability at least 1− δ.

Next, we analyse the sample complexity of Algorithm 4. Based on above analysis, within every iteration of the algorithm,
we have a policy set containing 8γ−optimal policies, and we use CAESAR to evaluate the performance of these policies up
to γ accuracy. By Theorem 4.9, the sample complexity is Θ(Πγ)

γ2 . Therefore, the overall sample complexity is,

∑
γ

Θ(Πγ)

γ2
≤ Õ(max

γ≥ϵ

Θ(Πγ)

γ2
).

This result is quite interesting since it provides another perspective beyond the existing gap-dependent results for policy
identification. And these two results have some intuitive relations that may be of interest.

Roughly speaking, to identify an ϵ−optimal policy for an MDP, the gap-dependent regret is described as,

O(
∑
h,s,a

H logK

gaph(s, a)
),

where gaph(s, a) = V ∗
h (s)−Q∗

h(s, a).

The value gap gaph(s, a) quantifies how sub-optimal the action a is at state s. If the gap is small, it is difficult to distinguish
and eliminate the sub-optimal action. At the same time, smaller gaps mean that there are more policies with similar
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performance to the optimal policy, i.e. the policy set Πγ is larger. Both our result and gap-dependent result can capture this
intuition. We conjecture there exists a quantitative relationship between these two perspectives.

An interesting proposition of Theorem D.1 is to apply the same algorithm to the multi-reward setting. A similar instance-

dependent sample complexity can be achieved Õ(maxγ≥ϵ
Θ(ΠR

γ )

γ2 ) with the difference that ΠR
γ contains policies which is

8γ−optimal for at least one reward function. This sample complexity captures the intrinsic difficulty of the problem by how
similar the near-optimal policies under different rewards are which is consistent with the intuition.
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