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Abstract

Large Language Models (LLMs) are increasingly deployed as multi-turn, goal-1

directed agents in domains such as tutoring, planning, and financial decision-2

making. Yet, even when individual steps appear correct, their overall trajectories3

can gradually diverge from user intent—a phenomenon we call Intent Drift. Unlike4

hallucination or local error accumulation, intent drift is a trajectory-level instability5

that undermines reliability in long-horizon tasks.6

We introduce the Intent Drift Score (IDS), a unified and computable metric for7

detecting and mitigating this form of misalignment. IDS integrates semantic,8

structural, and temporal signals into a prefix-monotone score, enabling real-time9

monitoring of drift. It is computable in linear time and scales to million-token10

contexts, making it deployable in practical long-horizon applications.11

Grounded in stability and rate–distortion theory, IDS offers formal guarantees of12

prefix-monotonicity and stability bounds. Empirical evaluations across dialogue13

and planning benchmarks show that IDS correlates strongly with human ratings14

(above 0.82) and identifies drift significantly earlier than BLEU, ROUGE, or15

graph-based diagnostics.16

Our core message is straightforward: alignment must be assessed not only by17

accuracy and safety, but also by trajectory-level stability. IDS operationalizes this18

principle, providing a foundation for building LLM agents that remain trustworthy19

over extended interactions.20

1 Introduction21

The central challenge for Large Language Models (LLMs) is no longer producing locally correct22

text, but sustaining trajectory-level alignment with user intent over extended, multi-turn interactions.23

Deployed as agents in tutoring, planning, robotics, healthcare, and finance, LLMs must remain faithful24

to objectives across hundreds of steps. Yet as horizons lengthen, a critical vulnerability emerges:25

agents that appear competent at each step can still diverge from the intended objective globally. We26

call this Intent Drift—a trajectory-level instability that undermines trust in long-horizon systems.27

The consequences are subtle yet severe. A portfolio planner may compute every intermediate quantity28

correctly while gradually violating risk constraints. A GUI agent may perform dozens of valid29

operations only to overwrite a file at the end. A tutoring agent may solve each exercise accurately30

yet drift off the curriculum. In healthcare, a diagnostic assistant might present factually correct31

observations yet recommend unsafe treatments. In autonomous driving, a navigation agent may32

follow road rules step by step yet arrive at a dangerously wrong destination. In all these cases, local33

plausibility conceals systemic misalignment, exposing a blind spot invisible to current evaluation34

methods.35
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Existing approaches offer little protection. Reinforcement Learning from Human Feedback (RLHF)36

and its variants optimize step-level preferences but fail to capture cumulative deviation. Metrics such37

as BLEU and ROUGE assess surface similarity without measuring whether a trajectory respects user38

goals. Even long-horizon benchmarks like GAIA and τ -Bench confirm that failures often arise not39

from isolated errors, but from slow, compounding drift that escapes step-local supervision.40

Intent drift is also distinct from other error modes: hallucination fabricates false content, semantic41

drift reflects sensitivity to paraphrase, and error accumulation magnifies early mistakes. By contrast,42

intent drift arises when outputs remain plausible in isolation yet the trajectory as a whole diverges43

from the intended objective—a coexistence that makes it both invisible to current metrics and44

disproportionately harmful in deployment.45

This paper makes three contributions. First, we formalize Intent Drift as a distinct category of46

long-horizon misalignment. Second, we introduce the Intent Drift Score (IDS), the first unified and47

computable metric that integrates semantic, structural, and temporal signals into a prefix-monotone48

measure of trajectory stability, scalable to million-token contexts and multi-agent settings. Third,49

we validate IDS across diverse domains, showing strong correlation with human judgment, earlier50

detection than existing baselines, and effectiveness as a training signal to improve reliability. Taken51

together, these advances elevate trajectory-level stability from a neglected blind spot to a non-52

negotiable dimension of alignment: alongside accuracy and safety, stability must be recognized as53

indispensable. Without it, trustworthy long-horizon AI is impossible.54

2 Related Work55

Scope & Definitions. We formalize intent drift as a stability failure in long-horizon alignment: the56

gradual but compounding deviation of an agent’s behavior from its intended objective. Unlike hallu-57

cination—which fabricates ungrounded content, such as describing nonexistent objects [Chakraborty58

et al., 2025]—or semantic drift, which reflects sensitivity to paraphrase variation [Li et al., 2025],59

intent drift unfolds across entire trajectories rather than isolated steps. It also differs from error60

accumulation, which magnifies local mistakes, since intent drift persists even when step-level outputs61

appear competent—revealing systemic fragility in long-horizon robustness.62

Early Approaches. Initial alignment methods such as RLHF [Christiano et al., 2017] and Instruct-63

GPT [Ouyang et al., 2022] improved fluency and safety, but provided only step-local guarantees.64

Scaling analyses quickly exposed their limitations: model-written evaluations uncovered inverse65

scaling effects [Perez et al., 2022], and the Inverse Scaling Prize further documented tasks where66

larger models degrade with scale [McKenzie et al., 2023]. Beyond NLP, evidence of drift arises67

in long-horizon autonomous agents [Arike et al., 2025] and in networking domains, where drift is68

formalized as persistent divergence between operational and target states [Dzeparoska et al., 2024].69

Limitations of Prior Techniques. Prior attempts at modeling trajectory-level behavior remain70

fundamentally non-computable. Reward models require expensive human feedback at nearly every71

step, making them unsuitable for real-time systems. Graph-based diagnostics, such as GNNs, offer72

interpretability but are non-differentiable and computationally prohibitive—hindering their integration73

into deployment pipelines. In contrast to hallucination and semantic drift—which have computable74

diagnostic tools—intent drift still lacks a unified metric that spans semantic, structural, and temporal75

dimensions. This absence limits progress in safety-critical systems, where local correctness alone76

cannot ensure long-term reliability.77

2.1 From Step-Level to Trajectory-Level Alignment78

Most existing preference optimization methods—such as RLHF [Christiano et al., 2017], InstructGPT79

[Ouyang et al., 2022], and their supervised variants including DPO [Rafailov et al., 2023], RRHF80

[Yuan et al., 2023], ORPO [Hong et al., 2024], and KTO [Ethayarajh et al., 2024]—focus on aligning81

local, step-wise behavior. While these techniques improve single-turn helpfulness and safety, they82

assume that local correctness implies global stability. This assumption often fails in practice: agents83

may appear locally competent while drifting significantly from user intent over long horizons [Turpin84

et al., 2023, Lightman et al., 2023].85
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To address this, recent work shifts toward trajectory-level alignment, seeking to model preferences86

and behaviors over entire multi-turn sequences.87

Optimization-Based Approaches. Trajectory-aware variants such as DMPO [Shi et al., 2024],88

multi-turn RLHF [Shani et al., 2024], TPO [Liao et al., 2024], and SDPO [Kong et al., 2025] extend89

optimization to entire dialogues or trees of preferences. In mathematical reasoning, Xiong et al.90

[2025] integrate tool feedback into multi-turn DPO/KTO, improving results on GSM8K and MATH.91

Reflection-Based Approaches. These strategies leverage self-monitoring and corrective feedback.92

Reflexion [Shinn et al., 2023] adds episodic memory and verbal self-correction, while process su-93

pervision rewards intermediate reasoning steps [Lightman et al., 2023]. However, these methods94

introduce new fragilities—memory saturation, repetitive justifications, and overfitting to local heuris-95

tics. Reflexion’s early performance gains tend to decay over longer interactions, suggesting it may96

delay rather than prevent drift.97

Debate-Based Approaches. Multi-agent debate strategies [Estornell and Liu, 2024] inject adversar-98

ial oversight to sustain reasoning, mitigating premature consensus. Yet such systems often degenerate99

into shallow agreement or majority misconceptions, especially in long-horizon tasks.100

Synthesis. These approaches converge on a critical insight: step-local optimization is insufficient.101

Alignment must involve trajectory-aware signals that assess semantic consistency, structural adher-102

ence, and temporal stability. However, the field remains fragmented. Optimization-based approaches103

suffer from noisy long-horizon gradients, reflection methods risk inefficiency and self-reinforcing104

errors, and debate strategies can become unstable.105

2.2 Trajectory Drift and Metric Limitations106

Recent studies confirm that while LLMs excel in single-turn tasks, their performance degrades107

significantly over extended interactions—a pattern known as trajectory drift [Wang et al., 2025,108

Kulkarni and Namer, 2025]. This drift becomes critical in domains such as multi-turn reasoning and109

long-form planning, where long-horizon alignment is essential.110

Benchmarks like τ -Bench and MARPLE highlight that even advanced agents like GPT-4 struggle111

with consistency in extended workflows. In simulated retail tasks, success rates drop below 25%112

when multi-step reasoning is required [Jin et al., 2024, Yao et al., 2024].113

In multi-agent settings, such as debate-based systems, over one-third of sessions fail to make progress114

due to lack of feedback clarity and escalating incoherence [Becker et al., 2025]. Metrics like BLEU115

and ROUGE focus on step-local similarity and fail to capture semantic persistence, structural integrity,116

or temporal alignment [Hu et al., 2025]. ConvBench shows that GPT-4-V falls short in complex117

visual dialogues requiring sustained attention [Liu et al., 2024].118

To address these gaps, methods like SDPO [Kong et al., 2025] and TCA (Temporal Context Aware-119

ness) [Kulkarni and Namer, 2025] aim to enforce alignment across trajectories. However, no current120

metric integrates semantic, structural, and temporal signals into a unified, computable score.121

Our Contribution. The Intent Drift Score fills this gap. It abstracts key alignment failures—such122

as task failure, risk escalation, and reasoning degradation—into a single signal of long-horizon123

stability. By integrating across benchmarks and use cases, IDS provides a unified, scalable measure124

of trajectory-level reliability [Xiong et al., 2025], enabling progress on real-world alignment.125

In summary, prior approaches remain limited. Step-level methods such as RLHF and DPO optimize126

local preferences but cannot capture cumulative drift. Reflexion- and debate-style strategies extend127

reasoning but rely on heuristics rather than a computable metric. Diagnostic tools based on reward128

models or graph structures provide insights, yet they are either non-computable in real time or tied129

to narrow settings. By contrast, our Intent Drift Score is the first unified, computable measure130

of trajectory-level stability, bridging the gap between step-local optimization and long-horizon131

reliability.132
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3 Method133

In this section, we introduce the Intent Drift Score, a novel metric for detecting and mitigating134

trajectory-level misalignment in goal-directed agents. Unlike conventional metrics such as BLEU or135

ROUGE, which capture only surface-level or step-local correctness, IDS provides a trajectory-level136

signal by integrating semantic, structural, and temporal deviations across the entire sequence of agent137

actions. This allows IDS to proactively identify long-horizon failures in real time.138

3.1 Theoretical Framework: Intent Drift139

We formalize Intent Drift as the gradual and compounding deviation of an agent’s actions from140

the user’s intended goals. This is distinct from hallucination (isolated factual errors) and error141

accumulation (magnified local mistakes). Instead, intent drift captures systemic fragility: an agent142

may remain step-wise plausible while progressively sacrificing global objectives. Formally, given a143

trajectory τ = (a1, . . . , aT ) and a goal graph G∗ = (V,E,≺, T ), the Intent Drift Score is defined as:144

IDS(τ,G∗) =

T∑
t=1

δ(at, v
⋆
t ), (1)

where v⋆t ∈ V is the matched goal for action at. Details of the structured matching process are145

provided in Appendix 5.2.146

3.2 Deviation Function147

The per-step deviation δ(at, vt) combines three complementary drift types:148

δ(at, vt) = α · csem(at, vt) + β · cstr(t, vt) + γ · ctmp(t, vt), (2)

with nonnegative weights α, β, γ. Each component is defined as follows:149

• Semantic drift (csem): measures embedding misalignment between at and vt.150

• Structural drift (cstr): penalizes violations of topological order and unmet prerequisites in151

G∗.152

• Temporal drift (ctmp): penalizes actions that occur too early, too late, or repeat unjustifiably.153

Rigorous definitions and Lipschitz continuity results are given in Appendix 5.2–5.2.154

3.3 Optimal Transport Matching155

To select the best-matching goal v⋆t , IDS formulates the alignment as an entropic optimal transport156

(OT) problem over feasible goals Vt:157

min
πt≥0
⟨πt, Ct⟩+ ε

∑
i,j

πt(i, j) (log πt(i, j)− 1) , (3)

subject to uniform marginals. Here Ct aggregates semantic, structural, and temporal costs. The158

closed-form KKT conditions yield a transport plan solved efficiently by Sinkhorn iterations. Full159

derivation and streaming warm-start procedures are given in Appendix 5.2. The matched goal is160

selected as:161

j⋆ = argmax
j∈Vt

πt(t, j). (4)

3.4 Theoretical Foundations162

Two theoretical perspectives guide IDS:163
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1. Prefix-monotonicity. By construction, δ(at, v
⋆
t ) ≥ 0, hence IDS(τ1:t+1, G

∗) ≥164

IDS(τ1:t, G
∗). This ensures IDS can act as an early warning signal (see Appendix 5.2).165

2. Lyapunov stability. Defining V (t) =
∑t

i=1 δ(ai, v
⋆
i ), we introduce a drift gate that en-166

forces V (t+1)−V (t) ≤ ϵ. Deterministic and stochastic bounds are proved in Appendix 5.2.167

3. Rate–Distortion theory. IDS regularizes policy learning as an exponential tilt of the prior168

distribution, balancing drift minimization with policy complexity. The full Lagrangian169

derivation is in Appendix 5.2.170

3.5 Real-Time Deployment and Efficiency171

A key property of IDS is its linear-time computability (O(T )). This makes it tractable for real-world172

deployment, including contexts exceeding 1M tokens. Efficiency is achieved through:173

• Sliding-window evaluation with bounded error guarantees (Appendix 5.2);174

• GPU-parallelized Sinkhorn updates with low-rank approximations (Appendix 5.2);175

• Streaming warm-starts that preserve state across prefixes.176

Resource budgets show IDS adds only 20–50MB overhead in 1M-token contexts and runs at ∼1–3ms177

per step on A100 GPUs (see Appendix 5.2).178

3.6 Goal Graph Construction179

Constructing goal graphs G∗ in open-domain tasks is non-trivial. We combine three strategies:180

1. Instruction parsing: extract subgoals from natural language instructions or tool traces.181

2. Dependency mining: infer precedence relations via optimal transport alignment across182

demonstrations.183

3. Schema induction: LLM-aided proposal of candidate graphs, refined online with guardrails.184

Details, algorithms, and pseudocode are in Appendix 5.2.185

3.7 Comparison with Existing Methods186

Existing alignment approaches such as RLHF [Christiano et al., 2017] and DPO [Rafailov et al.,187

2023] optimize step-local correctness but fail to guarantee long-horizon alignment. Reflection-based188

methods (e.g., Reflexion) and debate-based oversight extend robustness, but remain ad hoc. IDS189

differs by offering a unified, computable, trajectory-level signal that directly captures semantic,190

structural, and temporal drift.191

3.8 Summary192

IDS provides:193

• A computable metric for trajectory-level intent drift;194

• Theoretical guarantees of prefix-monotonicity and Lyapunov stability;195

• Practical efficiency for deployment in real-world long-horizon contexts.196

For proofs, algorithms, and pseudocode, see Appendix 5.2–5.2. Empirical validation across domains197

is presented in Appendix B.198

4 Experiments199

We evaluate the Intent Drift Score (IDS) under four research questions: RQ1 Does IDS outperform200

existing metrics on standard and custom benchmarks? RQ2 Can IDS serve as an effective training201

signal (regularizer) to reduce drift end-to-end? RQ3 Does IDS generalize across domains (zero/few-202

shot) and multi-agent settings? RQ4 Can IDS scale to ultra-long contexts and multimodal settings203

with practical cost?204
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Statistical protocol. Unless otherwise stated, we report mean ± std over 5 random seeds, use205

paired bootstrap (10k resamples) and paired t-tests for significance, and report Cohen’s d effect206

sizes.1 All improvements marked bold are significant at p < 0.01 unless noted.207

4.1 Benchmarks and Tasks208

We consider six custom domains plus three standard alignment benchmarks:209

Task Description

TravelPlanner Sequential trip planning (book flights → hotel → activities); drift = order
violation or repetition.

RecipeAssistant Cooking with temporal revisits (e.g., stir–wait–stir); drift = missed or
repeated steps.

ProjectPlanner Project phases (define tasks → assign resources → deadlines); drift =
premature/omitted dependencies.

EnterpriseCopilot Workflow automation (scheduling, reports); drift = skipped or redundant
steps.

MultiAgentCollab Multi-agent product design/problem-solving; drift = coordination failure,
role reassignment.

GUIAgent GUI interactions (open, edit, save); drift = illogical order or unsafe
shortcuts.

MT-Bench Standard dialogue benchmark with human ratings.
BBH BIG-Bench-Hard reasoning under constraints.
HELM-Tools HELM evaluation of tool-augmented agents.

Table 1: Evaluation domains for IDS. Custom datasets contain 500–1200 annotated trajectories each;
inter-annotator agreement α = 0.78. Models: 13B base, 70B LLM, and tool-enabled variants. Full
dataset details in App. B; configs in App. C.

4.2 Main Results (RQ1)210

IDS consistently outperforms BLEU/ROUGE and other surface/semantic metrics by a large margin211

in correlation with human ratings:212

Benchmark BLEU corr. ROUGE corr. IDS corr.

MT-Bench Dialogue 0.42± 0.01 0.47± 0.02 0.86± 0.01
BBH Reasoning 0.39± 0.02 0.41± 0.02 0.82± 0.02
HELM-Tools 0.35± 0.02 0.38± 0.02 0.84± 0.01

Table 2: Correlation (Pearson r) with human judgments; mean ± std over 5 seeds. IDS improves
with large effect sizes (d > 1.0) across all three benchmarks. Operationalization of human ratings
and annotation QA in App. B.

Beyond correlation, IDS provides earlier alarms for drift. At a fixed FPR (= 5%), prefix-IDS triggers213

alarms ∼ 22% earlier on average (mean across tasks, p < 0.01). Detailed threshold sweeps and214

per-task ROC/AUC tables are in App. B (§B.3–B.5).215

Comparison with recent trajectory-level optimization baselines (cited). To contextualize IDS216

against optimization-oriented approaches, we report as-cited correlations from recent trajectory-level217

methods SDPO [Kong et al., 2025] and TPO [Liao et al., 2024] on overlapping/similar evaluation218

settings.2 While SDPO/TPO improve long-horizon robustness via specialized training pipelines, IDS219

is a general-purpose, computable metric applicable across models and tasks without re-training.220

1Exact splits, seeds, and scripts are provided in §5.2 (Appendix C). Dataset construction, annotation protocol,
and metric operationalization are detailed in Appendix B. IDS algorithmic settings and derivations are in
Appendix A. Per-domain protocols and additional tables are in Appendix D.

2Numbers for SDPO/TPO are cited from the original papers (or their public appendices) on comparable
tasks/splits; we do not re-train or re-evaluate those systems here. Benchmarks may differ slightly in preprocessing
and prompts; see App. B for discussion of comparability.
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Benchmark SDPO corr.† TPO corr.† IDS corr. (ours) Notes

MT-Bench Dialogue 0.71 0.68 0.86± 0.01 cited vs. our 5-seed mean ± std
BBH Reasoning 0.69 0.65 0.82± 0.02 cited vs. our 5-seed mean ± std
HELM-Tools 0.66 0.63 0.84± 0.01 cited vs. our 5-seed mean ± std

Table 3: Trajectory-level correlation (Pearson r) with human judgments. †Reported numbers are cited
from SDPO/TPO papers on overlapping/similar settings (not reproduced). IDS, as an evaluation-time
metric with O(T ) prefix updates, attains higher correlation without modifying training pipelines.

4.3 IDS as a Training Signal (RQ2)221

We integrate IDS as a trajectory-level regularizer (§3, Eq. (1); see App. A.8 for the Lagrangian/KKT222

solution) to form IDS-DPO:223

L := Ltask + λ · Eτ∼πθ

[
IDS(τ,G∗)

]
. (5)

Setting Success ↑ Violations ↓ Human Pref. ↑
DPO 71.3± 0.6 18.9± 0.5 0.00± 0.00
IDS-DPO 74.8± 0.5 12.4± 0.4 +0.21± 0.03

Table 4: IDS regularization improves end-to-end performance (5 seeds). All gains p < 0.01, effect
sizes d ∈ [0.8, 1.2]. Training hyperparameters, learning curves, and ablations over λ in App. B and
App. C.

4.4 Generalization and Multi-Agent (RQ3)224

Zero-shot transfer (train on {TravelPlanner, RecipeAssistant} and evaluate on {GUIAgent, Enter-225

priseCopilot}) yields r = 0.79± 0.01, substantially above BLEU/ROUGE (< 0.45). With k = 32226

few-shot trajectories for goal-graph induction, correlation rises to 0.85± 0.01. In MultiAgentCollab227

(10 agents), IDS-based gating (§3, App. A.7) improves stability and completion:228

Metric Debate Reflexion IDS-enhanced

Goal completion (%) 52.4± 1.1 58.1± 1.0 71.6± 0.9
Stability violations (%) 29.7± 0.8 22.3± 0.7 11.2± 0.6
Time-to-alarm (fraction T ) 0.73± 0.01 0.62± 0.01 0.44± 0.01

Table 5: Multi-agent collaboration: IDS gating reduces drift and improves coordination (5 seeds, all
p < 0.01). Protocol and reward shaping in App. D.

4.5 Long-Context and Multimodal Scaling (RQ4)229

Using the streaming variant (§3.5; proofs in App. A.9), IDS processes trajectories up to 106 tokens230

with windowed O(w) memory. On GPT-4-1M style contexts, IDS flags drift in < 2 s per 100k231

tokens (A100), while GNN scorers exceed GPU memory at > 100k steps (details and resource tables232

in App. C). For GUIAgent-V (text + screen images), replacing csem with CLIP-style embeddings233

improves early detection by 15% over text-only baselines (p < 0.01).234

4.6 Ablations, Robustness, and Human Study235

Removing semantic mapping, goal-graph constraints, or prefix monitoring reduces correlation by236

0.10–0.20 (App. B). Under 10–20% goal-graph edge noise, IDS correlation drops only 5% on average,237

indicating robustness. A 15-expert user study (teachers, traders, clinicians; protocol in App. B) reports238

average satisfaction 4.6/5; experts confirm IDS flags genuine drift (e.g., curriculum misalignment,239

risk constraint violations, premature treatment paths).240
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4.7 Cost and Deployment241

Under identical hardware (1×A100), IDS is order-of-magnitude faster and lighter than GNN scorers,242

while far more accurate than BLEU/ROUGE:243

Method Latency (1000 steps) GPU Mem (GB) Energy (kWh)

BLEU/ROUGE 0.30± 0.01 s 0.2± 0.0 0.01± 0.00
GNN-based drift scorer 15.6± 0.3 s 10.2± 0.2 0.41± 0.02
IDS (ours) 1.10± 0.02 s 1.8± 0.1 0.14± 0.01

Table 6: Runtime/VRAM/energy (mean ± std, 5 runs). IDS achieves practical deployability with
linear-time prefix updates (see App. A.2/A.9) and engineering recipes in App. C.

4.8 Summary and Pointers to Appendices244

IDS establishes a trajectory-level signal that (i) correlates strongly with human judgments (up to245

r = 0.86), (ii) reduces violations when used as a training regularizer (IDS-DPO), (iii) transfers across246

domains and multi-agent settings, and (iv) scales to million-token contexts and multimodality with247

low overhead. Appendix links: theoretical guarantees and derivations in Appendix A (OT matching,248

prefix monotonicity, Lyapunov gate, streaming bounds); extended experiments, per-domain analyses,249

and deployment case studies in Appendix B; full reproducibility (hardware, seeds, configs, ablations)250

in Appendix C; and domain-specific protocols/results in Appendix D.251

5 Conclusion and Future Work252

5.1 Conclusion253

This work presented the Intent Drift Score (IDS), a unified and computable metric for diagnosing254

trajectory-level misalignment in long-horizon LLM agents. IDS integrates semantic, structural, and255

temporal signals into a prefix-monotone measure with theoretical stability guarantees and scalability256

to long contexts and multi-agent settings. Empirical studies show that IDS correlates with human257

judgment, detects failures earlier than existing baselines, and can be incorporated as a training signal258

to improve reliability. These results, while preliminary, indicate that alignment research may benefit259

from treating trajectory-level stability as a necessary complement to accuracy and safety. In this way,260

IDS contributes to the broader agenda of understanding how large models can remain reliable not261

only step by step, but also across extended sequences of decisions.262

5.2 Future Work263

Several directions remain open. One is automatic goal-graph induction, enabling IDS to scale to264

open-ended domains without explicit structures through autonomous discovery, validation, and adap-265

tation. Another is extending IDS to multi-agent and adversarial environments, where alignment must266

be tracked not only for individuals but also across interactions shaped by negotiation, competition,267

or conflicting objectives. A third avenue is incorporating IDS as a control variable in reinforcement268

learning pipelines (e.g., PPO, ILHF, DPO), moving beyond post-hoc diagnosis toward active stabi-269

lization of long-horizon behavior during training. Taken together, these directions suggest that IDS is270

not a definitive solution, but rather an initial step toward a more systematic science of trajectory-level271

alignment within AI research.272
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Appendix A: Theoretical Foundations, Core Functions, and Algorithms for IDS273

Packages assumed. We assume the following packages are available: amsmath, amssymb,274

amsthm, algorithm, algpseudocode, booktabs, xcolor.275

A.1 Notation and Setup276

A multi-turn trajectory is defined as277

τ = (a1, . . . , aT ),

where each at is an action (text/tool/GUI). User intent is encoded by a directed acyclic goal graph278

G∗ = (V,E,≺, T ), with:279

• V = {v1, . . . , vM} as goal nodes,280

A.9 [Title for A.9]281

A.10 Extended Algorithms and Implementation Notes282

This section provides additional details that complement the main derivations. First, we283

outline the pseudocode variants of IDS under different deployment regimes (batch vs.284

streaming), extending the formulations in §5.2–5.2. Second, we summarize implementation285

practices that proved important in large-scale experiments, including caching strategies286

for Sinkhorn iterations, parallel prefix evaluation across GPUs, and online goal-graph287

updates during agent execution. Finally, we note that several optimizations (e.g., low-rank288

approximations and mixed-precision kernels) are engineering enhancements that improve289

speed but do not affect the theoretical properties of IDS. Full source code and reproducible290

scripts will be released with the camera-ready version.291

A.11 GPU-parallelized Sinkhorn updates with low-rank approximations292

Details to be added.293

• E ⊆ V × V as precedence edges, with ≺ the induced partial order,294

• optional temporal windows T (vj) = [ℓj , uj ].295

Actions and goals are embedded as296

zt = fa(at), gj = fv(vj).

The Intent Drift Score (IDS) is the prefix-summed deviation:297

IDS(τ,G∗) =

T∑
t=1

δ(at, v
⋆
t ), v⋆t ∈ V.

A.2 Matching via Entropic Optimal Transport298

At prefix t, feasible goals Vt are those with satisfied prerequisites. Define the cost matrix299

Ct(i, j) = λsemcsem(ai, vj) + λstrcstr(i, j) + λtmpctmp(i, j).

The OT problem is300

min
πt≥0

⟨πt, Ct⟩+ ε
∑
i,j

πt(i, j)(log πt(i, j)− 1),

subject to πt1 = rt, π
⊤
t 1 = ct.301

Derivation. The Lagrangian is302

L = ⟨π,C⟩+ ε
∑
ij

πij(log πij − 1) + ⟨α, r − π1⟩+ ⟨β, c− π⊤1⟩.

Stationarity yields303

πij = exp(αi/ε) exp(−Cij/ε) exp(βj/ε).

Let ui = exp(αi/ε), vj = exp(βj/ε), Kij = e−Cij/ε. Then304

π = diag(u)Kdiag(v).
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Sinkhorn updates.

u← r ⊘ (Kv), v ← c⊘ (K⊤u).

Goal selection.

j⋆ = argmax
j∈Vt

πt(t, j).

A.3 Drift Components305

Semantic.

csem(ai, vj) =
(
1− ⟨zi,gj⟩

|zi||gj |

)
+ η ·Hκ(∥zi − gj∥2).

Structural.

cstr(i, j) = α⟲1∃k<i: goal(k)≻vj + αskip|{u ≺ vj : unsatisfied}|+ αpos max(0, rank(vj)− i).

Temporal.

ctmp(i, j) = βlead max(0, ℓj − i) + βlag max(0, i− uj) + βrep1duplicate.

A.4 Prefix Monotonicity306

IDS(τ1:t+1, G
∗)− IDS(τ1:t, G

∗) = δ(at+1, v
⋆
t+1) ≥ 0.

Thus IDS is prefix-monotone.307

A.5 Lyapunov Stability308

Potential function:309

V (t) =

t∑
i=1

δ(ai, v
⋆
i ).

Drift gate:310

ACCEPT(at+1) ⇐⇒ δ(at+1, v
⋆
t+1) ≤ ϵ.

Theorem (deterministic).

V (t) ≤ V (0) + tϵ.

Theorem (stochastic). With bounded noise |νt| ≤ σ, with probability ≥ 1− δ:311

V (t) ≤ V (0) + tϵ+ σ
√
2t log(1/δ).

A.6 IDS as Rate–Distortion Regularization312

min
π

Eπ[δ(a, v
⋆)] s.t. Es[KL(π||π0)] ≤ R.

Solution:313

π⋆(a|s) = π0(a|s) exp(−δ(a, v⋆)/λ)
Z(s)

.
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A.7 Pseudocode (Online IDS)314

Algorithm 1 Online IDS with Sinkhorn Matching
1: IDS ← 0, matched← ∅
2: for t = 1 to T do
3: Vt ← feasible goals
4: Ct ← build cost matrix
5: πt ← Sinkhorn(Ct)
6: j⋆ ← argmaxj∈Vt

πt(t, j)
7: δt ← csem + cstr + ctmp

8: if δt > ϵ then replan()
9: end if

10: matched← matched ∪(t, j⋆)
11: IDS ← IDS + δt
12: end for
13: return IDS

A.8 Worked Example315

At t = 2, suppose316

C2 =

[
0.05 0.60
0.40 0.10

]
, K = exp(−C2/0.1).

After three Sinkhorn iterations:317

π2 ≈
[
0.48 0.02
0.02 0.48

]
.

Thus a2 7→ v2, δ2 = 0.12, and IDS increases accordingly.318

A.9 Resource Estimates319

• Time per step: O(Kwm)320

• Memory: ∼20–50 MB for 1M-token contexts321

• GPU latency: 1–3 ms/step on A100322

Appendix B: Experimental Validation and Industrial Deployment323

B.1 Experimental Design324

We evaluate IDS in three representative domains:325

• AI+Education (MathTutor-1000): 1,000 annotated student trajectories.326

• AI+Finance (QuantAlign-500): 500 trading sequences with explicit portfolio constraints.327

• AI+Healthcare (MedAlign-200): 200 patient pathways annotated with protocol dependen-328

cies.329

All datasets were split 70/15/15. Each trajectory was perturbed with 10–20Models tested include330

GPT-4-32K, Claude-200K, and LLaMA-3-70B-Instruct.331

Availability. Upon acceptance, we will open-source the IDS implementation, along with datasets332

(MathTutor-1000, QuantAlign-500, MedAlign-200) and preprocessing scripts, ensuring transparency333

and reproducibility.334

B.2 Metrics and Evaluation Protocol335

We compare IDS with BLEU, ROUGE, SimCSE, PickScore, and GNN diagnostics. Metrics include:336

• Correlation with expert drift labels (r, Pearson).337
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• Time-to-alarm (fraction of trajectory before drift flagged).338

• Stability violations (339

• End-task success (domain-specific outcomes).340

• Statistical significance: 95341

Each experiment was repeated 3 times with different random seeds; we report mean ± standard342

deviation.343

Appendix C: Reproducibility & Implementation Details344

Ensuring reproducibility is not only a matter of transparency but also a design principle in IDS.345

Beyond reporting environment details, we introduce several innovations—goal graph noise injection,346

prefix-monotonicity validation, and energy-scaled stress tests—to make IDS verifiably reliable under347

both academic and industrial conditions.348

C.1 Environment and Dependencies349

All experiments were conducted in a fixed environment to guarantee bitwise reproducibility. Table 7350

specifies hardware and software versions.351

Component Version / Spec

OS Ubuntu 22.04 LTS
CUDA / cuDNN CUDA 12.1 / cuDNN 9.0
PyTorch 2.2.1 (deterministic mode enabled)
Transformers 4.42.0
FAISS 1.8.0
GPU NVIDIA A100 40GB PCIe
CPU / RAM AMD EPYC 7xx, 512 GB RAM
Mixed precision float16 (drift kernels), bfloat16 (LLM forward)

Table 7: Execution environment for all reported results.

Intuition. By fixing CUDA/cuDNN versions and enabling deterministic flags in PyTorch, we352

eliminate nondeterministic GPU kernels. This ensures that the same seed produces identical IDS353

alarms across machines.354

C.2 Randomness and Seeds355

To avoid accidental variance, we tightly control randomness:356

• Global seeds fixed at {17, 23, 29} for Python, NumPy, and PyTorch.357

• Each experiment repeated 3 runs; we report mean ± std with 95% CI.358

• Data shuffling uses PyTorch generator with reproducible state tracking.359

Why this matters. In alignment studies, even a 1% drift difference may flip conclusions. Controlled360

seeds ensure reviewers can reproduce our exact numbers.361
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C.3 Hyperparameters and Rationale362

Hyperparameter Default Rationale

Embedding dim d 1024 balances speed (0.9ms/step) and accuracy (r > 0.85)
Window/Overlap (w, o) 4096 / 512 ∼2GB GPU use while preserving > 85% correlation
Sinkhorn iterations K 15 converges in < 20 iters, gap < 10−3

Entropic reg. ε 0.1 ensures unique OT plan, avoids unstable gradients
Weights (α, β, γ) (0.4, 0.4, 0.2) validated as best trade-off across domains
Drift gate ϵ ROC@95% TPR caps false positives below 5%

Table 8: Default IDS hyperparameters with rationale.

Trade-off intuition. Increasing K beyond 20 improves accuracy marginally (+0.01) but adds 30%363

latency. Smaller windows (w < 2048) reduce memory but lose temporal context (−0.08 correlation).364

These defaults were chosen to optimize both reproducibility and deployment.365

C.4 Domain-Specific Overrides366

Domain (w, o) K Gate ϵ

Education (2048, 256) 12 0.78 (z-score)
Finance (4096, 512) 15 0.85 (z-score)
Healthcare (4096, 512) 15 0.80 (z-score)

Table 9: Domain-specific overrides. Drift gates tuned to ROC@95% TPR.

C.5 Data Preprocessing and Annotation367

• Splits: 70/15/15 (train/val/test).368

• Tokenization: llama-3 tokenizer, stride=512, truncation disabled.369

• Goal Graphs: parsed from instructions and refined with optimal transport; noisy edges370

(10–20%) injected to test robustness.371

• Drift Labels: dual annotation with adjudication, inter-annotator α: Edu 0.80, Fin 0.76, Med372

0.74.373

Availability. Upon acceptance, we will release datasets (MathTutor-1000, QuantAlign-500,374

MedAlign-200) and preprocessing scripts.375

C.6 Training with IDS Regularization376

L = Lpref + λ · E[IDS(τ,G∗)].

We use AdamW (lr=2e−5, batch=64, cosine decay, 5% warmup). λ = 0.2 balances preference377

fidelity and stability. Early stopping is triggered when validation IDS ceases to improve.378

C.7 Deployment and Resource Cost379

Method Latency (1000 steps) GPU Mem (GB) Energy (kWh)

BLEU/ROUGE 0.3s 0.2 0.01
GNN scorer 15.6s 10.2 0.41
IDS 1.1s 1.8 0.14

Table 10: Resource cost comparison. IDS is faster and lighter than GNNs, while more accurate than
BLEU/ROUGE.

Stress Test. With 50k-step trajectories, IDS maintains r = 0.84 while consuming < 5GB GPU380

memory and < 0.2kWh per run.381
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C.8 Reproducibility Checklist382

Following NeurIPS guidelines:383

1. Environment: OS, CUDA, PyTorch versions fixed.384

2. Seeds: all randomness controlled, 3-run averages reported.385

3. Hyperparameters: fully specified (Tables 8, 9).386

4. Data: provided with goal graph perturbation scripts.387

5. Validation: prefix monotonicity checked with unit tests.388

6. Scripts: one-click reproduction scripts will be released.389

C.9 Minimal CLI Config390

Flag Value

–seed 17, 23, 29
–embed-dim 1024
–window / –overlap 4096 / 512
–sinkhorn-iters 15
–entropy-eps 0.1
–weights 0.4, 0.4, 0.2
–gate-eps ROC@95% TPR

Table 11: Minimal CLI configuration for one-click reproduction.

Appendix D: Ablation & Robustness391

This section presents ablation studies and robustness analyses to verify that improvements from392

IDS are systematic rather than incidental. All experiments follow the reproducibility protocol in393

Appendix C. Unless otherwise specified, results are averaged over three independent seeds, with394

500–1200 annotated trajectories per domain, yielding over 15,000 evaluation instances across tasks.395

D.1 Ablation of Drift Components396

IDS integrates semantic, structural, and temporal drift into a unified framework. We ablate each397

component individually to assess contributions.398

Variant Corr. w/ Human ↑ Early Detection Gain ↑ Violations ↓
Full IDS 0.86 +22% 12.4%
– Semantic drift 0.74 +9% 18.7%
– Structural drift 0.77 +11% 16.5%
– Temporal drift 0.79 +13% 15.9%
BLEU/ROUGE 0.41 0% 21.3%

Table 12: Ablation of drift components across domains (Education, Finance, Healthcare). Removing
any component significantly reduces performance, confirming the necessity of unified modeling.

D.2 Robustness to Goal Graph Noise399

To simulate imperfect real-world instructions, we randomly corrupt 10–40% of edges in goal graphs.400
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Noise Level Corr. w/ Human ↑ Detection Lag (steps) ↓
0% 0.86 7.1
10% 0.84 7.8
20% 0.82 8.2
40% 0.77 9.5

Table 13: IDS degrades gracefully under goal graph corruption. Results averaged over five domains,
600 trajectories each.

D.3 Robustness to Domain Shift401

We evaluate generalization by training IDS on Education and Finance tasks and testing zero-shot on402

Healthcare. We further include a reverse validation, training on Healthcare and testing on Finance.403

Metric Train (Edu+Fin) → Test (Health) Train (Health) → Test (Fin)

Zero-shot Corr. 0.79 0.76
Few-shot Corr. (32) 0.85 0.83
Zero-shot Lag 10.2 10.9
Few-shot Lag 7.9 8.1

Table 14: Domain shift and reverse validation confirm IDS transferability. Few-shot goal graphs
substantially improve generalization.

D.4 Robustness in Multi-Agent Collaboration404

We test IDS in collaborative scenarios such as product design (Education) and algorithmic trading405

(Finance). Each setup includes 500 multi-agent dialogues with 3–5 agents.406

Setting Corr. w/ Human ↑ Coordination Failures ↓
No IDS 0.52 31.6%
IDS monitoring 0.81 14.3%

Table 15: IDS reduces coordination failures in multi-agent tasks by detecting drift early and enabling
corrective replanning.

D.5 Stress Testing: Long Horizon and Energy Efficiency407

We evaluate IDS under extreme long-horizon conditions (100k steps), reporting correlation, memory,408

and energy consumption.409

Method Corr. ↑ Memory (GB) ↓ Energy (kWh) ↓
BLEU/ROUGE 0.40 0.2 0.01
GNN scorer 0.72 14.1 0.53
IDS (ours) 0.83 4.6 0.19

Table 16: IDS scales efficiently to 100k-step horizons, avoiding GPU overflows typical of GNN
scorers.

D.6 Human-in-the-Loop Verification410

A user study with 15 domain experts (5 each from Education, Finance, Healthcare) was conducted.411

Each expert reviewed 200 IDS alarms.412
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Setting Detection Precision Satisfaction (1–5)

Baseline (BLEU/ROUGE) 0.49 2.1
IDS alarms 0.82 4.4

Table 17: IDS alarms align with human judgments and improve expert trust in monitoring systems.

D.7 Summary413

The ablation confirms that semantic, structural, and temporal drift components are all necessary.414

Robustness experiments show that IDS maintains performance under graph corruption, domain415

shifts (both forward and reverse), multi-agent collaboration, and extreme long horizons. Combined416

with user studies, these results validate IDS as a scalable and trustworthy metric for trajectory-level417

stability.418

Appendix E: Failure Cases & Visualization419

While IDS consistently improves alignment stability, it is equally important to analyze its limitations.420

We present representative failure cases across education, finance, and multi-agent collaboration,421

illustrating both (i) the inability of surface-level baselines (BLEU/ROUGE, task metrics) to capture422

subtle drift, and (ii) the interpretability advantage of IDS as a trajectory-level signal.423

E.1 Case Study: Education Tutor Drift424

Setup. A student explicitly requests step-by-step factorization for a quadratic equation.425

Turn Agent Output

1 “Let us solve x2 + 5x + 6 = 0. Identify two numbers multiplying to 6 and
summing to 5.”

2 “The numbers are 2 and 3. Thus (x+ 2)(x+ 3) = 0.”
3 “Hence x = −2 or x = −3.”
4 “Now check by differentiating the polynomial...” (off-track)

Table 18: Education drift: the agent introduces differentiation, violating the user’s intent to remain
within factorization.

Trajectory.426

Metrics. BLEU/ROUGE > 0.7 (surface keyword overlap) suggests success, but IDS sharply427

increases at turn 4 (δ4 = 0.18).428

Interpretation. IDS captures both semantic and structural deviations, where lexical metrics remain429

blind.430

E.2 Case Study: Finance Portfolio Drift431

Setup. Instruction: “Rebalance to 60% equities, 40% bonds, no leverage.”432

Step Action

1 “Sell 10% of bonds.”
2 “Buy 10% equities.”
3 “Use margin to raise equities to 70%.” (violation)

Table 19: Finance drift: agent violates the explicit “no leverage” constraint.

Trajectory.433
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Metrics. Portfolio Sharpe ratio temporarily improves, misleading task-level evaluation. IDS detects434

a temporal violation (δ3 = 0.25) exceeding ϵ = 0.15, triggering a replan.435

Interpretation. IDS aligns with expert judgment, identifying unsafe drift missed by performance-436

only metrics.437

E.3 Case Study: Multi-Agent Collaboration Drift438

Setup. In a collaborative design task, three agents must propose and refine a product prototype439

under cost and timeline constraints.440

Turn Agent Dialogue

1 Agent A: “We should prioritize low-cost materials.”
2 Agent B: “Agreed. Let’s ensure total cost < $5k.”
3 Agent C: “Instead, let us add a premium module (raises cost > $10k).” (off-

track)
Table 20: Multi-agent drift: one agent deviates from shared cost constraint, destabilizing group
alignment.

Trajectory.441

Metrics. Group task completion rate remains > 70% since the prototype is still produced, masking442

drift. IDS detects structural inconsistency (constraint violation) with δ3 = 0.22, enabling early443

coordination repair.444

Interpretation. IDS functions as a “shared compass,” flagging deviation before collaboration445

collapses.446

E.4 Visualization447

We visualize IDS against BLEU across the three failure cases.448

Figure 1: IDS trajectories vs BLEU across education, finance, and multi-agent tasks. IDS rises
sharply at drift points (turn 4, step 3, turn 3), while BLEU remains flat.

E.5 Takeaways449

• Baselines (BLEU/ROUGE, task success) frequently miss subtle or constraint-level misalign-450

ments.451

• IDS consistently surfaces the precise moment of drift, providing a real-time early-warning452

signal.453

• Multi-agent analysis highlights IDS as a coordination stabilizer, not just a single-agent454

monitor.455

• Visualization demonstrates IDS’s interpretability and diagnostic clarity.456
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