
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

DigiRL: Training In-The-Wild Device-Control Agents with
Autonomous Reinforcement Learning

Abstract

Pre-trained vision language models (VLMs),
though powerful, typically lack training on
decision-centric data, rendering them sub-optimal
for decision-making tasks such as in-the-wild de-
vice control through Graphical User Interfaces
(GUIs) when used off-the-shelf. While train-
ing with static demonstrations has shown some
promise, we show that such methods fall short
when controlling real GUIs due to their failure to
deal with real world stochasticity and dynamism
not captured in static observational data. This pa-
per introduces a novel autonomous RL approach,
called DigiRL, for training in-the-wild device con-
trol agents through fine-tuning a pre-trained VLM
in two stages: offline and offline-to-online RL.
We first build a scalable and parallelizable An-
droid learning environment equipped with a VLM-
based general-purpose evaluator and then identify
the key design choices for simple and effective RL
in this domain. We demonstrate the effectiveness
of DigiRL using the Android-in-the-Wild (AitW)
dataset, where our 1.5B VLM trained with RL
achieves a 49.5% absolute improvement – from
17.7 to 67.2% success rate – over supervised fine-
tuning with static human demonstration data. It is
worth noting that such improvement is achieved
without any additional supervision or demonstra-
tion data. These results significantly surpass not
only the prior best agents, including AppAgent
with GPT-4V (8.3% success rate) and the 17B
CogAgent trained with AitW data (14.4%), but
also our implementation of prior best autonomous
RL approach based on filtered behavior cloning
(57.8%), thereby establishing a new state-of-the-
art for digital agents for in-the-wild device con-
trol.

1. Introduction
Advances in vision-language models (VLMs), especially
in regards to their remarkable common-sense, reasoning,
and generalization abilities imply that realizing a fully au-
tonomous digital AI assistant, that can simplify human life

by automating day-to-day activities on computer devices
via natural language interfaces, is no longer a distant as-
piration (Koh et al., 2024; Yan et al., 2023; Zhou et al.,
2023). An effective device control AI assistant should be
able to complete tasks in-the-wild through Graphical User
Interfaces (GUIs) on digital devices: make travel plans; ex-
periment with presentation designs; and operate a mobile
device autonomously, all while running amidst stochasticity
and distractors on the device, the Internet, and the tools it
interacts with. However, enhanced reasoning or common-
sense abilities do not directly transfer to intelligent assistant
behavior: ultimately we want AI assistants to accomplish
tasks, exhibit rational behavior, and recover from their mis-
takes as opposed to simply producing a plausible completion
to a given observation based on the data seen during pre-
training. This implies that a mechanism to channel abilities
from pre-training into a deployable AI “agent” is lacking.

Even the strongest proprietary VLMs, such as GPT-4V (Ope-
nAI Team, 2023) and Gemini 1.5 Pro (Gemini Team, 2024b),
still struggle to produce the right actions when completing
tasks on devices. While general-purpose vision-language
abilities help these models still make meaningful abstract
deductions about novel scenes when deployed, these deduc-
tions do not transfer to accurate reasoning for control (Yang
et al., 2023; Yan et al., 2023; Zheng et al., 2024; Xie
et al., 2024). As a result, most prior work for building
device agents construct complex wrappers around propri-
etary VLMs, combining them with prompting, search, or
tool use (Yang et al., 2023; Xie et al., 2024; Zhang et al.,
2024b;a; Yan et al., 2023). While building prompting or
retrieval wrappers to improve decision-making performance
of existing VLMs provides a “stop-gap” solution in the short
run, without updating the weights, the effectiveness of re-
sulting agents is inherently limited by the capabilities of
the base model (Zeng et al., 2023; Chen et al., 2023). For
example, we found that off-the-shelf VLMs make reasoning
failures that derail the agent (e.g., Figure 1 and Figure 11),
and these are a direct consequence of the base model. A dif-
ferent solution is to fine-tune the model on demonstrations
via imitation learning. However, the dynamic nature of the
web and device means that models trained to mimic actions
in stale data can result in sub-optimalilty as the eco-system
changes (Pan et al., 2024). Additionally, agents trained in
this way struggle to recover from out-of-distribution states

1

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

resulting from the agents’ own mistakes (Ghosh et al., 2021;
Jiang et al., 2024).

If we can instead build an interactive approach to train a
VLM to directly adapt and learn from its own experience on
the device and the Internet, that can be used to build a robust
and reliable device-control agent, without needing wrappers
on top of proprietary models. However, this learning-based
approach must satisfy some desiderata. First, it must use
online interaction data since static demonstration data would
not be representative of the task when the model is deployed:
for instance, even in the setting of web navigation alone,
dynamic nature of in-the-wild websites means that the agent
will frequently encounter website versions that differ sig-
nificantly from the scenarios seen during training and will
need to behave reliably despite changes in visual appear-
ance and distractions. Second, learning on-the-fly means the
approach must learn from multi-turn interaction data from
the model itself, a large of chunk of which would consist of
failures. Proper mechanisms must be designed to automati-
cally pick out the correct actions while filtering the wrong
ones.

We evaluate our agent trained with DigiRL in carry-
ing out diverse instructions from Android in the Wild
dataset (Rawles et al., 2023) on real Android device emula-
tors and find that our agent can achieve a 49.5% improve-
ment over the existing state-of-the-art agents (from 17.7%
to 67.2% success rate) AutoUI (Zhang and Zhang, 2023)
and CogAgent (Hong et al., 2023), and over 9% improve-
ment over our implementation of the prior best autonomous
learning approach based on Filtered Behavior Cloning. The
performance of our agent also significantly surpasses wrap-
pers on top of state-of-the-art proprietary VLMs such as
GPT-4V (OpenAI Team, 2023) and Gemini 1.5 Pro (Gem-
ini Team, 2024b) (17.7% success rate), despite using a sig-
nificantly smaller model (with 1.5B parameters). To our
knowledge, this is the first work to successfully build an
autonomous offline-to-online RL approach to enable state-
of-the-art performance on device-control problems.

2. DigiRL: autonomous RL for building a
strong device control agent

We now present our autonomous RL framework for train-
ing device agents. We pose the device control problem as
a partially-observed Markov decision process (POMDP)
and develop RL methods for this POMDP. The core of our
approach is based on a simple and scalable off-policy RL
method, advantage-weighted regression (AWR) (Peng et al.,
2019), but we make crucial modifications to handle stochas-
ticity and highly-variable task difficulty, through the use
of value functions trained with appropriate losses, and an
automatic curriculum, induced by an instruction-level value
function to maximize learning.

Definitions & notation. To explain our approach in detail,

we include several standard definitions used in reinforce-
ment learning (RL). The Q function for a policy π repre-
sents the expected long-term return from taking a specific
action at the current step and then following policy π there-
after: Qπ(sh, ah, c) = Eπ

[∑H
t=h r(st, at, c)

]
. The value

function V π(sh, c) is calculated by averaging the Q-value,
Qπ(sh, ah, c), over actions ah drawn from the policy π. The
advantage Aπ(sh, ah, c) for a state-action pair is computed
by subtracting the state’s value under the policy from its
Q-value: Aπ(sh, ah, c) = Qπ(sh, ah, c)− V π(sh, c).

2.1. Backbone of our approach: off-policy RL via
advantage-weighted regression

A starting point for our approach is the advantage-weighted
regression (AWR) algorithm (Peng et al., 2019), which says
that we can improve the policy reliably by regressing the
policy towards exponentiated advantages induced by the
reward function, as a proxy for optimizing the policy gradi-
ent while staying close to the previous policy (Kakade and
Langford, 2002; Schulman et al., 2017; 2015):
argmaxπ Eν [log π(a|s, c) · exp (A(s, a, c)/β)] , (2.1)

for some positive parameter β and the distribution of past
experience ν, and A(s, a, c) denotes the advantage of a
state-action pair (s, a) given a context c. To avoid tuning the
hyperparameter β, we consider an alternative that does “hard
filtering” on the advantages instead of computing exp(A),
similar to prior works (Nair et al., 2020; Wang et al., 2021).
This leads to the following loss function for fine-tuning the
model:

L(π) = −Efilter(ν)[log π(a|s, c)]. (2.2)
Typically, these advantages are computed by running Monte-
Carlo (MC) rollouts in the environment to estimate the value
of a given state-action pair, and subtracting from it an esti-
mate of the value of the state alone given by a learned value
estimator. However, this approach is likely to produce high-
variance advantages given the stochasticity of the device
eco-system that affects MC rollouts.

2.2. Obtaining reliable advantage estimates from
doubly-robust estimators

To reliably identify advantageous actions given significant
environment stochasticity, we construct a per-step advantage
estimator, inspired by doubly-robust estimators (van Hasselt
et al., 2015; Schulman et al., 2018):
Astep(sh, ah, c) :=λH−hr(sH , aH , c) + V step(sh+1, c)

+ r(sh, ah, c)− V step(sh, c), (2.3)
where λ is a weighting hyper-parameter. This construc-
tion of the advantage estimator is a simplified version
of Generalized Advantage Estimation (GAE) (Schulman
et al., 2018), and balances an advantage estimator with
higher variance Monte-Carlo estimates λH−hr(sH , aH , c)
(due to stochasticity) and an estimator with higher bias
V step(sh+1, c) + r(sh, ah, c) − V step(sh, c) (due to imper-
fect fitting of the value function). We observed that com-

2

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

DigiRL AutoUI GPT-4V

Got
stuck

✘

Got
stuck

✘

✘

✘
Got
stuck

✘
General

 How much
does a 2
bedroom
apartment rent
for in Denver?

WebShop

 Go to
bestbuy.com,
search for
“logitech
g933”

Click Skipped... Click Click Type “razePress Back Click Type “logi

Scroll Up Press Home Click Type “2 bedr Press Enter

Wrong

 page

Got
stuck

Got
stuck

✘

Figure 1: Qualitative comparison between DigiRL and other approaches. AutoUI trained from static human demonstrations can
easily get stuck in out-of-distribution states while GPT-4V often get on a wrong goal (searched “logitech g933bestbuy.com logitech g933”
in Google instead of bestbuy.com). In contrast, DigiRL can recover from such states and complete complex instruction as requested.
bining both high-variance and high-bias estimators gave us
a sweet-spot in terms of performance. To implement the
step-level hard filtering, we simply threshold this doubly
robust estimator as Astep(sh, ah, c) > 1/H to decide which
actions progress towards the goal.

2.3. Automatic curriculum using an instruction-level
value function

While the AWR update (Equation 2.1) coupled with a robust
advantage estimator (Equation 2.3) is likely sufficient on
standard RL tasks, we did not find it to be effective enough
for device control in preliminary experiments. Often this
was the case because the task set presents tasks with highly-
variable difficulties that collecting more data on tasks that
the agent was already proficient at affected sample efficieny
negatively. In contrast, maximal learning signal can be
derived by experiencing the most informative tasks for the
agent during training. To this end, we design an instruction-
level value function V instruct(c) to evaluate if a given rollout
can provide an effective learning signal:

Ainstruct(sh, ah, c) :=
∑H

t=hr(st, at, c)− V instruct(c)

= r(sH , aH , c)− V instruct(c), (2.4)

where
∑H

t=h r(st, at, c) is a Monte-Carlo estimator of
Q(sh, ah, c). The equality holds because the POMDP for-
mulation only provides rewards at the end of a rollout. Intu-
itively, if a rollout attains a high value of Ainstruct(sh, ah, c),
it means the value function V instruct is small. Therefore,
this rollout represents a valuable experience of the agent ac-
complishing a difficult task, and thus should be prioritized,
akin to ideas pertaining to prioritized experience (Schaul
et al., 2016) or level replay (Jiang et al., 2020). When train-
ing the actor with a buffer of historical off-policy data, we
first perform a filtering step to identify the top-p datapoints
with highest Ainstruct(sh, ah, c). Then, we use it for AWR

(Equation 2.1) with the doubly-robust advantage estimator
(Equation 2.3).

Implementation details. Inspired by the findings in some
recent works (Farebrother et al., 2024; Kumar et al., 2023)
that modern deep learning architectures like transform-
ers (Vaswani et al., 2023) are better trained with cross-
entropy losses instead of mean-squared losses, we utilize
a cross-entropy objective based on the Monte-Carlo esti-
mate of the trajectory reward for training both of our value
functions:

L(V traj) =− Eν [r(sH , aH , c) log V traj(c)

+ (1− r(sH , aH , c)) log(1− V traj(c))] (2.5)
L(V step) =− Eν [r(sH , aH , c) log V step(sh, ah, c)

+ (1− r(sH , aH , c)) log(1− V step(sh, ah, c))]
(2.6)

3. Experimental evaluation
The goal of our experiments is to evaluate the performance
of DigiRL on challenging Android device control prob-
lems. Specifically, we are interested in understanding if
DigiRL can produce agents that can effectively learn from
autonomous interaction, while still being able to utilize
offline data for learning. To this end, we perform a compar-
ative analysis of DigiRL against several prior approaches,
including state-of-the-art agents in Section 3.1. We also per-
form several ablation experiments to understand the neces-
sity and sufficiency of various components of our approach
in Section B.

3.1. Main results
Our main results are summarized in Table 1 and Figure 3.
we find that in both AitW General and AitW Web Shop-

3

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

AitW General AitW Web Shopping
Train Test Train Test

Prompting
SET-OF-MARKS

GPT-4V 5.2 13.5 3.1 8.3

Gemini 1.5 Pro 32.3 16.7 6.3 11.5

APPAGENT
GPT-4V 13.5 17.7 12.5 8.3

Gemini 1.5 Pro 14.6 16.7 5.2 8.3

Learning

SUPERVISED

TRAINING

CogAgent 7.8 7.8 8.6 14.4

AutoUI 12.5 14.6 14.6 17.7

OFFLINE
Filtered BC 51.7 ± 5.4 50.7 ± 1.8 44.7 ± 1.6 45.8 ± 0.9

Ours 46.9 ± 5.6 62.8 ± 1.0 39.3 ± 6.0 45.8 ± 6.6

OFF-TO-ON
Filtered BC 53.5 ± 0.8 61.5 ± 1.1 53.6 ± 4.7 57.8 ± 2.6

Ours 63.5 ± 0.0 71.9 ± 1.1 68.2 ± 6.8 67.2 ± 1.5

Table 1: Main comparisons of different agents across various settings. Each offline experiment is repeated three times and the mean
and standard deviation are reported. Each online experiment is repeated two times. Results are evaluated with our autonomous evaluator
with the first 96 instructions in the train and test set.

ping subsets, our agent trained via DigiRL significantly
outperforms prior state-of-the-art methods based on prompt-
ing and retrieval (AppAgent + GPT-4V/Gemini 1.5 Pro) or
training on static demonstrations (CogAgent and AutoUI),
by a large margin with more than 49.5% absolute improve-
ment (from 17.7% to 71.9% on the General subset and from
17.7% to 67.2% on the Web Shopping subset). Notably, this
improvement from DigiRL is realized fully autonomously
without making use of human supervision (e.g. manually
labeled demonstrations or hand-written verifiers).
Are inference-time prompting and retrieval techniques
or supervised training enough for device control? Delv-
ing into Table 1, we observe that off-the-shelf proprietary
VLMs, even when supplemented with the set-of-marks
mechanism, do not attain satisfactory performance: both
GPT-4V and Gemini 1.5 Pro achieve success rates under
20%. One possible cause could be the under-representation
of Android device data in the pre-training data. More-
over, inference-time adaptation strategies such as AppA-
gent (Yang et al., 2023) show minimal improvement, with
gains not exceeding 5% for either model, suggesting a lim-
ited scope for improvement without fine-tuning of some
sort. As illustrated in Figure 4, the primary failures of
these VLMs stem from hallucinatory reasoning that lead
the VLMs to land on a relevant but wrong page. This sug-
gests that while state-of-the-art VLMs excel at high-level
reasoning in code or math problems, their reliability of
reasoning in less familiar domains, such as device control,
remains inadequate. For example, for the instruction “Go
to newegg.com, search for ’alienware area 51’, and select
the first entry”, a GPT-4V based agent erroneously searched
“alien area 51 ebay” in Google.com and decided that it had
made progress towards the task (Figure 11).

Training on domain-specific human demonstrations, how-
ever, does boost performance, allowing the smaller, special-
ized VLM, AutoUI, to match or surpass the larger, generalist
VLMs like GPT-4V and Gemini 1.5 Pro. Nonetheless, this

supervised imitation learning approach still fall short, with
success rates on both subsets remaining below 20%. This
shortcoming is not addressed via enhancements in model
scale or architecture, as evidenced by CogAgent (Hong
et al., 2023), with 17 billion parameters still achieving simi-
lar performance to AutoUI (Zhang and Zhang, 2023), which
has only 1.5 billion parameters. As depicted in Figure 4,
a predominant failure mode for these agents is an inability
to rectify their own errors. An example trajectory that we
observed is that for the instruction “what’s on the menu of
In-n-Out”, the agent accidentally activated the voice input
button, and failed to quit that page until the step limit. In
contrast, DigiRL is able to recover from the errors more
efficiently(Appendix D.2).

Comparison of different RL approaches. In Table 1 and
Figure 3, we present a comparative analysis of various RL
approaches. Notably, both offline and offline-to-online con-
figurations demonstrate that our RL approach, when aug-
mented with a continuous stream of autonomous interaction
data and reward feedback, substantially improves perfor-
mance. This improvement is evident from an increase in the
success rate from under 20% to over 40%, as the agent learns
to adapt to stochastic and non-stationary device interfaces.
Moreover, although the total sample sizes for offline and
offline-to-online settings are equivalent, the top-performing
offline-to-online algorithm markedly surpasses its offline
counterpart (75% versus 62.8% on the General subset). This
highlights the critical role and efficacy of autonomous envi-
ronment interaction, and establishes the efficacy of DigiRL
in learning from such uncurated, sub-optimal data. Lastly,
DigiRL consistently outperforms the state-of-the-art alter-
native, Filtered BC, across both the General and Web Shop-
ping subsets, improving from 61.5% to 71.9% and 57.8%
to 61.4%, respectively, highlighting DigiRL’s performance
and efficiency.

4

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

References
Baian Chen, Chang Shu, Ehsan Shareghi, Nigel Collier,

Karthik Narasimhan, and Shunyu Yao. Fireact: Toward
language agent fine-tuning. ArXiv, abs/2310.05915, 2023.
URL https://api.semanticscholar.org/CorpusID:
263829338.

Alexandre Drouin, Maxime Gasse, Massimo Caccia, Is-
sam H. Laradji, Manuel Del Verme, Tom Marty,
Léo Boisvert, Megh Thakkar, Quentin Cappart, David
Vazquez, Nicolas Chapados, and Alexandre Lacoste.
Workarena: How capable are web agents at solving com-
mon knowledge work tasks?, 2024.

Jesse Farebrother, Jordi Orbay, Quan Vuong, Adrien Ali
Taïga, Yevgen Chebotar, Ted Xiao, Alex Irpan, Sergey
Levine, Pablo Samuel Castro, Aleksandra Faust, Aviral
Kumar, and Rishabh Agarwal. Stop regressing: Train-
ing value functions via classification for scalable deep rl,
2024.

2023 Gemini Team. Gemini: A family of highly capable
multimodal models, 2024a.

2024 Gemini Team. Gemini 1.5: Unlocking multimodal un-
derstanding across millions of tokens of context, 2024b.

Dibya Ghosh, Jad Rahme, Aviral Kumar, Amy Zhang,
Ryan P Adams, and Sergey Levine. Why Generaliza-
tion in RL is Difficult: Epistemic POMDPs and Implicit
Partial Observability. NeurIPS, 2021.

Wenyi Hong, Weihan Wang, Qingsong Lv, Jiazheng Xu,
Wenmeng Yu, Junhui Ji, Yan Wang, Zihan Wang, Yuxuan
Zhang, Juanzi Li, Bin Xu, Yuxiao Dong, Ming Ding, and
Jie Tang. Cogagent: A visual language model for gui
agents, 2023.

Minqi Jiang, Edward Grefenstette, and Tim Rocktäschel.
Prioritized level replay. CoRR, abs/2010.03934, 2020.
URL https://arxiv.org/abs/2010.03934.

Yiding Jiang, J Zico Kolter, and Roberta Raileanu. On
the importance of exploration for generalization in re-
inforcement learning. Advances in Neural Information
Processing Systems, 36, 2024.

Sham M. Kakade and John Langford. Approximately opti-
mal approximate reinforcement learning. In International
Conference on Machine Learning, 2002. URL https:
//api.semanticscholar.org/CorpusID:31442909.

Jing Yu Koh, Robert Lo, Lawrence Jang, Vikram Duvvur,
Ming Chong Lim, Po-Yu Huang, Graham Neubig,
Shuyan Zhou, Ruslan Salakhutdinov, and Daniel Fried.
Visualwebarena: Evaluating multimodal agents on real-
istic visual web tasks. arXiv preprint arXiv:2401.13649,
2024.

Aviral Kumar, Rishabh Agarwal, Xinyang Geng, George
Tucker, and Sergey Levine. Offline q-learning on diverse
multi-task data both scales and generalizes, 2023.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke
Zettlemoyer, and Veselin Stoyanov. Roberta: A ro-
bustly optimized BERT pretraining approach. CoRR,
abs/1907.11692, 2019. URL http://arxiv.org/abs/
1907.11692.

Ashvin Nair, Murtaza Dalal, Abhishek Gupta, and Sergey
Levine. Accelerating online reinforcement learning with
offline datasets. CoRR, abs/2006.09359, 2020. URL
https://arxiv.org/abs/2006.09359.

2023 OpenAI Team. Gpt-4 technical report, 2023.

Jiayi Pan, Yichi Zhang, Nicholas Tomlin, Yifei Zhou,
Sergey Levine, and Alane Suhr. Autonomous evalua-
tion and refinement of digital agents. arXiv preprint
arXiv:2404.06474, 2024.

Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey
Levine. Advantage-weighted regression: Simple and
scalable off-policy reinforcement learning, 2019.

Christopher Rawles, Alice Li, Daniel Rodriguez, Oriana
Riva, and Timothy Lillicrap. Android in the wild: A large-
scale dataset for android device control. arXiv preprint
arXiv:2307.10088, 2023.

Tom Schaul, John Quan, Ioannis Antonoglou, and David
Silver. Prioritized experience replay, 2016.

John Schulman, Sergey Levine, Philipp Moritz, Michael I.
Jordan, and Pieter Abbeel. Trust region policy opti-
mization. CoRR, abs/1502.05477, 2015. URL http:
//arxiv.org/abs/1502.05477.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec
Radford, and Oleg Klimov. Proximal policy optimiza-
tion algorithms. CoRR, abs/1707.06347, 2017. URL
http://arxiv.org/abs/1707.06347.

John Schulman, Philipp Moritz, Sergey Levine, Michael
Jordan, and Pieter Abbeel. High-dimensional continuous
control using generalized advantage estimation, 2018.

Tianlin Shi, Andrej Karpathy, Linxi Fan, Jonathan Hernan-
dez, and Percy Liang. World of bits: An open-domain
platform for web-based agents. In Doina Precup and
Yee Whye Teh, editors, Proceedings of the 34th Inter-
national Conference on Machine Learning, volume 70
of Proceedings of Machine Learning Research, pages
3135–3144. PMLR, 06–11 Aug 2017. URL https:
//proceedings.mlr.press/v70/shi17a.html.

5

https://api.semanticscholar.org/CorpusID:263829338
https://api.semanticscholar.org/CorpusID:263829338
https://arxiv.org/abs/2010.03934
https://api.semanticscholar.org/CorpusID:31442909
https://api.semanticscholar.org/CorpusID:31442909
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
https://arxiv.org/abs/2006.09359
http://arxiv.org/abs/1502.05477
http://arxiv.org/abs/1502.05477
http://arxiv.org/abs/1707.06347
https://proceedings.mlr.press/v70/shi17a.html
https://proceedings.mlr.press/v70/shi17a.html

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Daniel Toyama, Philippe Hamel, Anita Gergely, Gheorghe
Comanici, Amelia Glaese, Zafarali Ahmed, Tyler Jack-
son, Shibl Mourad, and Doina Precup. Androidenv: A re-
inforcement learning platform for android. arXiv preprint
arXiv:2105.13231, 2021.

Hado van Hasselt, Arthur Guez, and David Silver. Deep
reinforcement learning with double q-learning. CoRR,
abs/1509.06461, 2015. URL http://arxiv.org/abs/
1509.06461.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and
Illia Polosukhin. Attention is all you need, 2023.

Ziyu Wang, Alexander Novikov, Konrad Zolna, Jost Tobias
Springenberg, Scott Reed, Bobak Shahriari, Noah Siegel,
Josh Merel, Caglar Gulcehre, Nicolas Heess, and Nando
de Freitas. Critic regularized regression, 2021.

Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan
Li, Siheng Zhao, Ruisheng Cao, Toh Jing Hua, Zhou-
jun Cheng, Dongchan Shin, Fangyu Lei, et al. Os-
world: Benchmarking multimodal agents for open-ended
tasks in real computer environments. arXiv preprint
arXiv:2404.07972, 2024.

An Yan, Zhengyuan Yang, Wanrong Zhu, Kevin Lin, Linjie
Li, Jianfeng Wang, Jianwei Yang, Yiwu Zhong, Julian
McAuley, Jianfeng Gao, Zicheng Liu, and Lijuan Wang.
Gpt-4v in wonderland: Large multimodal models for
zero-shot smartphone gui navigation, 2023.

Zhao Yang, Jiaxuan Liu, Yucheng Han, Xin Chen, Ze-
biao Huang, Bin Fu, and Gang Yu. Appagent: Mul-
timodal agents as smartphone users. arXiv preprint
arXiv:2312.13771, 2023.

Shunyu Yao, Howard Chen, John Yang, and Karthik
Narasimhan. Webshop: Towards scalable real-world web
interaction with grounded language agents, 2023.

Aohan Zeng, Mingdao Liu, Rui Lu, Bowen Wang, Xiao
Liu, Yuxiao Dong, and Jie Tang. Agenttuning: Enabling
generalized agent abilities for llms, 2023.

Chaoyun Zhang, Liqun Li, Shilin He, Xu Zhang, Bo Qiao,
Si Qin, Minghua Ma, Yu Kang, Qingwei Lin, Saravan
Rajmohan, et al. Ufo: A ui-focused agent for windows
os interaction. arXiv preprint arXiv:2402.07939, 2024a.

Jiwen Zhang, Jihao Wu, Yihua Teng, Minghui Liao, Nuo
Xu, Xiao Xiao, Zhongyu Wei, and Duyu Tang. Android in
the zoo: Chain-of-action-thought for gui agents, 2024b.

Zhuosheng Zhang and Aston Zhang. You only look at
screens: Multimodal chain-of-action agents, 2023.

Boyuan Zheng, Boyu Gou, Jihyung Kil, Huan Sun, and
Yu Su. Gpt-4v(ision) is a generalist web agent, if
grounded, 2024.

Shuyan Zhou, Frank F. Xu, Hao Zhu, Xuhui Zhou, Robert
Lo, Abishek Sridhar, Xianyi Cheng, Yonatan Bisk,
Daniel Fried, Uri Alon, and Graham Neubig. Webarena:
A realistic web environment for building autonomous
agents. ArXiv, abs/2307.13854, 2023. URL https:
//api.semanticscholar.org/CorpusID:260164780.

6

http://arxiv.org/abs/1509.06461
http://arxiv.org/abs/1509.06461
https://api.semanticscholar.org/CorpusID:260164780
https://api.semanticscholar.org/CorpusID:260164780

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Appendices
A. Problem setup and preliminaries
Problem formulation. We are interested in pixel-based interaction with virtual devices. We scope our study in the control of
Android devices: this is already significantly more challenging and more general than previous learning-based environments
that focus solely on web navigation (Koh et al., 2024; Zhou et al., 2023; Drouin et al., 2024), where the web browser itself is
merely one application within our broader environment, and link-based device controls (Yang et al., 2023; Zhang et al.,
2024a) are inadequate for tasks like games that do not support link inputs.

Each episode begins with the emulator initialized to the home screen. Subsequently, a task is selected from a predefined set
of language instructions, some examples of which are shown in Appendix C.1. An agent is then tasked with manipulating the
emulator to fulfill this instruction. At each time step, the agent receives a screenshot of the current screen as the observation.
Following the action space in prior literature (Rawles et al., 2023), the available actions include tapping and sliding based on
normalized (x, y) coordinates (ranging from 0 to 1 relative to the screen dimensions), typing text strings of variable length,
and pressing special buttons such as HOME, BACK, and ENTER, as illustrated in Figure 2. Our train and test instructions
comes from General and Web Shopping subsets in AitW (Rawles et al., 2023). These tasks consist of information-gathering
tasks like “What’s on the menu of In-n-Out?”, and shopping tasks on the web like “Go to newegg.com, search for razer
kraken, and select the first entry”.

Challenges of stochasticity. Real-world device contrl presents unique challenges of stochasticity absent in simulated
environments (Zhou et al., 2023; Shi et al., 2017) such as: (1) the dynamic nature of websites and applications, which
undergo frequent updates, causing the online observations to be different from stale offline data, (2) various unpredictable
distractors such as pop-up advertisements, login requests, and the stochastic order of search results. (3) technical challenges
and glitches such as incomplete webpage loading or temporary access restrictions to certain sites. Examples of scenarios with
such stochasticity from our experiments are shown in Figure 2. We observe that these stochastic elements pose significant
challenges for pre-trained VLMs, including even those fine-tuned on device control data.
Setup for reliable and scalable online RL. As autonomous RL interleaves data collection and training, to maximize
learning amidst stochasticity, it is crucial to have a real-time data collection pipeline to collect enough experience for
gradient updates. While this is not possible in single-thread Android emulator environments (Pan et al., 2024; Toyama et al.,
2021) due to latency, we parallelize our Android emulator using appropriate error handling as discussed in Appendix C.1. In
addition, the environment must provide a reward signal by judging whether the current observation indicates the agent has
successfully completed the task. To generalize our evaluator to support a wide range of tasks, we extend Pan et al. (2024)’s
end-to-end autonomous evaluator that does not require accessing the internal states of the emulator or human-written rules
for each task. This contrasts previous works that manually write execution functions to verify the functional completeness of
each task (Koh et al., 2024; Yao et al., 2023; Shi et al., 2017; Xie et al., 2024). We adopt Gemini 1.5 Pro (Gemini Team,
2024a;b) as the backbone of the autonomous evaluator. We seed this model with few-shot rollouts and the associated
human-labeled success indicators to guide evaluation of novel queries. This pipeline enables a single evaluator that can
evaluate all AiTW tasks. The evaluator is highly aligned with human annotations (average error rate 2.8%), validated in
Figure 5.

Baselines and comparisons. We compare DigiRL with: (a) state-of-the-art agents built around proprietary VLMs, with
the use of several prompting and retrieval-style techniques; (b) running imitation learning on static human demonstrations
with the same instruction distribution, and (c)a filtered BC approach (Pan et al., 2024). For proprietary VLMs, we evaluate
GPT-4V (OpenAI Team, 2023) and Gemini 1.5 Pro (Gemini Team, 2024b) both zero-shot and when augmented with
carefully-designed prompts. For the zero-shot setting, we use the prompt from Yang et al. (2023) and augment the observation
with Set-of-Marks (Zheng et al., 2024). Set-of-Marks overlays a number for each interactable element over the screenshot, so
that a VLM can directly output the number of the element to interact with in plain text instead of attempting to calculate pixel
coordinates, which is typically significantly harder. We also compare with AppAgent (Yang et al., 2023), which first prompts
the VLM to explore the environment, and appends the experience collected to the test-time prompt. We also compare with
two state-of-the-art fine-tuning methods for Android device control: AutoUI (specifically AutoUI-Base (Zhang and Zhang,
2023)) and CogAgent (Hong et al., 2023). AutoUI-Base uses an LM with 200M parameters, and a a vision encoder with
1.1B parameters. CogAgent has 11B parameters for its vision encoder and 7B for its LM. The supervised training corpus for
both AutoUI-Base and CogAgent contains AitW, including the instruction set and the emulator configuration we use.

Base VLM and offline dataset. Both Filtered BC and DigiRL use trained AutoUI-Base checkpoints with the image
encoder frozen. The instruction and step-level value functions for DigiRL employ this same frozen image encoder. The

7

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

action space

typeclick slide home back enter real-world
environment

agent

model

open-ended
evaluator

non-stationary website loadads unpredictable orderpop-up identity

dynamics

Figure 2: Environment details. Top: actions space and dynamics of the environment. Bottom: examples of the read-world non-
stationarity and dynamism of the environment.

0 320 640 960
#Trajectories

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Su
cc

es
s R

at
e

0 320 640 960
#Trajectories

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Filtered BC-1 Filtered BC-2 DigiRL-1 DigiRL-2 GPT-4V

Figure 3: Offline-to-online training curves for Filtered BC and DigiRL. Curves are smoothed with exponential weighted averaging to
start from the performance of supervised trained policy. Two runs for each model are started on two different dates with at least two
days apart. Observe that DigiRL is able to improve faster with a fewer number of samples. Since the data collection frequency is the
bottleneck, these performance trends directly reflect performance trends against wall-clock time as well.

visual features output from the encoder are concatenated with instruction features derived from RoBERTa (Liu et al., 2019).
A two-layer MLP is then used to predict the value function. In the offline phase, the offline dataset is collected by rolling out
the initial AutoUI-Base supervised trained checkpoint as policy. For fair comparisons, we keep the number of offline data
collected in the pure offline training roughly the same as the total number of data collected in the offline-to-online training.
Due to the dynamic nature of the Internet-device eco-system, our offline data was stale by the time we were able to run our
offline-to-online experiments, and this presented additional challenge in offline-to-online learning. In both General and
Web Shopping subsets, offline experiments make use of around 1500 trajectories while offline-to-online experiments start
with around 500 offline trajectories and update with another 1000 online trajectories. In the offline phase, DigiRL skips
instruction-level filtering and instead trains the actor with all successful trajectories to make full use of the offline data. See
a detailed breakdown of our dataset in Appendix C.1.

B. Discussions
Failure mode analysis. While all the types of failure modes benefit from offline and offline-to-online RL training as shown
in Figure 4, the most consistent and significant reduction is probably for the failure mode of failing to recover from mistakes.
This is because while pre-trained models, generating plausible future tokens, can get distracted by the dynamic nature of

8

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

Fail to recover from mistakes Get stuck midway Arrive at wrong goal
Failure Mode

0.0

0.2

0.4

%
 in

 A
ll

Tr
aj

ec
to

ri
es

General

Fail to recover from mistakes Get stuck midway Arrive at wrong goal
Failure Mode

0.0

0.1

0.2

0.3

0.4

%
 in

 A
ll

Tr
aj

ec
to

ri
es

Web Shopping

Set-Of-Marks
GPT4V
Set-Of-Marks
Gemini-1.5-Pro
AppAgent
GPT4V
AppAgent
Gemini-1.5-Pro
AutoUI
CogAgent
Filtered BC
Offline
DigiRL
Offline
Filtered BC
Online
DigiRL
Online

Figure 4: Failure modes for each approach on both the AiTW General and Web Shopping subsets. We found that the failure mode RL
training is most effective at reducing compared to model supervised trained on human data is “Fail to recover from mistakes”. A more
fine-grained decomposition can be found in Appendix E.

the environment and, as a result, encounter at never-before-seen states. With no clue of how to escape such states, these
methods are unable to recover and fail to solve the task. In contrast, by training on autonomously-collected rollouts, our
agent DigiRL is able to learn from its own mistakes and reduces failures to recover over training.

Ablation study of each component in DigiRL. We conduct an ablation study on different components of DigiRL in
Figure 6 (right). We find that all the components used by our approach are necessary: (1) using cross-entropy for training the
value functions boosts performance by around 12% (compare Ours and Ours w/ Regression); (2) using step-level advantages
improves efficiency by 12% (comparing Ours and Ours w/o step-level advantage); (3) the use of automatic curriculum
improves the speed of learning by around 25% (comparing Ours w/o step-level advantage and Filtered BC); (4) Ours
outperforms vanilla AWR that does not employ a doubly-robust advantage estimator or curriculum.

Additionally, we also observe no degradation in performance as a result of “hard-filtering”, as show by nearly comparable
performance of our approach and the best run of exponential filtering obtained via an extensive tuning of the temperature
hyperparameter τ in naïve AWR (comparing Ours and Ours w/ vanilla AWR reweighting), despite simplicity of implementa-

Set-Of-Marks
GPT4V

Set-of-Marks
Gemini-1.5-Pro

AppAgent
GPT4V

AppAgent
Gemini-1.5-Pro

AutoUI CogAgent Filtered BC
Offline

DigiRL
Offline

Filtered BC
Online

DigiRL
Online

Policy Model

0

50

%
 S

uc
ce

ss
 R

at
e

17.7 13.5 16.7 16.7 15.6 17.7 18.8 16.7 12.5 14.6 8.9 7.8

55.2 53.1 56.3 63.5 59.4 61.5 70.0 72.9General
Human Gemini-1.5-Pro Evaluator

Set-Of-Marks
GPT4V

Set-Of-Marks
Gemini-1.5-Pro

AppAgent
GPT4V

AppAgent
Gemini-1.5-Pro

AutoUI CogAgent Filtered BC
Offline

DigiRL
Offline

Filtered BC
Online

DigiRL
Online

Policy Model

0

50

%
 S

uc
ce

ss
 R

at
e

11.4 8.3 15.6 11.5 13.5 8.3 13.5 5.2
18.8 17.7 16.7 14.4

45.8 46.7
57.3 55.2 61.5 60.4 68.8 71.9Web Shopping

Human Gemini-1.5-Pro Evaluator

Figure 5: Correlation between our autonomous evaluator and human judgements for all policy models on General and Web
Shopping subsets. For repeated offline and online runs, we report the correlation results for the run with the highest autonomous evaluation
success rate.

9

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

0 100 200 300 400 500 600
#Trajectories

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

Su
cc

es
s R

at
e

Ours
Ours w/ regression
Ours w/o step-level advantage

Vanilla AWR
Ours w/ AWR reweighting
Filtered BC

Figure 6: Ablation study results on the AitW Web Shopping subset.

tion in the hard filtering approach. Putting together, these choices result in a new state-of-the-art RL approach for device
control.

Evaluation of our autonomous evaluator. In Figure 5, we present the findings from a user study aimed at assessing
the accuracy of our autonomous evaluator. Our results indicate that the success rates reported by our automatic evaluator
are remarkably consistent with those assessed by human evaluators across almost all models, with differences less than
3%. Furthermore, we observed that evaluations on the Web Shopping subset are more precise compared to those on the
General subset. This increased accuracy likely stems from the fact that tasks in the General subset are formulated in
free-form language, which can introduce ambiguity, whereas the Web Shopping subset features a narrower range of language
expressions, reducing potential variability.

C. Environment details
C.1. Post-processing of AitW

The Android in the Wild (AiTW) task set is a large-scale dataset for android device control, containing five subsets:
GoogleApps, Install, Web Shopping, General, and Single, where we select the General and Web Shopping subsets. Single
subset is not considered here because all tasks in Single can be completed within one step and thus this subset fails to
examine the multi-step challenges that we are interested in this paper. Install and GoogleApps are not considered due to
security reasons as those tasks require an active Google account and parallel emulations can flag security concerns.

General. The General set focuses on searching for information and basic application usage. For example, it contains
searching for latest news in Chile, search for flights from NYC to Sydney, opening Gmail, etc. We use all 545 tasks in the
training set for training and the first 96 tasks in the test set for testing due to computational and budget constraints. The
maximum allowed number of steps for this subset is 10. Offline data is collected by rolling our the initial AutoUI policy
with tasks from the training set. The offline data used for the offline-to-online setting contains 608 trajectories while the
offline data used for the offline setting contains 1552 trajectories. Some task examples are shown in Table 3.

Web Shopping. The Web Shopping subset comprises search instructions on various shopping websites, like searching for
razer blader on ebay. As some websites (e.g. Amazon) and operations (e.g. adding items to cart) frequently require captcha
verifications, we post-process the Web Shopping subset to exclude such operations and websites and also make the task
easy to evaluate for our autonomous evaluator. The resulting task set involves navigating through five websites (costco.com,
bestbuy.com, target.com, walmart.com, newegg.com) and three basic operations (go to website, search in the website, and
select items from the searched results). Our post-processed training set contains 438 tasks and our testing set contains 96
tasks. Example tasks after post-processing can be found in Table 3. The maximum allowed number of steps for this subset is
20. Offline data is collected by rolling our the initial AutoUI policy with tasks from the training set. The offline data used
for the offline-to-online setting contains 528 trajectories while the offline data used for the offline setting contains 1296

10

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

AutoEval annotates
reward for each
trajectory

Model executes tasks
in parallel and
produce trajectories

Tasks are sampled
from task dataset

Annotated trajectories
are used to update the
model through online
RL

Fine-tune on existing trajectories via offline RL

Step I: Offline RL

Pretrained Model Offline Model

VLM is generally pre-trained on Internet-scale

vision-and-language data

Pretraining Step II: Online RL

Pretrained Model

Online

Model

AutoEval

Figure 7: DigiRL overview. DigiRL is built upon a VLM that has been pre-trained on extensive web data to develop fundamental
skills such as common knowledge, reasoning, and visual grounding. Initially, we employ offline RL to fine-tune the VLM using stale
task-specific data, which helps in eliciting goal-oriented behaviors. Subsequently, our agent engages with real-world graphical user
interfaces, continuously enhancing its performance through online RL and autonomous performance evaluations.

Task Example

How do I get to the nearest Verizon Store?

How much does a 2 bedroom apartment rent for in Denver?

Search for flights from Barcelona to Boston

What’s a good restaurant in New York?

What’s on the menu at Burger King?

Table 2: Examples of task descriptions in the AiTW General task set.

11

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

trajectories.

Difficulty Task Example

1 Go to costco.com

Go to walmart.com

2 Go to costco.com, search for "bose soundsport free"

Go to walmart.com, search for "logitech g910"

3 Go to costco.com, search for "bose soundsport free" and select the first entry

Go to walmart.com, search for "logitech g910" and select the first entry

Table 3: Examples of task descriptions in the AiTW Webshopping task set.

D. Qualitative examples
D.1. Random sample of trajectories for different agents

In Figures 8 and 9, we provide trajectories of DigiRL, AutoUI, and GPT-4V randomly sampled from our test set to offer
a qualitative understanding of the agents’ performance. As shown in these examples, DigiRLcan efficiently carry out
in-the-wild device control tasks and less likely to get stuck or get to a wrong page compared to AutoUI and GPT-4V.

D.2. Error Recovery

We observe that DigiRL is able to recover from its own mistakes. As shown in Figure 10, we find that DigiRL explores
ways to get back to the original screen in order to perform a search. As a comparison, AutoUI fails to reset to the original
screen and gets stuck at the diverged screen. Under the hood, we find DigiRL trying to maximize the state value, which
usually induces it to reset to the original screen (that has a large value to success).

D.3. Reasoning failure of GPT-4V

The performance of GPT-4V failed on AiTW tasks predominantly due to not being able to carry out control actions as it
plans on a high level, and then not being able to recover from these mistakes. Moreover, one of the main reasons why it
is not able to recover from a mistake is that it might hallucinate and make itself believe that it is a wrong app or website.
Indeed, GPT-4V constructs a plan of further actions when provided a task from either Web Shopping or General dataset of
AiTW. Then, when it makes a misclick and fails to successfully proceed in an intermediate step, it might think that it actually
solved that intermediate step and is in the correct app or website to execute further actions, causing the overall trajectory to
fail. An example of this is provided in Figure 11. Here, we ask the model to search for an item in a webshopping website, in
particular in “newegg.com”. However, the model fails to proceed to that website due to not being able to precisely locating
the search button. Then, instead of trying to go to that website again, the model thinks it is already in that webshopping
website, and mistakes the search bar of Google with the search bar of “newegg.com”. Hence, the rest of the trajectory also
fails. Another slightly different phenomenon is illustrated in Figure 12. Here, the model is able to proceed to the correct
website and search for an item, but this time it fails to tap on the search button on the website and clicks to an advertisement
instead. Consequently, the model fools itself to think it successfully searched the item, and scrolls the page hoping to find
that item, but it cannot do so because in reality it views the results of the advertisement. The primary reason of these failures
is the challenge of grounding the control actions in GUI interfaces to realize the intermediary goals laid out by GPT-4V
model’s thoughts. As an example, we provide an illustration of trying to set up an alarm task in Figure 13. Here, in the
last frame, it fails to execute the precise movements in the necessary amount of rounds to correctly set up the alarm to the
desired time, and in the last frame we see that the action taken does not align with the thought process of the model.

E. Fine-grained failure modes
In Figure 14, we present a more fine-grained breakdown for all six failure modes provided in the user study. Those failure
modes include:

• Failure to recover from mistakes refers to the scenario where the agent made a mistake that led it to states from which it

12

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

DigiRL:

AutoUI:

GPT-4V

What are the new products by Samsung?  

Got
stuck

✘

Click

 Show me some nice wallpapers for my tablet  
DigiRL:

AutoUI:

GPT-4V

Skipped

Stops
Early

✘

Figure 8: Agents’ trajectory on two randomly sampled tasks on the General split of AitW.

13

715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

Go to costco.com, search for 'macbook pro', and select the first entry  
DigiRL:

AutoUI:

GPT-4V

Early

stop

✘

Got
stuck

✘

✘
Got
stuck

Go to newegg.com, search for 'duracell triple a’
DigiRL:

AutoUI:

GPT-4V

Skipped

Skipped

Skipped

Wrong

Page✘

✘
Could not

search

Figure 9: Agents’ trajectory on two randomly sampled tasks on the WebShop split of AitW.

14

770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

Go to bestbuy.com, search for 'macbook'
DigiRL:

AutoUI:

Skipped

Skipped

✘
Got
Stuck

Figure 10: Error recovery cases. In bestbuy.com, we systematically find DigiRL able to recover from its own mistakes,
while AutoUI fails to do so.

15

825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

Go to newegg.com, search for “alienware area 51” and select the first entry.

...

Thought: To
complete the given
task, I should launch
the Google Chrome
browser to navigate
to newegg.com. The
UI element labeled
with the number 5 is
documented as an
app launcher for
Google Chrome.

Action: tap(5)

Thought: To
complete the given
task, the next step I
should do is enter the
URL "newegg.com"
into the address bar.

Action:
text("newegg.com")

Thought: To
complete the given
task, the next step I
should do is to
navigate to the
Newegg website by
tapping the search or
go button associated
with the entered
URL.

Action: tap(11)

Thought: To
complete the given
task, I should clear
the current text in
the address bar and
enter the search term
'alienware area 51'
since the goal is to
search for that
specific product on
newegg.com.

Action: tap(2)

Thought: To
complete the given
task, the next step I
should do is clear the
current text in the
address bar and
enter the search term
'alienware area 51'

Action:
text("alienware area
51")

since the browser
has already
navigated to the
Newegg website.

Thought: To
complete the given
task, the next step I
should do is to
submit the search
query 'alienware area
51'

Since the
search term is
already entered, I
need to tap the
search or go button
to initiate the search.

on the Newegg
website.

Action: tap(10)

Figure 11: Failure of GPT-4V, with its thoughts and link-based actions given. A typical cause of failure is that it cannot tap
on the correct “search” button after entering a query and mistakenly tapped onto the “x” symbol in the search bar as the
“search” button. Here the goal is: Go to newegg.com, search for “alienware area 51” and select the first entry. As seen in red
emboldened actions, it fails to press search button and deletes the query instead. Also, as seen in red highlighted parts in
thoughts, it thinks it is in “newegg.com” website even though it is not.

16

880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934

Thought: To complete
the given task, the next
step I should do is type
"costco.com" into the
search bar since I have
already initiated the
process to navigate to
costco.com by tapping
on the Google search
bar.

Action:
text("costco.com")

Thought: To complete
the given task, the next
step I should do is enter
the search term 'acer
predator' into the search
bar using the text input
function.

Action: text("acer
predator")

Thought: To complete the
given task,

Action:

I should
continue to swipe up on
the product listings to
find the 'acer predator'
item.

swipe(21, "up",
"medium")

Thought: To complete the
given task, I should scroll
through the product
listings to find the 'acer
predator' item. Since the
first entry is what we
need to select,

Action:

I should
swipe up on the element
labeled '26' to view more
products.

swipe(26, "up",
"medium")

Thought: To complete
the given task, the next
step I should do is to
initiate the search by
tapping the search
button on the
keyboard.

Action: tap(24)

Thought: To complete
the given task, the next
step I should do is
navigate to the Costco
website. Since the
address "costco.com" is
already entered in the
address bar, I need to
initiate the web search
or load the page by
tapping the search
button on the keyboard.

Action: tap(4)

Go to costco.com, search for “acer predator”, and select the first entry.

...

Figure 12: Failure of GPT-4V, with its thoughts and link-based actions given. This time the reason for failure is misclick
on the wrong button. The task is “Go to costco.com, search for “acer predator”, and select the first entry”. Notice that up
until the fourth frame in this Figure, the trajectory goes correct. But then it clicks on the generic advertisements on the
Costco.com website, and it cannot recover back. It continues to scroll the page and takes wrong actions thereafter.

17

935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989

Set an alarm for 4pm.

Thought: To set an
alarm for 4pm, I
need to find and
open the alarm or
clock app. Since the
alarm app icon is not
immediately visible
on the current
screen, I may need to
swipe up or tap on
the app drawer icon
(if present) to view
more apps and locate
the alarm or clock
app.

Action: swipe(1, "up",
"medium")

Thought: To set an
alarm for 4pm, I
need to open the
Clock app. The next
step is to tap on the
Clock app icon.

Action: tap(25)

Thought: To set an
alarm for 4pm, I
need to navigate to
the alarm section of
the Clock app if not
already there, and
then use the button
to add a new alarm.

Action: tap(1)

Thought: To set a
new alarm for 4 PM,
I should tap the
button to add a new
alarm.

Action: tap(14)

Thought: To
complete the given
task, I need to set the
alarm for 4:00 PM.
The hour is close to
the desired time, so I
should first switch
from AM to PM using
the PM button.

Action: tap(4)

Thought: To
complete the given
task, I should set the
minutes to "00" to
make the alarm for
4:00 PM.

Action: tap(1)

Figure 13: Failure of GPT-4V, with an example task on the AiTW general test set. The task is “Set an alarm for 4pm”. Here,
GPT-4V is able to successfully navigate to the clock app, and the alarm settings of that app. However, it cannot take the
correct precise actions to set the alarm quickly enough, and it fails due to maximum rounds reached. In the last round, notice
that the action of tap(1) contradict with its own thought process of setting minutes to “00”.

Set-Of-Marks
GPT4V

Set-Of-Marks
Gemini-1.5-Pro

AppAgent
GPT4V

AppAgent
Gemini-1.5-Pro AutoUI CogAgent

Filtered BC
Offline

DigiRL
Offline

Filtered BC
Online

DigiRL
Online

Set-Of-Marks
GPT4V

Set-Of-Marks
Gemini-1.5-Pro

AppAgent
GPT4V

AppAgent
Gemini-1.5-Pro AutoUI CogAgent

Filtered BC
Offline

DigiRL
Offline

Filtered BC
Online

DigiRL
Online

General

Web Shopping

Fail to recover from mistakes
Fail to click on the right link or fail to type
Fail to take reasonable attempts at all
Quit or press HOME early
Stops at wrong but relevant page
Technical issues
Task success

Figure 14: Failure modes decomposition for each policy model for both General and Web Shopping subsets.

18

990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044

failed to quickly recover and resume the task, such as a wrong google search page.

• Failure to click on the right link or failure to click refers to the failure mode where the agent either fails to locate the
element that it tries to click on and keeps clicking on the nearby region, or fails to start typing in the string when it is
supposed to do so.

• Failure to take reasonable attempts at all refers to the failure mode where there is no clear reason that the agent fails to
complete the task and does not seem to be on the right track throughout the trajectory.

• Quit or press HOME early refers to the failure mode where the agent decided to finish the task or press HOME to start
over before the task is actually finished.

• Stops at wrong but relevant page refers to the failure mode where the agent arrives at a wrong page and mistakenly
thinks that it had completed the task. For example, the agent finds a macbook on costco.com while the instruction
asked it to find a macbook on ebay.com.

• Technical issues refer to the failure mode that either the task is impossible (e.g. the tasks asks to open Amazon app but
this app is not installed) or the agent is temporarily blocked from a certain website due to frequent visits.

The translation between fine-grained failure modes and coarse-grained failure modes is presented in Table 4.

Fine-Grained Failure Coarse-Grained Failure

Fail to recover from mistakes Fail to recover from mistakes

Fail to click on the right link or fail to type Get stuck midway

Fail to take reasonable attempts at all Get stuck midway

Quit or Press HOME early Arrive at wrong goal

Stops at wrong but relevant page Arrive at wrong goal

Technical Issues None

Table 4: Examples of task descriptions in the AiTW Webshopping task set.

F. Experiment machines
Our main experiments are conducted on VM instances from Google Cloud Platform. Each VM instance comes with 1x
Tesla T4 GPU and 16x Intel(R) Xeon(R) CPU.

G. Setup for parallel environment
Running multiple emulators in parallel can be challenging due to the inefficiency in thread synchronization and frequent
fault propagation when one emulator runs into an unknown error. To address this challenge, we set up a server-client system
where all emulator processes are running in independent server processes. Each emulator process communicates with the
main training process through different UIAutomotor servers. The main training process sends high-level instructions to
UIAutomotor servers (such as reset and step), while UIAutomotor servers parse high-level instructions into low-level UI
commands (such as typing a character and tapping at a coordinate) and such UI commands are executed by the emulator
processes. When an exception is thrown in the emulator, the UIAutomotor examines if it is recoverable (e.g. an UI command
takes too long to execute in the emulator) and reset the emulator process if it is not. When an exception is thrown in the
UIAutomotor server, the main training process stops and resets the UIAutomotor server to ensure data correctness.

This design can easily be scaled up to a multi-machine setting. As illustrated in Figure 15, one host machine equipped with
GPU accelerator has a local copy of the current policy πt, and distributes the policy to all worker machines equipped with
only one GPU and multiple CPUs. Each worker machine will then collect trajectories of different tasks using πt. After all
collection processes are synchronized, the host machine gathers all the trajectories together to update the policy to πt+1.
This process keeps iterating until the policy converges.

The performance boost with respect to the number of worker machines is nearly linear, as demonstrated in Figure 16,
where we conduct experiments that examine the scaling performance of our parallel emulator. Our distributed emulator

19

1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099

host machine

worker machines

emulators

aggregate
trajectories

distribute updated policy

Figure 15: Multi-machine parallel emulator execution. The host machine is equipped with GPU accelerators and the worker
machines are equipped only with CPUs. The policy update is executed on the worker machine and the trajectory collections
are executed distributedly on the worker machines and aggregated by the host machine.

8 16 32 64 128
Number of CPUs

0

1

2

3

4

5

Em
ul

at
io

n
Sp

ee
d

(tr
aj

/m
in

)

0.36 0.53 0.68 0.74
0.49

0.99

1.74

3.55

Vanilla Emulator
Distributed Emulator
Upper Bound

Figure 16: Emulation speed w.r.t number of CPUs used. The upper bound can only achieved when there is no communication and
error handling cost. Our design of distributed emulator can significantly improve the efficiency of emulation compaared to the vanilla
method of running all emulations over the same instance.

that runs emulations across multiple servers can reliably collect data with up to 64 parallel emulators on 128 CPUs with
near-linear speedup. In contrast, a naive baseline that runs all parallel emulations on the same server achieves much inferior
performance (0.74 compared to 1.74 trajs/min using 64 CPUs).

H. Autonomous evaluator details
Our autonomous evaluator gives a reward to each observation we get. The observation is composed of the current screenshot
of device and the task. The evaluator gives a reward of 1 if the screenshot shows a completion of the task, and will terminate
the POMDP as a result result.

The optimized prompt is shown in Figure 17 and Figure 18 for General and Web Shopping subsets respectively.

20

1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154

Prompt

You're an expert in evaluating whether the Screenshot successfully completes the Task.

=====Examples=====

Screenshot: {train_1.png}

Task: Open the settings.

Q: What should I expect to see on the screenshot if I've opened the settings?

A: I should expect to see I'm in the settings app. The screenshot shows the home screen of a mobile device, with
various app icons displayed, including the settings app icon, but the settings app is not opened.

Status: failure

Screenshot: {train_2.png}

Task: Find hotels in washington dc

Q: What should I expect to see on the screenshot if I've searched for hotels in Washington, DC?

A: I should expect to see I'm in a search results page for hotels in Washington, DC. The screenshot shows a Google
search page with the search field populated with the query "hotels in washington dc" and a list of suggested searches
related to hotels in Washington, DC, but it does not show any search results for hotels in Washington, DC.

Status: failure

Screenshot: {train_3.png}

Task: What's a good restaurant in Portland?

Q: What should I expect to see on the screenshot if I've searched for a good restaurant in Portland?

A: I should expect to see I'm in a search results page for a good restaurant in Portland. The screenshot shows a
Google search page with a search input field for "good restaurant in portland" and a map results preview showing
business locations near Portland, like "Li Pigeon", "Portland City Grill", and "Higgins",

Status: success

... (more cases)

=====Your Turn=====

Screenshot: {test.png}

Task: {task_this_traj}

Respond in this format:

Q: What should I expect to see on the screenshot if I've <repeat the task>?

A: I should expect to see <first expectation, then what's in the given screenshot.>

Status: success or failure (don't return anything else)

Start with "Q:".

Response

Q: What should I expect to see on the screenshot if I've searched for the price of a 12' ladder at Home Depot? 
A: I should expect to see the price of a 12' ladder at Home Depot; the screenshot shows a search result page for the p
rice of a 12' ladder, with some product advertisements showing prices from Home Depot. 
Status: success

Image Sources

train_1.png train_2.png train_3.png test.png

Figure 17: Prompt for our autonomous evaluator for tasks in AitW General subset.21

1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209

Prompt

You're an expert in evaluating whether the Screenshot successfully completes the Task.

=====Examples=====

Screenshot: {train_1.png}

Task: Go to bestbuy.com

Q: What should I expect to see on the screenshot if I've gone to bestbuy.com?
A: I should expect to see I'm in the Best Buy website, which usually shows the best buy logo with some featured prod
ucts and categories. The screenshot shows I'm searching for "bestbuy.com" in the Google search (with some search s
uggestions) instead of being in the Best Buy website.

Status: failure

Screenshot: {train_2.png}

Task: Go to ebay.com, search for "corsair k70"

Q: What should I expect to see on the screenshot if I've gone to ebay.com AND searched for "corsair k70"?

A: I should expect to see I'm in the eBay website and search results for "corsair k70". The screenshot shows I'm in the
eBay ebay website with some search suggestions for "corsair k70", but it does not show search results of the product,
which usually includes price and the product details.

Status: failure

Screenshot: {train_3.png}

Task: Go to ebay.com, search for "lenovo thinkpad"

Q: What should I expect to see on the screenshot if I've gone to ebay.com AND searched for "lenovo thinkpad"?

A: I should expect to see I'm in the eBay website and search results for "lenovo thinkpad". The screenshot shows I'm
in the eBay website and have several search results for "lenovo thinkpad".

Status: success

... (more cases)

=====Your Turn=====

Screenshot: {test.png}

Task: {task_this_traj}

Respond in this format:

Q: What should I expect to see on the screenshot if I've <repeat the task>?

A: I should expect to see <first expectation, then what's in the given screenshot.>

Status: success or failure (don't return anything else)

Start with "Q:".

Response

Q: What should I expect to see on the screenshot if I've searched for the price of a 12' ladder at Home Depot? 
A: I should expect to see the price of a 12' ladder at Home Depot; the screenshot shows a search result page for the p
rice of a 12' ladder, with some product advertisements showing prices from Home Depot. 
Status: success

Image Sources

train_1.png train_2.png train_3.png test.png

Figure 18: Prompt for our autonomous evaluator for tasks in AitW Web Shopping subset.22

1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264

I. Zero-shot Baseline Details
Figure 19 shows the prompt that we used for testing the Set-of-Marks performance for GPT-4V and Gemini 1.5 Pro. This
prompt is directly taken from Yang et al. (2023).

Prompt

"You are an agent that is trained to perform some basic tasks on a smartphone. You will be given a \nsmartphone
screenshot. The interactive UI elements on the screenshot are labeled with numeric tags starting from 1. The
\nnumeric tag of each interactive element is located in the center of the element.\n\nYou can call the following
functions to control the smartphone:\n\n1. tap(element: int)\nThis function is used to tap an UI element shown on
the smartphone screen.\n\"element\" is a numeric tag assigned to an UI element shown on the smartphone screen.
\nA simple use case can be tap(5), which taps the UI element labeled with the number 5.\n\n2. text(text_input:
str)\nThis function is used to insert text input in an input field/box. text_input is the string you want to insert and
must \nbe wrapped with double quotation marks. A simple use case can be text(\"Hello, world!\"), which inserts the
string \n\"Hello, world!\" into the input area on the smartphone screen. This function is usually callable when you
see a keyboard \nshowing in the lower half of the screen.\n\n3. long_press(element: int)\nThis function is used to
long press an UI element shown on the smartphone screen.\n\"element\" is a numeric tag assigned to an UI element
shown on the smartphone screen.\nA simple use case can be long_press(5), which long presses the UI element
labeled with the number 5.\n\n4. swipe(element: int, direction: str, dist: str)\nThis function is used to swipe an UI
element shown on the smartphone screen, usually a scroll view or a slide bar.\n\"element\" is a numeric tag assigned
to an UI element shown on the smartphone screen. \"direction\" is a string that \nrepresents one of the four
directions: up, down, left, right. \"direction\" must be wrapped with double quotation \nmarks. \"dist\" determines
the distance of the swipe and can be one of the three options: short, medium, long. You should \nchoose the
appropriate distance option according to your need.\nA simple use case can be swipe(21, \"up\", \"medium\"), which
swipes up the UI element labeled with the number 21 for a \nmedium distance.\n\n5. grid()\nYou should call this
function when you find the element you want to interact with is not labeled with a numeric tag and \nother
elements with numeric tags cannot help with the task. The function will bring up a grid overlay to divide the
\nsmartphone screen into small areas and this will give you more freedom to choose any part of the screen to tap,
long \npress, or swipe.

The task you need to complete is to How much does a 2 bedroom apartment rent for in Denver?.

Your past actions to proceed with this task are summarized as follows: None

Now, given the documentation and the following labeled screenshot, you need to think and call the function needed
to proceed with the task. Your output should include three parts in the given format:

Observation: <Describe what you observe in the image>

Thought: <To complete the given task, what is the next step I should do>

Action: <The function call with the correct parameters to proceed with the task. When you are certain that the task
is successfully done and the goal is reached as of the current observation, you should output FINISH. You cannot
output anything else except a function call or FINISH \nin this field.>

Summary: <Summarize your past actions along with your latest action in one or two sentences. Do not include the
numeric \ntag in your summary>\nYou can only take one action at a time, so please directly call the function."

Figure 19: Set-of-Marks prompting. The boldened inputs can be changed according to our goal. The task changes for every
different task. The past actions change as we take actions (it is None now since this is the prompt for the first round).

23

1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319

J. Other Experiments

0 200 400 600 800
#Trajectories

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Su
cc

es
s R

at
e

Filtered BC-20
Filtered BC-10

DigiRL-20
DigiRL-10

GPT-4V

Figure 20: Success rate with different horizon length (H ∈ {10, 20})under different methods on the AiTW Google
Search task set.

J.1. Horizon Limit

We investigate the horizon limit of filtered BC and DigiRL on the AitW General subset. As most tasks can be effectively
solved within 10 steps, we specify two horizon limits: a sufficient horizont H = 10, and a redundant horizon H = 20.
Results show that a redundant horizon introduces significantly faster learning speed for both filtered BC and DigiRL,
presumbaly because longer horizon means more opportunity to try in a single trajectory. In both horizon settings, we observe
the DigiRL offers a significant speedup of around 100 trajectories over Filtered BC.

K. Hyperparameters
Hyperparameters for both Filtered BC and DigiRL are carefully tuned through binary search on the training set of General
and Web Shopping subsets. The final choice of hyperparameters for both methods can be found in Table 5. As shown in the
table, the only hyperparameters introduced by DigiRL are supervised training hyperparameters for the value function and
instruction value function (including number of iterations and learning rate) and GAE λ.

24

1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374

Table 5: Hyperparameters for All Experiments

Method Hyperparameter Offline Offline-to-Online

Filtered
BC

actor lr 3e-3 3e-3

batch size 128 128

rollout trajectories - 16

replay buffer size - 5000

rollout temperature - 1.0

maximum gradient norm 0.01 0.01

actor updates per iteration 20 20

number of iterations for offline actor updates 10 10

DigiRL

actor lr 3e-3 3e-3

value function lr 3e-3 3e-3

instruction value function lr 3e-3 3e-3

instruction value function lr 3e-3 3e-3

batch size 128 128

rollout trajectories - 16

replay buffer size - 5000

rollout temperature - 1.0

maximum gradient norm 0.01 0.01

GAE λ 0.5 0.5

actor updates per iteration 20 20

value function updates per iteration 5 5

instruction value function updates per iteration - 5

number of iterations for offline actor updates 10 10

number of iterations for offline value function updates 20 20

number of iterations for offline instruction value function updates - 20
Table 6: Hyperparameters for DigiRL and Filtered BC on both General and Web Shopping subset of AitW..

25

	Introduction
	DigiRL: autonomous RL for building a strong device control agent
	Backbone of our approach: off-policy RL via advantage-weighted regression
	Obtaining reliable advantage estimates from doubly-robust estimators
	Automatic curriculum using an instruction-level value function

	Experimental evaluation
	Main results

	Problem setup and preliminaries
	Discussions
	Environment details
	Post-processing of AitW

	Qualitative examples
	Random sample of trajectories for different agents
	Error Recovery
	Reasoning failure of GPT-4V

	Fine-grained failure modes
	Experiment machines
	Setup for parallel environment
	Autonomous evaluator details
	Zero-shot Baseline Details
	Other Experiments
	Horizon Limit

	Hyperparameters

