
Multiple Gain Adaptations for Improved Neural
Networks Training

Jeshwanth Challagundla∗, Kanishka Tyagi†, Tushar Chugh‡ and Michael Manry§
Department of Electrical Engineering, The University of Texas at Arlington, Arlington, Texas

Email: ∗jeshwanth.challagundla@mavs.uta.edu, †kanishka.tyagi@mavs.uta.edu, §manry@uta.edu
School of Computer Science, Carnegie Mellon University, Pittsburgh, USA

Email: ‡tusharchugh19@gmail.com

Abstract—A two stage algorithm developed called Multiple
Gain Adaptations for Improved Networks (MGAIN) is presented.
MAGAIN alternatively finds output weights and uses several gain
factors to update the input weights in a Multi-Layer Percep-
tron. The gain factors are computed using Newtons method.
Our method dynamically adjusts the quantity of gain factors
calculated to maximize the reduction in loss with each epoch.
The results demonstrate that our approach outperforms existing
second order algorithms across the majority of diverse datasets.

Index Terms—Multilayer Perceptron, Back Propagation, Tar-
get Weight Refinement, Adaptive multiple gain adaptations,
Orthogonal Least Squares.

I. INTRODUCTION

Artificial Neural Networks (ANNs) consist of various ar-
chitectures, with multilayer feed-forward networks being the
predominant choice for tasks such as function approximation
and pattern recognition. This is primarily due to their inherent
capabilities for universal approximation and approximation of
Bayes discriminants. [1] [2]

In the domain of neural network optimization, techniques
such as Adam [3], AdaDelta [4], AdaGrad [5], RmsProp,
Nesterov momentum [6], are predominantly aligned with first-
order training algorithms. However, there exists a notable
deficit in the literature regarding more advanced optimization
strategies for second-order training algorithms. The primary
challenge with second-order algorithms lies in their scalabil-
ity issues, largely attributable to the necessity of computing
Hessian matrices, which are notably resource-intensive. The
computational demands escalate significantly as the network
size increases, with the operations required for Hessian matrix
computation growing exponentially.

Neural networks can approximate continuous discriminants
arbitrarily well, due to universal approximation [1]. How-
ever, it raises questions about the No-Free-Lunch theorem
[7] as it implies that multi-layer perceptrons (MLPs) can
approximate alternative discriminants. For a first-order neural
network optimization, Adafactor [8] presents a fusion of Adam
optimization and memory efficiency, reducing memory over-
head by factorizing moving average matrices into low-rank
forms. While advantageous for its memory-saving attributes,
Adafactor lacks detailed exploration regarding its performance
across a wider range of neural network architectures and

datasets, leaving gaps in understanding its adaptability be-
yond specific scenarios. Similarly, AdaSmooth [9] introduces
adaptability in the window size for accumulated past gradients,
surpassing the fixed-size constraints. However, AdaSmooth’s
effectiveness across highly dynamic or noisy datasets remains
relatively unexplored, necessitating further investigation into
its robustness in more complex optimization landscapes. More-
over, the Large Batch Optimization technique (LAMB) [10]
demonstrates layer-wise adaptiveness in updating weights, en-
abling faster training of models like BERT [11]. Yet, LAMB’s
scalability and generalization to diverse neural architectures
and tasks warrant deeper scrutiny, particularly to discern its
limitations in scenarios involving smaller datasets or different
model architectures. The SLAMB technique [12] amalga-
mates LAMB with sparse GPU communication, accelerating
large batch training. However, the practical implementation
challenges and trade-offs in deploying sparse communication
methods, as well as the specific hardware requirements for
optimal performance, require further elucidation for broader
applicability in varied computing environments. Furthermore,
the Symbolic Discovery of Optimization Algorithms (LION)
[13] marks a pioneering attempt at exploring various optimiza-
tion algorithms comprehensively. Nevertheless, the paper lacks
an in-depth comparative analysis or benchmarking against
existing optimization strategies, limiting its insights into the
relative effectiveness or novelty of the discovered algorithms.
Shifting focus to second-order optimization techniques, Sham-
poo [14] introduces efficient gradient preconditioning using
matrices instead of Hessian computations. However, Sham-
poo’s scalability concerns and its performance in scenarios
with highly non-convex functions or noisy gradients remain
areas that necessitate further investigation to ascertain its gen-
eralizability. Moreover, Scalable Second Order Optimization
in [15] efficiently implements the Shampoo algorithm. Yet,
a comprehensive examination of its computational complexity
and comparison with other scalable second-order techniques is
lacking, hindering a complete understanding of its advantages
over alternative methodologies. AdaHessian [16] innovatively
utilizes only the diagonal elements of the Hessian matrix, re-
ducing memory requirements significantly. However, the trade-
offs between computational efficiency and optimization accu-
racy in complex, highly non-linear optimization landscapes
warrant deeper analysis to comprehend its viability across

0414

979-8-3503-6013-4/24/$31.00 ©2024 IEEE

20
24

 IE
EE

 1
4t

h
A

nn
ua

l C
om

pu
tin

g
an

d
C

om
m

un
ic

at
io

n
W

or
ks

ho
p

an
d

C
on

fe
re

nc
e

(C
C

W
C

) |
 9

79
-8

-3
50

3-
60

13
-4

/2
4/

$3
1.

00
 ©

20
24

 IE
EE

 |
D

O
I:

10
.1

10
9/

C
C

W
C

60
89

1.
20

24
.1

04
27

78
1

Authorized licensed use limited to: GOOGLE. Downloaded on September 17,2024 at 00:44:16 UTC from IEEE Xplore. Restrictions apply.

Fig. 1: Diagram of a Fully Connected Multilayer Perceptron

diverse neural network architectures and training scenarios.
The algorithm proposed in this paper was originally explored
in our thesis work [17]. The proposed algorithm addresses this
challenge by optimizing neural network training operations
more efficiently. The methodology involves segmenting the
input weights of a MLP into clusters, followed by applying
Newton’s method to compute gain factors for each cluster.

II. BACKGROUND

A. Structure and Notation

The depicted figure 1 shows the configuration of a fully
connected, forward-propagating multilayer perceptron (MLP).
In this setup, the weights denoted as w(k, n) form the connec-
tions from each nth input node to the kth node in the hidden
layer. The weights marked as woh(m, k) are responsible for
linking the kth hidden node’s non-linear output, symbolized
as Op(k), to the mth output node yp(m), which is activated
linearly. Additionally, direct connections from the nth input to
the mth output are facilitated by woi(m,n), known as bypass
weights. The training data consists of a set of independent and
identically distributed pairs of inputs and targets, {xp, tp},
with the input vectors xp having a dimension of N and
target vectors tp a dimension of M . The index p ranges from
1 to Nv , the total number of training vectors. The hidden
layer comprises Nh nodes. To incorporate input bias, an extra
element xp(N + 1), set to 1, is added to each input unit. The
net function vector of the hidden layer for any training pattern
p is denoted as np, and is calculated by np = W · xp. The
activation for the kth element in the hidden layer activation
vector Op is given by Op(k) = f(np(k)), with f(·) being the
sigmoid function. The network’s output vector yp is given by:

yp = Woi · xp +Woh ·Op (1)

The equation above can be alternatively expressed as
yp = Wo ·Xa, where Xa, the augmented input column
vector, incorporates Nu basis functions and is defined as
[xp

T : Op
T]T . Here, Nu equals 1+N +Nh. The augmented

weight matrix Wo, of dimension M × Nu, is composed of
Wo = [Woh, : Woi]. Training an MLP involves minimizing

the mean squared error (2) between the desired output and the
actual output of the network. This process adjusts the network
weights and biases to align the calculated output closely with
the desired output. The training is framed as an optimization
task within a structural risk minimization context [18], [19].
This context focuses on minimizing the loss function E, which
is the mean square error (MSE), serving as a surrogate for the
non-smooth classification loss. The MSE is defined as:

E =
1

Nv

Nv∑
p=1

M∑
i=1

[tp − yp]
2 (2)

The nonlinearity within yp introduces non-convexity into
the loss function E, potentially leading to local minima in prac-
tice. We assume tp follows a Gaussian distribution concerning
input xp. Our aim is to determine the optimal weights within
the MLP structure. Employing the empirical risk minimization
framework [20], we design learning algorithms, benefiting
from the advantage of transforming MLP training into an
optimization problem. This conversion allows us to leverage
various optimization algorithms to enhance MLP learning
processes.

B. MLP Initialization

As per [20], the input weights matrix W gets randomly
initialized with zero mean and unit standard deviation. For
initializing the output weight matrix Wo, the approach in-
volves using Target Weight Refinement (TWR) [20]. The TWR
approach seeks to reduce the loss function outlined in equation
(2) by focusing on the optimization of Wo. This is achieved
by resolving M distinct sets of equations, each set containing
Nu equations with Nu unknown variables, as given by:

C = R ·WT
o (3)

Where C is the cross-correlation matrix and is defined as
1
Nv

∑Nv

p=1 tp · XT
a and R is the auto-correlation matrix and

is defined as 1
Nv

∑Nv

p=1 Xa · XT
a . In terms of optimization

theory, solving equation (3) essentially equates to Newton’s
algorithm for the output weights [21]. Once W, Woi, and
Woh are initialized, a two-stage algorithm is applied, in which
we update W first and then perform TWR to adjust Wo. The
MLP network is now ready for training using gradient and
hessian based algorithms. Training an MLP employs gradient
based methods like back-propagation (BP), conjugate gradient
(CG), or hessian based methods such as Levenberg-Marquardt
(LM) and Newton’s method.

C. Optimization algorithms

In our study, we’ll compare our work with scaled conjugate
gradient, an optimization algorithms positioned between first
and second-order optimization techniques. Alongside these,
we briefly review two second order algorithms, LM [22] and
Target Weight Refinement-Multiple Gain Adaptation (TWR-
MGA) [23].

0415
Authorized licensed use limited to: GOOGLE. Downloaded on September 17,2024 at 00:44:16 UTC from IEEE Xplore. Restrictions apply.

1) Scaled conjugate Gradient: The Conjugate Gradient
algorithm, introduced in [24], executes a line-search within
conjugate directions and typically demonstrates faster conver-
gence compared to the back-propagation algorithm. Despite
being a general unconstrained optimization technique, the
scaled conjugate gradient (SCG) method has been extensively
detailed in [25] for efficiently training an MLP. In the context
of training an MLP using the conjugate gradient algorithm, a
direction vector is derived from the gradient g, denoted as
p ← −g + B1 · p. Here, p represents vec(P,Poh,Poi),
wherein P, Poi, and Poh are the direction vectors. B1

signifies the ratio of gradient entopy between current and
previous training iterations. All the weights in the network
are updated in each training iteration as, w← w+ z · p. For
a comprehensive pseudocode, please refer to [20].

2) Levenberg-Marquardt algorithm: The LM (Levenberg-
Marquardt) algorithm addresses the sub-optimality often en-
countered in Newton’s method due to the singularity of H
(the Hessian matrix). LM [26], tries to address the problems
with Newton’s method by modifying the Hessian matrix as
HLM = H+λ ·I, where I is the identity matrix matching the
dimensions of H and λ serves as a regularization parameter.
This adjustment ensures that the combined matrix (H +
λ · I) remains positive definite, ensuring better conditioning
throughout computations. The calculation of the second-order
direction, denoted as d, mirrors that of Newton’s method,
formulated as HLM · d = g, where g represents the gradient.
Once HLM is determined, the model weights undergo an
update. The regularization parameter λ plays a significant
role in influencing the behavior and performance of the LM
algorithm. For an in-depth exploration of the LM algorithm,
you can refer to [20].

3) TWR-MGA: An alternative to LM, the TWR-MGA algo-
rithm adopts a two-stage ”layer by layer” approach, leveraging
Target Weight Refinement (TWR) and multiple gain adapta-
tions (MGA) per hidden unit [23]. Unlike heuristic methods
relying on various learning rates or momentum terms [27],
[28], TWR-MGA targets enhanced learning speed and con-
vergence.This algorithm handles input weight updates using
negative gradients and Nh gain factors that are computed in
every training iteration using Newton’s method [22]. Mean-
while, output weights are trained using TWR.

D. Challenges and Objectives

The paper addresses the following challenges posed by
second order algorithms. Algorithms such as Lavenberg-
Marquardt incur significant computational costs due to their
reliance on optimizing all weights utilizing second order in-
formation. In contrast, algorithms like TWR-MGA, Shampoo,
and Ada-Hessian attempt to mitigate these computational de-
mands by either optimizing a subset of parameters via second
order methods or by employing a lower rank approximation
of the Hessian matrix. This approach reduces the need to
compute and invert the full Hessian matrix for all parameters.
However, a common limitation within these algorithms, when
applied to a specific model architecture, is their consistent

optimization of a similar fraction of parameters using second
order methods for every training iteration for a given data-
set. This uniform strategy leads to an unnecessary escalation
in computational requirements. The objective of this paper
is to formulate a novel second order training algorithm that
dynamically adjusts the number of parameters optimized using
second order information. This adjustment will be specific to
each training iteration, dependent on the dataset and model
architecture involved. The goal is to enhance computational
efficiency without increase in optimization time. In order to
address the objectives, we introduce Adapt-MGA, a second-
order algorithm that involves creating weight clusters for each
hidden unit and computing gain factors for each cluster.

III. ADAPT-MGA

The TWR-Newton algorithm is known for its impressive
loss convergence properties, but its effectiveness reduces when
the inputs have linear dependencies. Also, its performance
drops when the loss curve is not quadratic. Moreover, in terms
of computational demands, TWR-Newton is computationally
intensive when compared to first-order training algorithms.
Conversely, the TWR-MGA algorithm may not match TWR-
Newton’s in terms of optimization efficiency, yet it shows
better resilience in cases where inputs have linear dependen-
cies. It is also less computationally demanding, as detailed
in [29]. The Adaptive MGA algorithm is designed to take
advantage of the strengths of both TWR-MGA and TWR-
Newton while addressing their limitations by dynamically
changing it behavior between the TWR-MGA and TWR-
Newton methods in every training iteration. In TWR-MGA,
Nh gain factors are determined, but in the Adaptive MGA
algorithm, the count of gain factors calculated can range from
Nh to Nh · (N + 1) in each iteration, allowing for a versatile
approach that leverages the advantages of both techniques and
adapts according to the specific problem.

A. Input weight clusters

In the described algorithm, a ”cluster” denotes a cohort of
input weights that are all updated with a single gain factor. In
methods like steepest gradient descent, a single gain factor is
used to update all the weights, therefore we can say that all
the wights belong to a single cluster. In TWR-MGA, Nh gain
factors are used where Nh is the number of hidden units. All
the weights incident to a hidden unit are updated with single
gain factor. There are Nh total clusters and each cluster is
of size N + 1. However, in the adaptive MGA algorithm the
number of clusters is not fixed. The number of weights in a
cluster can fluctuate between N + 1 and 1, while the number
of weight clusters per hidden unit varies from 1 to N + 1.
Weights incident to a hidden unit are clustered based on the
curvature of the loss function with respect to the weight. The
curvature of loss function is the second partial derivative of
loss function with respect to the weight and is computed as
follows.

0416
Authorized licensed use limited to: GOOGLE. Downloaded on September 17,2024 at 00:44:16 UTC from IEEE Xplore. Restrictions apply.

l(k, n) =
∂2E

∂w(k, n)2
=

2

Nv

M∑
i=1

woh(i, k)
2

Nv∑
p=1

f ′(np(k))
2xp(n)

2

(4)
The elements of the the curvature matrix correspond to

the diagonal elements of Hessian matrix. Weights incident
to a hidden unit are sorted based on the curvature and are
segmented into Ng equal sized clusters.

B. Adapting the number of clusters

The main objective of the Adapt-MGA algorithm is to uti-
lize the floating point operations (FLOPs) efficiently by chang-
ing the number of weight clusters associated with each hidden
unit, thereby changing the number gain factors computed using
Newton’s method. The proposed algorithm achieves this goal
by increasing the number of clusters associated with each
hidden unit thereby increasing the number of gain factor
computed when there is an increase in loss change per FLOP.
The algorithm does the opposite i.e decrease the number of
gain factors computed when there is drop in loss change per
FLOP. Loss change per FLOP is computed as follows,

LPF (it) =
L(it − 1)− L(it)

FLOPs(it)
(5)

where, FLOPs(it) is the count of floating point operations
in training iteration it, LPF (it) is the loss change per FLOP
in iteration it, L(it − 1) is the loss in iteration it − 1.
From our experiments, we observed that the Adapt-MGA al-
gorithm usually operates close to the TWR-Newton algorithm
and achieves large drop in the loss function and as the loss
converges to local minima the algorithm adapts to operate
close to the TWR-MGA to improve computational efficiency.

C. Adapt-MGA Initialization

We can initialize the number of gain factors per hidden
unit to any value between 1 to N + 1. From our experiments
we observed that the following initialization technique works
best. In the first iteration randomly select 5 values between 1
and N + 1. Initialize the number of grain factors per hidden
unit to the value that gives the lowest loss. This methodology
significantly enhances the algorithm’s performance compared
to the random initialization of the number of gain factors
per hidden unit. To further boost performance, this technique
can be applied periodically, say once every 50 epochs during
training. However, computing loss for different number of gain
factors per hidden unit in the same iteration is computationally
demanding. To alleviate this, we can take advantage of the fact
that the Hessian HAmga and gradients gAmga of gain factors
with any cluster size can be derived from the Hessian and
gradients of gain factors with cluster size N + 1, represented
as H and g, in the equation below. This approach reduces the
computational load involved in computing loss for gain factors
with different cluster sizes in the same training iteration.

gAmga(k, c) =
∑
a∈c

g(k, ik(a))
2 (6)

hAmga(k, c1, j, c2) =
∑
a∈c1

∑
b∈c2

h(k, ik(a), j, ij(b))gg(k, c1, j, c2)

gg(k, c1, j, c2) = g(k, ik(a))g(j, ij(a))
(7)

D. Mathematical Treatment

Lemma 1:
Context: Consider a quadratic loss function E(w) with respect
to an input weight vector w. Divide w into k clusters wk, so
w = [wT

1 ,w
T
2 , . . . ,w

T
k]

T . The gradient of the loss function
relative to each cluster is gk = ∂E

∂wk
. Assume a vector z that

includes gain factors for each of the k clusters.
The updated loss function using the k gain factors and gradi-
ents is Ek = E(w1 + z1g1,w2 + z2g2, . . . ,wk + zkgk). By
increasing the number of clusters from k to k + 1, splitting
one of the existing clusters, it holds that Ek+1 ≤ Ek.
Proof: The updated loss E(w) after adjusting input weights is
represented as,

E(w + e) = E(w)− eTg +
1

2
eTHe (8)

where e denotes the input weight modification vector, g is
equivalent to gk for k=1, and H represents the Hessian matrix.
Applying Newton’s method for calculating the weight modi-
fication vector e, we obtain:

e = H−1 · g (9)

The weight modification vector for k clusters is:

ek = [z1g
T
1 , z2g

T
2 , . . . , zkg

T
k]

T (10)

Given z = argminz(E(w + ek)), when k is incremented by
one, we have:

ek+1 = [z1g
T
1 , z2g

T
2 , . . . , zkag

T
ka, zkbg

T
kb]

T (11)

If zka = zkb = zk, then ek = ek+1 and Ek+1 = Ek. Since
all elements in z can be adjusted, it leads to Ek+1 ≤ Ek.
Lemma 1 thereby demonstrates that subdividing the input
weight clusters results in a reduction in loss.

Lemma 2: The decrease in loss from TWR-MGA in
any iteration is equal to or less than the decrease in loss from
adaptive MGA: E − Emga ≤ E − EAmga.
Proof: This conclusion is derived from Lemma 1, as the
weight clusters in adaptive MGA are finer divisions of those
in TWR-MGA.

Lemma 3: TWR-Newton is an extreme form of the
Adapt-MGA algorithm when the k clusters of adaptive MGA
are divided until k = Nh · (N + 1).
Proof: The equation for eNewton is as follows:

eNewton =

z1 · g1

z2 · g2

...
zNh(Ng+1) · gNh(Ng+1)

 (12)

0417
Authorized licensed use limited to: GOOGLE. Downloaded on September 17,2024 at 00:44:16 UTC from IEEE Xplore. Restrictions apply.

In Newton’s method for each iteration, the relationship
between the resulting losses is ENewton ≤ EAmga. This lemma
is a direct implication of Lemma 1.

The above lemmas collectively illustrate that the proposed
algorithm interpolates between TWR-MGA and TWR-
Newton.
The pseudo-code for Adapt-MGA is outlined in Algorithm 1.

Algorithm 1 Adapt-MGA algorithm

0: Read the training data.
0: Initialize W, Woi, Woh, Nit , Ng ← Nh, it ← 0,
0: while it < Nit do
0: Compute G
0: MGA Adapt steps :
0: a: Compute L (the curvature of loss w.r.t input weights)

from equation (4). size(L) = (Nh, N + 1)
0: b: I ← argsort(L, axis = 1). Input weight indices

sorted in the descending order of curvature. size(I) =
(Nh, N + 1)

0: c: Divide the sorted indices of weights connected to
each hidden unit into Ng clusters of equal size.

0: d: Compute Adaptive MGA gain factors zAmga using
HAmga and gAmga. size(zAmga) = (Nh ·Ng, 1)

0: e: Create gain factor column vector z by applying same
gain factors for all the weights in a cluster. size(z) =
(Nh, N + 1)

0: Update input weights: W ←W + z ⊙ G
0: TWR step : Solve equation (3) to obtain Wo

0: Compute loss change per FLOP LPFit from equation
(5)

0: if LPFit > LPFit−1 then
0: Ng ← Ng + 1
0: else
0: Ng ← Ng − 1
0: end if
0: it ← it + 1
0: end while=0

IV. EXPERIMENTAL RESULTS

For algorithms like LM and SCG, all weights are updated
using the respective algorithms in each iteration. Conversely, in
TWR-MGA and adaptive MGA algorithms, the input weights
are updated using the respective alogorithms, followed by
solving linear equations for the output weights. We compared
the performance of the aforementioned algorithms on datasets
from [30]. The inputs in the datasets are normalized before
training. Network pruning is used to determine the hidden
units size as outlined in [31]. Training is conducted on the
complete dataset ten times using ten distinct initial networks.
The resulting average Mean Squared Error (MSE) from this
ten-fold training is visualized in the subsequent plots.

Additionally, training loss and the number of floating point
operations are computed in each iteration for a given dataset
and training algorithm. The following plots show the effec-

Fig. 2: Twod.tra : MSE vs epochs

Fig. 3: Twod.tra data set: MSE vs multipliers

tiveness of adaptive MGA algorithm when compared to other
training algorithms.

Fig. 8: Matrix inversion : MSE vs epochs

0418
Authorized licensed use limited to: GOOGLE. Downloaded on September 17,2024 at 00:44:16 UTC from IEEE Xplore. Restrictions apply.

Fig. 4: Single2.tra : MSE vs epochs

Fig. 5: Single2.tra data set: MSE vs multipliers.

Fig. 6: Oh7.tra : MSE vs epochs

Fig. 7: Oh7.tra data set: MSE vs multipliers.

Fig. 9: Matrix inversion data set: MSE vs multipliers

A. Results

We employed k-fold cross validation to determine the av-
erage loss for both training and testing. The comparative data
in Table 2 below showcases the average training and testing
loss obtained using the adaptive MGA algorithm as compared
to other algorithms across different data sets.

TABLE I: Train and test loss with k-folds (k=10)

Data Set Adaptive MGA TWR-MGA SCG LM

Twod.tra Etrn 0.0888 0.1554 1.0985 0.2038
Twod.tra Etst 0.1172 0.1731 1.0945 0.2205
Single2.tra Etrn 0.0042 0.0151 3.5719 0.0083
Single2.tra Etst 0.0179 0.1689 3.6418 0.0178
Mattrn.tra Etrn 0.0011 0.0027 4.2400 0.0022
Mattrn.tra Etst 0.0013 0.0032 4.3359 0.0027
Oh7.tra Etrn 1.2507 1.3205 4.1500 1.1602
Oh7.tra Etst 1.4738 1.4875 4.1991 1.4373

The observations from the plots and the provided Table
suggest that the adaptive MGA algorithm tends to outperform
TWR-MGA, LM, and SCG algorithms across most datasets,
both in terms of number of iterations and FLOPs.

V. CONCLUSION AND FUTURE WORK

The Adapt-MGA algorithm presented in this research
successfully mitigates the scalability challenges inherent in

0419
Authorized licensed use limited to: GOOGLE. Downloaded on September 17,2024 at 00:44:16 UTC from IEEE Xplore. Restrictions apply.

second-order training algorithms. This is achieved through
an adaptive mechanism that modulates the computation of
gain factors using Newton’s method, thereby enhancing the
efficiency of loss reduction per FLOP. Empirical assessments
show that the Adapt-MGA algorithm outperforms the TWR-
MGA algorithm, demonstrating greater efficiency in reducing
loss per training iteration and frequently achieving significant
drop in loss per FLOP. Furthermore, the algorithm demon-
strates a unique capacity to interpolate between the TWR-
MGA and TWR-Newton methodologies. The scope of this
study is intentionally focused, applying the concept of Adapt-
MGA exclusively to input weights in a MLP. This concen-
tration allows for a detailed exploration and elucidation of
the algorithm’s derivation and operational specifics. Looking
forward, subsequent research will expand the application of the
Adapt-MGA algorithm to more complex deep neural network
architectures. This will facilitate a comprehensive comparison
of its performance against established first-order neural net-
work optimization techniques. This forthcoming analysis is
anticipated to provide further insights into the efficacy and
applicability of the Adapt-MGA algorithm within the broader
context of neural network optimization.

REFERENCES

[1] K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward
networks are universal approximators. Neural Networks, 2:359–366,
1989.

[2] D. W. Ruck, S. K. Rogers, M. Kabbisky, M. E. Oxley, and B. W.
Suter. The multilayer perceptron as an approximation to a bayes optimal
discriminant function. IEEE Transactions on Neural Networks, 1(4),
1990.

[3] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

[4] Matthew D. Zeiler. Adadelta: An adaptive learning rate method. arXiv
preprint arXiv:1212.5701, 2012.

[5] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient
methods for online learning and stochastic optimization. Journal of
Machine Learning Research, 12:2121–2159, 2011.

[6] Aleksandar Botev, Guy Lever, and David Barber. Nesterov’s acceler-
ated gradient and momentum as approximations to regularised update
descent. In 2017 International Joint Conference on Neural Networks
(IJCNN), pages 1899–1903. IEEE, 2017.

[7] Richard O Duda, Peter E Hart, and David G Stork. Pattern classification.
John Wiley & Sons, 2012.

[8] Noam Shazeer and Mitchell Stern. Adafactor: Adaptive learning rates
with sublinear memory cost. In International Conference on Machine
Learning, pages 4596–4604. PMLR, 2018.

[9] Jun Lu. Adasmooth: An adaptive learning rate method based on effective
ratio. In Sentiment Analysis and Deep Learning: Proceedings of ICSADL
2022, pages 273–293, Singapore, 2023. Springer Nature Singapore.

[10] Yang You, Jing Li, Sashank Reddi, Jonathan Hseu, Sanjiv Kumar,
Srinadh Bhojanapalli, Xiaodan Song, James Demmel, Kurt Keutzer, and
Cho-Jui Hsieh. Large batch optimization for deep learning: Training bert
in 76 minutes. arXiv preprint arXiv:1904.00962, 2019.

[11] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
Bert: Pre-training of deep bidirectional transformers for language un-
derstanding. arXiv preprint arXiv:1810.04805, 2018.

[12] Hang Xu, Wenxuan Zhang, Jiawei Fei, Yuzhe Wu, TingWen Xie, Jun
Huang, Yuchen Xie, Mohamed Elhoseiny, and Panos Kalnis. Slamb:
accelerated large batch training with sparse communication. In Interna-
tional Conference on Machine Learning, pages 38801–38825. PMLR,
2023.

[13] Xiangning Chen, Chen Liang, Da Huang, Esteban Real, Kaiyuan Wang,
Yao Liu, Hieu Pham, and et al. Symbolic discovery of optimization
algorithms. arXiv preprint arXiv:2302.06675, 2023.

[14] Vineet Gupta, Tomer Koren, and Yoram Singer. Shampoo: Precondi-
tioned stochastic tensor optimization. In International Conference on
Machine Learning, pages 1842–1850. PMLR, 2018.

[15] Rohan Anil, Vineet Gupta, Tomer Koren, Kevin Regan, and Yoram
Singer. Scalable second order optimization for deep learning. arXiv
preprint arXiv:2002.09018, 2020.

[16] Zhewei Yao, Amir Gholami, Sheng Shen, Mustafa Mustafa, Kurt
Keutzer, and Michael Mahoney. Adahessian: An adaptive second order
optimizer for machine learning. In Proceedings of the AAAI conference
on artificial intelligence, volume 35, pages 10665–10673, 2021.

[17] Jeshwanth Challagundla. Adaptive multiple optimal learning
factors for neural network training. M.S. Thesis/Dissertation
https://rc.library.uta.edu/uta-ir/handle/10106/25030, 1(1):30–49, 2015.

[18] Christopher M Bishop. Pattern recognition. Machine Learning, 128,
2006.

[19] Hugo Larochelle, Dumitru Erhan, Aaron Courville, James Bergstra,
and Yoshua Bengio. An empirical evaluation of deep architectures on
problems with many factors of variation. In Proceedings of the 24th
international conference on Machine learning, pages 473–480. ACM,
2007.

[20] Kanishka Tyagi, Chinmay Rane, and Michael Manry. Supervised
learning. In Artificial Intelligence and Machine Learning for EDGE
Computing, pages 3–22. Elsevier, 2022.

[21] Melvin Deloyd Robinson and Michael Thomas Manry. Two-stage
second order training in feedforward neural networks. In FLAIRS
Conference, 2013.

[22] Kanishka Tyagi, Son Nguyen, Rohit Rawat, and Michael Manry. Second
order training and sizing for the multilayer perceptron. Neural Process-
ing Letters, 51(1):963–991, 2020.

[23] Rohit Rawat, Jignesh K Patel, and Michael T Manry. Minimizing
validation error with respect to network size and number of training
epochs. In The 2013 International Joint Conference on Neural Networks
(IJCNN), pages 1–7. IEEE, 2013.

[24] Magnus Rudolph Hestenes and Eduard Stiefel. Methods of conjugate
gradients for solving linear systems, volume 49. NBS, 1952.

[25] Christakis Charalambous. Conjugate gradient algorithm for efficient
training of artificial neural networks. IEE Proceedings G-Circuits,
Devices and Systems, 139(3):301–310, 1992.

[26] Kenneth Levenberg. A method for the solution of certain non-linear
problems in least squares. Quarterly of applied mathematics, 2(2):164–
168, 1944.

[27] Robert A Jacobs. Increased rates of convergence through learning rate
adaptation. Neural networks, 1(4):295–307, 1988.

[28] Simon Haykin. Neural networks and learning machines, volume 3.
Pearson Education, 2009.

[29] Praveen Jesudhas, Michael T. Manry, Rohith Rawat, and Sanjeev
Malalur. Analysis and improvement of multiple optimal learning factors
for feed-forward networks. In The 2011 International Joint Conference
on Neural Networks, San Jose, CA, 2011.

[30] Classification data files. Image Processing and Neural Networks Lab,
The University of Texas Arlington. https://ipnnl.uta.edu/training-data-
files/regression/, 2022. Image Processing and Neural Networks Lab,
The University of Texas Arlington.

[31] S. S. Malalur, M. T. Manry, and P. Jesudhas. Multiple optimal learning
factors for the multilayer perceptron. Neurocomputing, 149:1490–1501.

0420
Authorized licensed use limited to: GOOGLE. Downloaded on September 17,2024 at 00:44:16 UTC from IEEE Xplore. Restrictions apply.

