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Abstract

Generative Large Language Models (LLMs),001
such as ChatGPT and GPT-4, offer interactive002
APIs that can answer common questions at003
the human-expert level. However, these mod-004
els often give inaccurate responses when faced005
with questions requiring domain-specific or006
professional-specific knowledge not covered007
in their training corpus. To alleviate this is-008
sue, Knowledge Graphs (KGs) have been in-009
tegrated into LLMs as an additional source010
of knowledge. However, many state-of-the-art011
LLMs are not open-source, making it chal-012
lenging to inject knowledge with model APIs013
only. In this paper, we propose a novel frame-014
work KnowGPT, which necessitates the knowl-015
edge injection for both knowledge retrieval and016
translation for LLMs. KnowGPT leverages (i)017
deep reinforcement learning to carefully ex-018
tract context-aware knowledge from KGs, and019
(ii) a multi-armed bandit to construct an ap-020
propriate prompt format for each question. It021
significantly outperforms the existing methods022
on three benchmark datasets. Notably, KnowGPT023
attains a 91.6% accuracy on OpenbookQA offi-024
cial leaderboard, which is comparable to human025
performance. The code will be open-sourced.026

1 Introduction027

Large language models (LLMs) have surprised the028

world with their superior performance (Kung et al.,029

2023; Zha et al., 2023), especially with the emer-030

gence of ChatGPT and GPT-4 (OpenAI, 2023).031

Nonetheless, LLMs are often criticized for their032

limited factual knowledge and propensity to pro-033

duce hallucinations, wherein the model fabricates034

incorrect statements on tasks beyond their knowl-035

edge and perception (Amaro et al., 2023; Shen036

et al., 2023; Gravel et al., 2023). Consider an037

ecological domain-specific question from Open-038

bookQA (Mihaylov et al., 2018) in Figure 1. Chat-039

GPT erroneously responds “energy” when asked040

about the portion of nutrients. This inaccuracy041

A. carbs B. energy C. grass D. flowers 

When producers create food in an ecosystem, a 
portion of the nutrients are?

B. energy

A. carbs

ecosystem

product
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Figure 1: A real-world question in OpenbookQA and a sub-
graph of ConceptNet. ChatGPT could effectively correct the
answer given the scientific reasoning background in KG (blue:
question concepts, red: candidate answers).

could stem from its potential lack of knowledge 042

of carbs and their relationship to nutrients. 043

A promising avenue for addressing the above 044

issue entails the integration of Knowledge Graphs 045

(KGs) into LLMs. KGs, such as Yago (Suchanek 046

et al., 2007), Freebase (Bollacker et al., 2008), and 047

ConceptNet (Speer et al., 2017) represent relation- 048

ships among real-world entities in a structured form 049

as triples (head, relation, tail). The enormous fac- 050

tual knowledge stored in KGs holds the potential 051

to significantly enhance the accuracy of LLMs’ re- 052

sponses. For instance, in Figure 1, ChatGPT could 053

correct itself by leveraging the related background 054

knowledge in ConceptNet (Speer et al., 2017). 055

Many algorithms have been proposed to inte- 056

grate KGs into LLMs (Pan et al., 2023). Early stud- 057

ies directly concatenate the entities from KGs with 058

textual sentences as the input to train LLMs based 059

on cross-modal representation alignment (Sun 060

et al., 2020b; Liu et al., 2020). Later research incor- 061

porates KGs at an implicit level by either combin- 062

ing text representation and KG embedding with the 063

attention mechanism (Feng et al., 2020; Yasunaga 064

et al., 2021; Lin et al., 2019; Dong et al., 2023a) or 065

designing various fusion methods to integrate KGs 066

and texts through a tailored encoder (Zhang et al., 067

2019; Sun et al., 2020a). 068

Unfortunately, many state-of-the-art LLMs are 069
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confined to be close-source in practical applica-070

tions. For instance, ChatGPT and GPT-4 exclu-071

sively grant access through their APIs, which072

means we can only retrieve model responses by073

submitting textual inputs, with model specifics in-074

accessible. This lack of access prevents us from075

employing the aforementioned white-box knowl-076

edge injection techniques. Even though white-077

box approaches could be applied to open-source078

LLMs, such as BLOOM (Scao et al., 2022) and079

LLaMA (Touvron et al., 2023), they will often in-080

cur significant computation costs due to updating081

model weights (Liu et al., 2022). Thus, we ask:082

Can we develop a knowledge injection framework083

that can efficiently and effectively integrate KGs084

into LLMs with APIs only?085

Achieving this goal is nontrivial because of086

two challenges in constructing model inputs, or087

prompts. ❶ Identifying the most relevant knowl-088

edge is difficult. Real-world KGs often consist of089

millions of triples, whereas LLMs are typically re-090

stricted by limited input lengths (e.g., 2048 tokens091

for ChatGPT and 4096 tokens for GPT-4). Hence,092

careful selection of the most informative knowl-093

edge from KGs becomes essential. ❷ Effectively094

encoding KG knowledge is hard. It is observed that095

even minor variations in prompts conveying the096

same semantic meaning can yield drastically dif-097

ferent responses from LLMs (OpenAI, 2023). As a098

result, a customized approach to encoding factual099

knowledge from extracted KGs for each question100

is often required to achieve the best performance.101

In this work, we propose KnowGPT, a knowledge102

injection framework for LLMs in question answer-103

ing. To address challenge ❶, we leverage deep re-104

inforcement learning (RL) to extract paths from105

source entities mentioned in the question to the106

target entities within the potential answers. To en-107

courage the agent to discover more informative108

paths, we devise a tailored reward scheme that109

promotes the reachability, context-relatedness, and110

conciseness of the extracted paths. Then, a policy111

network is trained to maximize the reward using112

training questions and applied to unseen questions.113

To tackle challenge ❷, we introduce a prompt con-114

struction strategy based on Multi-Armed Bandit115

(MAB). Given several path extraction strategies116

and prompt templates, a MAB is learned to select117

the most effective combination for each question by118

balancing exploration and exploitation. The learned119

MAB is then applied to new questions to select path120

extraction strategies and prompt templates automat-121

ically. Our main contributions are: 122

• Formally define the problem of balck-box knowl- 123

edge injection for LLMs, which integrates KGs 124

into LLMs with model APIs only. 125

• Propose KnowGPT, a general knowledge injection 126

model to capture and translate knowledge from 127

Knowledge Graphs (KGs) into prompts. 128

• Instantiate KnowGPT upon two real-world KGs, 129

ConceptNet (Speer et al., 2017) and USMLE (Ya- 130

sunaga et al., 2021), with ChatGPT APIs. 131

KnowGPT outperforms the state-of-the-art base- 132

lines on three QA benchmarks by a large margin. 133

Notably, KnowGPT attains a 91.6% accuracy on 134

the OpenbookQA leaderboard, which is compa- 135

rable to human performance. 136

2 Related Work 137

2.1 Integration of KGs and LLMs 138

Leveraging LLMs to assist KG-based tasks has 139

been intensively studied. Colake (Sun et al., 140

2020b) presents a unified graph that combines a 141

word graph with the given context and KG. QA- 142

GNN (Yasunaga et al., 2021) takes this further 143

and embeds the question context as an entity in 144

the joint graph. Recent studies utilize the atten- 145

tion mechanism to incorporate KGs into LMs, 146

thereby enhancing comprehension and reasoning 147

processes. HamQA (Dong et al., 2023a) proposes a 148

hyperbolic-based graph attention network to learn 149

from the ubiquitous hyponymy in real-world ques- 150

tions. However, they are limited to adapt to LLMs 151

since most existing LLMs are either closed-sourced 152

or over-expensive to be effectively tuned. 153

To alleviate this issue, recent research has shown 154

various ways to prompt the KG to LLMs. One 155

heuristic way to incorporate KGs and LLMs is 156

to inject triples as the input (Pan et al., 2023). 157

ERNIE3.0 (Sun et al., 2021) takes triples as to- 158

ken sequences and straightforwardly appends them 159

to the given sentences. Another group of work 160

dedicate to designing various ways to retrieve 161

the knowledge. Mindmap (Pan et al., 2024) trans- 162

forms the relevant knowledge into mindmaps and 163

prompt the LLMs. ChatRule (Luo et al., 2023) 164

extracts multiple relational paths from KGs and 165

prompts the LLMs with natural language sentences. 166

CoK (Wang et al., 2023) activates the LLMs’ 167

comprehension through chain-of-knowledge which 168

prompts triples step-by-step. However, they lack 169
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Figure 2: The overall architecture of KnowGPT. Given the question context and answer choices, we retrieve a question-
specific subgraph from the real-world KG. Path Extraction is first dedicated to searching for the most informative
and concise reasoning background subject to the context. Then the prompt translation module is optimized to
prioritize the combination of knowledge and formats subject to the given question context.

the prompt format design which is laborious to be170

expanded to more LLMs and task scenarios. In this171

work, we develop a knowledge injection framework172

that values both knowledge retrieval and transla-173

tion. It automatically prioritize relevant knowledge174

and prompts the LLMs with the the most suitable175

prompt formats.176

3 Problem Statement177

We formally define the problem of black-box178

knowledge injection for LLMs in complex ques-179

tion answering. We represent each question as a180

question context Q = {Qs,Qt}, where Qs =181

{e1, e2, ..., em} is a set of m source entities, and182

Qt = {e1, e2, ..., en} is a set of n target entities.183

Following prior work (Feng et al., 2020; Yasunaga184

et al., 2022), Qs is extracted by concept recogni-185

tion, and we assume it is given in our problem.186

Similarly, each target entity in Qt is extracted187

from a corresponding candidate answer. We de-188

note an LLM as f , a real-world KG as G, which189

consists of triples (head entity, relation, tail en-190

tity), denoted as (h, r, t). In our setting, we only191

have access to the APIs of f . However, we can192

employ open-source lightweight language models193

(not f ), like Bert-Base (Kenton and Toutanova,194

2019), to obtain text embeddings. Using the195

above notations, we describe our problem below.196

Given a question context Q, an LLM f , and a
KG G, we aim to learn a prompting function
fprompt(Q,G), which generates a prompt x that
incorporates the context of Q and the factual
knowledge in G, such that the prediction of the
LLM f(x) can output the correct answers for Q.

197

4 KnowGPT Framework198

Learning the prompting function fprompt(Q,G) in-199

volves two challenges, i.e., what knowledge should200

be used in G, and how to translate the structured201

knowledge into prompts. To address these chal- 202

lenges, we present KnowGPT, which extracts sub- 203

graphs (paths) with deep RL and then constructs 204

the prompt with MAB. An overview of our frame- 205

work is shown in Figure 2. 206

4.1 Knowledge Extraction with Deep 207

Reinforcement Learning 208

Intuitively, the relevant reasoning background lies 209

in a question-specific subgraph Gsub that contains 210

all the source entities Qs, target entities Qt, and 211

their neighbors. An ideal subgraph Gsub is expected 212

to have the following properties: (i) Gsub encom- 213

passes as many source and target entities as possi- 214

ble, (ii) the entities and relations within Gsub ex- 215

hibit a strong relevance to the question context, and 216

(iii) Gsub is concise with little redundant informa- 217

tion such that it can be fed into LLMs with limited 218

input lengths. 219

However, it is challenging to find such a 220

Gsub since extracting a subgraph is NP-hard. To 221

effectively and efficiently find a satisfactory 222

Gsub, we develop a tailored path extraction 223

method, named PRL, that employs deep RL 224

to sample reasoning paths in a trial-and-error 225

fashion. Specifically, we assume Gsub is con- 226

structed based on a set of reasoning paths 227

P = {P1,P2, ...,Pm}, where each path Pi = 228

{(ei, r1, t1), (t1, r2, t2), ..., (t|Pi|−1, r|Pi|, t|Pi|)} 229

is a path in G starting from the i-th source entity in 230

Qs, and |Pi| is the path length. Gsub encompasses 231

all the entities and relations appeared in P . We 232

model the sampling of each reasoning path as a 233

Markov Decision Process (MDP) with state, action, 234

transition, and reward, defined as follows. 235

• State: A state indicates the current location in 236

KG, i.e., one of the entities in KG. Specifically, 237

it represents the spatial change from entity h to t. 238

Inspired by the prior study (Xiong et al., 2017), 239

we define the state vector s as: 240
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st = (et, etarget − et), (1)241

where et and etarget are the embedding vectors242

of the current entity and the target entity. To243

get the initial node embeddings for entities ex-244

tracted from the background KG, we adopt the245

approach proposed by the previous study (Feng246

et al., 2020). Specifically, we transform knowl-247

edge triples from the KG into sentences and feed248

them into pre-trained LM to get node embed-249

dings.250

• Action: The action space encompasses all the251

neighboring entities of the current entity, en-252

abling the agent to explore the KG flexibly. By253

taking an action, the agent will move from the254

current entity to the chosen neighboring entity.255

• Transition: The transition model P measures the256

probability of moving to a new state (s′) given257

existing state (s) and the undertaken action (a).258

In KGs, the transition model takes on the form259

P(s′|s, a) = 1 if s is directed to s′ through action260

a; Otherwise, P(s′|s, a) = 0.261

• Reward: To determine the quality of the formed262

path, we define the reward based on reachability:263

rreach =

{
+1, if target;
−1, otherwise,

(2)264

which represents whether the path eventually265

reaches the target within limited steps. Specif-266

ically, the agent receives a reward of +1 if it can267

attain the target within K actions. Otherwise, it268

will receive −1 as the reward.269

Reaching a target entity is not our sole focus.270

To avoid overlong and rigmarole paths, we also271

design two auxiliary rewards to promote context272

relatedness and path conciseness.273

4.1.1 Context-relatedness Auxiliary Reward274

The key motivation is to encourage paths closely275

related to the given question context. Specifically,276

we evaluate the semantic relevance of a path Pi to277

the context Q. Inspired by the prevailing study (Ya-278

sunaga et al., 2021), a fixed but well-trained matrix279

W is applied to map the path embedding P to the280

same semantic space with context embedding c. To281

this end, this auxiliary reward is formulated as:282

rcr =
1

|i|

i∑
source

cos(W × P i, c), (3)283

where c is the embedding of context Q we obtained 284

from a pre-trained LM (Kenton and Toutanova, 285

2019) and the embedding of path Pi is the average 286

of the embeddings of all the entities and relations 287

we have walked through till i, i.e., Avg(esource + 288

re1...+ei), where i ≤ length(Ptarget). This step- 289

by-step reward scheme provides rewards before the 290

target is reached. 291

4.1.2 Conciseness Auxiliary Reward 292

There are two additional significant challenges for 293

the candidate reasoning background. (i) The nat- 294

ural limitation of black-box LLMs for over-long 295

context understanding gives constrained budgets 296

for prompts, where the extracted path is expected to 297

be concise enough to ensure the full understanding 298

by black-box LLMs. (ii) The prohibitive cost of 299

calling black-box LLMs’ API guides the prompt 300

to be more concise. By limiting the step size, we 301

encourage the policy to find as much valuable infor- 302

mation as possible within the shortest path length. 303

Considering the inevitable homogeneity in the 304

large-scale real-world KG constructed from the 305

online corpus, each step in the final path is ideally a 306

necessity. Specifically, we evaluate the conciseness 307

of a path to reduce twists and turns on redundant 308

entities, e.g., synonyms. Thus, the reward for the 309

conciseness of a path Pi is formulated as follows. 310

rcs =
1

|Pi|
. (4) 311

Finally, we use the trade-off parameters to bal- 312

ance the significance of each reward: rtotal = 313

λ1rreach + λ2rcr + λ3rcs., where λ1, λ2, and λ3 314

are hyperparameters. 315

4.1.3 Training Policy Network 316

To solve the MDP defined above, a tailored policy 317

network πθ(s, a) = p(a|s; θ) is trained to extract 318

a reasoning path in the KG. We optimize the net- 319

work with policy gradient (Xiong et al., 2017). The 320

optimal policy navigates the agent from the source 321

entity to the target entity while maximizing the 322

accumulated rewards. 323

4.2 Structured Knowledge Prompts 324

In this subsection, we design a tailored prompt con- 325

struction strategy based on Multi-Armed Bandit 326

(MAB). The key idea is to learn to select the best 327

path extraction and prompt templates at a meta- 328

level. We will begin by outlining the overall strat- 329

egy, followed by detailing its instantiation with two 330

path extraction methodologies and three templates. 331
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Suppose we have several path extraction strate-332

gies {P1,P2, ...,Pm} and several candidate for-333

mats F = {F1,F2, ...,Fn}. Each path extraction334

strategy Pi is a method for selecting a subgraph335

given a question context, such as the RL-based336

strategy discussed above. Every prompt template337

Fj represents a transformation of the triples within338

the subgraph into a natural language prompt.339

The prompt construction problem is to identify340

the best combination of P and F for a given ques-341

tion. We define the overall process of selection as a342

reward maximization problem, max
∑

rpf , where343

rpf is obtained as:344

σ(f(PF(i))) =

{
1 if accurate;
0 otherwise.

(5)345

Specifically, PF(i), i ∈ {0, 1, · · · ,m× n} is one346

of the combination, and rpf ∈ {0, 1} indicates the347

performance of the output of LLM in answering348

the current question.349

To capture the context-aware correlation be-350

tween questions and different combinations of351

knowledge and prompt formats, we formulate the352

selection mechanism of MAB with an expectation353

function E(·). It adaptively measures the potential354

expectation of a combination for different ques-355

tions.356

E(Q|PF(i)) = c×α(i) + β(i). (6)357

Here, c represents the embedding of Q. The vec-358

tor α(i) corresponds to a set of non-negative pa-359

rameters associated with PF(i), which have been360

learned during the previous k-1 iterations. Addi-361

tionally, β(i) stands for a balancing factor introduc-362

ing noise according to a Gaussian distribution.363

Empirically maximizing c×αi could encourage364

exploitation (Chen et al., 2019; Dong et al., 2023b)365

for the best combination, we could effectively up-366

date α(i) via modeling the correlations between the367

context embedding of the anchor question ci and368

all the previously selected contexts C(i) for partic-369

ular combination PF(i) in former k steps, and the370

rewards r(i)pf obtained from the selection of the cur-371

rent combination. Concretely, the β(b) is updated372

as:373

J(C
(k)

(i) , r(i)(k)pf ) =

K∑
k=1

(r(i)(k)pf −C
(k)

(i) α
(i))2 + λi ∥ α(i) ∥22 .

→ α(i) =
(
(C

(k)

(i) )
⊤C

(k)

(i) + λiI
)−1

(C
(k)

(i) )
⊤r(i)(k)pf .

(7)374

Here, J denotes the OLS training loss. I ∈ Rd×d 375

is an identity matrix and λi is a regularization factor 376

that controls the complexity of the model. 377

Similarly, in order to encourage exploration 378

within less frequently selected pairings, we employ 379

an upper confidence bound approach to balance ex- 380

ploration and exploitation. This is achieved through 381

the introduction of the parameter β(i). Inspired by 382

prevailing studies (Walsh et al., 2009; Dong et al., 383

2023b), we can derive the following exploration 384

term β(i): 385

β(i) = γ ×
√

ci
(
(C

(k)

(i) )
⊤C

(k)

(i) + λiI
)−1

(c(i))⊤, (8) 386

where γ is a fixed constant, i.e., γ = 1 + 387√
ln(2/δ)/2. 388

When the model picks a combination with a 389

large c × αi, it signifies an exploitation process. 390

Likewise, when the model selects a combination 391

with larger β(i), this variance indicates an explo- 392

ration process due to the model making fewer se- 393

lections of the current combination. Thus, jointly 394

maximizing c×αi + β(i) could help us get rid of 395

the dilemma of exploration and exploitation. 396

Consequently, our MAB design can leverage the 397

feedback from the LLM to optimize the selection 398

policy. By maximizing the expectation function 399

E(·), it learns to balance the exploitation and ex- 400

ploration to prioritize the most promising prompts 401

for specific question contexts. 402

4.2.1 Implementation 403

We implement the above MAB strategies with two 404

path extraction strategies and three templates. Note 405

that our MAB design is general and can be imple- 406

mented with more path extraction strategies and 407

prompt templates for better performance. The path 408

extraction strategies include: 409

• PRL: The RL-based path extraction strategy pre- 410

sented in the previous subsection. 411

• Psub: A heuristic sub-graph extraction strategy 412

that extracts a 2-hop subgraph around both the 413

source and target entities. Detailed implementa- 414

tion can be found in Appendix A.1. Since RL is 415

notoriously unstable (Sutton and Barto, 2018), 416

we introduce Psub as an alternative candidate 417

strategy for the MAB selection, ensuring a fall- 418

back option if the RL-based approach does not 419

perform well. 420

The prompt templates include: 421
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• Triples, denoted as Ft, are indeed the orig-422

inally extracted knowledge and empirically423

tested that could be understood by the black-424

box LLMs, e.g., (Sergey_Brin, founder_of,425

Google),(Sundar_Pichai, ceo_of, Google),426

(Google, is_a, High-tech Company).427

• Sentences is a following solution to transform428

the knowledge into a colloquial Fs, e.g., ‘Sergey429

Brin, who is a founder of Google, a high-tech430

company, has now passed the reigns to Sundar431

Pichai, who is currently serving as the CEO of432

the company.’433

• Graph Description, Fg prompts the LLM by434

treating the knowledge as a structured graph. We435

preprocess the extracted knowledge with black-436

box LLM itself to generate the description by437

highlighting the center entity, e.g., ‘Google, a438

high-tech company, stands central in the network.439

The entity is strongly associated with significant440

individuals in the tech industry. Sergey Brin, one441

of the founders, established Google, underscor-442

ing its historical beginnings. In the present graph443

context, Sundar Pichai is recognized as the CEO444

of Google, symbolizing the company’s current445

leadership. Thus, Google serves as a vital link446

between these key figures.’447

Considering two path extraction methods:448

Psub and PRL , as well as three prompt trans-449

lation methods: Ft, Fs and Fg, the MAB is450

trained to learn from the feedback from LLMs451

to prioritize the most appropriate combina-452

tion among two extraction methods and three453

predefined prompt formats for different real-454

world question contexts, i.e., PF = {(PsubFt),455

(PsubFs), (PsubFg), (PRLFt), (PRLFs), (PRLFg)}.456

5 Experiments457

We conduct extensive experiments to evaluate458

KnowGPT on three benchmark question-answering459

datasets, covering both commonsense and domain-460

specific QA. Our experiments are designed to an-461

swer the following research questions:462

• RQ1: How does KnowGPT perform when com-463

pared with the state-of-the-art LLMs and KG-464

enhanced QA baselines?465

• RQ2: Does the proposed MAB-based prompt466

construction strategy contribute to the perfor-467

mance?468

• RQ3: Can KnowGPT solve complex reasoning 469

tasks, and is KG helpful in this reasoning pro- 470

cess? 471

5.1 Experimental Setup 472

5.1.1 QA Datasets 473

We evaluate KnowGPT on three QA datasets span- 474

ning two fields: CommonsenseQA (Talmor et al., 475

2019) and OpenBookQA (Mihaylov et al., 2018) 476

serve as benchmarks for commonsense reasoning, 477

while MedQA-USMLE (Jin et al., 2021) acts as a 478

domain-specific QA benchmark. The statistics of 479

these three datasets can be found in Table 5 in the 480

Appendix. 481

5.1.2 State-of-the-art Baselines 482

We carefully select baseline models from four cate- 483

gories for a comprehensive evaluation. 484

LM + Fine-tuning We compare our method with 485

vanilla fine-tuned LMs. Specifically, we choose 486

Bert-base, Bert-large (Kenton and Toutanova, 487

2019), and RoBerta-large (Liu et al., 2019) as rep- 488

resentative fine-tune LM methods. To conduct com- 489

monsense and biomedical QA, we fine-tune these 490

three LMs via an additional linear layer. 491

KG-enhanced LM We have also implemented 492

several recently released models for integrating 493

KGs into question answering, which encompass 494

MHGRN (Feng et al., 2020), QA-GNN (Ya- 495

sunaga et al., 2021), HamQA (Dong et al., 2023a), 496

JointLK (Sun et al., 2022), GreaseLM (Zhang et al., 497

2022) and GrapeQA (Taunk et al., 2023). To en- 498

sure a fair comparison, we implement these base- 499

lines with advanced language models that are opti- 500

mized for particular datasets. Specifically, RoBerta- 501

large (Liu et al., 2019) is used for CommenseQA, 502

while AristoRoBERTa (Clark et al., 2020) is des- 503

ignated for OpenBookQA. For MedQA, we opt 504

for the top-tier biomedical language model, Sap- 505

BERT (Liu et al., 2021). Note that due to the white- 506

box nature of these methods and their high compu- 507

tation overheads, it is infeasible to apply them to 508

state-of-the-art LLMs, like ChatGPT and GPT-4. 509

LLM We include several representative gener- 510

ative LLMs, including ChatGLM, ChatGLM2, 511

Baichuan-7B, InternLM, GPT-3, ChatGPT and 512

GPT-4 as knowledge-agnostic alternatives. Specif- 513

ically, we used the model ‘text-davinci-002’ pro- 514

vided by OpenAI as the implementation of GPT-3, 515

and ‘gpt-3.5-turbo’ and ‘gpt-4’ as the implemen- 516

tations of ChatGPT and GPT-4, respectively (we 517

have provided more implementation details of all 518
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Table 1: Performance comparison among state-of-the-art baselines and KnowGPT on three benchmark datasets.

Catagory Model CommonsenseQA OpenBookQA MedQA

IHdev-Acc. IHtest-Acc. Dev-Acc. Test-Acc. Dev-Acc. Test-Acc.

LM + Fine-tuning
Bert-base 0.573 0.535 0.588 0.566 0.359 0.344
Bert-large 0.611 0.554 0.626 0.602 0.373 0.367
RoBerta-large 0.731 0.687 0.668 0.648 0.369 0.361

KG-enhanced LM

MHGRN 0.745 0.713 0.786 0.806 - -
QA-GNN 0.765 0.733 0.836 0.828 0.394 0.381
HamQA 0.769 0.739 0.858 0.846 0.396 0.385
JointLK 0.777 0.744 0.864 0.856 0.411 0.403
GreaseLM 0.785 0.742 0.857 0.848 0.400 0.385
GrapeQA 0.782 0.749 0.849 0.824 0.401 0.395

LLM + Zero-shot

ChatGLM 0.473 0.469 0.352 0.360 0.346 0.366
ChatGLM2 0.440 0.425 0.392 0.386 0.432 0.422
Baichuan-7B 0.491 0.476 0.411 0.395 0.334 0.319
InternLM 0.477 0.454 0.376 0.406 0.325 0.348
GPT-3 0.539 0.520 0.420 0.482 0.312 0.289
ChatGPT 0.735 0.710 0.598 0.600 0.484 0.487
GPT-4 0.776 0.786 0.878 0.910 0.739 0.763

LLM + KG Prompting
CoK 0.759 0.739 0.835 0.869 0.706 0.722
ChatRule 0.743 0.731 0.820 0.863 0.710 0.724
Mindmap 0.789 0.784 0.851 0.882 0.747 0.751

Ours KnowGPT 0.827 0.818 0.900 0.924 0.776 0.781

KnowGPT vs. ChatGPT + 23.7% (Avg.) + 9.2% + 10.8% + 31.2% + 32.4% + 29.2% + 29.4%
KnowGPT vs. GPT-4 +2.9% (Avg.) + 5.1% + 3.3% + 2.2% + 1.4% + 3.7% + 1.8%

*We used ‘text-davinci-002’ provided by OpenAI as the implementation of GPT-3, and ‘gpt-3.5-turbo’ for ChatGPT.
*The results compared with fine-tuning LLMs on CommonsenseQA are placed in Table 7 of Appendix.

LLMs in Appendix A.4). The question-answering519

task is conducted under the zero-shot setting with520

the question query from the test set as input.521

LLM + KG Prompting To verify the effective-522

ness of our proposed prompting strategy used523

KnowGPT, we also add the state-of-the-art KG524

prompting methods, i.e., CoK (Wang et al., 2023),525

ChatRule (Luo et al., 2023), and Mindmap (Pan526

et al., 2024) as baselines.527

Table 2: OpenBookQA Official Leaderboard records of
three groups of related models (sorted by rankings).

OpenBookQA Leaderboard

Human Performance 0.917

w/o KG 0.778
MHGRN (Feng et al., 2020) 0.806
QA-GNN (Yasunaga et al., 2021) 0.828
GreaseLM (Zhang et al., 2022) 0.848
HamQA (Dong et al., 2023a) 0.850
JointLK (Sun et al., 2022) 0.856
GSC (Wang et al., 2021) 0.874

UnifiedQA (Khashabi et al., 2020) 0.872
DRAGON (Yasunaga et al., 2022) 0.878
GenMC (Huang et al., 2022) 0.898

GenMC Ensemble (Huang et al., 2022) 0.920
MVP-Tuning Ensemble (Huang et al., 2023) 0.952

KnowGPT 0.916

5.2 Main Results (RQ1) 528

To address RQ1, we evaluate KnowGPT by com- 529

paring it to state-of-the-art baselines on the three 530

benchmark datasets. KnowGPT is based on the origi- 531

nal ChatGPT. We measure the performance using 532

accuracy, which calculates the percentage of ques- 533

tions correctly predicted by the model out of the 534

total questions in the test set. We have the following 535

observations: 536

• KnowGPT outperforms all categories of methods, 537

including sixteen different baselines, across all 538

datasets and model architectures. This suggests 539

that KnowGPT can effectively inject the knowl- 540

edge from KGs to LLMs. 541

• KnowGPT surpasses the performance of ChatGPT 542

and even GPT-4. On average, KnowGPT achieves 543

a 23.7% higher testing accuracy than ChatGPT. 544

Specifically, KnowGPT outperforms ChatGPT by 545

10.8%, 32.4%, and 29.4% on the Common- 546

senseQA, OpenBookQA, and MedQA datasets, 547

respectively. More importantly, despite being 548

based on ChatGPT, KnowGPT outperforms the 549

state-of-the-art LLM GPT-4 by 3.3%, 1.4%, and 550

1.8% on the CommonsenseQA, OpenBookQA, 551

and MedQA datasets, respectively. These results 552

confirm that black-box knowledge injecting can 553

effectively enhance the capabilities of LLMs. 554
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• KnowGPT outperforms all KG-enhanced LMs sig-555

nificantly. This implies our black-box knowledge556

injection method proficiently encodes knowledge557

into LLMs. Furthermore, it showcases the su-558

periority of our black-box approach, given its559

adaptable application to ChatGPT using only the560

model API, a feat not achievable by white-box561

methods.562

5.2.1 Leaderboard Ranking563

We submit our results onto the official leaderboard564

maintained by the authors of OpenbookQA. The565

full records on the leaderboard are shown on the566

website1, while our result can be found from here2.567

We summarize the related submissions in Ta-568

ble 2, including three categories: traditional KG-569

enhanced LM, fine-tuning of LLMs, e.g., T5-11B570

used in UnifiedQA, and ensemble of multiple pre-571

dictors. KnowGPT significantly outperforms tradi-572

tional KG-enhanced LMs with 4.2% improvements573

when compared to the best baseline. Despite the574

2.6% difference of the state-of-the-art fine-tuning575

method X-Reasoner, which is the currently best576

single model, they costly train the T5-11B LLM577

and also initialize the model on eight A100 GPUs.578

The third group of methods occupies the leader-579

board by leveraging ensemble learning strategies.580

Nevertheless, KnowGPT can still obtain competitive581

performance without ensembling with merely 0.4%582

below GenMC Ensemble (Huang et al., 2022). No-583

tably, our KnowGPT is remarkably comparable to584

the human performance.585

Table 3: Ablation study on the effectiveness of two path
extraction methods.

Path Extraction Model CSQA OBQA MedQA

IHdev IHtest Test Test

w/o KG
GPT-3 0.539 0.520 0.482 0.289

ChatGPT 0.735 0.710 0.598 0.487
GPT-4 0.776 0.786 0.910 0.763

Psub ChatGPT 0.750 0.739 0.865 0.695

PRL ChatGPT 0.815 0.800 0.889 0.755

Ours KnowGPT 0.827 0.818 0.924 0.781

5.3 Ablation Studies (RQ2)586

To answer RQ2, we conduct two ablation studies.587

First, in Table 3, we measure the importance of the588

1https://leaderboard.allenai.org/open_book_qa/
submissions/public.

2https://leaderboard.allenai.org/open_book_qa/
submission/cj9game4arcuacugbrj0.

Table 4: Ablation study on different prompt translation
formats for the extracted knowledge.

Path Extraction Prompts CSQA OBQA MedQA

IHdev IHtest Test Test

Psub

Ft 0.728 0.701 0.832 0.589
Fs 0.750 0.739 0.865 0.695
Fg 0.737 0.715 0.871 0.680

PRL

Ft 0.782 0.769 0.853 0.739
Fs 0.815 0.800 0.889 0.755
Fg 0.806 0.793 0.906 0.762

Full KnowGPT 0.827 0.818 0.924 0.781

tailored reinforcement learning-based path extrac- 589

tion module, i.e., PRL. Specifically, we compare 590

it with the heuristic sub-graph extraction strategy, 591

i.e., Psub. The performance is evaluated by directly 592

feeding the extracted knowledge with the prompt 593

format of ‘Sentence’, i.e., Fs, to ChatGPT. We also 594

include ‘w/o KG’ as the baseline where ChatGPT 595

is asked to independently answer the given ques- 596

tion with no reasoning background provided. The 597

results clearly indicate the vital role of our pro- 598

posed path extraction strategies. Second, we com- 599

pare each of the three prompt formats subject to 600

the same extracted knowledge. The detailed results 601

are shown in Table 4. Though different formats 602

perform similarly within the difference of 2.2% - 603

3.3%, they are particularly suitable for different 604

kinds of questions. We illustrate this observation 605

in the following case study section. Both ablation 606

studies support the indispensability of each module, 607

armed with a tailored deep reinforcement learning- 608

based path extraction and a context-aware prompt 609

translation, our KnowGPT performs best on all three 610

benchmark datasets. 611

6 Conclusion and Future Work 612

In this work, we formally define the problem of 613

knowledge injection for LLMs in complex question 614

answering. A novel framework, namely KnowGPT, 615

is presented to integrate KGs into LLMs effectively 616

with model APIs only. We first train a deep RL 617

policy to extract informative and concise reason- 618

ing paths from the KG. Then we learn an MAB to 619

select the most suitable and effective path extrac- 620

tion method and prompt template subject to each 621

question. Extensive experiments on both general 622

and domain-specific QA datasets show the superior 623

performance of KnowGPT and the effectiveness of 624

each component. In the future, we will study more 625

advanced path extraction strategies and prompt tem- 626

plates to improve the performance further. 627
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Limitations628

Through our exploration, we realize the natural629

limitations of KnowGPT brought by real-world630

KGs. Existing KGs are automatically constructed631

based on online corpora. This inevitably introduces632

a considerable number of noisy triples into KGs.633

Under such circumstances, the noisy knowledge634

may mislead the LLMs to wrong predictions de-635

spite the effectiveness of our injection methods. To636

apply KnowGPT to practical scenarios, we would637

leverage off-the-shelf KG refinement algorithms to638

improve the quality of KGs.639

Ethics Statement640

In this study, all the datasets are publicly available641

and have been extensively used in research related642

to neural language processing.643
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lie Pavlick, Suzana Ilić, Daniel Hesslow, Roman784
Castagné, Alexandra Sasha Luccioni, François Yvon,785
Matthias Gallé, et al. 2022. Bloom: A 176b-786
parameter open-access multilingual language model.787
arXiv preprint arXiv:2211.05100.788

Xinyue Shen, Zeyuan Chen, Michael Backes, and 789
Yang Zhang. 2023. In chatgpt we trust? measuring 790
and characterizing the reliability of chatgpt. arXiv 791
preprint arXiv:2304.08979. 792

Robyn Speer, Joshua Chin, and Catherine Havasi. 2017. 793
Conceptnet 5.5: An open multilingual graph of gen- 794
eral knowledge. In Proceedings of the AAAI confer- 795
ence on artificial intelligence, volume 31. 796

Fabian M Suchanek, Gjergji Kasneci, and Gerhard 797
Weikum. 2007. YAGO: a core of semantic knowl- 798
edge. In Proceedings of the 16th international con- 799
ference on World Wide Web, pages 697–706. ACM. 800

Tianxiang Sun, Yunfan Shao, Xipeng Qiu, Qipeng 801
Guo, Yaru Hu, Xuan-Jing Huang, and Zheng Zhang. 802
2020a. Colake: Contextualized language and knowl- 803
edge embedding. In Proceedings of the 28th Inter- 804
national Conference on Computational Linguistics, 805
pages 3660–3670. 806

Tianxiang Sun, Yunfan Shao, Xipeng Qiu, Qipeng Guo, 807
Yaru Hu, Xuanjing Huang, and Zheng Zhang. 2020b. 808
Colake: Contextualized language and knowledge em- 809
bedding. arXiv preprint arXiv:2010.00309. 810

Yu Sun, Shuohuan Wang, Shikun Feng, Siyu Ding, 811
Chao Pang, Junyuan Shang, Jiaxiang Liu, Xuyi Chen, 812
Yanbin Zhao, Yuxiang Lu, et al. 2021. Ernie 3.0: 813
Large-scale knowledge enhanced pre-training for lan- 814
guage understanding and generation. arXiv preprint 815
arXiv:2107.02137. 816

Yueqing Sun, Qi Shi, Le Qi, and Yu Zhang. 2022. 817
Jointlk: Joint reasoning with language models and 818
knowledge graphs for commonsense question answer- 819
ing. In Proceedings of the 2022 Conference of the 820
North American Chapter of the Association for Com- 821
putational Linguistics: Human Language Technolo- 822
gies, pages 5049–5060. 823

Richard S Sutton and Andrew G Barto. 2018. Reinforce- 824
ment learning: An introduction. MIT press. 825

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and 826
Jonathan Berant. 2019. Commonsenseqa: A question 827
answering challenge targeting commonsense knowl- 828
edge. In Proceedings of the 2019 Conference of 829
the North American Chapter of the Association for 830
Computational Linguistics: Human Language Tech- 831
nologies, Volume 1 (Long and Short Papers), pages 832
4149–4158. 833

Dhaval Taunk, Lakshya Khanna, Siri Venkata Pavan Ku- 834
mar Kandru, Vasudeva Varma, Charu Sharma, and 835
Makarand Tapaswi. 2023. Grapeqa: Graph augmen- 836
tation and pruning to enhance question-answering. In 837
Companion Proceedings of the ACM Web Conference 838
2023, pages 1138–1144. 839

InternLM Team. 2023. Internlm: A multilingual lan- 840
guage model with progressively enhanced capabili- 841
ties. 842

10

http://arxiv.org/abs/2303.08774


Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier843
Martinet, Marie-Anne Lachaux, Timothée Lacroix,844
Baptiste Rozière, Naman Goyal, Eric Hambro,845
Faisal Azhar, et al. 2023. Llama: Open and effi-846
cient foundation language models. arXiv preprint847
arXiv:2302.13971.848

Thomas J Walsh, István Szita, Carlos Diuk, and849
Michael L Littman. 2009. Exploring compact850
reinforcement-learning representations with linear re-851
gression. In Proceedings of the Twenty-Fifth Confer-852
ence on Uncertainty in Artificial Intelligence, pages853
591–598.854

Jianing Wang, Qiushi Sun, Nuo Chen, Xiang Li, and855
Ming Gao. 2023. Boosting language models rea-856
soning with chain-of-knowledge prompting. arXiv857
preprint arXiv:2306.06427.858

Kuan Wang, Yuyu Zhang, Diyi Yang, Le Song, and859
Tao Qin. 2021. Gnn is a counter? revisiting gnn for860
question answering.861

David S Wishart, Yannick D Feunang, An C Guo, Elvis J862
Lo, Ana Marcu, Jason R Grant, Tanvir Sajed, Daniel863
Johnson, Carin Li, Zinat Sayeeda, Nazanin Assem-864
pour, Ithayavani Iynkkaran, Yifeng Liu, Adam Ma-865
ciejewski, Nicola Gale, Alex Wilson, Lucy Chin,866
Ryan Cummings, Diana Le, Allison Pon, Craig Knox,867
and Michael Wilson. 2017. DrugBank 5.0: a major868
update to the DrugBank database for 2018. Nucleic869
Acids Research, 46:D1074–D1082.870

Wenhan Xiong, Thien Hoang, and William Yang Wang.871
2017. Deeppath: A reinforcement learning method872
for knowledge graph reasoning. In EMNLP, pages873
564–573.874

Michihiro Yasunaga, Antoine Bosselut, Hongyu Ren,875
Xikun Zhang, Christopher D Manning, Percy S876
Liang, and Jure Leskovec. 2022. Deep bidirectional877
language-knowledge graph pretraining. Advances in878
Neural Information Processing Systems, 35:37309–879
37323.880

Michihiro Yasunaga, Hongyu Ren, Antoine Bosselut,881
Percy Liang, and Jure Leskovec. 2021. Qa-gnn: Rea-882
soning with language models and knowledge graphs883
for question answering. NAACL.884

Aohan Zeng, Xiao Liu, Zhengxiao Du, Zihan Wang,885
Hanyu Lai, Ming Ding, Zhuoyi Yang, Yifan Xu,886
Wendi Zheng, Xiao Xia, et al. 2022. Glm-130b: An887
open bilingual pre-trained model. arXiv preprint888
arXiv:2210.02414.889

Daochen Zha, Zaid Pervaiz Bhat, Kwei-Herng Lai, Fan890
Yang, Zhimeng Jiang, Shaochen Zhong, and Xia Hu.891
2023. Data-centric artificial intelligence: A survey.892
arXiv preprint arXiv:2303.10158.893

Xikun Zhang, Antoine Bosselut, Michihiro Yasunaga,894
Hongyu Ren, Percy Liang, Christopher D Manning,895
and Jure Leskovec. 2022. Greaselm: Graph reason-896
ing enhanced language models for question answer-897
ing. arXiv preprint arXiv:2201.08860.898

Zhengyan Zhang, Xu Han, Zhiyuan Liu, Xin Jiang, 899
Maosong Sun, and Qun Liu. 2019. Ernie: Enhanced 900
language representation with informative entities. In 901
Proceedings of the 57th Annual Meeting of the Asso- 902
ciation for Computational Linguistics, pages 1441– 903
1451. 904

11

http://arxiv.org/abs/2110.03192
http://arxiv.org/abs/2110.03192
http://arxiv.org/abs/2110.03192


A Case Studies (RQ3)905

For RQ3, we provide insights into how KnowGPT fa-906

cilitates the prompt translation with a real case from907

CommonsenseQA. We visualize both the extracted908

knowledge and the textual inputs to ChatGPT in909

Figure 3. In this example, given the same extracted910

knowledge, ChatGPT answers correctly based on911

the sentence format that we provide. In contrast, it912

fails to answer the question with triples and graph913

descriptions. They clearly indicate the superiority914

of KnowGPT in an automatic context-aware prompt915

translation. We make the following observations:916

(i) Triple format Ft is intuitively suitable for all the917

simple questions by directly indicating the one-hop918

knowledge. (ii) Graph description may inevitably919

introduce noise to ensure the completeness and con-920

textual fluency of the directed graph. In this exam-921

ple, since ‘vacation’ appears in both question and922

answer choices, over-emphasizing and connecting923

the knowledge about ‘vacation’ with other concepts924

in the graph misleads the model to make a predic-925

tion with an oblique focus. (iii) Our KnowGPT has926

shown superior performance in automatically con-927

structing suitable prompts for particular questions.928

B Implementation Details929

B.1 Entity Linking and Heuristic Path930

Extraction Psub931

For each QA context, we adopt the methodology932

outlined in the prior research (Lin et al., 2019; Ya-933

sunaga et al., 2022) to extract the subgraph from the934

background knowledge graph (KG), denoted as G.935

We commence by executing entity linking on G, re-936

sulting in an initial collection of nodes, Vtopic. Next,937

we incorporate bridge entities that appear within a938

2-hop path between any two linked entities from939

Vtopic, yielding the set Vretrieval. Subsequently, we940

refine this set by evaluating the relevance score for941

each node, adhering to the method proposed (Ya-942

sunaga et al., 2022). From this refined set, only943

the top 200 nodes, based on score, are retained,944

and the others are discarded. We then extract all945

edges connecting any pair of nodes in Vsub, creat-946

ing the retrieved subgraph Gsub. Each node within947

Gsub is designated a type based on its association948

to either the topic entities Q or target entities A.949

Intuitively, the relevant reasoning background lies950

in a question-specific subgraph Gsub that contains951

all the source entities S, target entities A, and their952

k-hop neighbors. Therefore, the reasoning back-953

ground could be provided as the Gsub, we denote954

this direct path extraction method as Psub. 955

B.2 Graph Initialization 956

To calculate the initial node embeddings for entities 957

extracted from the background KG, we adopt the 958

approach proposed by the previous study (Feng 959

et al., 2020). Specifically, we transform knowl- 960

edge triples from the KG into sentences and feed 961

them into pre-trained LMs to get node embeddings. 962

Specifically, to ensure a fair comparison, we im- 963

plement all the KG-enhanced baselines and our 964

model with the same advanced language models 965

that are optimized for particular datasets. Specif- 966

ically, RoBert-large (Liu et al., 2019) is used for 967

CommenseQA, while AristoRoBERTa (Clark et al., 968

2020) is designated for OpenBookQA. For MedQA, 969

we opt for the top-tier biomedical language model, 970

SapBERT (Liu et al., 2021), to enhance compre- 971

hension of the biomedical field. 972

B.3 Datasets 973

We evaluate KnowGPT on three QA datasets span- 974

ning two fields: CommonsenseQA (Talmor et al., 975

2019) and OpenBookQA (Mihaylov et al., 2018) 976

serve as benchmarks for commonsense reasoning, 977

while MedQA-USMLE (Jin et al., 2021) acts as 978

a domain-specific QA benchmark. While the offi- 979

cial test set serves primarily for leaderboard rank- 980

ings, we initially assess model efficacy using the 981

in-house (IH) data split introduced in (Lin et al., 982

2019). The official dataset is denoted as CSQA, 983

while the IH split is represented by CSQA(IH)*. 984

The statistics of these three datasets can be found 985

in Table 5. 986

Table 5: The statistical information of three datasets.

Dataset Question Choices Train Dev Test

CSQA #12102 5 9741 1221 1140
CSQA(IH) #12102 5 8500 1221 1241
OBQA #5957 4 4957 500 500
MedQA #12723 4 10178 1272 1273

CommonsenseQA is a multiple-choice question- 987

answering dataset, each question accompanied by 988

five potential answers. Answering its 12,102 ques- 989

tions necessitates a foundation in commonsense 990

knowledge. While the official test set serves pri- 991

marily for leaderboard rankings, we initially assess 992

model efficacy using the in-house (IH) data split in- 993

troduced in (Lin et al., 2019). The official dataset is 994

denoted as CSQA, while the IH split is represented 995

by CSQA(IH)*. 996
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David watched some nesting birds using his binoculars while on vacation. Where might David be?

A.sky B.vacation C.forest D.countryside 

birds

nesting vacation

binoculars

nests

action_of_animals

mammal

build_nest
trees

forest

vacation forest

vision_aid

sports_store

(nesting isa action_of_animals)

(bird relatedto nesting)
(nesting relatedto nest)
(bird atlocation nest)
(bird capableof build_nest)
(Bird isa mammal)
(bird relatedto trees)
(nest atlocation trees)
(tree atlocation jungle)
(tree atlocation rainforest)
(tree partof forest)
(telescope relatedto binoculars)
(binoculars atlocation sports_store)
(binoculars isa vision_aid)
(vacation causes visit_other_countries)
(bird atlocation sky)
(birds atlocation sky)
(flying_birds atlocation sky)

sky

rainforest

jungle

visit_other_countries

vacation

Sentences 

ℱ௦
Graph

Description

ℱ௚

Triples

ℱ𝓉 Nesting, an instinctual action 
performed by various animals, 

including birds, involves inhabiting 
and crafting intricate structures 
known as nests. Birds, closely 
related to this behavior, are often 
spotted at their nests, where they are 
capable of building and preparing 
them for raising their young. These 
feathered creatures have a natural 
affinity for trees and are often found 
in tree nests, which are nestled 
within lush jungles and rainforests. 
During a relaxing vacation, one can 
observe birds engaging in nesting 
activities, taking advantage of 
binoculars as a vision aid to witness 
their behavior in the expansive sky, a 
realm intertwined with the beauty of 
the outdoors.

This graph highlights the
intricate relationships 

between birds, their nesting 
behaviors, natural habitats like trees 
and forests, the sky, and the tools 
that aid in the observation of these 
captivating avian activities.  The 
graph revolves around the central 
concept of a "bird" which is closely 
connected to various aspects of 
nesting behavior. 
[…]
This aerial environment is also 
associated with outdoor settings. 
Adding depth to the observation of 
birds, binoculars are presented as a 
vision aid that allows closer scrutiny 
of their nesting behavior, both in 
natural locations like backpacks, 
sporting goods stores, and suitcases, 
and during the context of a vacation. 

Figure 3: A case study on exploring the effectiveness of
different prompt formats for particular questions. The
extracted knowledge is shown in the middle of this fig-
ure in the form of a graph, where the nodes in blue are
the key topic entities and the red is the target answer.
The text boxes at the bottom are the final prompts gen-
erated based on three different formats.

OpenBookQA, commonly abbreviated as OBQA,997

comprises 5,957 multiple-choice questions, each998

offering four possible answers. To successfully an-999

swer these questions, one must have a comprehen-1000

sive understanding of fundamental scientific facts1001

and its applications.1002

MedQA-USMLE, abbreviated as MedQA, is a1003

dataset consisting of 4-option multiple-choice ques-1004

tions that demand a grasp of biomedical and clin-1005

ical understanding. These questions are sourced1006

from preparatory tests for the United States Medi-1007

cal Licensing Examinations, and the dataset encom-1008

passes 12,723 questions. We adhere to the original1009

data divisions as outlined in (Jin et al., 2021).1010

Background Knowledge To facilitate common1011

sense reasoning, we employ ConceptNet (Speer1012

et al., 2017), an extensive commonsense knowl-1013

edge graph comprising more than 8 million inter-1014

connected entities through 34 concise relationships.1015

For tasks specific to the medical domain, we lever-1016

age USMLE (Yasunaga et al., 2021) as our foun-1017

dational knowledge source. USMLE is a biomed-1018

ical knowledge graph that amalgamates the Dis-1019

ease Database segment of the Unified Medical Lan-1020

guage System (UMLS) (Bodenreider, 2004) and1021

DrugBank (Wishart et al., 2017). This repository1022

encompasses 9,958 nodes and 44,561 edges.1023

B.4 Implementation of Baselines 1024

To verify the effectiveness of our proposed 1025

KnowGPT, we carefully selected baseline mod- 1026

els from three aspects to ensure a comprehen- 1027

sive evaluation, among which Bert-base, Bert- 1028

large (Kenton and Toutanova, 2019), and RoBert- 1029

large (Liu et al., 2019) are picked for being repre- 1030

sentative fine-tune LM methods; MHGRN (Feng 1031

et al., 2020), QA-GNN (Yasunaga et al., 2021), 1032

HamQA (Dong et al., 2023a), JointLK (Sun 1033

et al., 2022), GreaseLM (Zhang et al., 2022) and 1034

GrapeQA (Taunk et al., 2023) represent the state-of- 1035

art KG-enhanced LMs; ChatGLM (Du et al., 2022), 1036

ChatGLM2 (Zeng et al., 2022), Baichuan-7B, In- 1037

ternLM (Team, 2023), GPT-3 (Brown et al., 2020), 1038

ChatGPT (Ouyang et al., 2022) and GPT-4 (Ope- 1039

nAI, 2023) are picked for being representative gen- 1040

erative large language models. Notably, while some 1041

LLM baselines are actually open-source, we con- 1042

duct the question-answering task under the zero- 1043

shot setting with the question query from the test 1044

set as input. All baseline methods used in this paper 1045

are based on their open-source implementations or 1046

officially-released APIs. We list the source links in 1047

Table 6. Notably, we used the model ‘text-davinci- 1048

002’ provided by OpenAI as the implementation 1049

of GPT-3, and ‘gpt-3.5-turbo’ and ‘gpt-4’ as the 1050

implementations of ChatGPT and GPT-4, respec- 1051

tively. 1052

Table 6: Implementation codes for baselines.

Baseline Code source
MHGRN https://github.com/INK-USC/MHGRN.git
QA-GNN https://github.com/michiyasunaga/qagnn.git
HamQA https://github.com/DEEP-PolyU/HamQA_TheWebConf23.git
GreaseLM https://github.com/snap-stanford/GreaseLM.git
JointLK https://github.com/Yueqing-Sun/JointLK.git
ChatGLM https://github.com/THUDM/ChatGLM-6B.git
ChatGLM2 https://github.com/THUDM/ChatGLM2-6B.git
Baichuan-7B https://github.com/baichuan-inc/Baichuan-7B.git
InternLM https://github.com/InternLM/InternLM.git
GPT3 https://platform.openai.com/docs/api-reference/models
ChatGPT https://openai.com/chatgpt
GPT-4 https://openai.com/research/gpt-4
ChatRule https://github.com/RManLuo/ChatRule

C Subplementary Results 1053

C.1 Fine-tune LLMs 1054

To further verify the effectiveness of the knowledge 1055

injection framework, we also add several open- 1056

source trainable LLMs, i.e., ChatGLM, ChatGLM2, 1057

LLaMA-B, Baichuan-7B, InternLM and Vicuna- 1058

7B, and fine-tune them for commonsense reasoning 1059

on the benchmark CommonseQA. As shown in the 1060
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Table 7, Our KnowGPT achieves comparable per-1061

formance with no tuning on the LLM.1062

Table 7: Fine-tuned LLMs on CommonsenseQA.

LLM Acc

ChatGLM 0.559
ChatGLM2 0.600
LLaMA-7B 0.650
Baichuan-7B 0.588
Alpaca-7B 0.687
Vicuna-7B 0.667
InternLM-7B 0.752

KnowGPT 0.818

C.2 The effect of prompt format on different1063

types of questions.1064

In this part, we conduct comprehensive experi-1065

ments to investigate the effect of prompt format1066

on different types of questions. Table 8 presents the1067

accuracy of different prompt formats on three types1068

of questions. We observe that graph description-1069

based prompt performs significantly better than1070

any other prompt formats on complex questions. It1071

is because graph description-based prompt could1072

provide LLMs with more detailed and structured1073

information by highlighting the local structure of1074

the central entity.1075

Table 8: Accuracy of different prompt formats on spe-
cific types of questions on CommonsenseQA.

Prompt Format Simple Multi-hop Graph reasoning

Ft (Triple) 0.9412 0.7447 0.4210
Fs (Sentence) 0.8823 0.8298 0.4739
Fg (Graph) 0.8529 0.7021 0.7895
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