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Abstract

The advances in the Neural Radiance Fields (NeRF) re-

search offer extensive applications in diverse domains, but

protecting their copyrights has not yet been researched in

depth. Recently, NeRF watermarking has been considered

one of the pivotal solutions for safely deploying NeRF-

based 3D representations. However, existing methods are

designed to apply only to implicit or explicit NeRF repre-

sentations. In this work, we introduce an innovative wa-

termarking method that can be employed in both represen-

tations of NeRF. This is achieved by fine-tuning NeRF to

embed binary messages in the rendering process. In detail,

we propose utilizing the discrete wavelet transform in the

NeRF space for watermarking. Furthermore, we adopt a de-

ferred back-propagation technique and introduce a combi-

nation with the patch-wise loss to improve rendering qual-

ity and bit accuracy with minimum trade-offs. We evalu-

ate our method in three different aspects: capacity, invisi-

bility, and robustness of the embedded watermarks in the

2D-rendered images. Our method achieves state-of-the-art

performance with faster training speed over the compared

state-of-the-art methods. Project page: https://kuai-

lab.github.io/cvpr2024waterf/

1. Introduction

Digital watermarking plays a pivotal role in reinforc-

ing the copyright of digital assets, e.g., text, image, au-

dio, video, and 3D content. Digital assets are easily misused

without permission from the creators and owners of the dig-

ital assets. One way to protect the copyright is by encoding

invisible watermarks in the digital assets.

Neural Radiance Fields (NeRF) [35] have emerged into

the spotlight in 3D content creation and modeling since

NeRF can represent 3D objects or scenes in a compact way.

With increasing interest in 3D content for the Metaverse,

virtual reality, and augmented reality, NeRF has become im-

portant in digital watermarking research.

A straightforward approach for protecting rendered 3D
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Figure 1. The NeRF model can be fine-tuned to embed the water-

mark into the images of the novel view. The figure above shows

the model owner Alice and her NeRF model is stolen by Bob. Al-

ice can identify the copyright by using her watermark decoder. Our

method embeds the watermark into all of the rendered images.

images from the NeRF model is using the post-generation

watermarking method that embeds the watermark into the

2D rendered image from NeRF with existing watermark-

ing methods. However, this method only protects copyright

for the rendered images but not the copyright of the NeRF

model. A fundamental solution to protecting the model and

rendered image is fine-tuning the NeRF model to encode

the watermark into the NeRF model itself. The watermark

will be encoded into the rendered image from the fine-tuned

NeRF every time during the rendering process.

NeRF has two primary representations: implicit and ex-

plicit representations. The implicit representation [1, 35, 37]

uses a multi-layer perceptron (MLP) to represent a 3D scene

and the explicit representation [3, 10, 58] uses a traditional

3D structure, such as voxels. Prior methods [22, 30] were

limited to applying to only one type of NeRF representation.

However, in order to overcome this limitation, we explore a

new question: How can we embed the watermark into two

distinct NeRF representations(implicit and explicit)?

In this paper, we propose an innovative watermarking

method that can be applied to both types of NeRF repre-

sentations. Our method integrates the watermarking process

into the rendering process without changing the model ar-

chitecture. It adjusts the pre-trained NeRF model so that all

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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of the rendered images have same watermark embedded.

We pre-train the decoder with the conventional deep learn-

ing method HiDDeN [59] to extract the watermark from the

rendered image. Our method has several advantages. First,

since it is a fine-tuning process, we can deal with the im-

plicit and the explicit NeRF representations. Second, we do

not need any extra processes for concealing watermarks in

the rendered images. Therefore, less computational cost is

required. Third, our method can protect the model and the

rendered images simultaneously.

Invisibility and robustness are very important aspects in

the digital watermarking domain. Concealing watermarks

in the rendered image without degrading the original im-

age quality and ensuring identification of the watermark is

challenging. For instance, an embedded watermark in the

image is better to be as invisible as possible, and also wa-

termark should be identified after various distortion attacks.

We intend to hide the watermark message in the low-level

subband in the frequency domain by carefully designing the

loss function that evaluates the loss value in the frequency

domain. To enhance the image quality, we consider the lo-

cal structure of the object by introducing patch-wise loss.

We subdivided the rendered image and cached the gradient

in the grid to encode the watermark locally in the image.

Our extensive experiments demonstrate that our method

successfully encodes watermarks by fine-tuning the pre-

trained NeRF models and identifying the watermark mes-

sage using a simplified decoder from HiDDeN [59]. More-

over, we show that our method is robust from diverse wa-

termark attacks. We evaluate our method by measuring the

capacity and robustness under diverse watermark attacks.

The training time of our method is approximately six times

faster than the CopyRNeRF [30]. Since our method can be

applied to both implicit [35] and explicit [3] NeRF, our

method can be used in more general applications than the

other watermarking methods. Our method outperforms the

other state-of-the-art watermarking methods within all met-

rics. In summary, our contributions are as follows:

• Our method can be applied to implicit and explicit NeRF

models, unlike other existing watermarking methods.

• We propose a novel watermarking method for NeRF that

fine-tunes the NeRF model by minimizing the loss func-

tion which is evaluated in the frequency domain.

• We propose a patch-wise loss to improve rendering qual-

ity and bit accuracy and enable encoding the watermark

locally in the image, reducing the color artifacts.

• The proposed watermarking method achieves state-of-

the-art performance, and we show that our methods are

robust in diverse watermark attacks.

2. Related Work

Neural Radiance Fields. Due to the success of Neu-

ral Radiance Field (NeRF) [35], a highly photo-realistic

view synthesis of complex scenes has been achieved. Re-

cently, NeRF has been used in various research and appli-

cations, including faster inference [26, 52, 54], 3D recon-

struction [32, 39, 53], image processing [19, 31, 47], dy-

namic scenes [24, 42] and generative models [25, 33, 40].

Therefore, NeRF become the dominant 3D representation

and is widely used. Several commercial products [36, 45]

utilized NeRF 3D representations. Thus, the management of

the copyright of NeRF-based 3D representations has been

emerging as a crucial aspect. As all of those applications

are based on implicit, explicit, or both representations, we

explore a versatile watermarking method that can be trained

on both representations.

Digital watermarking. Watermarking methods have been

evolving over the decades [2, 43]. There are two main ways

to recover watermarks [23]: multi-bit watermark and zero-

bit watermark. The multi-bit watermark allows for the en-

coding and decoding of multi-bit messages from media.

The zero-bit watermark can be used for ownership authen-

tication. In this paper, we focus on the zero-bit watermark,

which involves encoding and decoding multi-bit messages.

Recently, with the great success of deep learning watermark

methods like HiDDeN [59], considerable research has been

conducted to embed watermarks into carriers, especially

into 2D images [8, 27, 28], video [7, 29] and 3D [9, 49, 51].

On the NeRF field, the watermarks do not survive dur-

ing the volume rendering. To overcome this issue, several

methods [22, 30] have emerged. StegaNeRF [22] designed

a steganography model on explicit NeRF that hides natural

images in 3D scene representation. CopyRNeRF [30] se-

cured the copyright of images rendered from an implicit 3D

model by embedding a watermark into the rendered color

representation. However, these methods have two big limi-

tations. First, they could only be applied to one of the im-

plicit or explicit representations, while both representations

of NeRF greatly impact the advancement of NeRF. Second,

these watermarks were not robust enough. Since StegaN-

eRF required the original image for message extraction, this

method was not robust to distortion-like cropping, which

made a lot of difference between the original and rendered

images and CopyRNeRF did not resist cropping. To address

these issues, we design a robust watermarking NeRF model

that not only can be utilized on both implicit and explicit

representation but is also robust to diverse attacks.

Frequency Domain. It is known that embedding a water-

mark into the spatial domain is vulnerable to attacks such

as cropping and compression because it directly modifies

the image pixels [46]. For this reason, many studies have

been conducted based on frequency domains [44, 57]. The

following are the frequency transformation methods.

• Discrete Fourier Transform (DFT) expresses images in

terms of phase and amplitude. When a watermark is em-
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bedded into the frequency domain converted by DFT, the

magnitude is invariant, making it robust against geometric

attacks such as rotation and scaling [14, 20, 41].

• Discrete Cosine Transform (DCT) decomposes the en-

ergy of image data into a sum of cosine functions by

representing signals in the frequency domain. It is use-

ful for image compression because most of the energy

of the image is concentrated in the top-left corner coef-

ficient. Therefore, DCT is extensively used in watermark-

ing methods that energy compaction. [5, 17, 38]

• Discrete Wavelet Transform (DWT) decomposes the im-

age into four subbands, LL(Low-Low), LH(Low-High),

HL(High-Low), and HH(High-High). The LL band has

the most energy and contains low-frequency information.

Additionally, the LL band can be recursively decomposed

into n-levels. DWT is used in several watermarking meth-

ods [6, 50] and shows significant differences in perfor-

mance depending on the level [11, 21, 48]. In this paper,

we use DWT and the LL subband for fine-tuning NeRF

to embed the watermark.

3. Preliminaries: Representation of NeRF

In this paper, we focus on both implicit and explicit rep-

resentations of a NeRF model. The implicit NeRF [35] rep-

resents a scene using a multi-layer perceptrons (MLP) Φ
whose input is 3D location x = (x, y, z) ∈ R

3 and 2D

viewing direction d ∈ R
2 and output is color c ∈ R

3, vol-

ume density σ ∈ R
+. These MLP-based radiance fields can

be written as:
σ, c = Φ(x,d) (1)

The explicit NeRF, such as TensoRF [3], models a scene

as a 4D tensor, which represents a 3D voxel grid. These

grid-based radiance fields can be written as:

σ, c = Tσ(x),S(Tc(x),d), (2)

where Tσ ∈ R
I×J×K is a geometry tensor and

T I×J×K×C
c is an appearance tensor for channel C and the

voxel grid resolution I, J,K. S is a decoding function in-

cluding MLP and spherical harmonics function.

Both representations are followed by a volumetric ren-

dering equation, which is used to synthesize novel views:

C(r) =

∫ tf

tn

T (t)σ(r(t))c(r(t),d) dt,

T (t) = exp(−
∫ t

tn

σ(r(s)) ds),

(3)

where r(t) is camera ray with near and far bounds tn and

tf . C(r) is an expected color of the ray r(t).
Considering the NeRF representation type like the

above, how can we embed a watermark in the various types,

not just one type? Since these types of NeRF share a com-

mon property, rendering images through the same volume

rendering function, we use the rendered images to embed

watermarks into the models.

4. Method

We propose a process of fine-tuning the NeRF that does

not involve alterations to the model’s architecture to em-

bed the watermark message. Our method aims to embed

the watermark into the weights θ of the NeRF model in the

frequency domain of rendered images. Our method stands

apart from traditional watermarking methods, which focus-

ing on training encoders and decoders. The difference lies in

the fine-tuning process, which embeds the watermark with-

out using an encoder. There are two phases: (1) Pre-training

the watermark decoder D, (2) Fine-tuning the NeRF model

Fθ to embed the message. Our method is illustrated in Fig.

2 and described in detail below.

4.1. Pre-training the watermark decoder

We select HiDDeN [59] architecture as our watermark

decoder. HiDDeN comprises two convolution networks for

data hiding: a watermark encoder E and a watermark de-

coder D. For robustness, it includes a noise layer N . How-

ever, in this training phase, where we focus solely on the de-

coder’s performance, we have excluded an adversarial loss

responsible for improving visual quality. After training the

HiDDeN model, watermark encoder E was not utilized in

the second phase.

The encoder E takes in a cover image Io ∈ R
H×W×3

and a binary message M ∈ {0, 1}L with length L, as in-

put. Then E embeds M into Io and produces an encoded

image Iw. In order to make the decoder resistant to various

distortions such as rotation and JPEG compression, Iw is

transformed with a noise layer N . The decoder D, made of

several convolution layers, receives Iw as input and extracts

a message M ′.

M ′ = D(N(Iw)) (4)

We utilize a sigmoid function to set the range of the ex-

tracted message M ′ between [0, 1]. The message loss is

calculated with Binary Cross Entropy (BCE) between ML

and sigmoid sg(M ′

L).

Lmessage = −
L∑
i=1

Mi · log sg(M ′

i)

+ (1−Mi) · log(1− sg(M ′

i))) (5)

The decoder is trained to detect watermarks in images

that have passed through the trained encoder. However, we

do not use the encoder in the second stage. We find that

when the decoder receives a vanilla-rendered image, there

is a bias between the extracted message bits. Thus, after

training the decoder, we conduct PCA whitening to a lin-

ear decoder layer to remove the bias without reducing the

extraction ability.
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Figure 2. WateRF overview. Phase 1: We train the encoder and the decoder to extract messages. After phase 1, we do not use the encoder.

Phase 2: We fine-tune the NeRF to embed the messages into the rendered images. (a) We disable auto-differentiation and render a full-

resolution image to save memory. (b) We use DWT for the rendered images and choose the LL subband as the input of the pre-trained

decoder. (c) We enable auto-differentiation and render the images patch by patch. Then the NeRF is optimized using Eq 7 and Eq 8.

4.2. Embedding and extracting watermark on DWT

Recently, a fine-tuning watermarking method for

NeRF [22] in the spatial domain has emerged. Although

the fine-tuning method of embedding a message in the spa-

tial domain shows incomparable invisibility and message

extraction ability, it is vulnerable to attacks that distort the

spatial domain, such as cropping. Directly applying spatial

domain techniques from the latent diffusion model [8] does

not allow for effective adjustment of NeRF’s weights.

To tackle these problems, we propose a fine-tuning

method in a frequency domain instead of a spatial domain.

Various watermarking techniques for images use the fre-

quency domain have seen development and improvement

over the years. We find that DWT is the appropriate domain

for encoding the message into the weights of a NeRF model.

The NeRF model renders diverse views of the 3D model

given corresponding camera parameters. We transform the

pixels of the rendered images, denoted by X = (xc, yc) ∈
R
H×W×3, into wavelet forms, with c representing the chan-

nel. The DWT is defined as [12]:

Wϕ(j0,m, n) =
1√
MN

M−1∑
xc=0

N−1∑
yc=0

f(xc, yc)ϕj0,m,n(xc, yc),

W i
ψ(j,m, n) =

1√
MN

M−1∑
xc=0

N−1∑
yc=0

f(xc, yc)ψ
i
j,m,n(xc, yc)

(6)

where ϕ(x, y) is a scaling function and ψ(x, y) is a wavelet

function. Wϕ(j0,m, n) is called by an LL subband, which

is an approximation of the image at scale j0. W i
ψ represents

LH, HL, HH subbands, where i = {H, V, D} and each de-

notes horizontal, vertical and diagonal coefficients.

Previous studies [13, 15, 18] have selected LH ,HL, and

HH subbands for embedding watermarks because the LL

subband contains significant information about the image.

However, we choose the LL subband as an input of our de-

coder D and get the extract message with M ′ = D(Wϕ).
We experimentally discover that embedding the watermark

in the LL subband is more robust and effective than other

subbands for the HiDDeN decoder.

‘The DWT is characterized by its subbands being com-

puted across different levels; therefore, choosing an opti-

mal level for our purpose is necessary. The 1-level sepa-

rates the images to 4 subbands (LL1, LH1, HL1, HH1),
then 2-level separate the LL1 subband into 4 subbands

(LL2, LH2, HL2, HH2). We experimentally discover that

selecting a level too high decreases visual quality due to ex-

cessive adjustment of crucial visual elements. Thus, we use

the 2-level DWT because it best maintains a good balance

between bit accuracy and reconstruction quality.

4.3. Fine-tuning the NeRF model

NeRF has two different representations, implicit and ex-

plicit representations (see Sec. 3). Previous studies [22, 30]

focused on applying their methods to just one form of NeRF
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representation. In contrast, we propose a method applicable

to both NeRF representations: implicit and explicit. Our ap-

proach involves fine-tuning the NeRF to ensure that novel

view images include an embedded message.

Our method starts with preparing each pre-trained de-

coder for different lengths of message bits and also prepar-

ing an initial NeRF model Fθ0 . Then we establish fixed bi-

nary messages M = (m1, ...,mL) ∈ {0, 1}L.

Since rendering with NeRF requires a lot of mem-

ory, we turn off the auto-differentiation at first. The ren-

dered images X ∈ R
H×W×3 at full resolution are ren-

dered by Fθ0 . Following this, the full resolution images

X are transformed into seven groups of wavelet sub-

bands : {LL2, LH2, HL2, HH2, LL1, LH1, HL1, HH1}.

Our pre-trained decoder D takes the LL2 subband as an in-

put and extracts a message M ′ = D(Wϕ(j0,m, n)) from

it. The message loss is calculated by comparingM andM ′:

Lm = BCE(M, sg(M ′)). We choose the Waston-VGG [4]

to calculate the full image perceptual loss between the im-

age without watermark X0 and the image with a watermark

X: Li(X0, X). Full resolution loss function is a sum of the

full image perceptual loss and the message loss.

Lfull = λiLpercept + λmLmessage (7)

We cache the gradient calculated by Eq. 7 prior to

the patch-wise rendering process to update the parame-

ters. Then, we turn on the auto-differentiation so that the

NeRF parameters enable patch-wise rendering. Our patch

loss Lpatch is calculated by combining mean absolute error

(MAE) across rendered pixel colors, total variation (TV)

regularization, and SSIM loss to maintain the balance be-

tween bit-accuracy and visual quality.

Lpatch = λMAELMAE +λTV LTV +λSSIMLSSIM (8)

Then we optimize from the initial NeRF model Fθ0 to wa-

termarked Fθ using Eq. 7 and Eq. 8.

4.4. Deferred back-propagation with patch loss

In conventional NeRF models, rendering at full resolu-

tion is inefficient regarding memory usage. To solve the

memory-inefficient problem, pixels are often sampled and

rendered randomly to compute the L2 loss for training.

However, the main limitation of random pixel-wise render-

ing is in its incompatibility with using CNN-based percep-

tual loss and our watermark decoder for extracting message

bits, both of which require a full-resolution image as input.

Our method implements a full-resolution rendering de-

rived from our pre-trained decoder during the fine-tuning

process. Each iteration presents a considerable challenge

due to the extensive memory consumption. In order to

relieve the memory constraints, we adopt the deferred

back-propagation [55], specifically designed for memory-

efficient, patch-wise optimization within NeRF.

Our method proposes a novel patch loss to be applied to

the deferred back-propagation as detailed in Eq. 8. When

the model renders the full-resolution image with auto-

differentiation disabled, the image and message loss are

computed by the rendered image, and the derived gradi-

ents are cached (see Sec. 4.3 for more details). Then, the

model renders the full-resolution image with image patches

that are re-rendered with auto-differentiation enabled and

back-propagated using the corresponding gradients from

the cached set.

Our innovation is not solely relying on cached gradi-

ents for back-propagation during re-rendering. Instead, we

calculate the loss between the re-rendered patch and the

ground truth (GT) patch and carry out an additional back-

propagation process. The patch loss consists of a sum of L1

loss (MAE), a Total Variation loss, and an SSIM loss, as de-

fined in Eq. 8. By utilizing back-propagation, once for the

combined loss from the full-resolution image and the mes-

sage loss and once for the patch loss, we are able to enhance

both image quality and message bit accuracy at once.

5. Experiments

5.1. Dataset

We evaluate our method using datasets commonly used

by NeRF: the Blender dataset [35], which consists of syn-

thetic bounded scenes, and the LLFF dataset [34], which

consists of real unbounded, forward-facing scenes. We fol-

low the conventional literature in NeRF papers, which eval-

uate and compare using eight scenes each from the Blender

dataset (including chair, drums, ficus, hotdog, lego, mate-

rials, mic) and the LLFF dataset (including fern, flower,

fortress, horns, leaves, orchids, room, trex).

5.2. Implementation Details

Vanilla NeRF [35] and TensoRF [3] employ similar

training methods, with some specifics as detailed below.

The training process is carried out on an image-by-image

basis, with a batch size set to one. Ray tracing is imple-

mented along with the camera pose, and the Adam opti-

mizer [16] is used for the learning process. The training is

completed with epochs ranging from 5 to 10. Since our pre-

trained decoder requires full-resolution images, NeRF ren-

ders full-resolution images during the fine-tuning process.

However, NeRF requires a great amount of memory us-

age. We adopt the deferred back-propagation in ARF [55]

to solve the memory issue and combine it with the patch-

wise loss to improve rendering quality and bit accuracy.

The initial λi, λm was set to 0.1 and 0.9 for the LLFF

dataset and 0.05 and 0.95 for the Blender dataset, respec-

tively. Additionally, within the patch loss equation (Eq. 8),

the parameters λMAE , λTV , and λSSIM were set to 0.1,

0.06, and 0.02.
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Bit Accuracy(%) ↑

4 bits 8 bits 16 bits 32 bits 48 bits

HiDDeN [59]+NeRF [35] 50.31 50.25 50.19 50.11 50.04

CopyRNeRF [30] 100.00 100.00 91.16 78.08 60.06

Ours (w/ NeRF [35]) 100.00 100.00 94.24 86.81 70.43

Ours (w/ TensoRF [3]) 100.00 100.00 95.67 88.58 85.82

Table 1. Bit accuracies with different message lengths are com-

pared with the state-of-the-art method. (HiDDeN [59]+NeRF [35]

is pre-embedded before training). The results are the average of

LLFF and Blender datasets.

5.3. Evaluation

We evaluate our method with three key essential aspects

in watermarking techniques: 1) capacity, measuring the

length of the messages that can be embedded into the im-

age; 2) invisibility, which involves evaluating the difficulty

in detecting embedded watermarks in images by peoples; 3)

robustness, evaluating the robustness of our watermarking

method under various image distortions such as Gaussian

Noise, Rotation, Scaling, Gaussian Blur, Crop, Brightness,

JPEG compression and combination of these distortions.

We employ Peak Signal-to-Noise Ratio (PSNR), Structural

Similarity Index Measure (SSIM), and Learned Perceptual

Image Patch Similarity (LPIPS) [56] for the evaluation met-

rics to assess invisibility while utilizing bit accuracy to eval-

uate capacity and robustness. We conduct experiments on

the invisibility and robustness of the message length of

ML ∈ {4, 8, 16, 32, 48}.

Baseline To the best of our knowledge, CopyRNeRF [30]

stands out alone in its ability to embed bits with the implicit

NeRF model, which can be converted into various modal-

ity data such as messages or images. The CopyRNeRF per-

forms state-of-the-art on bit-accuracy and visual quality. As

a result, we conduct our evaluations utilizing the CopyRN-

eRF. We select the following relevant comparative mod-

els:: HiDDeN [59]+NeRF [35], which employ the classical

2D watermarking method HiDDeN [59] on training images

prior to training the NeRF model.

To demonstrate the applicability of our method, we ap-

ply our method on two distinct NeRF models: Vanilla

NeRF [35], symbolizing implicit representation NeRF, and

TensoRF [3], representing explicit representation NeRF

based on voxel grids. We select the Vanilla NeRF [35] since

it is the first NeRF model to be introduced and can be con-

sidered the foundational and ancestral model for all subse-

quent NeRFs. TensoRF [3] is chosen because it is an in-

fluential NeRF model with significantly improved perfor-

mance and training speed.

5.4. Experimental results

Capacity As shown in Tab. 1, there is a clear trade-off be-

tween bit accuracy and message bit length. We conduct bit

Bit Acc(%)↑ PSNR ↑ SSIM ↑ LPIPS ↓

HiDDeN [59]+NeRF [35] 50.19 26.53 0.917 0.035

CopyRNeRF [30] 91.16 26.29 0.910 0.038

Ours (w/ NeRF [35]) 94.24 28.81 0.954 0.025

Ours (w/ TensoRF [3]) 95.67 32.79 0.948 0.033

Table 2. Bit accuracies and reconstruction qualities comparision

with baselines. ↑ (↓) means higher (lower) is better. We show the

results on 16 bits. The results are evaluated in the same way as

baselines. The best performances are highlighted in bold.

accuracy tests on messages of lengths 4, 8, 16, 32, and 48

bits. Models implemented with our method show a gradual

decrease in bit accuracy as the length of the message in-

creases. However, when compared to CopyRNeRF [30], the

decline in bit accuracy is less dramatic and less steep. No-

tably, CopyRNeRF [30] shows a modest 60.6% bit accuracy

for 48 bits, whereas Vanilla NeRF [35] and TensoRF [3]

using our method demonstrates a respectable 85.82% and

70.43% accuracy, respectively. Additionally, to demonstrate

the stability of our method across a range of messages,

we fine-tune 500 different messages, each corresponding

to unique, randomly generated bits. We rigorously eval-

uate the bit accuracy for all images rendered by Vanilla

NeRF [35] and TensoRF [3]. As illustrated in Fig. 3, the plot

shows a minor descending trend that corresponds with the

increasing number of unique messages, and it shows that

our method is robust with using many different messages,

which is a key value to identify unique NeRF model.

Invisibility Our method demonstrates a trade-off between

bit accuracy and the quality of reconstructed data, as de-

tailed in Tab. 2. This trade-off is analyzed using several

metrics, including bit accuracy and visual quality metrics.

With TensoRF [3], our method achieves the best bit accu-

racy and PSNR results. Conversely, when applied to Vanilla

Figure 3. Identification results. We average the bit accuracy for

each 500 messages. Our method not only works efficiently with

just one key but also works well with arbitrarily generated mes-

sages. We show the results on ML = 16 bits.
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Bit Accuracy(%) ↑
No Distortion

Gaussian Noise

(v = 0.1)

Rotation

(±π/6)

Scaling

(25%)

Gaussian Blur

(deviation = 0.1)

Crop

(40%)

Brightness

(2.0)

JPEG Compression

(10% quality)

Combined

(Crop, Brightness, JPEG)

CopyRNeRF [30] 91.16 90.04 88.13 89.33 90.06 - - - -

Ours (w/ NeRF [35]) 94.24 94.06 85.02 91.35 94.12 83.48 84.14 86.88 73.64

Ours (w/ TensoRF [3]) 95.67 95.36 93.13 93.29 95.25 95.40 90.91 86.99 84.12

Table 3. Robustness under diverse attacks compared with the state-of-the-art method. The bit accuracy results are the average of LLFF and

Blender datasets. We show the results on ML = 16 bits. The best performances are highlighted in bold.

PSNR=32.69  

Bit Acc=100%

PSNR=32.78  

Bit Acc=100%

PSNR=33.44  

Bit Acc=100%

CopyRNeRF Ours + NeRF Ours + TensoRF

Figure 4. Qualitative comparisons We show the differences (×10)

between the rendered images and the ground truth. Our method

achieves higher PSNR and bit accuracy than CopyRNeRF.

NeRF [35], it yields the highest SSIM and the lowest LPIPS

(noting that higher SSIM and lower LPIPS are desirable).

Although the SSIM and LPIPS scores for TensoRF [3] us-

ing our method are not the highest, they are comparable to

those achieved with Vanilla NeRF [35]. In summary, models

trained with our method attain superior bit accuracy, PSNR,

SSIM, and the lowest LPIPS, indicating a well-balanced

trade-off between bit accuracy and reconstruction quality.

Additionally, to verify the invisibility of our Result, We

compute the differences between ground truth and our ren-

dered results. As illustrated in Fig. 4, the results of apply-

ing our method to both Vanilla NeRF [35] and TensoRF [3]

achieve a better balance between reconstruction quality and

bit accuracy compared to CopyRNeRF [30]. This indicates

that our method can embed watermarks with minimal im-

pact on the reconstruction quality.

Robustness We evaluate the robustness of the watermarked

image to different attacks by applying Gaussian noise, Rota-

tion, Scaling, Gaussian Blur, Crop, Brightness, JPEG com-

pression and combination of these distortions. As shown in

Tab. 3, We experiment on both Vanila NeRF [35] and Ten-

soRF [3] when applied with our method, resulting in robust-

ness against various attacks compared to CopyRNeRF [30].

5.5. Ablation study

Patch Loss and Frequency Domain This section delves

into the effectiveness of integrating patch loss and utilizing

the frequency domain. Fig. 5 presents a comparative anal-

ysis of our method, applied to Vanilla NeRF [35], both with

Bit Acc=82.47%Bit Acc=94.78% Bit Acc=90.78%

Full method

Bit Acc=43.54%Bit Acc=100.0% Bit Acc=100.0%

Ground Truth
With DWT

Without patch

Without DWT

With Patch

Figure 5. Reconstruction quality comparisons We evaluate our

full method, our method without patch loss and our method with-

out frequency domain about 16 bits with NeRF [35].

Bit Acc(%)↑ PSNR ↑ SSIM ↑ LPIPS ↓

DFT 71.06 19.04 0.822 0.1719

DCT 43.75 35.33 0.967 0.0205

No frequency 72.68 32.80 0.944 0.0392

DWT-Level 1 91.16 33.04 0.947 0.0332

DWT-Level 2 95.67 32.79 0.948 0.0336

DWT-Level 3 90.96 32.45 0.950 0.0331

DWT-Level 4 85.02 31.82 0.952 0.0329

Table 4. Bit accuracies and reconstruction qualities compared with

spatial and frequency domains (DFT, DCT) and DWT levels 1, 2,

3, and 4. We focus on low frequency as our assumption. We show

the results on 16 bits. The results are evaluated in the same way as

baselines. The best performances are highlighted in bold.

and without the incorporation of patch loss and use in the

frequency domain. As shown in Fig. 5, the absence of DWT

significantly decreases bit accuracy. Without the patch-wise

loss, there is a decrease in reconstruction quality.

DWT Level During our experiments with DWT, we evalu-

ate performance across commonly used levels: 1, 2, 3, and

4. As shown in Tab. 4, it is indicated that the results from

levels 1, 3, and 4 do not perform as well as the outcomes

achieved at level 2, both in terms of bit accuracy and re-

construction quality balance. Additionally, we conduct ap-

plying DFT, DCT, and no frequency instead of DWT. As a

result, our findings show that the DWT at level 2 is the most

effective. Thus, we use the DWT at level 2 based on the re-

sults from the ablation experiments.
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Figure 6. Bit accuracy comparison between DWT Subbands

We evaluate the bit accuracy on level 1,2,3 and all subbands. We

show the results on ML = 16 bits.

DWT Subband The choice of DWT subband is as criti-

cal as the level of DWT itself. Typically, subbands such as

LH, HL, and HH, which are composed of high-frequency

components less perceptible to the people, are employed for

watermark embedding in conventional watermarking tech-

niques. Conversely, in our experimental approach, we opt

for the LL subband representing the image’s coarse approxi-

mation and containing essential low-frequency details. This

decision is based on the watermark decoder’s pre-training

process to extract watermarks specifically from the image’s

spatial domain, which is visually similar to the LL subband

and its demonstrated robustness to JPEG compression. In

Fig. 6, our empirical investigations confirm that the LL sub-

band yields the highest bit accuracy.

Comparison of Training time. Even though our pro-

posed method necessitates the use of a pre-trained model’s

weights as a starting point for fine-tuning NeRF, the time re-

quirement for training is significantly less compared to that

of CopyRNeRF [30]. As depicted in Fig. 7, it is evident

that the model utilizing our techniques substantially out-

performs CopyRNeRF [30] regarding training efficiency.

Our method, when applied to an explicit NeRF architecture,

such as TensoRF [3], achieves a remarkable speed increase,

performing up to six times faster than CopyRNeRF [30].

Similarly, implementing our techniques within the Implicit

NeRF framework, like Vanilla NeRF [35], yields a sig-

nificant speed improvement, with our model operating six

times faster than CopyRNeRF [30] but it also surpasses the

bit accuracy of the compared model.

6. Conclusion

We propose a neural 3D watermarking method for the

NeRF model. Our method trains a 2D watermark decoder

and NeRF model separately. Therefore, our pipeline only

requires training the decoder once and re-use it on differ-

Figure 7. Analysis of train time for reconstruction from blender

dataset at 160x160 resolution. Note the introduction of a scale

break within the graph to accommodate the significant disparities

in training durations, with time represented in minutes on the left

axis and in days on the right axis.

ent NeRF watermark models. We adopt conventional wa-

termark techniques in image watermarking, which transfer

the image from the spatial domain to the frequency domain

to encode the watermark into the image efficiently. We find

that DWT and patch-wise loss enhance the overall recon-

struction quality while performing high message bit accu-

racy. Through extensive experiments, we demonstrate that

our method outperforms the state-of-the-art method and is

six times faster than the previous work.

Limitations. Our method shows outstanding performance

in the digital watermark of NeRF, but training a decoder

that extracts watermark from rendered images is time-

consuming, taking approximately 12 hours on a single

RTX 3090. Our method only encodes a unique message

per model, requiring fine-tuning for message insertion every

time. We observe that the bit accuracy drops when we apply

numerous messages(see Fig. 3). Although previous studies,

including us, report robustness against various distortions

of images, there is no consideration about cases where the

model is attacked. Future work may explore watermarks re-

silient to cases of model attacks.
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