
Published as a conference paper at ICLR 2024

DIFFENC: VARIATIONAL DIFFUSION
WITH A LEARNED ENCODER

Beatrix M. G. Nielsen,∗1 Anders Christensen,1,2 Andrea Dittadi,†2,4 Ole Winther†1,3,5

1Technical University of Denmark, 2Helmholtz AI, Munich, 3University of Copenhagen,
4Max Planck Institute for Intelligent Systems, 5Copenhagen University Hospital

ABSTRACT

Diffusion models may be viewed as hierarchical variational autoencoders (VAEs)
with two improvements: parameter sharing for the conditional distributions in
the generative process and efficient computation of the loss as independent terms
over the hierarchy. We consider two changes to the diffusion model that retain
these advantages while adding flexibility to the model. Firstly, we introduce a
data- and depth-dependent mean function in the diffusion process, which leads to a
modified diffusion loss. Our proposed framework, DiffEnc, achieves a statistically
significant improvement in likelihood on CIFAR-10. Secondly, we let the ratio of
the noise variance of the reverse encoder process and the generative process be
a free weight parameter rather than being fixed to 1. This leads to theoretical
insights: For a finite depth hierarchy, the evidence lower bound (ELBO) can be
used as an objective for a weighted diffusion loss approach and for optimizing the
noise schedule specifically for inference. For the infinite-depth hierarchy, on the
other hand, the weight parameter has to be 1 to have a well-defined ELBO.

1 INTRODUCTION

x z s

…

z 1

Standard,
pre-defined

DiffEnc,
learned

Diffusion Process

z t

𝜶sᐧ

+
𝝈sᐧ

𝜶tᐧ

+
𝝈tᐧ

𝜶1ᐧ

+
𝝈1ᐧ

Encoder:
discarded after
training

+
𝝈sᐧ

+
𝝈tᐧ

+
𝝈1ᐧ

𝜶sᐧ 𝜶tᐧ 𝜶1ᐧ

q q

p𝜃 p𝜃

Encoder

, s , t , 1

q

p𝜃

Encoder Encoder

Figure 1: Overview of DiffEnc compared to standard
diffusion models. The effect of the encoding has been
amplified 5x for the sake of illustration.

Diffusion models (Sohl-Dickstein et al., 2015;
Song & Ermon, 2019; Ho et al., 2020) are ver-
satile generative models that have risen to promi-
nence in recent years thanks to their state-of-
the-art performance in the generation of images
(Dhariwal & Nichol, 2021; Karras et al., 2022),
video (Ho et al., 2022; Höppe et al., 2022; Har-
vey et al., 2022), speech (Kong et al., 2020; Jeong
et al., 2021; Chen et al., 2020), and music (Huang
et al., 2023; Schneider et al., 2023). In particular,
in image generation, diffusion models are state
of the art both in terms of visual quality (Kar-
ras et al., 2022; Kim et al., 2022a; Zheng et al.,
2022; Hoogeboom et al., 2023; Kingma & Gua,
2023; Lou & Ermon, 2023) and density estima-
tion (Kingma et al., 2021; Nichol & Dhariwal,
2021; Song et al., 2021).

Diffusion models can be seen as a time-indexed hierarchy over latent variables generated sequen-
tially, conditioning only on the latent vector from the previous step. As such, diffusion models can
be understood as hierarchical variational autoencoders (VAEs) (Kingma & Welling, 2013; Rezende
et al., 2014; Sønderby et al., 2016) with three restrictions: (1) the forward diffusion process—the
inference model in variational inference—is fixed and remarkably simple; (2) the generative model
is Markovian—each (time-indexed) layer of latent variables is generated conditioning only on the
previous layer; (3) parameter sharing—all steps of the generative model share the same parameters.

∗Correspondence to: <bmgi@dtu.dk>.
†Equal advising.

1

Published as a conference paper at ICLR 2024

Figure 2: Changes induced by the encoder on the en-
coded image at different timesteps: (xt−xs)/(t−s)
for t = 0.4, 0.6, 0.8, 1.0 and s = t − 0.1. Changes
have been summed over the channels with red and
blue denoting positive and negative changes, respec-
tively. For t → 1, global properties such as ap-
proximate position of objects are encoded, where for
smaller t changes are more fine-grained and tend to
enhance high-contrast within objects and/or between
object and background.

The simplicity of the forward process (1) and the
Markov property of the generative model (2) al-
low the evidence lower bound (ELBO) to be ex-
pressed as an expectation over the layers of ran-
dom variables, i.e., an expectation over time from
the stochastic process perspective. Thanks to the
heavy parameter sharing in the generative model
(3), this expectation can be estimated effectively
with a single Monte Carlo sample. These prop-
erties make diffusion models highly scalable and
flexible, despite the constraints discussed above.

In this work, we relax assumption (1) to improve
the flexibility of diffusion models while retaining
their scalability. Specifically, we shift away from
assuming a constant diffusion process, while still
maintaining sufficient simplicity to express the
ELBO as an expectation over time. We intro-
duce a time-dependent encoder that parameter-
izes the mean of the diffusion process: instead of
the original image x, the learned denoising model
is tasked with predicting xt, which is the encoded
image at time t. Crucially, this encoder is exclu-
sively employed during the training phase and not
utilized during the sampling process. As a result,
the proposed class of diffusion models, DiffEnc,
is more flexible than standard diffusion models without affecting sampling time. To arrive at the
negative log likelihood loss for DiffEnc, Eq. (18), we will first show how we can introduce a time-
dependent encoder to the diffusion process and how this introduces an extra term in the loss if we
use the usual expression for the mean in the generative model, Section 3. We then show how we can
counter this extra term, using a certain parametrization of the encoder, Section 4.

We conduct experiments on MNIST, CIFAR-10 and ImageNet32 with two different parameteriza-
tions of the encoder and find that, with a trainable encoder, DiffEnc improves total likelihood on
CIFAR-10 and improves the latent loss on all datasets without damaging the diffusion loss. We
observe that the changes to xt are significantly different for early and late timesteps, demonstrating
the non-trivial, time-dependent behavior of the encoder (see Fig. 2).

In addition, we investigate the relaxation of a common assumption in diffusion models: That the
variance of the generative process, σ2

P , is equal to the variance of the reverse formulation of the
forward diffusion process, σ2

Q. This introduces an additional term in the diffusion loss, which can
be interpreted as a weighted loss (with time-dependent weights wt). We then analytically derive
the optimal σ2

P . While this is relevant when training in discrete time (i.e., with a finite number of
layers) or when sampling, we prove that the ELBO is maximized in the continuous-time limit when
the variances are equal (in fact, the ELBO diverges if the variances are not equal).

Our main contributions can be summarized as follows:

• We define a new, more powerful class of diffusion models—named DiffEnc—by introduc-
ing a time-dependent encoder in the diffusion process. This encoder improves the flexibility
of diffusion models but does not affect sampling time, as it is only needed during training.

• We analyse the assumption of forward and backward variances being equal, and prove that
(1) by relaxing this assumption, the diffusion loss can be interpreted as a weighted loss,
and (2) in continuous time, the optimal ELBO is achieved when the variances are equal—
in fact, if the variances are not equal in continuous time, the ELBO is not well-defined.

• We perform extensive density estimation experiments and show that DiffEnc achieves a
statistically significant improvement in likelihood on CIFAR-10.

The paper is organized as follows: In Section 2 we introduce the notation and framework from Varia-
tional Diffusion Models (VDM; Kingma et al., 2021); in Section 3 we derive the general formulation

2

Published as a conference paper at ICLR 2024

of DiffEnc by introducing a depth-dependent encoder; in Section 4 we introduce the encoder param-
eterizations used in our experiments and modify the generative model to account for the change in
the diffusion loss due to the encoder; in Section 5 we present our experimental results.

2 PRELIMINARIES ON VARIATIONAL DIFFUSION MODELS

We begin by introducing the VDM formulation (Kingma et al., 2021) of diffusion models. We define
a hierarchical generative model with T + 1 layers of latent variables:

pθ(x, z) = p(x|z0)p(z1)
T∏

i=1

pθ(zs(i)|zt(i)) (1)

with x ∈ X a data point, θ the model parameters, s(i) = i−1
T , t(i) = i

T , and p(z1) = N (0, I). In
the following, we will drop the index i and assume 0 ≤ s < t ≤ 1. We define a diffusion process q
with marginal distribution:

q(zt|x) = N (αtx, σ
2
t I) (2)

where t ∈ [0, 1] is the time index and αt, σt are positive scalar functions of t. Requiring Eq. (2) to
hold for any s and t, the conditionals turns out to be:

q(zt|zs) = N (αt|szs, σ
2
t|sI) ,

where

αt|s =
αt

αs
, σ2

t|s = σ2
t − α2

t|sσ
2
s .

Using Bayes’ rule, we can reverse the direction of the diffusion process:

q(zs|zt,x) = N (µQ, σ
2
QI) (3)

with

σ2
Q =

σ2
t|sσ

2
s

σ2
t

, µQ =
αt|sσ

2
s

σ2
t

zt +
αsσ

2
t|s

σ2
t

x . (4)

We can now express the diffusion process in a way that mirrors the generative model in Eq. (1):

q(z|x) = q(z1|x)
T∏

i=1

q(zs(i)|zt(i),x) (5)

and we can define one step of the generative process in the same functional form as Eq. (3):

pθ(zs|zt) = N (µP , σ
2
P I)

with

µP =
αt|sσ

2
s

σ2
t

zt +
αsσ

2
t|s

σ2
t

x̂θ(zt, t) , (6)

where x̂θ is a learned model with parameters θ. In a diffusion model, the denoising variance σ2
P is

usually chosen to be equal to the reverse diffusion process variance: σ2
P = σ2

Q. While initially we do
not make this assumption, we will prove this to be optimal in the continuous-time limit. Following
VDM, we parameterize the noise schedule through the signal-to-noise ratio (SNR):

SNR(t) ≡ α2
t

σ2
t

and its logarithm: λt ≡ log SNR(t). We will use the variance-preserving formulation in all our
experiments: α2

t = 1− σ2
t = sigmoid(λt).

The evidence lower bound (ELBO) of the model defined above is:

log pθ(x) ≥ Eq(z|x)

[
pθ(x|z)pθ(z)

q(z|x)

]
≡ ELBO(x)

3

Published as a conference paper at ICLR 2024

The loss L ≡ −ELBO is the sum of a reconstruction (L0), diffusion (LT), and latent (L1) loss:

L = L0 + LT + L1

L0 = −Eq(z0|x) [log p(x|z0)]
L1 = DKL(q(z1|x)||p(z1)) ,

where the expressions for L0 and L1 are derived in Appendix D. Thanks to the matching factor-
ization of the generative and reverse noise processes—see Eqs. (1) and (5)—and the availability of
q(zt|x) in closed form because q is Markov and Gaussian, the diffusion loss LT can be written as a
sum or as an expectation over the layers of random variables:

LT (x) =

T∑
i=1

Eq(zt(i)|x)
[
DKL(q(zs(i)|zt(i),x)∥pθ(zs(i)|zt(i)))

]
(7)

= T Ei∼U{1,T},q(zt(i)|x)
[
DKL(q(zs(i)|zt(i),x)∥pθ(zs(i)|zt(i)))

]
, (8)

where U{1, T} is the uniform distribution over the indices 1 through T . Since all distributions are
Gaussian, the KL divergence has a closed-form expression (see Appendix E):

DKL(q(zs|zt,x)∥pθ(zs|zt)) =
d

2
(wt − 1− logwt) +

wt

2σ2
Q

∥µP − µQ∥22 , (9)

where the green part is the difference from using σ2
P ̸= σ2

Q instead of σ2
P = σ2

Q, and we have defined
the weighting function

wt =
σ2
Q,t

σ2
P,t

and the dependency of σ2
Q,t and σ2

P,t on s is left implicit, since the step size t− s = 1
T is fixed. The

optimal generative variance can be computed in closed-form (see Appendix F):

σ2
P = σ2

Q +
1

d
Eq(x,zt)

[
∥µP − µQ∥22

]
.

3 DIFFENC

The main component of DiffEnc is the time-dependent encoder, which we will define as xt ≡
xϕ(λt), where xϕ(λt) is some function with parameters ϕ dependent on x and t through λt ≡
log SNR(t). The generalized version of Eq. (2) is then:

q(zt|x) = N (αtxt, σ
2
t I) . (10)

Fig. 1 visualizes this change to the diffusion process, and a diagram is provided in Appendix A. Re-
quiring that the process is consistent upon marginalization, i.e., q(zt|x) =

∫
q(zt|zs,x)q(zs|x)dzs,

leads to the following conditional distributions (see Appendix B):

q(zt|zs,x) = N (αt|szs + αt(xt − xs), σ
2
t|sI) , (11)

where an additional mean shift term is introduced by the depth-dependent encoder. As in Section 2,
we can derive the reverse process (see Appendix C):

q(zs|zt,x) = N (µQ, σ
2
QI) (12)

µQ =
αt|sσ

2
s

σ2
t

zt +
αsσ

2
t|s

σ2
t

xt + αs(xs − xt) (13)

with σ2
Q given by Eq. (4). We show how we parameterize the encoder in Section 4.

Infinite-depth limit. Kingma et al. (2021) derived the continuous-time limit of the diffusion loss,
that is, the loss in the limit of T → ∞. We can extend that result to our case. Using µQ from
Eq. (13) and µP from Eq. (6), the KL divergence in the unweighted case, i.e., 1

2σ2
Q
∥µP −µQ∥22, can

be rewritten in the following way, as shown in Appendix G:

1

2σ2
Q

∥µP − µQ∥22 = −1

2
∆SNR

∥∥∥∥x̂θ(zt, t)− xϕ(λt)− SNR(s)
∆x

∆SNR

∥∥∥∥2
2

,

4

Published as a conference paper at ICLR 2024

where ∆x ≡ xϕ(λt) − xϕ(λs) and similarly for the SNR. In Appendix G, we also show that, as
T → ∞, the expression for the optimal σP tends to σQ and the additional term in the diffusion
loss arising from allowing σ2

P ̸= σ2
Q tends to 0. This result is in accordance with prior work on

variational approaches to stochastic processes (Archambeau et al., 2007). We have shown that, in
the continuous limit, the ELBO has to be an unweighted loss (in the sense that wt = 1). In the
remainder of the paper, we will use the continuous formulation and thus set wt = 1. It is of interest
to consider optimized weighted losses for a finite number of layers, however, we leave this for future
research.

The infinite-depth limit of the diffusion loss, L∞(x) ≡ limT→∞ LT (x), becomes (Appendix G):

L∞(x) = −1

2
Et∼U(0,1)Eq(zt|x)

[
dSNR(t)

dt

∥∥∥∥x̂θ(zt, t)− xϕ(λt)−
dxϕ(λt)

dλt

∥∥∥∥2
2

]
. (14)

L∞(x) thus is very similar to the standard continuous-time diffusion loss from VDM, though with
an additional gradient stemming from the mean shift term. In Section 4, we will develop a modified
generative model to counter this extra term. In Appendix H, we derive the stochastic differential
equation (SDE) describing the generative model of DiffEnc in the infinite-depth limit.

4 PARAMETERIZATION OF THE ENCODER AND GENERATIVE MODEL

We now turn to the parameterization of the encoder xϕ(λt). The reconstruction and latent losses
impose constraints on how the encoder should behave at the two ends of the hierarchy of latent vari-
ables: The likelihood we use is constructed such that the reconstruction loss, derived in Appendix D,
is minimized when xϕ(λ0) = x. Likewise, the latent loss is minimized by xϕ(λ1) = 0. In between,
for 0 < t < 1, a non-trivial encoder can improve the diffusion loss.

We propose two related parameterizations of the encoder: a trainable one, which we will denote by
xϕ, and a simpler, non-trainable one, xnt, where nt stands for non-trainable. Let yϕ(x, λt) be a
neural network with parameters ϕ, denoted yϕ(λt) for brevity. We define the trainable encoder as

xϕ(λt) = (1− σ2
t)x+ σ2

t yϕ(λt) = α2
tx+ σ2

t yϕ(λt) (15)

and the non-trainable encoder as

xnt(λt) = α2
tx . (16)

More motivation for these parameterizations can be found in Appendix I. The trainable encoder xϕ

is initialized with yϕ(λt) = 0, so at the start of training it acts as the non-trainable encoder xnt (but
differently from the VDM, which corresponds to the identity encoder).

To better fit the infinite-depth diffusion loss in Eq. (14), we define a new mean, µP , of the gener-
ative model pθ(zs|zt) which is a modification of Eq. (6). Concretely, we would like to introduce
a counterterm in µP that, when taking the continuous-limit, approximately counters dxϕ(λt)

dλt
. This

term should be expressed in terms of x̂θ(λt) rather than xϕ. For the non-trainable encoder, we have

dxnt(λt)

dλt
= α2

tσ
2
t x = σ2

t xnt(λt) .

Therefore, for the non-trainable encoder, we can use σ2
t x̂θ(λt) as an approximation of dxnt(λt)

dλt
.

The trainable encoder is more complicated because it also contains the derivative of yϕ that we
cannot as straightforwardly express in terms of x̂θ. We therefore choose to approximate dxϕ(λt)

dλt
the

same way as dxnt(λt)
dλt

. We leave it for future work to explore different strategies for approximating
this gradient. Since we use the same approximation for both encoders, in the following we will
write xϕ(λt) for both.

With the chosen counterterm, which in the continuous limit should approximately cancel out the
effect of the mean shift term in Eq. (13), the new mean, µP , is defined as:

µP =
αt|sσ

2
s

σ2
t

zt +
αsσ

2
t|s

σ2
t

x̂θ(λt) + αs(λs − λt)σ
2
t x̂θ(λt) (17)

5

Published as a conference paper at ICLR 2024

Table 1: Comparison of average bits per dimension (BPD) over 3 seeds on CIFAR-10 and ImageNet32 with
other work. Types of models are Continuous Flow (Flow), Variational Auto Encoders (VAE), AutoRegressive
models (AR) and Diffusion models (Diff). We only compare with results achieved without data augmentation.
DiffEnc with a trainable encoder improves performance of the VDM on CIFAR-10. Results on ImageNet
marked with ∗ are on the (Van Den Oord et al., 2016) version of ImageNet which is no longer officially
available. Results without ∗ are on the (Chrabaszcz et al., 2017) version of ImageNet, which is from the official
ImageNet website. Results from (Zheng et al., 2023) are without importance sampling, since importance
sampling could also be added to our approach.

Model Type CIFAR-10 ImageNet 32×32
Flow Matching OT (Lipman et al., 2022) Flow 2.99 3.53
Stochastic Int. (Albergo & Vanden-Eijnden, 2022) Flow 2.99 3.48∗

NVAE (Vahdat & Kautz, 2020) VAE 2.91 3.92∗

Image Transformer (Parmar et al., 2018) AR 2.90 3.77∗

VDVAE (Child, 2020) VAE 2.87 3.80∗

ScoreFlow (Song et al., 2021) Diff 2.83 3.76∗

Sparse Transformer (Child et al., 2019) AR 2.80 −
Reflected Diffusion Models (Lou & Ermon, 2023) Diff 2.68 3.74∗

VDM (Kingma et al., 2021) (10M steps) Diff 2.65 3.72∗

ARDM (Hoogeboom et al., 2021) AR 2.64 −
Flow Matching TN (Zheng et al., 2023) Flow 2.60 3.45

Our experiments (8M and 1.5M steps, 3 seed avg)
VDM with v-parameterization Diff 2.64 3.46
DiffEnc Trainable (ours) Diff 2.62 3.46

Similarly to above, we derive the infinite-depth diffusion loss when the encoder is parameterized by
Eq. (15) by taking the limit of LT for T → ∞ (see Appendix J):

L∞(x) = −1

2
Eϵ,t∼U [0,1]

[
deλt

dt

∥∥∥∥x̂θ(zt, λt) + σ2
t x̂θ(zt, λt)− xϕ(λt)−

dxϕ(λt)

dλt

∥∥∥∥2
2

]
, (18)

where zt = αtxt + σtϵ with ϵ ∼ N (0, I).

v-parameterization. In our experiments we use the v-prediction parameterization (Salimans &
Ho, 2022) for our loss, which means that for the trainable encoder we use the loss

L∞(x) = −1

2
Eϵ,t∼U [0,1]

[
λ′
tα

2
t

∥∥∥∥vt − v̂θ + σt

(
x̂θ(λt)− xϕ(λt) + yϕ(λt)−

dyϕ(λt)

dλt

)∥∥∥∥2
2

]
(19)

and for the non-trainable encoder, we use

L∞(x) = −1

2
Eϵ,t∼U [0,1]

[
λ′
tα

2
t ∥vt − v̂θ + σt (x̂θ(λt)− xϕ(λt))∥22

]
. (20)

Derivations of Eqs. (19) and (20) are in Appendix K. We note that when using the v-parametrization,
as t tends to 0, the loss becomes the same as for the ϵ-prediction parameterization. On the other hand,
when t tends to 1, the loss has a different behavior depending on the encoder: For the trainable
encoder, we have that v̂θ ≈ dyϕ(λt)

dλt
, suggesting that the encoder can in principle guide the diffusion

model. See Appendix L for a more detailed discussion.

5 EXPERIMENTS

In this section, we present our experimental setup and discuss the results.

6

Published as a conference paper at ICLR 2024

Table 2: Comparison of the different components of the loss for DiffEnc-32-4 and VDMv-32 with fixed noise
schedule on CIFAR-10. All quantities are in bits per dimension (BPD) with standard error over 3 seeds, and
models are trained for 8M steps.

Model Total Latent Diffusion Reconstruction

VDMv-32 2.641± 0.003 0.0012± 0.0 2.629± 0.003 0.01± (4× 10−6)
DiffEnc-32-4 2.620± 0.006 0.0007± (3× 10−6) 2.609± 0.006 0.01± (4× 10−6)

Figure 3: Comparison of unconditional samples of models. The small model struggles to make realistic images,
while the large models are significantly better, as expected. For some images, details differ between the two
large models, for others they disagree on the main element of the image. An example where the models make
two different cars in column 9. An example where DiffEnc-32-4 makes a car and VDMv-32 makes a frog in
column 7.

Experimental Setup. We evaluated variants of DiffEnc against a standard VDM baseline on
MNIST (LeCun et al., 1998), CIFAR-10 (Krizhevsky et al., 2009) and ImageNet32 (Chrabaszcz
et al., 2017). The learned prediction function is implemented as a U-Net (Ronneberger et al., 2015)
consisting of convolutional ResNet blocks without any downsampling, following VDM (Kingma
et al., 2021). The trainable encoder in DiffEnc is implemented with the same overall U-Net archi-
tecture, but with downsampling to resolutions 16x16 and 8x8. We will denote the models trained
in our experiments by VDMv-n, DiffEnc-n-m, and DiffEnc-n-nt, where: VDMv is a VDM model
with v parameterization, n and m are the number of ResNet blocks in the “downsampling” part of
the v-prediction U-Net and of the encoder U-Net respectively, and nt indicates a non-trainable en-
coder for DiffEnc. On MNIST and CIFAR-10, we trained VDMv-8, DiffEnc-8-2, and DiffEnc-8-nt
models. On CIFAR-10 we also trained DiffEnc-8-4, VDMv-32 and DiffEnc-32-4. On ImageNet32,
we trained VDMv-32 and DiffEnc-32-8.

We used a linear log SNR noise schedule: λt = λmax − (λmax − λmin) · t. For the large models
(VDMv-32, DiffEnc-32-4 and DiffEnc-32-8), we fixed the endpoints, λmax and λmin, to the ones
Kingma et al. (2021) found were optimal. For the small models (VDMv-8, DiffEnc-8-2 and DiffEnc-
8-nt), we also experimented with learning the SNR endpoints. We trained all our models with either
3 or 5 seeds depending on the computational cost of the experiments. See more details on model
structure and training in Appendix Q and on datasets in Appendix R.

Results. As we see in Table 1 the DiffEnc-32-4 model achieves a lower BPD score than previous
non-flow work and the VDMv-32 on CIFAR-10. Since we do not use the encoder when sampling,
this result means that the encoder is useful for learning a better generative model—with higher
likelihoods—while sampling time is not adversely affected. We also see that VDMv-32 after 8M
steps achieved a better likelihood bound, 2.64 BPD, than the result reported by Kingma et al. (2021)
for the ϵ-parameterization after 10M steps, 2.65 BPD. Thus, the v-parameterization gives an im-
proved likelihood compared to ϵ-parameterization. Table 2 shows that the difference in the total loss
comes mainly from the improvement in diffusion loss for DiffEnc-32-4, which points to the encoder
being helpful in the diffusion process. We provide Fig. 2, since it can be difficult to see what the
encoder is doing directly from the encodings. From the heatmaps, we see that the encoder has learnt
to do something different from how it was initialised and that it acts differently over t, making finer
changes in earlier timesteps and more global changes in later timesteps. See Appendix W for more
details. We note that the improvement in total loss is significant, since we get a p-value of 0.03 for

7

Published as a conference paper at ICLR 2024

Table 3: Comparison of the different components of the loss for DiffEnc-8-2, DiffEnc-8-nt and VDMv-8 on
CIFAR-10. All quantities are in bits per dimension (BPD), with standard error, 5 seeds, 2M steps. Noise
schedules are either fixed or with trainable endpoints.

Model Noise Total Latent Diffusion Reconstruction

VDMv-8 fixed 2.783± 0.004 0.0012± 0.0 2.772± 0.004 0.010± (2× 10−5)
trainable 2.776± 0.0006 0.0033± (2× 10−5) 2.770± 0.0006 0.003± (5× 10−5)

DiffEnc-8-2 fixed 2.783± 0.004 0.0006± (3× 10−5) 2.772± 0.004 0.010± (3× 10−6)
trainable 2.783± 0.003 0.0034± (2× 10−5) 2.777± 0.003 0.003± (5× 10−5)

DiffEnc-8-nt fixed 2.789± 0.004 (1.6× 10−5)± 0.0 2.779± 0.004 0.010± (1× 10−5)
trainable 2.786± 0.004 0.0009± (1× 10−5) 2.782± 0.004 0.003± (3× 10−5)

a t-test on whether the mean loss over random seeds is lower for DiffEnc-32-4 than for VDMv-32.
Some samples from DiffEnc-8-2, DiffEnc-32-4, and VDMv-32 are shown in Fig. 3. More sam-
ples from DiffEnc-32-4 and VDMv-32 in Appendix T. See Fig. 4 in the appendix for examples of
encoded MNIST images. DiffEnc-32-4 and VDMv-32 have similar FID scores as shown in Table 8.

For all models with a trainable encoder and fixed noise schedule, we see that the diffusion loss is the
same or better than the VDM baseline (see Tables 2, 3 and 4 to 7). We interpret this as the trainable
encoder being able to preserve the most important signal as t → 1. This is supported by the results
we get from the non-trainable encoder, which only removes signal, where the diffusion loss is always
worse than the baseline. We also see that, for a fixed noise schedule, the latent loss of the trainable
encoder model is always better than the VDM. When using a fixed noise schedule, the minimal
and maximal SNR is set to ensure small reconstruction and latent losses. It is therefore natural that
the diffusion loss (the part dependent on how well the model can predict the noisy image), is the
part that dominates the total loss. This means that a lower latent loss does not necessarily have a
considerable impact on the total loss: For fixed noise schedule, the DiffEnc-8-2 models on MNIST
and CIFAR-10 and the DiffEnc-32-8 model on ImageNet32 all have smaller latent loss than their
VDMv counterparts, but since the diffusion loss is the same, the total loss does not show a significant
change. However, Lin et al. (2023) pointed out that a high latent loss might lead to poor generated
samples. Therefore, it might be relevant to train a model which has a lower latent loss than another
model, if it can achieve the same diffusion loss. From Tables 3 and 4, we see that this is possible
using a fixed noise schedule and a small trainable encoder. For results on a larger encoder with a
small model see Appendix U.

We only saw an improvement in diffusion loss on the large models trained on CIFAR-10, and not
on the small models. Since ImageNet32 is more complex than CIFAR-10, and we did not see an
improvement in diffusion loss for the models on ImageNet32, a larger model might be needed on
this dataset to see an improvement in diffusion loss. This would be interesting to test in future work.

For the trainable noise schedule, the mean total losses of the models are all lower than or equal
to their fixed-schedule counterparts. Thus, all models can make some use use of this additional
flexibility. For the fixed noise schedule, the reconstruction loss is the same for all three types of
models, due to how our encoder is parameterized.

6 RELATED WORK

DDPM: Sohl-Dickstein et al. (2015) defined score-based diffusion models inspired by nonequi-
librium thermodynamics. Ho et al. (2020) showed that diffusion models 1) are equivalent to score-
based models and 2) can be viewed as hierarchical variational autoencoders with a diffusion encoder
and parameter sharing in the generative hierarchy. Song et al. (2020b) defined diffusion models us-
ing an SDE.

DDPM with encoder: To the best of our knowledge, only few previous papers consider modifications
of the diffusion process encoder. Implicit non-linear diffusion models (Kim et al., 2022b) use an
invertible non-linear time-dependent map, h, to bring the data into a latent space where they do linear
diffusion. h can be compared to our encoder, however, we do not enforce the encoder to be invertible.
Blurring diffusion models (Hoogeboom & Salimans, 2022; Rissanen et al., 2022) combines the

8

Published as a conference paper at ICLR 2024

added noise with a blurring of the image dependent on the timestep. This blurring can be seen as
a Gaussian encoder with a mean which is linear in the data, but with a not necessarily iid noise.
The encoder parameters are set by the heat dissipation basis (the discrete cosine transform) and
time. Our encoder is a learned non-linear function of the data and time and therefore more general
than blurring. Daras et al. (2022) propose introducing a more general linear corruption process,
where both blurring and masking for example can be added before the noise. Latent diffusion
(Rombach et al., 2022) uses a learned depth-independent encoder/decoder to map deterministically
between the data and a learned latent space and perform the diffusion in the latent space. Abstreiter
et al. (2021) and Preechakul et al. (2022) use an additional encoder that computes a small semantic
representation of the image. This representation is then used as conditioning in the diffusion model
and is therefore orthogonal to our work. Singhal et al. (2023) propose to learn the noising process:
for zt = αtx+ βtϵ, they propose to learn αt and βt.

Concurrent work: Bartosh et al. (2023) also propose to add a time-dependent transformation to the
data in the diffusion model. However, there is a difference in the target for the predictive function,
since in our case x̂θ predicts the transformed data, xϕ, while in their case x̂θ predicts data x′

such that the transformation of x′, fϕ(x′, t), is equal to the transformation of the real data fϕ(x, t).
This might, according to their paper, make the prediction model learn something within the data
distribution even for t close to 1.

Learned generative process variance: Both Nichol & Dhariwal (2021) and Dhariwal & Nichol
(2021) learn the generative process variance, σP . Dhariwal & Nichol (2021) observe that it allows
for sampling with fewer steps without a large drop in sample quality and Nichol & Dhariwal (2021)
argue that it could have a positive effect on the likelihood. Neither of these works are in a continuous-
time setting, which is the setting we derived our theoretical results for.

7 LIMITATIONS AND FUTURE WORK

As shown above, adding a trained time-dependent encoder can improve the likelihood of a diffusion
model, at the cost of a longer training time. Although our approach does not increase sampling
time, it must be noted that sampling is still significantly slower than, e.g., for generative adversarial
networks (Goodfellow et al., 2014). Techniques for more efficient sampling in diffusion models
(Watson et al., 2021; Salimans & Ho, 2022; Song et al., 2020a; Lu et al., 2022; Berthelot et al.,
2023; Luhman & Luhman, 2021; Liu et al., 2022) can be directly applied to our method.

Introducing the trainable encoder opens up an interesting new direction for representation learning.
It should be possible to distill the time-dependent transformations to get smaller time-dependent
representations of the images. It would be interesting to see what such representations could tell us
about the data. It would also be interesting to explore whether adding conditioning to the encoder
will lead to different transformations for different classes of images.

As shown in (Theis et al., 2015) likelihood and visual quality of samples are not directly linked. Thus
it is important to choose the application of the model based on the metric it was trained to optimize.
Since we show that our model can achieve good results when optimized to maximize likelihood, and
likelihood is important in the context of semi-supervised learning, it would be interesting to use this
kind of model for classification in a semi-supervised setting.

8 CONCLUSION

We presented DiffEnc, a generalization of diffusion models with a time-dependent encoder in the
diffusion process. DiffEnc increases the flexibility of diffusion models while retaining the same
computational requirements for sampling. Moreover, we theoretically derived the optimal variance
of the generative process and proved that, in the continuous-time limit, it must be equal to the
diffusion variance for the ELBO to be well-defined. We defer the investigation of its application to
sampling or discrete-time training to future work. Empirically, we showed that DiffEnc can improve
likelihood on CIFAR-10, and that the data transformation learned by the encoder is non-trivially
dependent on the timestep. Interesting avenues for future research include applying improvements
to diffusion models that are orthogonal to our proposed method, such as latent diffusion models,
model distillation, classifier-free guidance, and different sampling strategies.

9

Published as a conference paper at ICLR 2024

ETHICS STATEMENT

Since diffusion models have been shown to memorize training examples and since it is possible
to extract these examples (Carlini et al., 2023), diffusion models pose a privacy and copyright risk
especially if trained on data scraped from the internet. To the best of our knowledge our work neither
improves nor worsens these security risks. Therefore, work still remains on how to responsibly
deploy diffusion models with or without a time-dependent encoder.

REPRODUCIBILITY STATEMENT

The presented results are obtained using the setup described in Section 5. More details on models
and training are discussed in Appendix Q. Code can be found on GitHub1. The Readme includes a
description of setting up the environment with correct versioning. Scripts are supplied for recreating
all results present in the paper. The main equations behind these results are Eqs. (19) and (20), which
are the diffusion losses used when including our trainable and non-trainable encoder, respectively.

ACKNOWLEDGMENTS

This work was supported by the Danish Pioneer Centre for AI, DNRF grant number P1, and by
the Ministry of Education, Youth and Sports of the Czech Republic through the e-INFRA CZ
(ID:90254). OW’s work was funded in part by the Novo Nordisk Foundation through the Center
for Basic Machine Learning Research in Life Science (NNF20OC0062606). AC thanks the ELLIS
PhD program for support.

REFERENCES

Korbinian Abstreiter, Sarthak Mittal, Stefan Bauer, Bernhard Schölkopf, and Arash Mehrjou.
Diffusion-based representation learning. arXiv preprint arXiv:2105.14257, 2021.

Michael S Albergo and Eric Vanden-Eijnden. Building normalizing flows with stochastic inter-
polants. arXiv preprint arXiv:2209.15571, 2022.

Cedric Archambeau, Dan Cornford, Manfred Opper, and John Shawe-Taylor. Gaussian process
approximations of stochastic differential equations. In Gaussian Processes in Practice, pp. 1–16.
PMLR, 2007.

Grigory Bartosh, Dmitry Vetrov, and Christian A. Naesseth. Neural diffusion models, 2023.

David Berthelot, Arnaud Autef, Jierui Lin, Dian Ang Yap, Shuangfei Zhai, Siyuan Hu, Daniel
Zheng, Walter Talbot, and Eric Gu. Tract: Denoising diffusion models with transitive closure
time-distillation. arXiv preprint arXiv:2303.04248, 2023.

Nicolas Carlini, Jamie Hayes, Milad Nasr, Matthew Jagielski, Vikash Sehwag, Florian Tramer, Borja
Balle, Daphne Ippolito, and Eric Wallace. Extracting training data from diffusion models. In 32nd
USENIX Security Symposium (USENIX Security 23), pp. 5253–5270, 2023.

Nanxin Chen, Yu Zhang, Heiga Zen, Ron J Weiss, Mohammad Norouzi, and William Chan. Wave-
grad: Estimating gradients for waveform generation. arXiv preprint arXiv:2009.00713, 2020.

Rewon Child. Very deep vaes generalize autoregressive models and can outperform them on images.
arXiv preprint arXiv:2011.10650, 2020.

Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences with sparse
transformers. arXiv preprint arXiv:1904.10509, 2019.

Patryk Chrabaszcz, Ilya Loshchilov, and Frank Hutter. A downsampled variant of imagenet as an
alternative to the cifar datasets. arXiv preprint arXiv:1707.08819, 2017.

Giannis Daras, Mauricio Delbracio, Hossein Talebi, Alexandros G Dimakis, and Peyman Milanfar.
Soft diffusion: Score matching for general corruptions. arXiv preprint arXiv:2209.05442, 2022.

1https://github.com/bemigini/DiffEnc

10

https://github.com/bemigini/DiffEnc

Published as a conference paper at ICLR 2024

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat GANs on image synthesis. Ad-
vances in neural information processing systems, 34:8780–8794, 2021.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in neural information
processing systems, 27, 2014.

William Harvey, Saeid Naderiparizi, Vaden Masrani, Christian Weilbach, and Frank Wood. Flexible
diffusion modeling of long videos. Advances in Neural Information Processing Systems, 35:
27953–27965, 2022.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models.
In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances
in Neural Information Processing Systems, volume 33, pp. 6840–6851. Curran Asso-
ciates, Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/file/
4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf.

Jonathan Ho, William Chan, Chitwan Saharia, Jay Whang, Ruiqi Gao, Alexey Gritsenko, Diederik P
Kingma, Ben Poole, Mohammad Norouzi, David J Fleet, et al. Imagen video: High definition
video generation with diffusion models. arXiv preprint arXiv:2210.02303, 2022.

Emiel Hoogeboom and Tim Salimans. Blurring diffusion models. arXiv preprint arXiv:2209.05557,
2022.

Emiel Hoogeboom, Alexey A Gritsenko, Jasmijn Bastings, Ben Poole, Rianne van den Berg, and
Tim Salimans. Autoregressive diffusion models. arXiv preprint arXiv:2110.02037, 2021.

Emiel Hoogeboom, Jonathan Heek, and Tim Salimans. simple diffusion: End-to-end diffusion for
high resolution images. arXiv preprint arXiv:2301.11093, 2023.

Tobias Höppe, Arash Mehrjou, Stefan Bauer, Didrik Nielsen, and Andrea Dittadi. Diffusion models
for video prediction and infilling. Transactions on Machine Learning Research, 2022.

Qingqing Huang, Daniel S Park, Tao Wang, Timo I Denk, Andy Ly, Nanxin Chen, Zhengdong
Zhang, Zhishuai Zhang, Jiahui Yu, Christian Frank, et al. Noise2music: Text-conditioned music
generation with diffusion models. arXiv preprint arXiv:2302.03917, 2023.

Myeonghun Jeong, Hyeongju Kim, Sung Jun Cheon, Byoung Jin Choi, and Nam Soo Kim. Diff-tts:
A denoising diffusion model for text-to-speech. arXiv preprint arXiv:2104.01409, 2021.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
based generative models. Advances in Neural Information Processing Systems, 35:26565–26577,
2022.

Dongjun Kim, Yeongmin Kim, Wanmo Kang, and Il-Chul Moon. Refining generative process with
discriminator guidance in score-based diffusion models. arXiv preprint arXiv:2211.17091, 2022a.

Dongjun Kim, Byeonghu Na, Se Jung Kwon, Dongsoo Lee, Wanmo Kang, and Il-chul Moon. Max-
imum likelihood training of implicit nonlinear diffusion model. Advances in Neural Information
Processing Systems, 35:32270–32284, 2022b.

Diederik Kingma and Ruiqi Gua. Vdm++: Variational diffusion models for high-quality synthesis.
arXiv preprint arXiv:2303.00848, 2023. URL https://arxiv.org/abs/2303.00848.

Diederik Kingma, Tim Salimans, Ben Poole, and Jonathan Ho. Variational diffusion models. In
M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), Ad-
vances in Neural Information Processing Systems, volume 34, pp. 21696–21707. Curran As-
sociates, Inc., 2021. URL https://proceedings.neurips.cc/paper/2021/file/
b578f2a52a0229873fefc2a4b06377fa-Paper.pdf.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

11

https://proceedings.neurips.cc/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf
https://arxiv.org/abs/2303.00848
https://proceedings.neurips.cc/paper/2021/file/b578f2a52a0229873fefc2a4b06377fa-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/b578f2a52a0229873fefc2a4b06377fa-Paper.pdf

Published as a conference paper at ICLR 2024

Zhifeng Kong, Wei Ping, Jiaji Huang, Kexin Zhao, and Bryan Catanzaro. Diffwave: A versatile
diffusion model for audio synthesis. arXiv preprint arXiv:2009.09761, 2020.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Shanchuan Lin, Bingchen Liu, Jiashi Li, and Xiao Yang. Common diffusion noise schedules and
sample steps are flawed. arXiv preprint arXiv:2305.08891, 2023.

Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
for generative modeling. arXiv preprint arXiv:2210.02747, 2022.

Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and
transfer data with rectified flow. arXiv preprint arXiv:2209.03003, 2022.

Aaron Lou and Stefano Ermon. Reflected diffusion models. arXiv preprint arXiv:2304.04740, 2023.

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver: A fast
ode solver for diffusion probabilistic model sampling in around 10 steps. Advances in Neural
Information Processing Systems, 35:5775–5787, 2022.

Eric Luhman and Troy Luhman. Knowledge distillation in iterative generative models for improved
sampling speed. arXiv preprint arXiv:2101.02388, 2021.

Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models.
In International Conference on Machine Learning, pp. 8162–8171. PMLR, 2021.

Niki Parmar, Ashish Vaswani, Jakob Uszkoreit, Lukasz Kaiser, Noam Shazeer, Alexander Ku, and
Dustin Tran. Image transformer. In International conference on machine learning, pp. 4055–
4064. PMLR, 2018.

Konpat Preechakul, Nattanat Chatthee, Suttisak Wizadwongsa, and Supasorn Suwajanakorn. Dif-
fusion autoencoders: Toward a meaningful and decodable representation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10619–10629, 2022.

Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation and ap-
proximate inference in deep generative models. In International conference on machine learning,
pp. 1278–1286. PMLR, 2014.

Severi Rissanen, Markus Heinonen, and Arno Solin. Generative modelling with inverse heat dissi-
pation. arXiv preprint arXiv:2206.13397, 2022.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684–10695, 2022.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomed-
ical image segmentation. In Medical Image Computing and Computer-Assisted Intervention–
MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceed-
ings, Part III 18, pp. 234–241. Springer, 2015.

Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion models. arXiv
preprint arXiv:2202.00512, 2022.

Flavio Schneider, Zhijing Jin, and Bernhard Schölkopf. Mo\ˆ usai: Text-to-music generation with
long-context latent diffusion. arXiv preprint arXiv:2301.11757, 2023.

Raghav Singhal, Mark Goldstein, and Rajesh Ranganath. Where to diffuse, how to diffuse, and how
to get back: Automated learning for multivariate diffusions. arXiv preprint arXiv:2302.07261,
2023.

12

Published as a conference paper at ICLR 2024

Samarth Sinha and Adji Bousso Dieng. Consistency regularization for variational auto-encoders.
Advances in Neural Information Processing Systems, 34:12943–12954, 2021.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International Conference on Machine Learn-
ing, pp. 2256–2265. PMLR, 2015.

Casper Kaae Sønderby, Tapani Raiko, Lars Maaløe, Søren Kaae Sønderby, and Ole Winther. Ladder
variational autoencoders. Advances in neural information processing systems, 29, 2016.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In Interna-
tional Conference on Learning Representations, 2020a.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
Advances in neural information processing systems, 32, 2019.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. arXiv preprint
arXiv:2011.13456, 2020b.

Yang Song, Conor Durkan, Iain Murray, and Stefano Ermon. Maximum likelihood training of score-
based diffusion models. Advances in Neural Information Processing Systems, 34:1415–1428,
2021.

Lucas Theis, Aäron van den Oord, and Matthias Bethge. A note on the evaluation of generative
models. arXiv preprint arXiv:1511.01844, 2015.

Arash Vahdat and Jan Kautz. Nvae: A deep hierarchical variational autoencoder. Advances in neural
information processing systems, 33:19667–19679, 2020.

Arash Vahdat, Karsten Kreis, and Jan Kautz. Score-based generative modeling in latent space.
Advances in Neural Information Processing Systems, 34:11287–11302, 2021.

Aäron Van Den Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. Pixel recurrent neural networks.
In International conference on machine learning, pp. 1747–1756. PMLR, 2016.

Daniel Watson, Jonathan Ho, Mohammad Norouzi, and William Chan. Learning to efficiently sam-
ple from diffusion probabilistic models. arXiv preprint arXiv:2106.03802, 2021.

Guangcong Zheng, Shengming Li, Hui Wang, Taiping Yao, Yang Chen, Shouhong Ding, and Xi Li.
Entropy-driven sampling and training scheme for conditional diffusion generation. In European
Conference on Computer Vision, pp. 754–769. Springer, 2022.

Kaiwen Zheng, Cheng Lu, Jianfei Chen, and Jun Zhu. Improved techniques for maximum likelihood
estimation for diffusion odes. arXiv preprint arXiv:2305.03935, 2023.

13

Published as a conference paper at ICLR 2024

Appendix

Table of Contents
A Overview of diffusion model with and without encoder 15

B Proof that zt given x has the correct form 15

C Proof that the reverse process has the correct form 16

D The latent and reconstruction loss 17
D.1 Latent Loss . 17
D.2 Reconstruction Loss . 17

E Diffusion loss 18
E.1 Assuming non-equal variances in the diffusion and generative processes 18
E.2 Assuming equal variances in the diffusion and generative processes 19

F Optimal variance for the generative model 19

G Diffusion loss in continuous time without counterterm 19

H DiffEnc as an SDE 22

I Motivation for choice of parameterization for the encoder 23

J Continuous-time limit of the diffusion loss with an encoder 23
J.1 Rewriting the loss using SNR . 23
J.2 Taking the limit . 24

K Using the v Parameterization in the DiffEnc Loss 25
K.1 Rewriting the v parameterization . 25
K.2 v parameterization in continuous diffusion loss 26
K.3 v parameterization of continuous diffusion loss with encoder 26

L Considering loss for early and late timesteps 27

M Detailed Loss Comparison for DiffEnc and VDMv on MNIST 28

N Detailed Loss Comparison for DiffEnc-32-2 and VDMv-32 on CIFAR-10 28

O Detailed Loss Comparison for DiffEnc and VDMv on ImageNet32 29

P Further Future Work 29

Q Model Structure and Training 29

R Datasets 30

S Encoder examples on MNIST 30

T Samples from models 30

U Using a Larger Encoder for a Small Diffusion Model 31

V FID Scores 32

W Sum heatmap of all timesteps 32

14

Published as a conference paper at ICLR 2024

A OVERVIEW OF DIFFUSION MODEL WITH AND WITHOUT ENCODER

The typical diffusion approach can be illustrated with the following diagram:

zt ... zs ... z0 x

p(zs|zt)

q(zt|zs)

q(z0|x)

q(zt|x)

q(zs|x)

where 0 ≤ s < t ≤ 1. We introduce an encoder fϕ : X × [0, 1] → Y with parameters ϕ, that maps
x and a time t ∈ [0, 1] to a latent space Y . In this work, Y has the same dimensions as the original
image space. For brevity, we denote the encoded data as xt ≡ fϕ(x, t). The following diagram
illustrates the process including the encoder:

zt ... zs ... z0

xt ... xs ... x0 x

p(zs|zt)

q(zt|zs)

q(zt|xt) q(zs|xs) q(z0|x0)

fϕ(x,0)

fϕ(x,s)

fϕ(x,t)

B PROOF THAT zt GIVEN x HAS THE CORRECT FORM

Proof that we can write
q(zt|x) = N (αtxt, σ

2
t I) (21)

for any t when using the definition q(z0|x0) = q(z0|x) and Eq. (11).

Proof. By induction:

The definition of q(z0|x0) = q(z0|x) gives us our base case.

To take a step, we assume q(zs|xs) = q(zs|x) can be written as

q(zs|x) = N (αsxs, σ
2
sI) (22)

and take a t > s.

Then a sample from q(zs|x) can be written as
zs = αsxs + σsϵs (23)

where ϵs is from a standard normal distribution, N (0, I) and a sample from q(zt|zs,xt,xs) =
q(zt|zs,x) can be written as

zt = αt|szs + αt(xt − xs) + σt|sϵt|s (24)

where ϵt|s is from a standard normal distribution, N (0, I). Using the definition of zs, we get

zt = αt|s(αsxs + σsϵs) + αt(xt − xs) + σt|sϵt|s

= αtxs + αt|sσsϵs + αtxt − αtxs + σt|sϵt|s

= αtxt + αt|sσsϵs + σt|sϵt|s

(25)

15

Published as a conference paper at ICLR 2024

Since αt|sσsϵs and σt|sϵt|s describe two normal distributions, a sample from the sum can be written
as √

α2
t|sσ

2
s + σ2

t|sϵt (26)

where ϵt is from a standard normal distribution, N (0, I). So we can write our sample zt as

zt = αtxt +
√
α2
t|sσ

2
s + σ2

t|sϵt

= αtxt +
√
α2
t|sσ

2
s + σ2

t − α2
t|sσ

2
sϵt

= αtxt + σtϵt

(27)

Thus we get
q(zt|x) = N (αtxt, σ

2
t I) (28)

for any 0 ≤ t ≤ 1. We have defined going from x to zt as going through f .

C PROOF THAT THE REVERSE PROCESS HAS THE CORRECT FORM

To see that
q(zs|zt,xt,xs) = N (µQ, σ

2
QI) (29)

with

σ2
Q =

σ2
t|sσ

2
s

σ2
t

(30)

and

µQ =
αt|sσ

2
s

σ2
t

zt +
αsσ

2
t|s

σ2
t

xt + αs(xs − xt) (31)

is the right form for the reverse process, we take a sample zs from q(zs|zt,xt,xs) and a sample zt
from q(zt|x). These have the forms:

zt = αtxt + σtϵt (32)

zs =
αt|sσ

2
s

σ2
t

zt +
αsσ

2
t|s

σ2
t

xt + αs(xs − xt) + σ2
QϵQ (33)

We show that given zt we get zs from q(zs|x) as in Eq. (10).

zs =
αt|sσ

2
s

σ2
t

(αtxt + σtϵt) +
αsσ

2
t|s

σ2
t

xt + αs(xs − xt) + σ2
QϵQ (34)

=
αtαt|sσ

2
s

σ2
t

xt +
αs

(
σ2
t − α2

t|sσ
2
s

)
σ2
t

xt + αs(xs − xt) +
αt|sσ

2
s

σ2
t

σtϵt + σ2
QϵQ (35)

(36)

Since αt = αsαt|s we have

zs =
αsα

2
t|sσ

2
s

σ2
t

xt +
αs

(
σ2
t − α2

t|sσ
2
s

)
σ2
t

xt + αs(xs − xt) +
αt|sσ

2
s

σ2
t

σtϵt + σ2
QϵQ (37)

=
αsα

2
t|sσ

2
s

σ2
t

xt −
αsα

2
t|sσ

2
s

σ2
t

xt +
αsσ

2
t

σ2
t

xt + αs(xs − xt) +
αt|sσ

2
s

σ2
t

σtϵt + σ2
QϵQ (38)

= αsxt + αs(xs − xt) +
αt|sσ

2
s

σ2
t

σtϵt + σ2
QϵQ (39)

= αsxs +
αt|sσ

2
s

σ2
t

σtϵt + σ2
QϵQ (40)

(41)

16

Published as a conference paper at ICLR 2024

We now use that σ2
Q =

σ2
t|sσ

2
s

σ2
t

and the sum rule of variances, σ2
X+Y = σ2

X + σ2
Y + 2COV (X,Y),

where the covariance is zero since ϵt and ϵQ are independent.

zs = αsxs +
αt|sσ

2
s

σ2
t

σtϵt + σ2
QϵQ (42)

= αsxs +
αt|sσ

2
s

σt
ϵt +

σt|sσs

σt
ϵQ (43)

= αsxs +

√
α2
t|sσ

4
s

σ2
t

+
σ2
t|sσ

2
s

σ2
t

ϵs (44)

= αsxs +

√
α2
t|sσ

4
s

σ2
t

+
(σ2

t − α2
t|sσ

2
s)σ

2
s

σ2
t

ϵs (45)

= αsxs +

√
σ2
t σ

2
s

σ2
t

ϵs (46)

= αsxs + σsϵs (47)

Where ϵs is from a standard Gaussian distribution.

D THE LATENT AND RECONSTRUCTION LOSS

D.1 LATENT LOSS

Since q(z1|x) = N (α1x1, σ
2
1I) and p(z1) = N (0, I), the latent loss, DKL(q(z1|x)||p(z1)), is the

KL divergence of two normal distributions. For normal distributions N0,N1 with means µ0,µ1 and
variances Σ0,Σ1, the KL divergence between them is given by

DKL(N0||N1) =
1

2

(
tr
(
Σ−1

1 Σ0

)
− d+ (µ1 − µ0)

TΣ−1
1 (µ1 − µ0) + log

(
detΣ1

detΣ0

))
, (48)

where d is the dimension. Therefore we have:

DKL(q(z1|x)||p(z1)) =
1

2

(
tr
(
σ2
1I
)
− d+ ||0− α1x1||2 + log

(
1

detσ2
1I

))
(49)

=
1

2

(
||α1x1||2 + d

(
σ2
1 − log σ2

1 − 1
))

(50)

=
1

2

(
d∑

i=1

(
α2
1x

2
1,i + σ2

1 − log σ2
1 − 1

))
. (51)

The last line is used in our implementation.

D.2 RECONSTRUCTION LOSS

The reconstruction loss is given by

L0 = Eq(z0|x) [− log p(x|z0)] . (52)

We make the simplifying assumption that p(x|z0) factorizes over the elements of x. Let xi be the
value of the ith dimension (i.e., pixel) of x and z0,i the corresponding pixel value of z0:

p(x|z0) =
∏
i

p(xi|z0,i) . (53)

In our case of images, we assume the pixel values are independent given z0 and only dependent on
the matching latent component. We construct p(xi|z0,i) from the variational distribution noting that

q(x|z0) =
q(z0|x)q(x)

q(z0)
(54)

17

Published as a conference paper at ICLR 2024

and for high enough SNR at t = 0, q(z0|x) will be very peaked around z0 = α0x. So we can
choose

p(xi|z0,i) ∝ q(z0,i|xi) = N (z0,i;α0xi, σ
2
0) , (55)

where we normalize over all possible values of xi. That is, let v ∈ {0, ..., 255} be the possible pixel
values of xi, then for each v we calculate the density N (α0v, σ

2
0) at z0,i and then normalise over v

to get a categorical distribution p(xi|z0,i) that sums to 1.

E DIFFUSION LOSS

The diffusion loss is

LT (x) =

T∑
i=1

Eq(zt(i)|x)DKL(q(zs(i)|zt(i),x)||pθ(zs(i)|zt(i))) , (56)

where s(i), t(i) are the values of 0 ≤ s < t ≤ 1 corresponding to the ith timestep.

E.1 ASSUMING NON-EQUAL VARIANCES IN THE DIFFUSION AND GENERATIVE PROCESSES

In this section we let

pθ(zs|zt) = N (µP , σ
2
P I) (57)

q(zs|zt,x) = N (µQ, σ
2
QI) , (58)

where we might have σP ̸= σQ. We then get for the KL divergence, where d is the dimension,

DKL(q(zs|zt,x)∥pθ(zs|zt)) = DKL(N (zs;µQ, σ
2
QI)∥N (zs;µP , σ

2
P I))

=
1

2

(
tr

(
σ2
Q

σ2
P

I

)
− d+ (µP − µQ)

T 1

σ2
P

I(µP − µQ) + log
detσ2

P I

detσ2
QI

)

=
1

2

(
d
σ2
Q

σ2
P

− d+
1

σ2
P

∥µP − µQ∥22 + log
(σ2

P)
d

(σ2
Q)

d

)

=
d

2

(
σ2
Q

σ2
P

− 1 + log
σ2
P

σ2
Q

)
+

1

2σ2
P

∥µP − µQ∥22 . (59)

If we define

wt =
σ2
Q

σ2
P

(60)

Then we can write the KL divergence as

DKL(q(zs|zt,x)∥pθ(zs|zt)) =
d

2
(wt − 1− logwt) +

wt

2σ2
Q

∥µP − µQ∥22 (61)

Using our definition of µP

µP =
αt|sσ

2
s

σ2
t

zt +
αsσ

2
t|s

σ2
t

x̂θ(λt) + αs(λs − λt)(σ
2
t x̂θ(λt)) (62)

we can rewrite the second term of the loss as:
wt

σ2
Q

∥µP − µQ∥22 (63)

=
wt

2σ2
Q

∥∥∥∥∥αsσ
2
t|s

σ2
t

(x̂θ(t)− xϕ(λt)) + αs

(
(λs − λt)σ

2
t x̂θ(t)− (xϕ(λs)− xϕ(λt))

)∥∥∥∥∥
2

2

,

Where we have dropped the dependence on λ from our notation of x̂θ(λt) and xϕ(λt), to make the
equation fit on the page.

18

Published as a conference paper at ICLR 2024

E.2 ASSUMING EQUAL VARIANCES IN THE DIFFUSION AND GENERATIVE PROCESSES

If we let

pθ(zs|zt) = N (µP , σ
2
QI) (64)

q(zs|zt,x) = N (µQ, σ
2
QI) (65)

we get for the KL divergence

DKL(q(zs|zt,x)∥pθ(zs|zt)) = DKL(N (zs;µQ, σ
2
QI)∥N (zs;µP , σ

2
QI))

=
1

2σ2
Q

∥µP − µQ∥22

=
1

2σ2
Q

∥∥∥∥∥αsσ
2
t|s

σ2
t

(x̂θ(t)− xϕ(λt)) + αs

(
(λs − λt)σ

2
t x̂θ(t)− (xϕ(λs)− xϕ(λt))

)∥∥∥∥∥
2

2

. (66)

F OPTIMAL VARIANCE FOR THE GENERATIVE MODEL

In this section, we compute the optimal variance σ2
P of the generative model in closed-form.

Consider the expectation over the data distribution of the KL divergence in the diffusion loss (Ap-
pendix E):

Eq(x,zt) [DKL(q(zs|zt,x)∥pθ(zs|zt))] =
d

2

(
σ2
Q

σ2
P

− 1 + log
σ2
P

σ2
Q

)
+

1

2σ2
P

Eq(x,zt)

[
∥µP − µQ∥22

]
(67)

and differentiate it w.r.t. σ2
P :

dDKL

dσ2
P

=
d

2

(
−
σ2
Q

σ4
P

+
1

σ2
Q

σ2
Q

σ2
P

)
− 1

2σ4
P

Eq(x,zt)

[
∥µP − µQ∥22

]
(68)

=
1

2σ4
P

(
dσ2

P − dσ2
Q − Eq(x,zt)

[
∥µP − µQ∥22

])
(69)

The derivative is zero when:

σ2
P = σ2

Q +
1

d
Eq(x,zt)

[
∥µP − µQ∥22

]
(70)

Since the second derivative of the KL at this value of σ2
P is positive, this is a minimum of the KL

divergence.

G DIFFUSION LOSS IN CONTINUOUS TIME WITHOUT COUNTERTERM

In this section, we consider the DiffEnc diffusion process with mean shift term, coupled with the
original VDM generative process (see Section 3). We show that in the continuous-time limit the
optimal variance σ2

P tends to σ2
Q and the resulting diffusion loss simplifies to the standard VDM

diffusion loss. We finally derive the diffusion loss in the continuous-time limit.

We start by rewriting the diffusion loss as expectation, using constant step size τ ≡ 1/T and denot-
ing ti ≡ i/T :

LT (x) = T Ei∼U{1,T}Eq(zti
|x) [DKL(q(zti−τ |zti ,x)∥pθ(zti−τ |zti))] (71)

= T Et∼U{τ,2τ,...,1}Eq(zt|x) [DKL(q(zt−τ |zt,x)∥pθ(zt−τ |zt))] , (72)

where we dropped indices and directly sample the discrete rv t.

The KL divergence can be calculated in closed form (Appendix E) because all distributions are
Gaussian:

DKL(q(zt−τ |zt,x)∥pθ(zt−τ |zt)) =
d

2
(wt − 1− logwt) +

wt

2σ2
Q

∥µP − µQ∥22 , (73)

19

Published as a conference paper at ICLR 2024

where we have defined the weighting function

wt =
σ2
Q,t

σ2
P,t

(74)

Insert this in the diffusion loss:

LT (x) = Et∼U{τ,2τ,...,1}

[
d

2τ
(wt − 1− logwt) +

1

τ
Eq(zt|x)

[
wt

2σ2
Q

∥µP − µQ∥22

]]
(75)

Given the optimal value for the noise variance in the generative model derived above (Appendix F):

σ2
P = σ2

Q +
1

d
Eq(x,zt)

[
∥µP − µQ∥22

]
we get the optimal wt:

w−1
t = 1 +

1

σ2
Qd

Eq(x,zt)

[
∥µP − µQ∥22

]
.

Using the following definitions:

µQ =
αt|sσ

2
s

σ2
t

zt +
αsσ

2
t|s

σ2
t

xt + αs(xs − xt)

µP =
αt|sσ

2
s

σ2
t

zt +
αsσ

2
t|s

σ2
t

x̂θ(zt, t)

σ2
Q =

σ2
t|sσ

2
s

σ2
t

σ2
t|s = σ2

t −
α2
t

α2
s

σ2
s

and these intermediate results:

1

σ2
Q

α2
sσ

4
t|s

σ4
t

= SNR(s)− SNR(t)

σ2
t|s

σ2
t

= 1− α2
tσ

2
s

α2
sσ

2
t

=
SNR(s)− SNR(t)

SNR(s)

we can write:

∥µP − µQ∥22
2σ2

Q

=
1

2σ2
Q

∥∥∥∥∥αsσ
2
t|s

σ2
t

xt + αs(xs − xt)−
αsσ

2
t|s

σ2
t

x̂θ(zt, t)

∥∥∥∥∥
2

2

=
1

2σ2
Q

α2
sσ

4
t|s

σ4
t

∥∥∥∥∥xt +
σ2
t

σ2
t|s

(xs − xt)− x̂θ(zt, t)

∥∥∥∥∥
2

2

= −1

2
∆SNR

∥∥∥∥xt +
SNR(s)

∆SNR
∆x− x̂θ(zt, t)

∥∥∥∥2
2

where we used the shorthand ∆SNR ≡ SNR(t)− SNR(s) and ∆x ≡ xt − xs.

The optimal wt tends to 1. The optimal wt can be rewritten as follows:

w−1
t = 1 +

1

σ2
Qd

Eq(x,zt)

[
∥µP − µQ∥22

]
(76)

= 1− ∆SNR

d
Eq(x,zt)

[∥∥∥∥xt +
SNR(s)

∆SNR
∆x− x̂θ(zt, t)

∥∥∥∥2
2

]
(77)

As T → ∞, or equivalently s → t and τ = s− t → 0, the optimal wt tends to 1, corresponding to
the unweighted case (forward and backward variance are equal).

20

Published as a conference paper at ICLR 2024

The first term of diffusion loss tends to zero. Define:

ν =
∆SNR

d
Eq(x,zt)

[∥∥∥∥xt +
SNR(s)

∆SNR
∆x− x̂θ(zt, t)

∥∥∥∥2
2

]
such that the optimal wt is given by

w−1
t = 1− ν

Then we are interested in the term

wt − 1− logwt =
ν

1− ν
+ log(1− ν)

As τ → 0, we have

∆SNR = τ
dSNR(t)

dt
+O(τ2)

∆x = τ
dxϕ(λt)

dt
+O(τ2)

ν =
τ

d

dSNR(t)

dt
Eq(x,zt)

[∥∥∥∥xt +
dxϕ(λt)

d log SNR
− x̂θ(zt, t)

∥∥∥∥2
2

]
+O(τ2)

Since ν → 0, we can write a series expansion around ν = 0:

wt − 1− logwt =
1

2
ν2 +O(ν3)

=
1

2

(
τ

d

dSNR(t)

dt
Eq(x,zt)

[∥∥∥∥xt +
dxϕ(λt)

d log SNR
− x̂θ(zt, t)

∥∥∥∥2
2

])2

+O(τ3)

= O(τ2)

The first term of the weighted diffusion loss LT is then 0, since as τ → 0 we get:

d

2τ
Et∼U{τ,2τ,...,1} [wt − 1− logwt] = O(τ) (78)

Note that, had we simply used wt = 1 +O(τ), we would only be able to prove that this term in the
loss is finite, but not whether it is zero. Here, we showed that the additional term in the loss actually
tends to zero as T → ∞.

In fact, we can also observe that, if σP ̸= σQ and therefore wt − 1 − logwt > 0, the first term in
the diffusion loss diverges in the continuous-time limit, so the ELBO is not well-defined.

Continuous-time limit of the diffusion loss. We saw that, as τ → 0, wt → 1 and the first term in
the diffusion loss LT tends to zero. The limit of LT then becomes

L∞(x) = lim
T→∞

LT (x) (79)

= lim
T→∞

Et∼U{τ,2τ,...,1}Eq(zt|x)

[
1

2τσ2
Q

∥µP − µQ∥22

]
(80)

= lim
T→∞

Et∼U{τ,2τ,...,1}Eq(zt|x)

− 1

2τ

dSNR(t)

dt
τ

∥∥∥∥∥xt +
SNR(t)

dxϕ(λt)
dt τ

dSNR(t)
dt τ

− x̂θ(zt, t)

∥∥∥∥∥
2

2

(81)

= −1

2
Et∼U(0,1)Eq(zt|x)

[
dSNR(t)

dt

∥∥∥∥xt +
dxϕ(λt)

d log SNR
− x̂θ(zt, t)

∥∥∥∥2
2

]
(82)

21

Published as a conference paper at ICLR 2024

H DIFFENC AS AN SDE

A diffusion model may be seen as a discretization of an SDE. The same is true for the depth depen-
dent encoder model. The forward process Eq. (11) can be written as

zt = αt|szs + αt(xϕ(t)− xϕ(s)) + σt|sϵ . (83)

Let 0 < ∆t < 1 such that t = s + ∆t. If we consider the first term after the equality sign we see
that

αt

αs
=

αs + αt − αs

αs
(84)

= 1 +
αt − αs

αs∆t
∆t (85)

So we get that

zt − zs =
αt − αs

αt∆t
zs∆t+ αt(xϕ(t)− xϕ(s)) + σt|sϵ (86)

Considering the second term, we get

αt(xϕ(t)− xϕ(s)) = αt
xϕ(t)− xϕ(s)

∆t
∆t (87)

So if we define

f∆t(zs, s) =
αt − αs

αt∆t
zs + αt

xϕ(t)− xϕ(s)

∆t
(88)

we can write
zt − zs = f∆t(zs, s)∆t+ σt|tϵ (89)

We will now consider σ2
t|t to be able to rewrite σt|sϵ

σ2
t|t = σ2

t −
α2
t

α2
s

σ2
s (90)

= α2
t

(
σ2
t

α2
t

− σ2
s

α2
s

)
(91)

= α2
t

(
σ2
t

α2
t

− σ2
s

α2
s

)
∆t

∆t
(92)

Thus, if we define

g∆t(s) =

√
α2
t

(
σ2
t

α2
t

− σ2
s

α2
s

)
1

∆t
(93)

we can write
zt − zs = f∆t(zs, s)∆t+ g∆t(s)

√
∆tϵ (94)

We can now take the limit ∆t → 0 using the definition t = s+∆t:

f∆t(zs, s) →
1

αs

dαs

ds
zs + αs

dxϕ(s)

ds
=

d logαs

ds
zs + αs

dxϕ(s)

ds
(95)

g∆t(s) →

√
α2
s

(
dσ2

s/α
2
s

ds

)
(96)

So if we use these limits to define the functions

f(zt, t,x) =
1

αt

dαt

dt
zt + αt

dxϕ(t)

dt
(97)

g(t) = αt

√
dσ2

t /α
2
t

dt
. (98)

we can write the forward stochastic process when using a time dependent encoder as

dz =f(zt, t,x)dt+ g(t)dw (99)

22

Published as a conference paper at ICLR 2024

where dw is the increment of a Wiener process over time ∆t. The diffusion process of DiffEnc in
the continuous-time limit is therefore similar to the usual SDE for diffusion models (Song et al.,
2020b), with an additional contribution to the drift term.

Given the drift and the diffusion coefficient we can write the generative model as a reverse-time SDE
(Song et al., 2020b):

dz =
[
f(zt, t,x)− g2(t)∇zt

log p(zt)
]
dt+ g(t)dw̄ , (100)

where dw̄ is a reverse-time Wiener process.

I MOTIVATION FOR CHOICE OF PARAMETERIZATION FOR THE ENCODER

As mentioned in Section 4, we would like our encoding to be helpful for the reconstruction loss at
t = 0 and for the latent loss at t = 1. Multiplying the data with αt will give us these properties,
since it will be close to the identity at t = 0 and send everything to 0 at t = 1. Instead of just
multiplying with αt, we choose to use α2

t , since we still get the desirable properties for t = 0 and
t = 1, but it makes some of the mathematical expressions nicer (for example the derivative). Thus,
we arrive at the non-trainable parameterization

xnt(λt) = α2
tx (101)

At t = 1, we see that all the values of xnt(λt) are very close to 0, which should be easy to ap-
proximate from z1 = α3

1x + σ1ϵ, since it will just be the mean of the values in z1. Note that this
parameterization gives us a lower latent loss, since the values of α3

tx are closer to zero than the
values of αtx. However, this is not the same as just using a smaller minimum λt in the original
formulation, since in the original formulation the diffusion model would still be predicting x and
not α2

tx ≈ 0 at t = 1. There is still a problem with this formulation, since if we look at what
happens between t = 0 and t = 1 we see that at some point, we will be attempting to approximate
vt = αtϵ − σtxnt(x, λt) from a very noisy zt while the values of xnt(x, λt) are still very small.
In other words, since zt is a noisy version of xnt(x, λt) and xnt(x, λt) has very small values there
will not be much signal, but as we move away from t = 1, 0 will also become a worse and worse
approximation.

This is why we introduce the trainable encoder

xϕ(λt) = x− σ2
t x+ σ2

t yϕ(x, λt) (102)

= α2
tx+ σ2

t yϕ(x, λt) (103)

Here we allow the inner encoder yϕ(x, λt) to add signal dependent on the image at the same pace
as we are removing signal via the −σ2

t x term. This should give us a better diffusion loss between
t = 0 and t = 1, but still has xϕ(λt) very close to x at t = 0.

J CONTINUOUS-TIME LIMIT OF THE DIFFUSION LOSS WITH AN ENCODER

J.1 REWRITING THE LOSS USING SNR

We can express the KL divergence in terms of the SNR:

SNR(t) =
α2
t

σ2
t

. (104)

We pull
αsσ

2
t|s

σ2
t

outside, expand σ2
Q, and use the definition of the SNR to get:

1

2σ2
Q

α2
sσ

4
t|s

σ4
t

=
1

2
(SNR(s)− SNR(t)) (105)

We also see that

σ2
t|s

σ2
t

=
σ2
t − α2

t|sσ
2
s

σ2
t

= 1− α2
tσ

2
s

α2
sσ

2
t

= 1− SNR(t)

SNR(s)
=

SNR(s)− SNR(t)

SNR(s)
. (106)

23

Published as a conference paper at ICLR 2024

Inserting this back into Eq. (66), we get:
1

2σ2
Q

∥µP − µQ∥22 (107)

=
1

2
(SNR(s)− SNR(t)) · (108)∥∥∥∥∥x̂θ(λt)− xϕ(λt) +

SNR(s)
(
(λs − λt)σ

2
t x̂θ(λt)− (xϕ(λs)− xϕ(λt))

)
SNR(s)− SNR(t)

∥∥∥∥∥
2

2

The KL divergence is then:

DKL(q(zs|zt,x)∥pθ(zs|zt)) (109)

=
1

2
(SNR(s)− SNR(t)) ·∥∥∥∥∥x̂θ(λt)− xϕ(λt) +

SNR(s)
(
(λs − λt)σ

2
t x̂θ(λt)− (xϕ(λs)− xϕ(λt))

)
SNR(s)− SNR(t)

∥∥∥∥∥
2

2

with s = i−1
T and t = i

T .

J.2 TAKING THE LIMIT

If we rewrite everything in the loss from Eq. (109) to be with respect to λt, we get

LT (x) =
T

2
Eϵ,i∼U{1,T}

[(
eλs − eλt

)
· (110)∥∥∥∥∥x̂θ(λt)− xϕ(λt) +

eλs
(
(λs − λt)σ

2
t x̂θ(λt)− (xϕ(λs)− xϕ(λt))

)
eλs − eλt

∥∥∥∥∥
2

2

Where s = (i − 1)/T and t = i/T . We now want to take the continuous limit. Outside the norm
we get the derivative with respect to t, inside the norm, we want the derivative w.r.t. λt. First we
consider

eλs − eλt

1
T

(111)

For T → ∞ and see that
eλs − eλt

1
T

→ −deλt

dt
= −eλt · λ′

t (112)

Where λ′
t is the derivative of λt w.r.t. t. Inside the norm we get for s → t that

eλs
λt − λs

− (eλt − eλs)

− (xϕ(λt)− xϕ(λs))

λt − λs
→ eλt

−1
deλt

dλt

−dxϕ(λt)

dλt
(113)

=
eλt

eλt

dxϕ(λt)

dλt
(114)

=
dxϕ(λt)

dλt
(115)

and
eλs

eλs − eλt
(λs − λt)σ

2
t x̂θ(λt) = eλs

−(λt − λs)

− (eλt − eλs)
σ2
t x̂θ(λt) (116)

→ eλt
1

eλt
σ2
t x̂θ(λt) = σ2

t x̂θ(λt) (117)

So we get the loss

L∞(x) = −1

2
Eϵ,t∼U [0,1]

[
λ′
te

λt

∥∥∥∥x̂θ(λt)− xϕ(λt) + σ2
t x̂θ(λt)−

dxϕ(λt)

dλt

∥∥∥∥2
2

]
(118)

24

Published as a conference paper at ICLR 2024

K USING THE V PARAMETERIZATION IN THE DIFFENC LOSS

In the following subsections we describe the v-prediction parameterization (Salimans & Ho, 2022)
and derive the v-prediction loss for the proposed model, DiffEnc. We start by defining:

vt = αtϵ− σtxϕ(λt) (119)
v̂θ(λt) = αtϵ̂θ − σtx̂θ(λt) (120)

which give us (see Appendix K.1):

xϕ(λt) = αtzt − σtvt (121)
x̂θ(λt) = αtzt − σtv̂θ(λt) (122)

where we learn the v-prediction function v̂θ(λt) = v̂θ(zλt , λt). In Appendix K.2 we show that,
using this parameterization in Eq. (18), the loss becomes:

L∞(x) = −1

2
Eϵ,t∼U [0,1]

[
λ′
tα

2
t

∥∥∥∥vϕ(λt)− v̂θ(λt) + σtx̂θ(λt)−
1

σt

dxϕ(λt)

dλt

∥∥∥∥2
2

]
. (123)

As shown in Appendix K.3, the diffusion loss for the trainable encoder from Eq. (15) becomes:

L∞(x) = −1

2
Eϵ,t∼U [0,1]

[
λ′
tα

2
t

∥∥∥∥vt − v̂θ + σt

(
x̂θ(λt)− xϕ(λt) + yϕ(λt)−

dyϕ(λt)

dλt

)∥∥∥∥2
2

]
(124)

and for the non-trainable encoder:

L∞(x) = −1

2
Eϵ,t∼U [0,1]

[
λ′
tα

2
t ∥vt − v̂θ + σt (x̂θ(λt)− xϕ(λt))∥22

]
. (125)

Eqs. (124) and (125) are the losses we use in our experiments.

K.1 REWRITING THE V PARAMETERIZATION

In the v parameterization of the loss from (Salimans & Ho, 2022), vt is defined as

vt = αtϵ− σtx (126)

We use the generalization
vt = αtϵ− σtxϕ(x, λt) (127)

Note that since
xϕ(x, λt) = (zt − σtϵ)/αt (128)

and
α2
t + σ2

t = 1 (129)
we get

xϕ(x, λt) = (zt − σtϵ)/αt (130)

= ((α2
t + σ2

t)zt − σt(α
2
t + σ2

t)ϵ)/αt (131)

=

(
αt +

σ2
t

αt

)
zt −

(
σtαt +

σ3
t

αt

)
ϵ (132)

= αtzt +
σ2
t

αt
zt − σtαtϵ−

σ3
t

αt
ϵ (133)

= αtzt − σt

(
αtϵ−

σt

αt
zt +

σ2
t

αt
ϵ

)
(134)

= αtzt − σt

(
αtϵ−

σt

αt
(zt − σtϵ)

)
(135)

= αtzt − σt (αtϵ− σtxϕ(x, λt)) (136)
= αtzt − σtvt (137)

(138)

25

Published as a conference paper at ICLR 2024

So

xϕ(x, λt) = αtzt − σtvt (139)

Therefore we define

v̂θ(λt) = αtϵ̂θ − σtx̂θ(λt) (140)

which in the same way gives us

x̂θ(zλt
, λt) = αtzt − σtv̂θ (141)

where we learn v̂θ.

K.2 V PARAMETERIZATION IN CONTINUOUS DIFFUSION LOSS

For the v parameterization we have

vϕ(λt) = αtϵ− σtxϕ(λt) (142)

where ϵ is from a standard normal distribution, N (0, I), and

xϕ(λt) = αtzt − σtvϕ(λt) (143)

So we will set

x̂θ(λt) = αtzt − σtv̂θ(λt) (144)

and

v̂θ(λt) = αtϵ̂θ − σtx̂θ(λt) (145)

where we learn v̂θ(λt). If we rewrite the second term within the square brackets of Eq. (118) using
the v parameterization, we get:

λ′(t)eλt

∥∥∥∥x̂θ(λt)− xϕ(λt) + σ2
t x̂θ(λt)−

dxϕ(λt)

dλt

∥∥∥∥2
2

(146)

= λ′(t)eλt

∥∥∥∥σtvϕ(λt)− σtv̂θ(λt) + σ2
t x̂θ(λt)−

dxϕ(λt)

dλt

∥∥∥∥2
2

(147)

= λ′(t)α2
t

∥∥∥∥vϕ(λt)− v̂θ(λt) + σtx̂θ(λt)−
1

σt

dxϕ(λt)

dλt

∥∥∥∥2
2

(148)

So we get the loss

L∞(x) = −1

2
Eϵ,t∼U [0,1]

[
λ′(t)α2

t

∥∥∥∥vϕ(λt)− v̂θ(λt) + σtx̂θ(λt)−
1

σt

dxϕ(λt)

dλt

∥∥∥∥2
2

]
(149)

K.3 V PARAMETERIZATION OF CONTINUOUS DIFFUSION LOSS WITH ENCODER

We recall our two parameterizations of the encoder

xϕ(λt) = x− σ2
t x+ σ2

t yϕ(x, λt) (150)

= α2
tx+ σ2

t yϕ(x, λt) (151)

and

xnt(λt) = α2
tx (152)

We see that
dxϕ(λt)

dλt
= α2

tσ
2
t x+ σ2

t

dyϕ(λt)

dλt
− α2

tσ
2
t yϕ (153)

and
dxnt(λt)

dλt
= α2

tσ
2
t x (154)

26

Published as a conference paper at ICLR 2024

as mentioned before. We first consider the loss for our trainable encoder. Focusing on the part of
Eq. (123) inside the norm, and dropping the dependencies on λt for brevity, we get

vϕ − v̂θ + σtx̂θ − 1

σt

dxϕ(λt)

dλt
(155)

= vϕ − v̂θ + σtx̂θ − 1

σt

(
α2
tσ

2
t x+ σ2

t

dyϕ(λt)

dλt
− α2

tσ
2
t yϕ

)
(156)

= vϕ − v̂θ + σtx̂θ − α2
tσtx− σt

dyϕ(λt)

dλt
+ α2

tσtyϕ (157)

= vϕ − v̂θ + σt

(
x̂θ − α2

tx− dyϕ(λt)

dλt
+ α2

tyϕ

)
(158)

= vϕ − v̂θ + σt

(
x̂θ − α2

tx+ (1− σ2
t)yϕ − dyϕ(λt)

dλt

)
(159)

= vϕ − v̂θ + σt

(
x̂θ − α2

tx− σ2
t yϕ + yϕ − dyϕ(λt)

dλt

)
(160)

= vϕ − v̂θ + σt

(
x̂θ − xϕ + yϕ − dyϕ(λt)

dλt

)
(161)

So for the trainable encoder, we get the loss

L∞(x) = −1

2
Eϵ,t∼U [0,1] (162)[

λ′(t)α2
t

∥∥∥∥vt − v̂θ + σt

(
x̂θ(λt)− xϕ(λt) + yϕ(λt)−

dyϕ(λt)

dλt

)∥∥∥∥2
2

]

For the non-trainable encoder, if we again focus on the part of Eq. (123) inside the norm, and
dropping the dependencies on λt for brevity, we get

vϕ − v̂θ + σtx̂θ − 1

σt

dxnt(λt)

dλt
(163)

= vϕ − v̂θ + σtx̂θ − 1

σt

(
α2
tσ

2
t x
)

(164)

= vϕ − v̂θ + σtx̂θ − σt

(
α2
tx
)

(165)

= vϕ − v̂θ + σt

(
x̂θ − α2

tx
)

(166)

= vϕ − v̂θ + σt (x̂θ − xnt) (167)

So for the non-trainable encoder, we get the loss

L∞(x) = −1

2
Eϵ,t∼U [0,1]

[
λ′(t)α2

t ∥vt − v̂θ + σt (x̂θ(λt)− xnt(λt))∥22
]

(168)

L CONSIDERING LOSS FOR EARLY AND LATE TIMESTEPS

Let us consider what happens to the expression inside the norm from our loss Eq. (19) for t close to
zero. We see that since αt → 1 and σt → 0 for t → 0 and v̂θ = αtϵ̂θ − σtx̂θ(λt), we get for the
trainable encoder ∥∥∥∥vt − v̂θ + σt

(
x̂θ(λt)− xϕ(λt) + yϕ(λt)−

dyϕ(λt)

dλt

)∥∥∥∥2
2

(169)

→ ∥vt − v̂θ∥22 = ∥ϵ− ϵ̂θ∥22 (170)

and for the non-trainable encoder

∥vt − v̂θ + σt (x̂θ(λt)− xϕ(λt))∥22 (171)

→ ∥vt − v̂θ∥22 = ∥ϵ− ϵ̂θ∥22 (172)

27

Published as a conference paper at ICLR 2024

Table 4: Comparison of the different components of the loss for DiffEnc-8-2, DiffEnc-8-nt and VDMv-8 on
MNIST. All quantities are in bits per dimension (BPD), with standard error, 5 seeds, 2M steps. Noise schedules
are either fixed or with trainable endpoints.

Model Noise Total Latent Diffusion Reconstruction

VDMv-8 fixed 0.370± 0.002 0.0045± 0.0 0.360± 0.002 0.006± (3× 10−5)
trainable 0.366± 0.001 0.0042± (5× 10−5) 0.361± 0.003 0.001± (2× 10−5)

DiffEnc-8-2 fixed 0.367± 0.001 0.0009± (3× 10−6) 0.360± 0.001 0.006± (3× 10−5)
trainable 0.363± 0.002 0.0064± (8× 10−5) 0.355± 0.002 0.001± (2× 10−5)

DiffEnc-8-nt fixed 0.378± 0.002 1.6× 10−5 ± 0.0 0.371± 0.002 0.006± (3× 10−5)
trainable 0.373± 0.001 0.0021± (3× 10−5) 0.369± 0.001 0.002± (5× 10−5)

So we get the same objective as for the epsilon parameterization used in (Kingma et al., 2021) in
both cases. On the other hand, since σt → 1 as t → 1, we get for the trainable encoder:∥∥∥∥vt − v̂θ + σt

(
x̂θ(λt)− xϕ(λt) + yϕ(λt)−

dyϕ(λt)

dλt

)∥∥∥∥2
2

(173)

→
∥∥∥∥x̂θ(λt)− 2xϕ(λt) + yϕ(λt)−

dyϕ(λt)

dλt
− v̂θ

∥∥∥∥2
2

(174)

Assuming xϕ(λt) ≈ x̂θ(λt), this loss is small at t ≈ 1 if:

v̂θ ≈ −xϕ(λt) + yϕ(λt)−
dyϕ(λt)

dλt
(175)

= −x+ σ2
t x− σ2

t yϕ(x, λt) + yϕ(λt)−
dyϕ(λt)

dλt
(176)

≈ −x+ x− yϕ(λt) + yϕ(λt)−
dyϕ(λt)

dλt
(177)

= −dyϕ(λt)

dλt
(178)

So we are saying that at t = 1, v̂θ ≈ −dyϕ(λt)
dλt

. Thus the encoder should be able to guide the
diffusion model. For the non-trainable encoder, we get

∥vt − v̂θ + σt (x̂θ(λt)− xϕ(λt))∥22 (179)

→ ∥−xϕ(λt) + x̂θ(λt) + x̂θ(λt)− xϕ(λt)∥22 (180)

= ∥2x̂θ(λt)− 2xϕ(λt)∥22 (181)
So in this case, we are just saying that x̂θ(λt) should be close to xϕ(λt). However, note that since
xϕ(λt) = α2

tx, we have that x̂θ(λt) ≈ xϕ(λt) ≈ 0 for t = 1. So this is only saying that it should
be easy to guess xϕ(λt) ≈ 0 for t ≈ 1, but it will not help the diffusion model guessing the signal,
since there is no signal left in this case.

M DETAILED LOSS COMPARISON FOR DIFFENC AND VDMV ON MNIST

Table 4 shows the average losses of the models trained on MNIST. We see the same pattern as for
the small models trained on CIFAR-10: All models with a trainable encoder achieve the same or
better diffusion loss than the VDMv model. For the fixed noise schedules the latent loss is always
better for the DiffEnc models than for the VDMv, however for the trainable noise schedule, it seems
the DiffEnc with a learned encoder sacrifices some latent loss to gain a better diffusion loss.

N DETAILED LOSS COMPARISON FOR DIFFENC-32-2 AND VDMV-32 ON
CIFAR-10

To explore the significance of the encoder size, we trained a DiffEnc-32-2, that is, a large diffusion
model with a smaller encoder, see Table 5. We see that after 2M steps the diffusion loss for the

28

Published as a conference paper at ICLR 2024

Table 5: Comparison of the different components of the loss for DiffEnc-32-2 and VDMv-32 with fixed noise
schedule on CIFAR-10. All quantities are in bits per dimension (BPD) with standard error over 3 seeds, com-
parison at 2M steps.

Model Total Latent Diffusion Reconstruction

VDMv-32 2.666± 0.002 0.0012± 0.0 2.654± 0.003 0.01± (4× 10−6)
DiffEnc-32-2 2.660± 0.006 0.0007± (3× 10−6) 2.649± 0.006 0.01± (2× 10−6)

Table 6: Comparison of the different components of the loss for DiffEnc-32-8 and VDMv-32 with fixed noise
schedule on ImageNet32. All quantities are in bits per dimension (BPD) with standard error over 3 seeds, and
models are trained for 1.5M steps.

Model Total Latent Diffusion Reconstruction

VDMv-32 3.461± 0.002 0.0014± 0.0 3.449± 0.002 0.01± (1× 10−5)
DiffEnc-32-8 3.461± 0.002 0.0007± (9× 10−7) 3.450± 0.002 0.01± (1× 10−5)

DiffEnc model is smaller than for the VDMv, however, not significantly so. When inspecting a
plot of the losses of the models, the losses seem to be diverging, but one would have to train the
DiffEnc-32-2 model for longer to be certain. We did not continue this experiment because of the
large compute cost.

O DETAILED LOSS COMPARISON FOR DIFFENC AND VDMV ON
IMAGENET32

On imagenet32, we see the same pattern in our experiments as for the small models on CIFAR-10
and MNIST, see Table 6. The diffusion loss is the same for the two models, but the latent loss is
better for DiffEnc. Since ImageNet is more complex than CIFAR-10, we might need an even larger
base diffusion model to achieve a difference in diffusion loss.

P FURTHER FUTURE WORK

Our approach could be combined with various existing methods, e.g., latent diffusion (Vahdat et al.,
2021; Rombach et al., 2022) or discriminator guidance (Kim et al., 2022a). If one were to succeed
in making the smaller representations from the encoder, one might also combine it with consistency
regularization (Sinha & Dieng, 2021) to improve the learned representations.

Q MODEL STRUCTURE AND TRAINING

Code can be found on GitHub2.

All our diffusion models use the same overall structure with n ResNet blocks, then a middle block
of 1 ResNet, 1 self attention and 1 ResNet block, and in the end n more ResNet blocks. We train
diffusion models with n = 8 on MNIST and CIFAR-10 and models with n = 32 on CIFAR-10
and ImageNet32. All ResNet blocks in the diffusion models preserve the dimensions of the original
images (28x28 for MNIST, 32x32 for CIFAR-10, 32x32 for ImageNet32) and have 128 out channels
for models on MNIST and CIFAR-10 and 256 out channels for models on ImageNet32 following
(Kingma et al., 2021). We use both a fixed noise schedule with λmax = 13.3 and λmin = −5 and a
trainable noise schedule where we learn λmax and λmin.

For our encoder, we use a very similar overall structure as for the diffusion model. Here we have m
ResNet blocks, then a middle block of 1 ResNet, 1 self attention and 1 ResNet block, and in the end

2https://github.com/bemigini/DiffEnc

29

https://github.com/bemigini/DiffEnc

Published as a conference paper at ICLR 2024

Table 7: Comparison of the different components of the loss for DiffEnc-8-4 and VDMv-8 on CIFAR-10 with
fixed noise schedule after 1.3M steps. All quantities are in bits per dimension (BPD), with standard error, 3
seeds for DiffEnc-8-4, 5 seeds for VDMv-8.

Model Total Latent Diffusion Reconstruction

VDMv-8 2.794± 0.004 0.0012± 0.0 2.782± 0.004 0.010± (1× 10−5)
DiffEnc-8-4 2.789± 0.002 0.0006± (2× 10−6) 2.778± 0.002 0.010± (1× 10−5)

m more ResNet blocks. However, for the encoder with m = 2, we use maxpooling after each of the
first m ResNet blocks and transposed convolution after the last m ResNet blocks, for encoders with
m = 4, we use maxpooling after every other of the first m ResNet blocks and transposed convolution
after every other of the last m ResNet blocks and for encoders with m = 8, we use maxpooling after
every fourth of the first m ResNet blocks and transposed convolution after every fourth of the last
m ResNet blocks. Thus, for the encoder we downscale to and upscale from resolutions 14x14 and
7x7 on MNIST and 16x16 and 8x8 on CIFAR-10 and ImageNet32.

We do experiments with n = 8, m = 2 on MNIST and CIFAR-10, n = 8, m = 2 and n = 32,
m = 4 on CIFAR-10 and n = 32, m = 8 on ImageNet32.

We trained 5 seeds for the small models (n = 8), except for the diffusion model size 8 encoder size
4 on CIFAR-10 where we trained 3 seeds. We trained 3 seeds for the large models (n = 32).

For models on MNIST and CIFAR-10 we used a batch size of 128 and no gradient clipping. For
models on ImageNet32 we used a batch size of 256 and no gradient clipping.

R DATASETS

We considered three datasets:

• MNIST: The MNIST dataset (LeCun et al., 1998) as fetched by the tensorflow datasets
package3. 60,000 images were used for training and 10,000 images for test. License:
Unknown.

• CIFAR-10: The CIFAR-10 dataset as fetched from the tensorflow datasets package4. Orig-
inally collected by Krizhevsky et al. (2009). 50,000 images were used for training and
10,000 images for test. License: Unknown.

• ImageNet 32×32: The official downsampled version of ImageNet (Chrabaszcz et al., 2017)
from the ImageNet website: https://image-net.org/download-images.
php.

S ENCODER EXAMPLES ON MNIST

Fig. 4 provides an example of the encodings we get from MNIST when using DiffEnc with a learned
encoder.

T SAMPLES FROM MODELS

Examples of samples from our large trained models, DiffEnc-32-4 and VDMv-32, can be seen in
Fig. 5.

30

https://image-net.org/download-images.php
https://image-net.org/download-images.php

Published as a conference paper at ICLR 2024

Figure 4: Encoded MNIST images from DiffEnc-8-2. Encoded images are close to the identity up to t = 0.7.
From t = 0.8 to t = 0.9 the encoder slightly blurs the numbers, and from t = 0.9 it makes the background
lighter, but keeps the high contrast in the middle of the image. Intuitively, the encoder improves the latent loss
by bringing the average pixel value close to 0.

Figure 5: 100 unconditional samples from a DiffEnc-32-4 (above) and VDMv-32 (below) after 8 million train-
ing steps.

U USING A LARGER ENCODER FOR A SMALL DIFFUSION MODEL

As we can observe in Table 7, when the encoder’s size is increased, the average diffusion loss is
slightly smaller than that of VDM, albeit not significantly. We propose the following two potential
explanations for this phenomenon: (1) Longer training may be needed to achieve a significant dif-
ference. For DiffEnc-32-4 and VDMv-32, we saw different trends in the loss after about 2 million
steps, where the loss of the DiffEnc models decreased more per step. However, it took more training
with this trend to achieve a substantial divergence in diffusion loss. (2) a larger diffusion model may
be required to fully exploit the encoder.

3https://www.tensorflow.org/datasets/catalog/cifar10
4https://www.tensorflow.org/datasets/catalog/cifar10

31

https://www.tensorflow.org/datasets/catalog/cifar10
https://www.tensorflow.org/datasets/catalog/cifar10

Published as a conference paper at ICLR 2024

Table 8: Comparison of the mean FID scores with standard error for DiffEnc-32-4 and VDMv-32 on CIFAR-10
with fixed noise schedule after 8M steps. 3 seeds. We provide both FID scores on 10K and 50K samples and
with respect to both train and test set.

Model FID 10K train FID 10K test FID 50K train FID 50K test
VDMv-32 14.8± 0.2 18.9± 0.2 11.2± 0.2 14.9± 0.2
DiffEnc-32-4 14.6± 0.8 18.5± 0.7 11.1± 0.8 15.0± 0.7

V FID SCORES

Although we did not optimize our model for the visual quality of samples, we provide FID scores
of DiffEnc-32-4 and VDMv-32 on CIFAR-10 in Table 8. We see from these, that the FID scores for
the two models are similar and that it makes a big difference to the score whether we use the train
or test set to calculate it and how many samples we use from the model. The scores are better when
using more samples from the model and (as can be expected) better when calculating with respect
to the train set that with respect to the test set.

W SUM HEATMAP OF ALL TIMESTEPS

A heatmap over the changes to xt for all timesteps t and all ten CIFAR-10 classes can be found
in Fig. 6. Recall in the following that all pixel values are scaled to the range (−1, 1) before they
are given as input to the model. The DiffEnc model with a trainable encoder is initialized with
yϕ(λt) = 0, that is, with no contribution from the trainable part. This means that if we had made
this heatmap at initialization, the images would be blue where values in the channels are more than
0, red where values are less than 0 and white where values are zero. However, we see that after
training, the encoder has a different behaviour around edges for t < 0.8. For example, there is
a white line in the middle of the cat in the second row which is not subtracted from, probably to
preserve this edge in the image, and there is an extra “outline” around the whole cat. We also see
that for t > 0.8, the encoder gets a much more general behaviour. In the fourth row, we see that the
encoder adds to the entire middle of the image including the white line on the horse, which would
have been subtracted from, if it had had the same behaviour as at initialisation. Thus, we see that the
encoder learns to do something different from how it was initialised, and what it learns is different
for different timesteps.

32

Published as a conference paper at ICLR 2024

Figure 6: Change of encoded image over a range of depths: (xt − xs)/(t − s) for t = 0.1, ..., 1.0 and
s = t − 0.1. Changes have been summed over the channels with red and blue denoting positive and negative
changes, respectively. For t closer to 0 the changes are finer and seem to be enhancing high-contrast edges, but
for t → 1 they become more global.

33

	Introduction
	Preliminaries on Variational Diffusion Models
	DiffEnc
	Parameterization of the Encoder and Generative Model
	Experiments
	Related Work
	Limitations and Future Work
	Conclusion
	Appendix
	 Appendix
	Overview of diffusion model with and without encoder
	Proof that z_t given x has the correct form
	Proof that the reverse process has the correct form
	The latent and reconstruction loss
	Latent Loss
	Reconstruction Loss

	Diffusion loss
	Assuming non-equal variances in the diffusion and generative processes
	Assuming equal variances in the diffusion and generative processes

	Optimal variance for the generative model
	Diffusion loss in continuous time without counterterm
	DiffEnc as an SDE
	Motivation for choice of parameterization for the encoder
	Continuous-time limit of the diffusion loss with an encoder
	Rewriting the loss using SNR
	Taking the limit

	Using the v Parameterization in the DiffEnc Loss
	Rewriting the v parameterization
	v parameterization in continuous diffusion loss
	v parameterization of continuous diffusion loss with encoder

	Considering loss for early and late timesteps
	Detailed Loss Comparison for DiffEnc and VDMv on MNIST
	Detailed Loss Comparison for DiffEnc-32-2 and VDMv-32 on CIFAR-10
	Detailed Loss Comparison for DiffEnc and VDMv on ImageNet32
	Further Future Work
	Model Structure and Training
	Datasets
	Encoder examples on MNIST
	Samples from models
	Using a Larger Encoder for a Small Diffusion Model
	FID Scores
	Sum heatmap of all timesteps

