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ABSTRACT

We study the statistical-computational trade-offs for learning with exact invariances
(or symmetries) using kernel regression over manifold input spaces. Traditional
methods, such as data augmentation, group averaging, canonicalization, and frame-
averaging, either fail to provide a polynomial-time solution or are not applicable in
the kernel setting. However, with oracle access to the geometric properties of the
input space, we propose a polynomial-time algorithm that learns a classifier with
exact invariances. Moreover, our approach achieves the same excess population
risk (or generalization error) as the original kernel regression problem. To the best
of our knowledge, this is the first polynomial-time algorithm to achieve exact (not
approximate) invariances in this context. Our proof leverages tools from differential
geometry, spectral theory, and optimization. A key result in our development is a
new reformulation of the problem of learning under invariances, as optimizing an
infinite number of linearly constrained convex quadratic programs, which may be
of independent interest.

1 INTRODUCTION

While humans can readily observe symmetries or invariances in systems, it is generally challenging
for machines to detect and exploit these properties from data. The objective of machine learning
with invariances is to develop approaches that enable models to be trained and utilized under the
symmetries inherent in the data. This framework is broadly applicable across various domains
in the natural sciences and physics, including atomistic systems (Grisafi et al., 2018), molecular
wavefunctions and electronic densities (Unke et al., 2021), interatomic potentials (Batzner et al.,
2022), and beyond (Batzner et al., 2023). While many applications involve Euclidean symmetries
(Smidt, 2021), the scope of such methods extends well beyond them to other geometries (Bronstein
et al., 2017).

Learning with invariances has a longstanding history in machine learning (Hinton, 1987; Kondor,
2008). In recent years, there has been significant interest in the development and analysis of learning
methods that account for various types of invariances. This surge in interest is strongly motivated by
many models showing considerable success in practice. Empirical evidence suggests the existence of
algorithms that can effectively learn under invariances while exhibiting strong generalization and
computational efficiency. However, from a theoretical perspective, much of the focus has been on the
expressive power of models, generalization bounds, and sample complexity. There remains a relative
lack of understanding regarding the statistical-computational trade-offs in learning under invariances,
even in foundational settings such as kernel regression.

Kernels, which have been among popular learning approaches, offer both statistical and computational
efficiency (Scholkopf & Smola, 2018). Symmetries can be included in kernel learning in various
ways. An immediate solution for learning with invariances seems to be data augmentation over
the elements of the group. Moreover, most kernel-based approaches to learning with invariances
rely on group averaging, a technique that involves summing over group elements. However, the
typically large size of the group can make both of these approaches computationally prohibitive, even
super-exponential in the dimension of input data. Alternative approaches, such as canonicalization
and frame averaging, also suffer from issues like discontinuities and scalability challenges (Dym
et al., 2024).

In light of these challenges, this paper seeks to address the following question:
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Is it possible to obtain an invariant estimator for the kernel regression problem that exhibits
both strong generalization capabilities and computational efficiency?

The first contribution of this work is a detailed study of the problem of learning with invariances
in the context of kernel methods. We argue that, while group averaging fails to produce exactly
invariant estimators within a computationally efficient timeframe, alternative algorithms can generate
invariant estimators for the kernel regression problem in time that is polylogarithmic in the size of
the group. In other words, we demonstrate that it is possible to achieve an invariant estimator that
is both computationally efficient and exhibits strong generalization. At first glance, this result may
seem counterintuitive and even impossible, since it implies that enumerating all possible invariances
is not required to design statistically efficient learning algorithms. This provides theoretical support
for the empirical observation that computational efficiency and strong generalization are attainable
in learning with invariances. To the best of our knowledge, this is the first algorithm that is both
statistically and computationally efficient for learning with invariances in the kernel setting,

Learning with invariances can be formulated as a nonconvex optimization problem, which is not
tractable directly. To design an efficient algorithm, we leverage the spectral theory of the Laplace-
Beltrami operator on manifolds. Notably, since this operator commutes with all (isometric) group
actions on the manifold, it is possible to find an orthonormal basis of Laplacian eigenfunctions such
that each group action on the manifold acts on the eigenspaces of the Laplacian via orthogonal
matrices. This theoretical framework allows us to reformulate the original problem of learning with
invariances on manifolds as a infinite collection of finite-dimensional convex quadratic programs—one
for each eigenspace—each constrained by linear conditions. By truncating the number of quadratic
programs solved, we can efficiently approximate solutions to the primary nonconvex optimization
problem, thereby approximating kernel solutions to the problem of learning with invariances. This
reformulation not only enables us to derive a polynomial-time algorithm for kernel regression under
invariances, but it may also have broader applications, the exploration of which we defer to future
research.

Finally, we emphasize again that this work is centered on achieving exact invariance, as many
applications—especially neural networks with strong empirical performance—are explicitly designed
to incorporate exact invariances by construction. In summary, this paper makes the following
contributions:

• We initiate the exploration of statistical-computational trade-offs in the context of learning
with exact invariances, focusing specifically on kernel regression over manifold-structured
input spaces.

• We reformulate the problem of learning under invariances in kernel methods, leveraging
differential geometry and spectral theory, and cast it as infinitely many convex quadratic
programs with linear constraints, for which we derive an efficient solution in terms of time
complexity. We trade off computational and statistical complexity by controlling the number
of convex quadratic programs solved to obtain the estimator.

• We introduce the first polynomial algorithm for learning with invariances in the general
setting of kernel regression over manifolds.

2 RELATED WORK

Generalization bounds and sample complexity for learning with invariances have been extensively
studied, particularly in the context of invariant kernels. Works such as Elesedy (2021), Bietti
et al. (2021), Tahmasebi & Jegelka (2023), and Mei et al. (2021) provide insights into this area.
Additionally, studies on equivariant kernels (Elesedy & Zaidi, 2021; Petrache & Trivedi, 2023) further
our understanding of how equivariances affect learning. PAC-Bayesian methods have also been
applied to derive generalization bounds under equivariances (Behboodi et al., 2022). More recently,
Kiani et al. (2024) explored the complexity of learning under symmetry constraints for gradient-based
algorithms. For studies on the optimization of kernels under invariances, see Teo et al. (2007).

A variety of methods have been proposed to enhance the performance of kernel-based learning
models. One prominent approach is the use of random feature models (Rahimi & Recht, 2007), which
approximate kernels using randomly selected features. Low-rank kernel approximation techniques,
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such as the Nyström method (Williams & Seeger, 2000; Drineas et al., 2005), have also been proposed
to reduce the computational complexity of kernel methods; see also Bach (2013); Cesa-Bianchi et al.
(2015). Divide-and-conquer algorithms offer another pontential avenue for kernel approximation
(Zhang et al., 2013). Additionally, the impact of kernel approximation on learning accuracy is
well-documented in Cortes et al. (2010).

Our work focuses on learning with invariances, which differs significantly from the tasks of learning
invariances or measuring them in neural networks. For example, Benton et al. (2020) address how
neural networks can learn invariances, while Goodfellow et al. (2009) study methods to measure the
degree of invariance in network architectures.

Invariance in kernel methods is not limited to group averaging. Other approaches such as frame
averaging (Puny et al., 2022), canonicalization (Kaba et al., 2023; Ma et al., 2024), random projections
(Dym & Gortler, 2024), and parameter sharing (Ravanbakhsh et al., 2017) have also been proposed to
construct invariant function classes. However, canonicalization and frame averaging face challenges,
particularly concerning continuity, which has been addressed in recent works like Dym et al. (2024).

In specialized tasks such as graphs, image, and pointcloud data, Graph Neural Networks (GNNs)
(Scarselli et al., 2008; Xu et al., 2019), Convolutional Neural Networks (CNNs) (Krizhevsky et al.,
2012; Li et al., 2021), and Pointnet (Qi et al., 2017a;b) have demonstrated the effectiveness of
leveraging symmetries. Symmetries have also been successfully integrated into generative models
(Biloš & Günnemann, 2021; Niu et al., 2020; Köhler et al., 2020). For a broader discussion on various
types of invariances and their applications across machine learning tasks, see Bronstein et al. (2017).

3 BACKGROUND AND PROBLEM STATEMENT

Notation. We begin by establishing some frequently used notation. LetM be a smooth, compact,
and boundaryless d-dimensional Riemannian manifold. The uniform distribution over the manifold is
the normalized volume element corresponding to its metric. We denote the space of square-integrable
functions overM by L2(M) and the space of continuous functions by C(M). Furthermore, Hs(M)
represents the Sobolev space of functions onM with parameter s, defined as the set of functions with
square-integrable derivatives up to order s. Larger values of s correspond to greater smoothness, and
it holds that Hs(M) ⊆ C(M) if and only if s > d/2, a condition we will assume throughout this
paper. For each n ∈ N, we define [n] := {1, 2, . . . , n}. We use log to denote the logarithm with base
2. We refer to Appendices A.1 and A.2 for a quick review of Riemannian manifolds.

Problem statement. We consider a general learning setup on a smooth, compact, and boundaryless
Riemannian manifoldM of dimension d. Our objective is to identify an estimator f̂ ∈ F from a
feasible space of estimators F ⊆ L2(M), based on n independent and uniformly distributed labeled
samples S = {(xi, yi) : i ∈ [n]} ⊆ (M× R)n drawn from the manifold. Here, the labels yi for
i ∈ [n] are produced based on the (unknown) ground truth regression function f⋆ ∈ C(M), meaning
that yi = f⋆(xi) + ϵi, for each i ∈ [n], where ϵi, i ∈ [n], is a sequence of independent zero-mean
random variables with variance bounded by σ2. The population risk (or generalization error) of an
estimator f̂ ∈ L2(M), which quantifies the quality of the estimation, is defined as:

R(f̂) := E
[
∥f̂ − f⋆∥2L2(M)

]
,

where the expectation is taken over the randomness of the data and labels.

Given a dataset of size n, finding estimators with minimal population risk can be quite complex,
often requiring the resolution of non-convex optimization objectives. However, in scenarios where
f⋆ ∈ H, with H ⊆ L2(M) being a Reproducing Kernel Hilbert Space (RKHS), it is feasible to
compute kernel-based estimators with low risk efficiently. Specifically, the Kernel Ridge Regression
(KRR) estimator for the RKHS H = Hs(M), denoted as f̂KRR, achieves a population risk of
R(f̂KRR) = O

(
n−s/(s+d/2)

)
while being computable in time O(n3), assuming access to an oracle

that computes the kernel associated with the space. Note that Sobolev spaces Hs(M) with s > d/2
are RKHS. We refer the reader to Appendices A.8 and A.9 for a detailed review of the KRR estimator
and related topics on Sobolev spaces.
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Learning with invariances. We assume that a finite group G acts smoothly and isometrically1 on
the manifoldM, represented by a smooth function θ : G×M→M mapping the product manifold
G ×M toM. We employ the notation θ(g, x) as gx for any g ∈ G and x ∈ M. In a scenario of
learning under invariances, the regression function f⋆ is invariant under the action of the group G,
satisfying f⋆(gx) = f⋆(x) for each g ∈ G and x ∈M. Thus, learning under invariances introduces
an additional requirement: not only must we compute an estimator with minimal population risk
efficiently, but f̂ must also be invariant with respect to G. This additional condition is often satisfied
in neural network applications by constructing networks that are invariant by design, such as graph
neural networks.

In the context of learning with Sobolev kernels, the KRR estimator f̂KRR is not G-invariant (see
Appendix A for more details). Consequently, the KRR estimator cannot provide a solution for
learning under invariances. However, with a shift-invariant Positive Definite Symmetric (PDS)
kernel2 K :M×M→ R, one can utilize group averaging to derive a new kernel and a new RKHS
holding only G-invariant functions:

Kinv

(
x1, x2

)
:=

1

|G|
∑
g∈G

K
(
gx1, x2

)
.

Given that the Sobolev space Hs(M) adopts a shift-invariant PDS kernel (Appendix A.8), one can
apply the above method to construct and compute a G-invariant kernel (assuming access to evaluating
its original kernel). This indicates that the KRR estimator on Kinv yields an invariant estimator for
f⋆ with a desirable population risk (see Tahmasebi & Jegelka (2023) for a comprehensive study).

However, in terms of computational complexity, this method requires Ω(n2|G|) time to compute the
new kernel between pairs of input data. In many practical scenarios, |G| can be intolerably large.
For instance, for the permutation group Pd, we have |G| = d! ∼

√
d(de )

d which is super-exponential
in d. Consequently, the group averaging method cannot provide an efficient algorithm for learning
with exact invariances. We emphasize ”exact invariance” here, as the sum involved in Kinv can be
approximated by summing over a number of random group transformations. However, this does not
guarantee exact invariance, which is the primary goal of this paper.

Other traditional approaches to achieving learning under invariances include data augmentation,
canonicalization, and frame averaging. For data augmentation, we need to increase our dataset
size by a multiplicative factor of |G|, which is often impractical within efficient time constraints.
This is because for any datapoint xi ∈ S, new datapoint gxi for any group element g ∈ G should
be added to dataset to ensure invariance of the underlying learning procedure in a blackbox way,
leading to Ω(n|G|) complexity. Canonicalization involves mapping data onto the quotient space of
the group action and subsequently finding an estimator (e.g., a KRR estimator) on the reduced input
space. However, this method is also infeasible for kernels due to the unavoidable discontinuities and
non-smoothness of the canonicalization maps, which violate RKHS requirements (Dym et al., 2024).
Finally, frame averaging is analogous to canonicalization, but it remains unclear how to address
continuity issues for efficient frame sizes. Moreover, it requires careful design of frames tailored to
the specific problem at hand, making it unsuitable for a general-purpose algorithm. Thus, motivated
by these observations, we pose the following question:

Is it possible to obtain a G-invariant estimator for f⋆ ∈ Hs(M) with a desirable population
risk (similar to the case without invariances) in poly(n, d, log(|G|)) time?

We aim to answer this question affirmatively in the following section. This is surprising, as it suggests
that even enumerating the set G is not required to find statistically efficient G-invariant estimators.

1The assumption of isometric action is made for simplicity; the proof can be extended to non-isometric
actions using standard techniques in the literature, as discussed in Tahmasebi & Jegelka (2023).

2A kernel K : M×M → R is termed shift-invariant with respect to group G if and only if K(gx1, gx2) =
K(x1, x2) for each g ∈ G and x1, x2 ∈ M. Shift-invariant kernels are not necessarily G-invariant. For
example, one can show that Hs(M) adopts a shift-invariant kernel while still producing non-invariant functions
in its RKHS. We cover the details in Appendix A.9.
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Oracles. To characterize computational complexity, first we need to specify the type of oracle
access provided for the estimation. Before doing so, we briefly review the spectral theory of the
Laplace-Beltrami operator on manifolds. For further details, we refer the reader to Appendix A.

The Laplace-Beltrami operator generalizes the Laplacian operator to Riemannian manifolds. It has
a basis of smooth eigenfunctions ϕλ,ℓ ∈ L2(M), which serve as an orthonormal basis for L2(M).
The index λ represents the eigenvalue corresponding to the eigenfunction ϕλ,ℓ, and ℓ ∈ [mλ] runs
over the multiplicity of λ, denoted by mλ. The eigenvalues can be ordered such that 0 = λ0 < λ1 ≤
λ2 ≤ · · · → ∞. For example, in the case of the sphere Sd−1, the spherical harmonics, which are
homogeneous harmonic polynomials, are a natural choice of eigenfunctions.

The sequence of eigenfunctions and their corresponding eigenvalues provide critical information
about the geometry of the manifold. In this work, we make use of the following two types of oracles:

• The ability to evaluate any eigenfunction ϕλ,ℓ(x) at a given point x ∈M.

• The ability to compute the L2(M) inner product between a shifted eigenfunction ϕλ,ℓ(gx)
and another eigenfunction ϕλ,ℓ′(x) for any group element g ∈ G.

For both oracles, we assume free access as long as Dλ :=
∑

λ′≤λmλ′ = poly(n, d), where Dλ

denotes the number of eigenfunctions with eigenvalues less than or equal to λ. This assumption is
motivated by the case of Sd−1, where spherical harmonics can be efficiently evaluated or multiplied
in low dimensions (in such cases, only a few monomials need to be processed, making the task
simple3). The first oracle handles the geometric structure of the manifold, while the second oracle
captures the relationship between the group action and the manifold’s spectrum. Both are crucial for
obtaining our results.

4 MAIN RESULT

In this section, we address the question raised in the previous section by presenting the primary result
of the paper, which is encapsulated in the following theorem.

Theorem 1 (Learning with exact invariances in polynomial time). Consider the problem of learning
with invariances with respect to a finite group G using a labeled dataset of size n sampled from a
manifold of dimension d. Assume that the optimal regression function belongs to the Sobolev space of
functions of order s, i.e., f⋆ ∈ Hs(M) for some s > d/2 and let α := 2s/d. Then, there exists an
algorithm that, given the data, produces an exactly invariant estimator f̂ such that:

• It operates in time O
(
log3(|G|)n3/(1+α) + n(2+α)/(1+α)

)
;

• It achieves an excess population risk (or generalization error) ofR(f̂) = O
(
n−s/(s+d/2)

)
;

• It requires O
(
log(|G|)n2/(1+α) + n(2+α)/(1+α)

)
oracle calls to construct the estimator;

• For any x ∈ M, the estimated label f̂(x) can be computed in time O
(
n1/(1+α)

)
using

O
(
n1/(1+α)

)
oracle calls.

The full proof of Theorem 1 is presented in Appendix B.3, while a detailed proof sketch is provided
in Section 5, and the algorithm is outlined in Algorithm 1.

Let us interpret the above theorem. Note that without any invariances, the Kernel Ridge Regression
(KRR) estimator (details are given in Appendix A.9) provides an estimator f̂KRR for the Sobolev
space Hs(M) that is computed in time O

(
n3

)
and achieves the riskR(f̂KRR) = O

(
n−s/(s+d/2)

)
.

Here, while KRR cannot guarantee an exactly invariant estimator, we propose another estimator
which is both exactly invariant and also converges with the same rate O

(
n−s/(s+d/2)

)
. As a result,

we achieve exact invariances with statistically desirable risk (or sample complexity). In other words,
the population risk is the same as the optimal case without invariances, which shows that the algorithm
introduces no loss in statistical performance while enforcing group invariances.

3This also extends to other settings, such as the Stiefel manifold or tori.
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We thus came to the following conclusion:

The problem of learning with exact invariances can be efficiently solved in
time poly(n, d, log(|G|)) and with excess population risk (or generalization error)
O
(
n−s/(s+d/2)

)
which is the same statistical performance as for learning without invariances.

It is worth mentioning that, according to the theorem, the proposed estimator f̂ is not only efficiently
achievable but also efficiently computes new predictions on unlabeled data.
Remark 1. We notice that in the proof of Theorem 1, the actual time and sample complexity depends
only on the size of minimum generating set of the group G, denoted by ρ(G), instead of log(|G|). We
use logarithm in the theorem just to give better insights to the reader about the improvement from the
naive approach. Thus, the actual proof allows to even achieve a tighter result, since ρ(G) ≤ log(|G|)
for any finite group (see Proposition 5 in Appendix B.1). Note that for some cases (such as cyclic
groups) ρ(G)≪ log(|G|).

5 ALGORITHM AND PROOF SKETCH

In this section, we provide a proof sketch for Theorem 1, introducing several new notations and
concepts necessary for achieving the reduction in time complexity.

We begin with the most natural optimization program for obtaining an estimator: the Empirical Risk
Minimization (ERM), which proposes the following estimator:

f̂ERM := argmin
f∈Hs(M)

{
1

n

n∑
i=1

(f(xi)− yi)2
}
,

where S = {(xi, yi) : i ∈ [n]} ⊆ (M× R)n denotes the sampled (labeled) dataset.

However, as discussed, this method does not necessarily produce an estimator that is exactly invariant.
A natural idea is to introduce group invariances as constraints into the above optimization, leading to
the following constrained ERM solution:

f̂ERM-C := argmin
f∈Hs(M)

{
1

n

n∑
i=1

(f(xi)− yi)2
}

s.t. ∀(g, x) ∈ G×M : f(gx) = f(x).

While this formulation ensures exact invariance, it introduces |G| functional equations. This is
problematic for two reasons: first, |G| constraints are prohibitively many, and second, these constraints
require solving functional equalities, which are not easily achievable. Moreover, the functional
equations involve non-linear (pointwise) constraints on the estimator function, which at first glance
appear intractable due to nonconvexity of the contraints f(gx) = f(x) for general choice of g.

Therefore, it is necessary to reformulate the above optimization program. The goals of the reformula-
tion are to reduce the number of constraints and encode the functional equations into more tractable
constraints, ideally linear ones.

Reducing the number of constraints. We begin by using the following basic property (based on the
group law):(

∀g ∈ {g1, g2},∀x ∈M : f(gx) = f(x)
)

=⇒
(
∀x ∈M : f(g1g2x) = f(x)

)
.

This observation allows us to eliminate many unnecessary constraints. Specifically, we only need
constraints over a small subset of G if this subset can generate any group element through arbitrary
group multiplications. To formalize this, we introduce the following definition:

Definition 1. A finite group G is said to be generated by a subset S ⊆ G if for every g ∈ G, there
exists a sequence of elements s1, s2, . . . , sk such that for each i ∈ [k], either si ∈ S or s−1

i ∈ S and
g = s1s2 · · · sk. The minimum size of such a subset S is denoted by ρ(G).

6
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Clearly, ρ(G) ≤ |G|. However, it can be shown (see Appendix B.1) that ρ(G) ≤ log(|G|), which
represents an exponential improvement over the trivial upper bound.

Thus, we can reformulate the constrained ERM optimization as:

f̂ERM-C := argmin
f∈Hs(M)

{
1

n

n∑
i=1

(f(xi)− yi)2
}

s.t. ∀(g, x) ∈ S ×M : f(gx) = f(x),

where |S| ≤ log(|G|). In this way, we reduce the number of constraints from |G| to log(|G|) by
leveraging the concept of minimal group generators. Note that this fact cannot be directly used in
data augmentation, group averaging, or canonicalization techniques.

Optimization in the spectral domain. The constrained ERM formulation presented above, while
advantageous in terms of reducing the number of constraints, involves optimizing over the infinite-
dimensional space Hs(M), which is computationally intractable. One way to make this problem
tractable is to parametrize the estimator and search for the optimal parameters. To achieve this,
we utilize the spectral theory of the Laplace-Beltrami operator over manifolds. While a detailed
discussion of spectral theory is provided in Appendix A, we summarize the relevant concepts here.

As mentioned earlier, the Laplace-Beltrami operator yields a sequence of orthonormal eigenfunctions
ϕλ,ℓ ∈ L2(M), where λ ∈ {λ0, λ1, . . .} ⊆ [0,∞) represents the eigenvalue corresponding to the
eigenfunction ϕλ,ℓ, and ℓ ∈ [mλ] indexes the multiplicity of λ, denoted by mλ. Therefore, any
estimator f ∈ L2(M) can be expressed as:

f(x) =
∑
λ

mλ∑
ℓ=1

fλ,ℓϕλ,ℓ(x), fλ,ℓ := ⟨f, ϕλ,ℓ⟩L2(M).

The idea is to parametrize the problem by finding the best coefficients fλ,ℓ. However, since there are
infinitely many eigenvalues, there are infinitely many parameters to estimate, which is not feasible
in finite time. Fortunately, we know that f⋆ ∈ Hs(M). From the definition of Sobolev spaces (see
Appendix A.8), we have:

∥f⋆∥2Hs(M) :=
∑
λ

mλ∑
ℓ=1

(f⋆λ,ℓ)
2Dα

λ ,

where Dλ =
∑

λ′≤λmλ′ , and α := 2s
d > 1.

Thus, we conclude that: ∑
λ:Dλ>D

mλ∑
ℓ=1

(f⋆λ,ℓ)
2 ≤ D−α∥f⋆∥2Hs(M) = O(D

−α),

for any D > 0. This shows that for Sobolev regression functions f⋆ ∈ Hs(M), we can truncate
the estimation of coefficients at a certain cutoff frequency λ, which allows the problem to be
parametrized with finitely many parameters. Although this introduces bias into the estimation (since
higher-frequency eigenfunctions will not be captured), the bias is bounded by the above inequality
for Sobolev spaces.

Interestingly, this spectral approach yields a more meaningful optimization problem when considering
the population risk function rather than ERM. The population risk, which is the primary objective in
regression, is given by:

R(f) = ES

[
∥f − f⋆∥2L2(M)

]
=

∑
λ

mλ∑
ℓ=1

E[(fλ,ℓ − f⋆λ,ℓ)2].

Constrained spectral method. To review, we introduced an efficient way to impose the constraints
related to group invariances in the ERM objective and later presented spectral methods for obtaining
estimators. The last step here is to combine these to achieve exact invariances via a constrained
spectral method. We use an important property of the Laplace-Beltrami operator to introduce the
algorithm.

7
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Let ∆M denote the Laplace-Beltrami operator on the manifold M, and let G be a group acting
isometrically onM. Define the linear operator Tg : f(x) 7→ f(gx) for each group element g ∈ G
and any smooth function f on the manifold. Then, we have

∆M(Tgϕ) = Tg(∆M(ϕ)),

for any smooth function ϕ on the manifold (for a formal proof, please refer to Appendix A.5).

This identity tells us that the Laplace-Beltrami operator ∆M commutes with the operator Tg for
each g. Since both operators are linear, spectral theory implies that the commutativity shows the
eigenspaces of ∆M are preserved under the action of the group G, meaning the operators can be
simultaneously diagonalized. Specifically, for any λ, ℓ, and any g ∈ G, the function ϕλ,ℓ(gx) is a
linear combination of eigenfunctions ϕλ,ℓ′ , ℓ′ ∈ [mλ]. In particular, the group G acts via orthogonal
matrices on the eigenspace Vλ := span(ϕλ,ℓ : ℓ ∈ [mλ]) for each λ.

Let Dλ(g) denote the mλ ×mλ orthogonal matrix corresponding to the action of an element g ∈ G
on Vλ for each λ. Then, a function

f(x) =
∑
λ

mλ∑
ℓ=1

fλ,ℓϕλ,ℓ(x)

is G-invariant if and only if

Dλ(g)fλ = fλ, ∀g ∈ G ∀λ ∈ {λ0, λ1, . . .},

where fλ := (fλ,ℓ)ℓ∈[mλ] ∈ Rmλ for each λ. We can further reduce the number of conditions by
passing G to a generator set, which gives only log(|G|) conditions.

Thus, the commutativity of the Laplace-Beltrami operator and any isometric group action allows us
to introduce only linear constraints on the spectral method to achieve exact invariances. This leads to
the following optimization program:

min
fλ,ℓ

∑
λ

mλ∑
ℓ=1

E[(fλ,ℓ − f⋆λ,ℓ)2],

s.t. ∀g ∈ S ∀λ ∈ {λ0, λ1, . . .} : Dλ(g)fλ = fλ.

Here, f⋆λ,ℓ = Ex[f
⋆(x)ϕλ,ℓ(x)] = Ex,y[yϕλ,ℓ(x)] is not known a priori; only n samples (xi, yi) ∈

M× R, i ∈ [n], are given. Furthermore, the constraints are independent for different eigenspaces
(i.e., different λ), and the objective is a sum over eigenspaces. This means we can decompose the
problem into a set of linearly constrained optimization programs, one for each eigenspace Vλ:

min
fλ,ℓ

mλ∑
ℓ=1

E[(fλ,ℓ − f⋆λ,ℓ)2],

s.t. ∀g ∈ S : Dλ(g)fλ = fλ.

This reformulation allows us to propose efficient estimators for the problem.

Empirical estimator. In this paper, we suggest the following auxiliary empirical mean estimator
from the data for the above optimization program on Vλ:

f̃λ,ℓ =
1

n

n∑
i=1

yiϕλ,ℓ(xi), ∀ℓ ∈ [mλ]. (1)

Moreover, we stop estimation and set f̃λ,ℓ = 0 when Dλ > D, where D is a hyperparameter. To
find a G-invariant using our primary estimator, we solve the following quadratic program to find a
solution satisfying the constraints for each Vλ with Dλ ≤ D:

f̂λ,ℓ := argmin
fλ,ℓ

mλ∑
ℓ=1

(fλ,ℓ − f̃λ,ℓ)2,

s.t. ∀g ∈ S : Dλ(g)fλ = fλ.

8
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This optimization problem is a convex quadratic program with linear constraints that can be solved
iteratively using the rich convex optimization machinery. Additionally, it has a closed-form solution
as noted in Proposition 6 in Appendix B.2. Let Bλ ∈ R|S|mλ×mλ defined as the augmented matrix
resulted by concatenating Dλ(g) − I for all g ∈ S on top of each other, i.e., Bλ = [(Dλ(g1) −
I)⊤, (Dλ(g2)− I)⊤, . . . , (Dλ(g|S|)− I)⊤]⊤. Then,

f̂λ,ℓ = f̃λ,ℓ −Bλ⊤(BλBλ⊤)†(Bλf̃λ)[ℓ],

where † denotes Moore–Penrose inverse.

The final estimator of the algorithm is given by

f̂(x) =
∑

λ:Dλ≤D

mλ∑
ℓ=1

f̂λ,ℓϕλ,ℓ(x).

This meta approach to design G-invariant estimator f̂ from any primary estimtor f̃ is novel and
can be of independent interest. A pseudocode for this method is presented in Algorithm 1. Since
the invariance is imposed in the spectral representation, we coin our proposed algorithm Spectral
Averaging (Spec-Avg).

Algorithm 1 Learning with Exact Invariances by Spectral Averaging (Spec-Avg)
Input: Input S = {(xi, yi) : i ∈ [n]} and α = 2s/d ∈ (1,∞).
Output: Output f̂(x).

1: Initialize D ← n1/(1+α).
2: for each λ such that Dλ ≤ D do
3: for each ℓ ∈ [mλ] do
4: f̃λ,ℓ ← 1

n

∑n
i=1 yiϕλ,ℓ(xi).

5: end for
6: end for
7: for each λ such that Dλ ≤ D do
8: Solve the following linearly constrained quadratic program over mλ variables:

f̂λ,ℓ ← argmin
fλ,ℓ

mλ∑
ℓ=1

(fλ,ℓ − f̃λ,ℓ)2,

s.t. ∀g ∈ S : Dλ(g)fλ = fλ.

9: end for
10: return f̂(x) =

∑
λ:Dλ≤D

∑mλ

ℓ=1 f̂λ,ℓϕλ,ℓ(x).

We conclude this section by reviewing how we apply the results from Algorithm 1 to the two following
important examples.
Example 1. Consider the problem of learning under invariances over the unit sphere Sd−1 := {x ∈
Rd : ∥x∥2 = 1}, where the group G is the group of all permutations of coordinates. Note that
|G| = d!, which is prohibitively large for data augmentation or group averaging. However, this group
is generated by only two elements: σ1 = (1 2) and σ2 = (1 2 . . . d). Here, σ1 swaps the first and
second coordinates, while σ2 is a cycle that maps 1→ 2, 2→ 3, and so on, cyling with d→ 1.

The eigenspaces Vλ for the sphere are precisely the sets of homogeneous harmonic polynomials of
degree k, where λ = k(k + d− 2). The permutation group acts on Vλ by permuting the variables of
the polynomials. This action is clearly linear, and the matrices Dλ(g) can be efficiently computed
(using tensor products) as long as k is small. Moreover, homogeneous polynomials of degree k
can also be computed efficiently for small k. This shows that the oracles considered in this paper
align perfectly with what we observe in the important case of spheres and polynomial regression.
In Algorithm 1, we first compute the coefficients of each polynomial for degree k, up to a small k,
and then solve a quadratic program with only two linear constraints to obtain an exactly invariant
polynomial solution.
Example 2. Consider the same setup as the previous example but assume d = 2, i.e., the manifold is
the unit circle. In this case, each eigenspace Vλ is spanned by sin(kθ) and cos(kθ), where λ = k2.

9
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Let us assume our task is to find an estimator invariant with respect to rotations by integer multiples
of 2π

|G| . This group is cyclic and is generated by only one element g0 = 2π
|G| . Thus, we have only one

constraint for each eigenspace. Indeed, one can observe thatDλ(g0) = R(k 2π
|G| ), whereR(.) ∈ R2×2

is the two-dimensional rotation matrix. Thus, this example further illustrates how our oracles are
defined to solve the problem.

6 DISCUSSION AND FUTURE DIRECTIONS

We initiated the study on computational-statistical trade-offs in learning with exact invariances. We de-
signed an algorithm that shows achieving the desirable population risk (the same as kernel regression
without invariances) in poly(n, d, log(|G|)) time for the task of kernel regression with invariances
on general manifolds. We note that, for simplicity, we have focused on boundaryless manifolds and
isometric group actions. However, using standard techniques, the theory can be extended to more
general cases as well4. While the proposed spectral algorithm is computationally efficient, it does not
offer any improvement in sample complexity over the baselineR(f̂) = O

(
n−s/(s+d/2)

)
. It has been

observed that without computational constraints, better convergence rates are possible for learning
with invariances (Tahmasebi & Jegelka, 2023), which are minimax optimal. Thus, it remains open
whether those improved rates are achievable in poly(n, d, log(|G|)) time.

We note that the oracle access we assumed is primarily motivated by the case of the sphere, where
polynomials can be evaluated, multiplied, composed by group elements, and integrated efficiently
when they are of relatively low degree. We believe this is the most natural oracle access for this
problem, as it aligns well with applications involving polynomials. An interesting future work could
be to investigate the statistical-computational trade-offs using alternative oracles, e.g., similar to the
kernel trick, how to design computationally efficient algorithms that have only access to the inner
product of the RKHS. Another interesting future direction is to find whether random feature models
as approximations for kernels can significantly improve the statistical-computational trade-off of
learning with invariances. At present, our theory does not apply to random feature models.

We also observe that the spectral algorithm used in this paper does not employ the kernel trick, as
it requires access to the entire set of features, rather than just their inner products. An interesting
question is whether it is possible to utilize kernel tricks and find an alternative (polynomial-time)
algorithm for learning under invariances. This approach could potentially improve the statistical
efficiency of the spectral algorithm. In the end, we would like to note that capturing computational-
statistical trade-offs in other estimation problems with invariances such as density estimation (Chen
et al., 2023; Tahmasebi & Jegelka, 2024) could serve as a compelling avenue for future research.

7 CONCLUSION

In this paper, we explore the statistical-computational trade-offs in learning with invariances, focusing
specifically on kernel regression. We observe that while the Kernel Ridge Regression (KRR) estimator
can address this problem, it is not necessarily invariant without group averaging. Furthermore, since
performing group averaging can be costly for large groups, we ask whether it is possible to develop
statistically sound estimators with efficient time complexity. Our findings show that by reformulating
the problem and reducing the number of constraints using group laws, we can express it as solving
an infinite series of quadratic optimization programs under linear constraints. We conclude with an
algorithm that achieves an exactly invariant estimator with polynomial time complexity and highlight
several additional questions for future research.

8 REPRODUCIBILITY AND ETHICS STATEMENT

The main focus of this work is the theoretical understanding of computational-statistical trade-offs
in learning with invariances; therefore, there are no significant ethical concerns. To ensure repro-
ducibility, we have provided a detailed proof sketch of the algorithm in the main text. Additionally,
all proofs and relevant background information are discussed in detail in the appendix.

4See e.g., Tahmasebi & Jegelka (2023).
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Sékou-Oumar Kaba, Arnab Kumar Mondal, Yan Zhang, Yoshua Bengio, and Siamak Ravanbakhsh.
Equivariance with learned canonicalization functions. In Int. Conference on Machine Learning
(ICML), 2023. 3

Bobak Kiani, Thien Le, Hannah Lawrence, Stefanie Jegelka, and Melanie Weber. On the hardness of
learning under symmetries. In Int. Conference on Learning Representations (ICLR), 2024. 2
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A BACKGROUND

A.1 RIEMANNIAN MANIFOLDS

In this section, we review some fundamental definitions from differential geometry and refer the
reader to Lee (2006); Petersen (2006); Lee (2012) for further details.
Definition 2 (Manifold). A topological manifoldM of dimension dim(M) is a completely separable
Hausdorff space that is locally homeomorphic to an open subset of Euclidean space of the same
dimension, specifically Rdim(M). More formally, for each point x ∈ M, there exists an open
neighborhood U ⊆M and a homeomorphism ϕ : U → Û , where Û ⊆ Rdim(M).

The value dim(M) is referred to as the dimension of the manifold. Examples of manifolds include
tori, spheres, Rd, and graphs of continuous functions. Manifolds with boundaries differ from
boundaryless manifolds in that they may have neighborhoods that locally resemble open subsets
of closed dim(M)-dimensional upper half-spaces, denoted as Hdim(M) ⊆ Rdim(M), defined as
follows:

Hd = {(x1, x2, . . . , xd) ∈ Rd | xd ≥ 0}.
Definition 3 (Local Coordinates). Given a chart (U, ϕ)—a pair consisting of a local neighborhood U
and the corresponding homeomorphism ϕ : U → Û—on a manifoldM with dimension d, we define
local coordinates (x1, x2, . . . , xd) such that

ϕ(p) = (x1(p), x2(p), . . . , xd(p)),

for each point p ∈ U .
Definition 4 (Tangent Space). At each point x ∈M, the tangent space TxM is defined as the vector
space formed by the tangent vectors to the manifoldM at x. A tangent vector v ∈ TxM can be
represented as the derivative of a smooth curve γ(t) : (−ϵ, ϵ)→M defined on the manifold with the
property that γ(0) = x. It is expressed as

ν =
d

dt
γ(t)

∣∣∣∣
t=0

.

The tangent space TxM is a real vector space with dimension dim(M).
Definition 5 (Riemannian Metric Tensor). A Riemannian metric tensor g5 on a manifoldM is a
smooth inner product defined on the tangent space TxM at each point x ∈M. For any two tangent
vectors u, v ∈ TxM, the metric assigns a real number gx(u, v) ∈ R.
Definition 6 (Riemannian Manifold). A Riemannian manifold is defined as a pair (M, g), whereM
is a manifold and g is a Riemannian metric tensor defined on the tangent space TxM at each point
x ∈M.

A Riemannian metric tensor provides essential tools for the study of manifolds, which we formalize
below. It enables the following:

• the definition of the geodesic distance d(x, y) between any two points x, y ∈ M on the
manifold,

• a volume element d volg(x) over the manifold, serving as the measure for the Borel sigma-
algebra over open subsets of the manifoldM, and

• the measurement of the angle between any two tangent vectors u, v ∈ TxM, which in turn
provides the size of tangent vectors.

Definition 7 (Geodesic Distance). The geodesic distance dM(x, y) between any two points x, y ∈M
on the manifold is defined as the infimum length among all smooth curves γ : [0, 1]→M connecting
x to y (γ(0) = x, γ(1) = y). The length of a curve γ is defined as

L(γ) =

∫ 1

0

√
gγ(t) (γ̇, γ̇) dt,

where γ̇ denotes the derivative dγ
dt .

5This notation differs from g, which denotes group elements.
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Definition 8 (Volume Element). The volume element dvolg(x) on a Riemannian manifold (M, g) is
defined as

dvolg =
√

det(gij) dx
1 ∧ dx2 ∧ · · · ∧ dxn,

where gij are the components of the Riemannian metric tensor, (x1, x2, . . . , xn) are the local coordi-
nates, and ∧ denotes the exterior product.

The volume element provides a way to compute the volume of subsets ofM by integrating functions
overM. Moreover, a Borel measure µ on open subsets ofM can be derived form the volume element
to form probability measure space, e.g., uniformly over the manifold.
Definition 9 (Smooth Map). A maping f :M→ N is a smooth map if for any charts (U, ϕ) on
M, and (V, ψ) on N , the composition function ψ ◦ f ◦ ϕ−1 : Rdim(M) → Rdim(N ) is infinitely
differentiable.
Definition 10 (Pullback of the metric tensor). Given Riemannian manifolds M, (N , g) and φ :
M→N a smooth map between them. The pullback of the metric tensor g by ϕ, denoted by φ∗g is
the Riemannian metric tensor on manifoldM defined by,

(φ∗g)x(u, v) = gφ(x)(dφx(u), dφx(v)), for all points x ∈M and all u, v ∈ TxM,

where dφx : TxM→ Tφ(x)N is the differential of the map φ at point x.

Thus, the pullback metric φ∗g onM captures the relation between tangent vectors ofM in terms of
how they are mapped to the manifold N via φ.
Definition 11 (Connected Manifold). A manifoldM is connected if for any two points x, x′ ∈M,
there is a smooth curve γ : [0, 1]→M such that γ(0) = x and γ(1) = x′.

Throughout this paper, we focus on smooth, connected, compact and boundaryless Riemannian
manifolds (M, g) unless stated otherwise. For a Riemannian manifolds (M, g), we denoted the dot
product induced by the metric tensor g as ⟨u, v⟩gx = gx(u, v) for all u, v ∈ Tx. We drop the subscript
x whenever it is clear from the context.

A.2 FUNCTIONAL SPACES OVER MANIFOLDS

Now equipped with probability measures on manifold discussed in Appendix A.1, we are ready to
define functional spaces Lp(M) and Sobolev spacesHs(M) on manifoldM analogously to their
Euclidean counterparts in the following,
Definition 12 (Functional Spaces on Manifolds). The Lebesgue functional spaces Lp(M) for
p ∈ [1,∞], and the Sobolev spaces Hs(M) for s ≥ 0 on a smooth ManifoldM, are defined as
follows:

• The Lebesgue space Lp(M) consists of measurable functions f : M → R such that
∥f∥Lp(M) <∞ where,

∥f∥Lp(M) =

{(∫
M |f(x)|

p dµ(x)
)1/p

if p ∈ [1,∞)

ess supx∈M |f(x)| <∞. if p =∞
,

where µ is the uniform measure over the manifoldM.

• The Sobolev space Hs(M) consists of measurable functions whose derivatives up to order
s are in L2(M), i.e.,

Hs(M) =
{
f ∈ L2(M) | Dαf ∈ L2(M) for all multi-indices α with |α| ≤ s

}
.

A.3 LIE GROUP OF ISOMETRY MAPS

In this section, first we state basic definition of isometric mappings over manifolds and then wrap up
by characterizing the isometry group over the manifold.
Definition 13 (Isometry Map). A bijective mapping τ :M→M is an isometry on the manifold (G,
g) if d(τ(x), τ(x′)) = d(x, x′).
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We also state a brief definition of Lie groups for completeness.

Definition 14 (Lie group). A group G is a Lie group with smooth group operations (multiplication
and inversion) if it is additionally a smooth manifold.

The space of bijective Riemannian isometries defined on the manifold (M, g), denoted by ISO(M, g)
constitutes a group with composition operation. The celebrated Myers–Steenrod theorem states that
any isometry map τ ∈ ISO(M, g) between connected manifolds is an isometry (Myers & Steenrod,
1939; Palais, 1957). Myers & Steenrod (1939) took it a step further and proved that isometry group
of a Riemannian manifold (M, g) is a Lie group.

Alternatively, ISO(M, g) can be charecterized by the pullback of the metric tensor. In terms,
τ ∈ ISO(M, g) if and only if g = τ∗g (Petersen, 2006).

A.4 LAPLACIAN ON MANIFOLDS

In this section, we reiterate over definition of Laplace-Beltrami operator on manifolds (which is the
generalization of the Laplacian operator ∆ = ∂21 + ∂22 + · · ·+ ∂2d defined on the Euclidean space
Rd) and state a several interesting properties that will utilize later. We refer to Chavel (1984) for
additional details.

Definition 15 (Laplace-Beltrami operator). Given a Riemannian manifold (M, g), the Laplace-
Beltrami operator ∆g : Hs(M)→ Hs−2(M) acts on a smooth function f :M→ R by

∆gf = divg(gradg(f)).

Moreover, ∆gf has an equivalent weak formulation (Evans, 2022), as the unique continuous linear
operator ∆g : Hs(M)→ Hs−2(M) which is a solution to the equation,∫

M
ψ(x)∆gϕ(x)d volg(x) +

∫
M
⟨∇gψ(x),∇gϕ(x)⟩gd volg(x) = 0,∀ϕ, ψ ∈ Hs(M). (2)

The Laplace-Beltrami operator ∆g is self-adjoint, eliptic and diagonalizable in Lp(M) (Chavel,
1984; Evans, 2022), yielding a sequence of orthonormal eigenfunctions ϕλ,ℓ ∈ L2(M), where
λ ∈ {λ0, λ1, . . .} ⊆ [0,∞) represents the eigenvalue corresponding to the eigenfunction ϕλ,ℓ, and
ℓ ∈ [mλ] indexes the multiplicity of λ, denoted by mλ such that ∆gϕλi,ℓ + λℓϕλi,ℓ = 0 for all
ℓ ∈ {1, . . . ,mλi

}. Note that the basis starts with the constant function ϕ0 ≡ 1 and λ0 = 0. Hence,
one can write ∆gf = −

∑∞
i=0

∑mλi

ℓ=1 λi⟨f, ϕλi,ℓ⟩ϕλi,ℓ.

Lemma 2. For any function f ∈ L2(M), such that f is decomposed into the basis {ϕλ,ℓ}∞λ=1 as
f =

∑∞
i=0

∑mλi

ℓ=1 ⟨f, ϕλi,ℓ⟩L2(M)ϕλ,ℓ, we know that

∥∇gf∥2L2(M) =

∞∑
i=0

mλi∑
ℓ=1

λi⟨f, ϕλi,ℓ⟩2L2(M),

for convergent summations.

Proof. By Equation (2),

∥∇gf∥2L2(M) =

∫
M
⟨∇gf(x),∇gf(x)⟩g d volg(x)

= −
∫
M
f(x)∆gf(x) d volg(x)

=

∞∑
i=0

mλi∑
ℓ=1

λi⟨f, ϕλi,ℓ⟩2L2(M).
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A.5 COMMUTATIVITY OF LAPLACIAN AND ISOMETRIC GROUP ACTIONS

Let G be a group acting isometrically on a compact, smooth, boundaryless manifoldM. As we
stated in the main body of the paper, we have ∆M(Tgϕ) = Tg(∆M(ϕ)) for each smooth function ϕ
on manifoldM, where Tgϕ = ϕ(gx). To see how, note that by Equation (2), this is equivalent to
showing that ∫

M
h∆M(Tgϕ)d volg(x) =

∫
M
hTg(∆M(ϕ))d volg(x), (3)

for each smooth function h on manifoldM. By changing the variables in the integrable and noting
that dx = d(gx) from isometry, we have∫

M
h∆M(Tgϕ)d volg(x) = −

∫
M
⟨∇h,∇Tgϕ⟩gd volg(x) (4)

= −
∫
M
⟨∇Tg−1h,∇ϕ⟩gd volg(x) (5)

=

∫
M
Tg−1h∆M(ϕ)d volg(x) (6)

=

∫
M
hTg(∆M(ϕ))d volg(x). (7)

A.6 WEYL’S LAW UNDER INVARIANCES

Weyl’s law characterizes the asymptotic distribution of the eigenvalues in a closed-form formula
(Hörmander, 1968; Sogge, 1988; Canzani, 2013). Let us denote dimension of the space spanned by
the eigenvectors corresponding to eigenvalue of the Laplace-Beltrami operator up to λ as

Dλ :=
∑
λ′≤λ

mλ′ .

Theorem 3 (Weyl’s law (Hörmander, 1968; Sogge, 1988; Canzani, 2013)). Let (M, g) be a compact,
boundaryless d-dimensional Riemannian manifold. The asymptotic behavior of dimension count Dλ

follows

Dλ =
ωd vol(M)

(2π)d
λd/2 +O(λ(d−1)/2),

where ωd = πd/2

Γ( d
2+1)

is the volume of the unit d-dimensional ball in Rd, vol(M) is the Riemannian

volume ofM, and O(λ(d−1)/2) represents the error term.

Define Dλ,G as the dimension of the space induced by projection of the corresponding eigenspaces
of Dλ into the space of G-invariant functions. Tahmasebi & Jegelka (2023) proved the following
characterization over this dimension as λ→∞.

Theorem 4 (Dimension counting (Tahmasebi & Jegelka, 2023)). Let (M, g) be a compact, bound-
aryless d-dimensional Riemannian manifold, andG be a compact finite Lie group acting isometrically
on (M, g). Then.

Dλ,G =
ωd vol(M/G)

(2π)d
λd/2 +O(λ(d−1)/2),

as λ→∞, where again ωd is the volume of the unit d-dimensional ball in Rd.

A.7 SOBOLEV SPACES ON MANIFOLDS

The ordinary definition of Sobolev spaces on manifolds deals with having square-integrable derivatives
up to an order s. Here, since our focus is on the spectral approach, we present the spectral definition
of Sobolev spaces.
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Definition 16 (Sobolev spaces). The Sobolev space of functions Hs(M) on a compact, smooth,
boundaryless Riemannian manifoldM is defined as:

Hs(M) :=
{
f =

∑
λ

mλ∑
ℓ=1

fλ,ℓϕλ,ℓ(x) : ∥f∥2Hs(M) :=
∑
λ

mλ∑
ℓ=1

Dα
λf

2
λ,ℓ <∞

}
,

where α := 2s/d.

Note that the above definition is equivalent to the other definition of the Sobolev spaces that involves
considering λs instead of Dα

λ above. Using Weyl’s law (see Appendix A.6), one can show that both
definitions are equivalent.

A.8 SOBOLEV KERNELS

Sobolev spaces are RKHS when s > d/2. Indeed, the Sobolev kernel can be defined as:

KHs(M)(x, y) :=
∑
λ

mλ∑
ℓ=1

D−α
λ ϕλ,ℓ(x)ϕλ,ℓ(y).

Note that any groupG that acts isometrically on the manifold, also acts on the eigenspace of Laplacian
via orthogonal matrices. Since orthogonal matrices preserve the inner product we conclude that

KHs(M)(gx, gy) = KHs(M)(x, y),

for any g ∈ G, which means that the Sobolev kernel is shift-invariant. However, this is clearly not
G-invariant since it produces small bump functions, which need not be invariant.

A.9 KERNEL RIDGE REGRESION (KRR)

Consider a Positive-Definite Symmetric (PDS) kernel K(., .) on a smooth, compact, boundaryless
manifold with H denoting its RKHS. The objective of Kernel Ridge Regression (KRR) estimator is
to introduce the RKHS norm to the ERM objective to make sure of finding smooth interpolators:

min
f∈H

{ 1

n

n∑
i=1

(f(xi)− yi)2 + η∥f∥2H
}
, (8)

where η denotes the regularization parameter that balances the bias and variance terms. Here, the
objective function takes a closed-form solution to the represented theorem for kernels. This gives an
efficient estimator, which is termed KRR in the literature.

However, this estimator need not be G-invariant even when trained on invariant data. To see why,
note that as long as the space H includes non-invariant functions, there is a chances that we find
a non-invariant function optimizing the above objective due to the observation noise. Thus, the
only way to make sure that the KRR estimator is G-invariant is to impose the assumption of having
G-invariant kernels, which translated to group averaging over the Sobolev kernel:

KG
Hs(M)(x, y) :=

1

|G|
∑
g∈G

KHs(M)(gx, y). (9)

This method is unfortunately not computationally feasible, even though it achieves minimax optimal
generalization bounds for learning under invariances with kernels (Tahmasebi & Jegelka, 2023).

B PROOFS

B.1 MINIMAL GENERATING SET OF A GROUP

Here, we restate and prove the following lemma on the size of the minimal generating set in group
theory for completeness.

Proposition 5. The minimal generating set S of a finite groupG, has a size ρ(G) := |S| ≤ log2(|G|).
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Proof. Consider the minimal generating set S = {g1, g2, . . . , g|S|} of the finite group G. For each
k ∈ {1, 2, . . . , |S|}, define Gk = ⟨g1, g2, . . . , gk⟩.
The identity e is not equal to any of gk, and hence cannot be a member of any Gn, since it can
always be produced by combining an element with its inverse. Moreover, for all k ∈ {1, 2, . . . , |S|},
we know that gk+1 /∈ Gk, since otherwise ⟨g1, g2, . . . , gk, gk+2, . . . g|S|⟩ = G which contradicts
the minimality of the generating set S for the group G. Therefore, gn+1Gn the left coset of Gn

is disjoint from Gn. Additionally, by definition, we know that gn+1Gn

⋃
Gn ⊆ Gn+1. Hence,

|Gn+1| ≥ |gn+1Gn| + |Gn| = 2|Gn|. By induction, 2|S| = 2|S||G1| ≤ |G|S|| = |G| which
establishes the claim.

B.2 CONSTRAINED OPTIMIZATION

In this section, we preset a detailed analysis of the constrained quadratic optimization problem that is
used in Algorithm 1.
Proposition 6 (Projection into invariant subspace of eigenspaces). The optimization problem,

f̂λ := argmin
fλ

mλ∑
ℓ=1

(fλ,ℓ − f̃λ,ℓ)2, (10)

s.t. ∀g ∈ S : Dλ(g)fλ = fλ,

with |S| = m, has a closed form solution,

f̂λ = f̃λ −Bλ⊤(BλBλ⊤)†(Bλf̃λ),

where

Bλ =


Dλ(g1)− I
Dλ(g2)− I

...
Dλ(gm)− I

 ,
and † denotes Moore–Penrose inverse.

Proof. For better readability, we define B(gi) := Dλ(gi) − I , where I ∈ Rmλ×mλ is the identity
matrix of size mλ, then,

Bλ =


B(g1)
B(g2)

...
B(gm)

 .
For ease of notation, let a := f̃λ ∈ Rmλ and a∗ := f̂λ ∈ Rmλ , then the optimization problem (10)
can be rewritten as,

a∗ = min
a′

1

2
∥a− a′∥2 subject to Bλa′ = 0. (11)

Now, we need to show that the projection of a onto the subspace defined by {a′ | Ba′ = 0} has the
following analytical form,

a∗ = a−Bλ⊤(BλBλ⊤)†(Bλa).

We form the Lagrangian,

L(a′, λ) = 1

2
∥a− a′∥2 + ξ⊤Bλa,

where ξ ∈ Rmλ is the vector of Lagrange multipliers. By taking gradients,

∂L
∂a′

= (a′ − a) +Bλ⊤ξ = 0,
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thus,

a∗ = a−Bλ⊤ξ. (12)

Substituting back into the constraint Bλa∗ = 0,

Bλ(a−Bλ⊤ξ) = Bλa−BλBλ⊤ξ = 0. (13)

Hence, ξ satisfies the above linear system which may have infinite number of solutions. We claim that
the choice of ξ∗ = (BλBλ⊤)†Bλa leads to the optimal solution of optimization problem (11). The
objective of optimization (11) is ∥a− a∗∥2 = ∥Bλ⊤ξ∥22. Any solution ξ to the linear system (13),
can be decomposed as ξ = ξ∗ + ξ0 where ξ0 is in the nullspace of BλBλ⊤. Hence,

∥Bλ⊤ξ∥22 = ∥Bλ⊤(ξ∗ + ξ0)∥22
(I)
= ∥Bλ⊤ξ∗∥22 + ∥Bλ⊤ξ0∥22 ≥ ∥Bλ⊤ξ∗∥22.

(I) follows since Bλ⊤ξ∗ and Bλ⊤ξ0 are orthogonal w.r.t. each other. Placing ξ∗ = (BλBλ⊤)†Bλa
in Equation (12) concludes the proof.

Remark 7 (Time complexity of optimization in each eigenspace). We arbitrarily chose to use the
closed-form solution of the optimization problem (10) instead of iterative approaches. In the closed
form solution, we need to calculate the pseuedoinverse of matrix BλBλ⊤ ∈ R|S|mλ×|S|mλ which
can be done via singular value decomposition (SVD) in O(|S|3m3

λ). The other operations are matrix
multiplications that are dominated by this part in terms of computational complexity.

B.3 MAIN THEOREM

Theorem 1 (Learning with exact invariances in polynomial time). Consider the problem of learning
with invariances with respect to a finite group G using a labeled dataset of size n sampled from a
manifold of dimension d. Assume that the optimal regression function belongs to the Sobolev space of
functions of order s, i.e., f⋆ ∈ Hs(M) for some s > d/2 and let α := 2s/d. Then, there exists an
algorithm that, given the data, produces an exactly invariant estimator f̂ such that:

• It operates in time O
(
log3(|G|)n3/(1+α) + n(2+α)/(1+α)

)
;

• It achieves an excess population risk (or generalization error) ofR(f̂) = O
(
n−s/(s+d/2)

)
;

• It requires O
(
log(|G|)n2/(1+α) + n(2+α)/(1+α)

)
oracle calls to construct the estimator;

• For any x ∈ M, the estimated label f̂(x) can be computed in time O
(
n1/(1+α)

)
using

O
(
n1/(1+α)

)
oracle calls.

Proof. To prove Theorem 1, we use Algorithm 1. Let us start by calculating the time and oracle
complexity of the algorithm. Given a dataset S of size n, we first compute

f̃λ,ℓ =
1

n

n∑
i=1

yiϕλ,ℓ(xi), (14)

for each λ such that Dλ ≤ D = n1/(1+α), and each ℓ ∈ [mλ]. This requires O(n1+1/(1+α)) oracle
calls and can be accomplished in time O(n1+1/(1+α)).

Next, we solve the following constrained quadratic program:

f̂λ,ℓ ← argmin
fλ,ℓ

mλ∑
ℓ=1

(fλ,ℓ − f̃λ,ℓ)2, (15)

s.t. ∀g ∈ S : Dλ(g)fλ = fλ. (16)

This is done for each λ such that Dλ ≤ n1/(1+α). Note that to even set up this program, we need
O(|S|m2

λ) oracle calls to find the constraints. We have

(Dλ(g))ℓ,ℓ′ = ⟨ϕλ,ℓ(x), ϕλ,ℓ′(gx)⟩L2(M) (17)
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for each ℓ, ℓ′ ∈ [mλ].

Therefore, the total oracle complexity of the proposed algorithm is

O

 ∑
λ:Dλ≤n1/(1+α)

|S|m2
λ + n(2+α)/(1+α)

 . (18)

We have already shown in Proposition 5 that one can use a generator set with ρ(G) ≤ log(|G|).
Moreover, note that ∑

λ:Dλ≤n1/(1+α)

m2
λ = O(n2/(1+α)). (19)

Therefore, the oracle complexity is

O
(
log(|G|)n2/(1+α) + n(2+α)/(1+α)

)
. (20)

Let us now calculate the time complexity of finding the estimator. We have already established that we
can compute the empirical estimation in timeO(n1+1/(1+α)). Next, we need to solve the constrained
quadratic program with log(|G|) constraints and mλ variables for each λ such that Dλ ≤ n1/(1+α).
Using the proposed algorithm in Appendix B.2 and also Remark 7, we can solve each of these
constrained quadratic programs in time O(log3(|G|)m3

λ). Therefore, the total time complexity of
this step is bounded by

O

 ∑
λ:Dλ≤n1/(1+α)

log3(|G|)m3
λ

 = O
(
log3(|G|)n3/(1+α)

)
. (21)

This proves that the total time complexity of Algorithm 1 is

O
(
log3(|G|)n3/(1+α) + n(2+α)/(1+α)

)
. (22)

Finally, note that given f̂ , one can evaluate it on new unlabeled data x ∈M using the formula:

f̂(x) =
∑

λ:Dλ≤D

mλ∑
ℓ=1

f̂λ,ℓϕλ,ℓ(x), (23)

with D = n1/(1+α), which requires both time and oracle complexity of O(n1/(1+α)).

To complete the proof, we need to study the convergence of the population risk of the proposed
estimator. We first note that

R(f̂) = E[∥f̂ − f⋆∥2L2(M)] ≤ 2E[∥f̂ − f⋆≤D∥2L2(M)] + 2E[∥f⋆>D∥2L2(M)], (24)

where f⋆≤D denotes the orthogonal projection of the function f⋆ onto the space of eigenfunctions
with eigenvalues satisfying Dλ ≤ D. Moreover, f⋆>D = f⋆ − f⋆≤D.

First, let us upper bound the second term. Note that, according to the assumption, f⋆ ∈ Hs(M).
Thus,

E[∥f⋆>D∥2L2(M)] =
∑

λ:Dλ>D

mλ∑
ℓ=1

(f⋆λ,ℓ)
2 (25)

=
∑

λ:Dλ>D

mλ∑
ℓ=1

D−α
λ Dα

λ (f
⋆
λ,ℓ)

2 (26)

≤ D−α
∑

λ:Dλ>D

mλ∑
ℓ=1

Dα
λ (f

⋆
λ,ℓ)

2 (27)

≤ D−α
∑
λ

mλ∑
ℓ=1

Dα
λ (f

⋆
λ,ℓ)

2 (28)

= D−α∥f⋆∥2Hs(M). (29)
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Now we focus on the first term. Note that

E[∥f̂ − f⋆≤D∥2L2(M)] =
∑

λ:Dλ≤D

mλ∑
ℓ=1

E[|f̂λ,ℓ − f⋆λ,ℓ|2]. (30)

According to the definition, we have

f⋆λ,ℓ = Ex[f
⋆(x)ϕλ,ℓ(x)] = Ex,y[yϕλ,ℓ(x)], (31)

for each λ, ℓ. Moreover, f̃λ,ℓ is the empirical estimation obtained from data:

f̃λ,ℓ =
1

n

n∑
i=1

yiϕλ,ℓ(xi). (32)

Thus, we obtain

E[|f̃λ,ℓ − f⋆λ,ℓ|2] =
1

n
E
[
|yϕλ,ℓ(x)− E[yϕλ,ℓ(x)]|2

]
(33)

=
1

n
E
[
|ϵϕλ,ℓ(x) + f⋆(x)ϕλ,ℓ(x)− E[f⋆(x)ϕλ,ℓ(x)]|2

]
(34)

=
1

n

(
σ2E[ϕ2λ,ℓ] + E

[
|f⋆(x)ϕλ,ℓ(x)− E[f⋆(x)ϕλ,ℓ(x)]|2

])
(35)

≤ 1

n

(
σ2 + E[f⋆(x)2ϕ2λ,ℓ(x)]

)
(36)

≤ 1

n

(
σ2 + ∥f⋆∥2L∞(M)

)
, (37)

where we used the orthonormality of the eigenfunctions ϕλ,ℓ. Then, summing this up to dimension
D gives:

E[∥f̃ − f⋆≤D∥2L2(M)] ≤
D

n

(
σ2 + ∥f⋆∥2L∞(M)

)
. (38)

Note that, by definition, f̂ = PGf̃ , where PG : L2(X ) → L2(X ) is the orthogonal projection
operator onto the invariant functions. Therefore, we have

E[∥f̂ − f⋆≤D∥2L2(M)] = E[∥PGf̃ − f⋆≤D∥2L2(M)] (39)

= E[∥PGf̃ − PGf
⋆
≤D∥2L2(M)] (40)

≤ E[∥f̃ − f⋆≤D∥2L2(M)] (41)

≤ D

n

(
σ2 + ∥f⋆∥2L∞(M)

)
, (42)

where the penultimate step follows from PGf
⋆
≤D = f⋆≤D.

Therefore, we can combine the two terms to derive the following population risk bound:

R(f̂) = E[∥f̂ − f⋆∥2L2(M)] ≤
D

n

(
σ2 + ∥f⋆∥2L∞(M)

)
+D−α∥f⋆∥2Hs(M). (43)

We can now specify the above bound to D = n1/(1+α), which is used in the algorithm, to get:

R(f̂) = E[∥f̂ − f⋆∥2L2(M)] ≤ n
−α/(1+α)

(
σ2 + ∥f⋆∥2L∞(M)

)
+ n−α/(1+α)∥f⋆∥2Hs(M), (44)

which is equivalent to

R(f̂) = O(n−α/(1+α)). (45)

This completes the proof.
Remark 8. Note that other choices ofD may or may not yield better bounds depending on the sparsity
of the solution. For this sparsity-unaware upper bound that we use, such a choice of D is optimal.
Additionally, since we focus on polynomial time algorithms, we cannot choose exponentially large D
even if they deliver gains in sample complexity.
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C EXPERIMENTS

In this section, we provide complementary experiments to support our theoretical results. We first
show that, in practice, Kernel Ridge Regression (KRR) is not a G-invariant estimator. Then, we
demonstrate that our algorithm (Spec-Avg) achieves the same rate of population risk as KRR, while
enjoying exact invariance properties.

C.1 PROBLEM STATEMENT

We consider the input space (manifold) Td = [−1, 1)d, which represents a flat d-dimensional torus.
Additionally, we consider the group of sign-invariances G = {±1}d, acting on this space via
coordinate-wise sign inversions. The dataset is generated as n independent and identically distributed
(i.i.d.) samples drawn uniformly from this space, with the target function defined as:

f∗(x) =
1

d

d∑
i=1

ix2i .

Clearly, this function is invariant w.r.t. group action G. To analyze estimation via kernels in this
setup, we consider a periodic kernel on the torus Td, specifically the von Mises Kernel (von Mises,
1918; Mardia & Jupp, 2009), defined as:

Kη(x, y) = exp (η cos(π(x− y))) ,
where η is a positive parameter controlling the kernel’s sharpness. This kernel function is particularly
useful for circular and directional statistics. Moreover, the kernel admits the following sign-invariant
eigenfunctions:

ϕℓ1,ℓ2,...,ℓd(x) =

d∏
i=1

cos(πℓixi),

where ℓi ∈ N ∪ {0}. The corresponding eigenvalues can be computed as

λ = π

d∑
i=1

ℓ2i ,

derived from the partial differential equation

∆ϕℓ1,ℓ2,...,ℓd + λϕℓ1,ℓ2,...,ℓd = 0.

This formulation facilitates the analysis of KRR and Spec-Avg under symmetry constraints, ensuring
their compatibility with the underlying group structure. It is worth noting that, in this setting,
|G| = 2d. Consequently, methods based on group averaging are computationally inefficient due to
the exponential growth of the group size with the dimensionality d.

C.2 SETTINGS

We conduct our experiments for d = 10. The trained models are evaluated on a test dataset of size
100. Both the test and train datasets are generated uniformly from the interval [−1, 1]d, independently
and identically distributed. Each point in our plots represents an average over 10 different random
seeds (from 1 to 10) to account for the randomness in the data generation process.

C.3 RESULTS

The results of the experiments are depicted in Figure 1 and Figure 2.

While our algorithm (Spec-Avg) is G-invariant by construction, there is no theoretical guarantee
for Kernel Ridge Regression (KRR) to be G-invariant. In Figure 1, we demonstrate that this is indeed
the case in practice, as the estimator KRR is not G-invariant. We define the following measure of
Invariance Discrepancy:

ID(f̂)
def
= sup

x∈X ,g∈G
|f̂(x)− f̂(gx)|,
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where f̂ is the estimator. We report this value for KRR across different choices of the regularization
parameter λ. It is worth noting that ID(f̂) is zero for the Spec-Avg estimator, as it is G-invariant
by design.

In Figure 2, we present the empirical excess population risk of KRR and Spec-Avg for different
hyperparameters λ and D, respectively. As expected, it is demonstrated that with an appropriate
choice of hyperparameters, KRR and Spec-Avg achieve the same order of test error. Higher values
of the regularization parameter λ for KRR correspond to lower values of the sparsity parameter D
for Spec-Avg, both of which act as mechanisms for regularizing the norm of the estimator. It can
be observed that Spec-Avg with D = 176 achieves the same order of performance as KRR with
λ = 50.

Figure 1: Invariance Discrepancy measure of Kernel Ridge Regression (KRR) for various choices
of the regularization parameter λ. The resulting estimator, KRR, is not invariant with respect to the
group G of sign averages {±1}d, whereas Spec-Avg is G-invariant by construction. Each point in
the plot represents an average over 10 different random seeds. The Invariance Discrepancy measure
used for this plot is defined as supx∈X ,g∈G |f̂(x) − f̂(gx)|, where f̂ is the estimator. The set X
consists of 100 points uniformly sampled from the interval [−1, 1]d, independently and identically
distributed.
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Figure 2: Test error (empirical excess population risk) of KRR for different choices of the regulariza-
tion parameter λ and Spec-Avg for different choices of the sparsity parameter D. Conceptually,
higher values of λ and lower values of D encourage sparser representations for the estimators KRR
and Spec-Avg, respectively. As suggested by our theory, it can be observed that test error rates of
the same order can be achieved by Spec-Avg and KRR with appropriate choices of hyperparameters.
Note that the test errors are shown on a log scale. Their almost linear behavior implies that they are
polynomial functions of the number of training samples with comparable orders. We note that each
point in the plot represents an average over 10 different random seeds.
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