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Abstract001

Recent advancements in music generation have002
garnered significant attention, yet existing ap-003
proaches face critical limitations. Some current004
generative models can only synthesize either005
the vocal track or the accompaniment track.006
While some models can generate combined vo-007
cal and accompaniment, they typically rely on008
meticulously designed multi-stage cascading ar-009
chitectures and intricate data pipelines, hinder-010
ing scalability. Additionally, most systems are011
restricted to generating short musical segments012
rather than full-length songs. Furthermore,013
widely used language model-based methods014
suffer from slow inference speeds. To address015
these challenges, we propose DiffRhythm, the016
first latent diffusion-based song generation017
model capable of synthesizing complete songs018
with both vocal and accompaniment for dura-019
tions of up to 4m45s in only ten seconds, main-020
taining high musicality and intelligibility. De-021
spite its remarkable capabilities, DiffRhythm is022
designed to be simple and elegant: it eliminates023
the need for complex data preparation, employs024
a straightforward model structure, and requires025
only lyrics and a style prompt during inference.026
Additionally, its non-autoregressive structure027
ensures fast inference speeds. This simplic-028
ity guarantees the scalability of DiffRhythm.029
Moreover, we release the complete training030
code along with the pre-trained model on large-031
scale data to promote reproducibility and fur-032
ther research1.033

1 Introduction034

Music, as a form of artistic expression, holds pro-035

found cultural importance and resonates deeply036

with human experiences (Briot et al., 2017). The037

field of music generation has witnessed remark-038

able advancements in recent years, driven by in-039

novations in deep learning, particularly the deep040

generative models.041

1https://anonymous.4open.science/w/DiffRhythm-3EBC/

While these models have shown promise, they of- 042

ten exhibit critical limitations that restrict their prac- 043

tical applicability. Many existing approaches are 044

designed to generate vocal tracks and accompani- 045

ment tracks independently, resulting in a disjointed 046

musical experience. For instance, studies such as 047

Melodist (Hong et al., 2024) and MelodyLM (Li 048

et al., 2024a) demonstrate the effectiveness of iso- 049

lated track generation, yet highlighting the need for 050

more holistic solutions that capture the interplay 051

between vocals and accompaniment. 052

Currently, there are relatively few studies on end- 053

to-end song generation in the academic field. State- 054

of-the-art platforms like Seed-Music (Bai et al., 055

2024) and Suno2 are generally for commercial 056

products and provides no open-source implementa- 057

tion or detailed technical documentation. 058

Recent academic work such as SongCreator (Lei 059

et al., 2024) and SongEditor (Yang et al., 2024) 060

endeavor to create combined vocal and accompa- 061

niment outputs; however, these typically rely on 062

complex, multi-stage cascading architectures. This 063

complexity not only complicates design and imple- 064

mentation but also limits scalability, particularly 065

for longer audio synthesis where maintaining con- 066

sistency is challenging. The ability to generate 067

complete compositions is essential for practical 068

applications in both artistic creation and commer- 069

cial music production. Moreover, most existing 070

music generation models follow a language model 071

paradigm (Hong et al., 2024; Li et al., 2024a; Yang 072

et al., 2024; Agostinelli et al., 2023), often strug- 073

gling with slow inference speeds, which hinder 074

real-time applications and user interactivity. 075

To address these challenges, we present 076

DiffRhythm, the first full-diffusion-based song 077

generation model that is capable of synthesizing 078

full-length songs comprising both vocal and ac- 079

companiment for durations of up to four minutes. 080

2https://suno.com/
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DiffRhythm distinguishes itself not only through its081

ability to maintain high levels of musicality and in-082

telligibility but also through its simple yet effective083

model architecture and data processing pipeline, de-084

signed specifically for scalability. Additionally, our085

non-autoregressive approach allows for fast gen-086

eration speeds, significantly improving usability087

compared to current models. The main contribu-088

tions of this paper are summarized as follows:089

• We propose DiffRhythm, the first end-to-end090

diffusion-based song generation model capa-091

ble of generating full song with both vocal092

and accompaniment.093

• We propose a sentence-level lyrics align-094

ment mechanism for better vocal intelligi-095

bility, which tackles ultra-sparse lyrics-vocal096

alignment with minimal supervision.097

• We train a Variational Autoencoder (VAE)098

tailored for high-fidelity music reconstruc-099

tion,while demonstrating exceptional robust-100

ness against MP3 compression artifacts.101

Moreover, our VAE shares the same latent102

space with the famous Stable Audio VAE3,103

enabling seamless plug-and-play substitution104

in existing latent diffusion frameworks.105

• Our experiments show that despite its sim-106

pleness, DiffRhythm achieves excellent per-107

formance in song generation. The data pro-108

cessing pipeline, pretrained models trained on109

large-scale datasets, and the complete training110

recipe are publicly available.111

2 Related Work112

2.1 Vocal Generation113

Early models for vocal generation, or singing voice114

generation, focused on synthesizing natural singing115

voices based on lyrics, musical scores, and corre-116

sponding durations. VISinger 2 (Zhang et al., 2023)117

introduces an end-to-end system utilizing a digi-118

tal signal processing (DSP) synthesizer to enhance119

sound quality. StyleSinger (Zhang et al., 2024) em-120

ploy a reference voice clip for timbre and style ex-121

traction, enabling style transfer and zero-shot syn-122

thesis. PromptSinger (Wang et al., 2024a) was the123

first system to attempt guiding singing voice gen-124

eration through text descriptions, placing greater125

emphasis on timbre control. DiffSinger (Liu et al.,126

3https://github.com/Stability-AI/stable-audio-tools

2022) addresses the issue of excessive smoothness 127

by implementing a shallow diffusion mechanism. 128

To bridge the gap between realistic music scores 129

and detailed MIDI annotations, RMSSinger (He 130

et al., 2023) proposes a word-level modeling ap- 131

proach combined with diffusion-based pitch pre- 132

diction. MIDI-Voice (Byun et al., 2024) incorpo- 133

rates MIDI-based priors for expressive zero-shot 134

generation. VoiceTuner (Huang et al., 2024) advo- 135

cates a self-supervised pre-training and fine-tuning 136

strategy to mitigate data scarcity, applicable to low- 137

resource SVS tasks. There are also recent models 138

that do not rely on strict music score and duration 139

annotations, such as Freestyler (Ning et al., 2024), 140

which takes lyrics and accompaniment as inputs to 141

generate rapping vocals with strong stylistic and 142

rhythmic alignment with accompanying beats. 143

2.2 Music Generation 144

Music generation encompasses various tasks, 145

including symbolic music generation, lyrics 146

generation, and accompaniment generation. 147

MuseGAN (Dong et al., 2018) achieves symbolic 148

music generation through a GAN-based approach. 149

SongMASS (Sheng et al., 2021) designs a method 150

for songwriting that generates lyrics or melodies 151

conditioned on each other, while SongCom- 152

poser (Ding et al., 2024) proposes a large language 153

model (LLM) for song composition, capable of 154

generating melodies and lyrics with symbolic 155

song representations. DeepRapper (Xue et al., 156

2021) focuses on rap lyrics generation, which also 157

leverages an LLM to generate lyrics from right to 158

left with rhyme constraints. Inspired by two-stage 159

modeling in audio generation (Borsos et al., 160

2023), MusicLM (Agostinelli et al., 2023) uses a 161

cascade of transformer decoders to sequentially 162

generate semantic and acoustic tokens, based 163

on joint textual-music representations from 164

MuLan (Huang et al., 2022). MusicGen (Copet 165

et al., 2023) introduces a novel approach with 166

codebook interleaving patterns to generate music 167

codec tokens in a single transformer decoder, 168

which is further combined with stack patterns in 169

Le Lan et al., 2024 to improve generation quality. 170

Additionally, MeLoDy (Lam et al., 2023) presents 171

an LM-guided diffusion model that efficiently gen- 172

erates music audio, and MusicLDM (Chen et al., 173

2024a) incorporates beat-tracking information 174

and latent mixup data augmentation to address 175

potential plagiarism issues in music generation. 176

Several works focus specifically on vocal-to- 177
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Figure 1: Architecture of DiffRhythm. The style and lyrics are used as external control signals, which are
preprocessed to get the style embedding and lyrics token, input to DiT to generate latent, and subsequently go
through the VAE decoder to generate the audio.

accompaniment generation, such as SingSong (Li178

et al., 2024b), which generates instrumental music179

to accompany input vocals, and Melodist (Hong180

et al., 2024), which utilizes a transformer decoder181

for controllable accompaniment generation.182

2.3 Song Generation183

Song generation models aim to produce natural184

singing voices accompanied by music. Song gen-185

eration incorporates elements from both vocal and186

music generation. A common methodology in song187

generation employs a two-stage process: initially188

generating the vocal track from lyrical input, fol-189

lowed by the prediction of accompanying music.190

Melodist (Hong et al., 2024) utilizes two autore-191

gressive transformers to sequentially produce vo-192

cal and accompaniment codec tokens, conditioned193

on lyrics, musical scores, and natural language194

prompts. MelodyLM (Li et al., 2024a) eliminates195

the need for music scores in Melodist and instead196

relies solely on textual descriptions and vocal refer-197

ences. However, given the intricate relationship be-198

tween vocals and accompaniment, sequential gener-199

ation may not be optimal. Different from Melodist200

and MelodyLM, SongCreator (Lei et al., 2024) si-201

multaneously generates vocal and accompaniment,202

while SongEditor (Yang et al., 2024) also offering203

flexible song editing capabilities. It is noteworthy204

that these models predominantly utilize language205

model-based architectures. While effective, their206

autoregressive nature introduces significant com-207

putational overhead and challenges in maintaining208

consistent style and rhythm over long sequences.209

3 DiffRhythm210

To address the limitations of existing approaches211

and overcome the challenges in full-length song212

generation, we present DiffRhythm - the first full- 213

diffusion-based model specifically designed for 214

end-to-end song generation. 215

3.1 Overview 216

DiffRhythm produces full-length stereo musical 217

compositions (up to 4m 45s) at 44.1kHz sampling 218

rate, guided by lyrics and style prompts. The ar- 219

chitecture consists of two consecutively trained 220

models : 1) A variational autoencoder (VAE) that 221

learns compact latent representations of waveforms 222

while preserving perceptual audio details, effec- 223

tively resolving the sequence length constraints in 224

raw audio modeling; 2) A diffusion transformer 225

(DiT) operating in the learned latent space that gen- 226

erates songs through iterative denoising. Compared 227

with conventional discrete tokens in LM-based ap- 228

proaches, our continuous latent representation cap- 229

tures richer music details and vocal nuances, en- 230

abling high-fidelity audio reconstruction. Mean- 231

while, the DiT’s strong modeling capabilities and 232

the reduced sequence length of continuous VAE 233

latents ensure superior long-term musical struc- 234

ture consistency and vocal intelligibility across full- 235

length songs. 236

Furthermore, to tackle the critical challenge of 237

lyric-vocal alignment in full-song generation, we 238

propose a novel sentence-level alignment mecha- 239

nism to establish semantic correspondence between 240

dense lyrical content and sparse singing vocals. 241

3.2 Variational Autoencoder 242

To lower the computational demands of training the 243

diffusion model towards long-form high-quality 244

song generation, we first train an autoencoding 245

model which learns a latent space that is perceptu- 246

ally equivalent to the audio space, but offers signif- 247

icantly reduced computational complexity. 248
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Figure 2: The data preprocessing pipeline of DiffRhythm. Lyrics go through G2P and are placed at the positions
corresponding to their timestamps

Model Backbone The backbone of the au-249

toencoder is fully-convolutional that allows the250

compression and reconstruction of full-songs with251

arbitrary-length. The encoder and decoder struc-252

tures are taken from Stable Audio 2 (Evans et al.,253

2024b). Given a raw stereo waveform y ∈ RT×2,254

the encoder E encodes y into a latent representa-255

tion z = E(y), the decoder D reconstructs the256

song from the latent, giving ŷ = D(z) = D(E(y)),257

where z ∈ RL×c. The encoder downsamples the258

audio by a factor f = T/L.259

Training Objectives The VAE is optimized260

through a composite loss function integrating spec-261

tral reconstruction and adversarial training compo-262

nents. The primary training objective combines a263

multi-resolution STFT loss (Steinmetz and Reiss,264

2020) with perceptual weighting, specifically de-265

signed for stereo signal processing. To address266

potential ambiguities in spatial localization, we267

compute this loss in both mid-side (M/S) decom-268

position and individual left/right channel domains,269

with the latter contribution scaled by 0.5 relative to270

the M/S term.271

Complementing this reconstruction objective,272

we implement an adversarial training scheme us-273

ing a convolution-based discriminator (Défossez274

et al., 2023). While maintaining hyperparameters275

with Stable Audio (Evans et al., 2024a), the dis-276

criminator features substantially expanded channel277

dimensions, resulting in approximately quadrupled278

parameter count compared to the original imple-279

mentation. This enhancement aims to improve280

the model’s capacity for capturing high-frequency281

audio details through more discriminative feature282

learning.283

Lossy-to-Lossless Reconstruction Consider-284

ing that a large amount of song data exists in com-285

pressed MP3 format, where high-frequency com- 286

ponents are compromised during compression, we 287

employ data augmentation to equip the VAE with 288

restoration capabilities. Specifically, the VAE is 289

trained exclusively on lossless FLAC-format data, 290

where the input undergoes MP3 compression while 291

the reconstruction target remains the original loss- 292

less data. Through this lossy-to-lossless reconstruc- 293

tion process, the VAE learns to decode latent rep- 294

resentations derived from lossy-compressed data 295

back into lossless audio signals. 296

Latent Truncation for Training As illus- 297

trated in Figure 2, for diffusion training, we ran- 298

domly sample a starting frame index Istart and 299

truncate z from Istart to a feature length of Lmax 300

for batch consistency. Another small segment of 301

latent is also randomly selected and used as the 302

style prompt to provide style information. Specific 303

length configurations are detailed in Section 4. 304

3.3 Diffusion Transformer 305

With compact latent features extracted by the VAE 306

encoder as intermediate representations, we adopt 307

the widely used diffusion transformer (DiT) for 308

lyrics-to-latent generation. DiT has seen notable 309

success in other modalities (Peebles and Xie, 2023; 310

Esser et al., 2024), and has recently been ap- 311

plied to text-to-speech (Liu et al., 2024; Eskimez 312

et al., 2024; Chen et al., 2024b) and music gener- 313

ation (Evans et al., 2024b; Fei et al., 2024; Hung 314

et al., 2024). 315

Feature Conditioning As shown in Figure 1, 316

DiT is conditioned by three features: A style 317

prompt for controlling song style, a timestep in- 318

dicating the current diffusion step, and lyrics for 319

vocal content control. The style prompt goes 320

through a Long Short-Term Memory (LSTM) net- 321
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work, where the final hidden state is extracted as322

the global style information. This information is323

then summed with the time-step embedding to form324

a global condition feature. The phone tokens of the325

lyrics undergo processing through an embedding326

layer to produce continuous phoneme embeddings.327

Following this, latent representations undergo noise328

addition to get noised latent. These three features329

are concatenated along the channel dimension to330

serve as inputs to DiT. The feature extraction pro-331

cess will be detailed in Sec. 3.4.332

Model Backbone Different from the original333

DiT implementation (Peebles and Xie, 2023), DiT334

in DiffRhythm incorporates stacks of LLaMA de-335

coder layers. Given that LLaMA is widely used in336

natural language processing (NLP), several readily337

available acceleration libraries, such as Unsloth4338

and Liger-Kernel5, that can easily achieve more339

than 25% training and inference speed-ups relative340

to the original DiT without any performance degra-341

dation through kernel fusion. We employ efficient342

FlashAttention2 (Dao, 2024) and gradient check-343

pointing (Chen et al., 2016) to reduce the compu-344

tational and memory impact of applying a trans-345

former architecture over longer sequences. These346

techniques are essential for the effective training of347

models with extensive context lengths.348

Figure 3: Logit-normal timestep distribution.

Training Objectives Following the condi-349

tional flow matching paradigm (Lipman et al.,350

2023), our model learns a velocity field vθ(zt, t)351

that transports the noise distribution p0(z) to the352

data distribution p1(z) through the ODE:353

dzt
dt

= vθ(zt, t) with

{
z0 ∼ p0(z)

z1 ∼ p1(z)
(1)354

4https://github.com/unslothai/unsloth
5https://github.com/linkedin/Liger-Kernel

The training objective minimizes the expected 355

squared error between predicted and target velocity 356

fields: 357

L = Et∼πln,zt∼pt(zt)

[
∥vθ(zt, t, c)− (z1 − z0)∥22

]
, (2) 358

where c is the condition, and the timestep sampling 359

distribution πln(t;m, s) follows the logit-normal 360

density: 361

πln(t;m, s) =
1

s
√
2π

1

t(1− t)
exp

(
− (logit(t)−m)2

2s2

)
,

(3) 362

with logit(t) = log t
1−t . As discussed in Stable 363

Diffusion 3 (Esser et al., 2024), logit-normal sam- 364

pling provides adaptive weighting where the scale 365

parameter s controls concentration around mid- 366

point timesteps (challenging prediction regions), 367

while the location parameter m enables bias toward 368

either data (m < 0) or noise (m > 0) domains. 369

This allows training to focus more effectively on 370

complex intermediate regions. In practice, we sam- 371

ple u ∼ N (m, s) and map it through the logistic 372

function t = σ(u) = 1/(1 + e−u). Figure 3 illus- 373

trates the timestep distribution when m = 0 and 374

s = 1. 375

3.4 Lyrics-to-Latent Alignment 376

Song generation, which necessitates the creation 377

of intelligible vocal content, presents unique 378

alignment challenges beyond conventional text-to- 379

speech (TTS) task. While TTS models typically 380

handle shorter speech segments (usually less than 381

30 seconds) with continuous articulation, vocal gen- 382

eration must address two critical alignment prob- 383

lems: 384

(1) Discontinuous temporal correspondence: Vo- 385

cal segments are often separated by prolonged in- 386

strumental intervals, creating phonetic discontinu- 387

ity that disrupt conventional temporal alignment 388

mechanisms. 389

(2) Accompaniment interference: As we target to 390

simultaneously model voice and accompaniment, 391

the same words, although corresponding to the 392

same pronunciation, have different accompaniment 393

in different songs, which brings more difficulty in 394

aligning. 395

With conventional text conditioning approaches 396

in diffusion-based TTS models like cross-attention 397

mechanisms or direct feature concatenation (Es- 398

kimez et al., 2024; Chen et al., 2024b), we failed 399

to achieve intelligibility in song generation. 400
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Table 1: Comparative evaluation of waveform reconstruction performance using objective metrics. STOI, PESQ,
and MCD scores are reported for both lossless-to-lossless and lossy-to-lossless reconstruction.

Lossless → Lossless Lossy → Lossless

STOI↑ PESQ↑ MCD↓ STOI↑ PESQ↑ MCD↓ Sampling Rate Frame Rate Latent Channels

Music2Latent 0.584 1.448 8.796 - - -

44.1 kHz

10 Hz

64Stable Audio 2 VAE 0.621 1.96 8.033 - - - 21.5 Hz

DiffRhythm VAE 0.646 2.235 8.024 0.639 2.191 9.319 21.5 Hz

It is relatively challenging for the model to tackle401

both tasks simultaneously. Therefore, we aim to402

reduce the difficulty of alignment, allowing the403

model to focus more on the second challenge. To404

achieve this, we propose a sentence-level align-405

ment paradigm that requires only sentence-start406

annotations. Given lyric sentences with times-407

tamp annotations (tstarti , si)
N
i=1, we first convert408

each lyric sentence si into a phoneme sequence409

pi ∈ VLi through grapheme-to-phoneme (G2P)410

conversion, where V denotes the phoneme vo-411

cabulary and Li denotes the sequence length of412

si. Next, we initialize a latent-aligned sequence413

Pi = [⟨pad⟩]Lmax with the same length as the la-414

tent representation. Then, for each phoneme se-415

quence pi = [p1, . . . , pLi ], we overwrite the cor-416

responding section of Pi as follows: Pi[f
start
i :417

fstart
i +Li] = pi, fstart

i = ⌊tstarti ·Fs⌋, where Fs418

denotes the latent frame rate. The whole process419

is detailed in Figure 2. The proposed approach420

achieves high intelligibility while minimizing the421

reliance on supervision, effectively reducing the422

cost of data labeling processing.423

4 Experimental Setup424

4.1 Dataset425

DiffRhythm was trained on a comprehensive music426

dataset comprising approximately 1 million songs427

(totaling 60,000 hours of audio content) with an av-428

erage duration of 3.8 minutes per track. The dataset429

features a multilingual composition ratio of 3:6:1430

for Chinese songs, English songs, and instrumental431

music respectively. To ensure lyrical quality, we432

implemented a simple rule-based lyrics cleaning433

pipeline that systematically filters out low-quality434

lyrics. Subsequently we pre-extract the phoneme435

tokens from lyrics using MaskGCT (Wang et al.,436

2024b) G2P and song latent using the pre-trained437

VAE for faster training.438

For autoencoder evaluation, we selected 10 rep-439

resentative music genres, sampling three tracks440

per genre to form a 30-song test set. Five non-441

overlapping 10-second clips were randomly ex- 442

tracted from each track for analysis. To assess 443

the song generation quality, we reserved 30 songs 444

from the training dataset and generated samples us- 445

ing ground-truth lyrics and style prompts as input 446

conditions. 447

4.2 Model Configuration 448

VAE Our implementation adapts the pre-trained 449

weights from Stable Audio 2’s VAE with 157M 450

parameters, freezing the encoder while training the 451

decoder for 2.5M iterations on a curated dataset 452

of 250k lossless audio samples. The architecture 453

processes 44.1 kHz stereo audio inputs through 454

5× downsampling blocks achieving a compression 455

factor of f = 2048, yielding 64-dimensional la- 456

tent representations at 21.5 Hz frame rate. During 457

training, there was a 1/3 probability of keeping the 458

inputs unchanged and a 2/3 probability of apply- 459

ing MP3 compression, with uniformly randomized 460

VBR6 quality value from 0 to 7. MP3 compression 461

is achieved using pedalboard7. 462

DiT Our DiT implementation comprises 16 463

LLaMA decoder layers8 with 2048-dimensional 464

hidden size and 32-head self-attention mechanisms 465

(64 dimensions per head), totaling 1.1B parameters. 466

We apply independent 20% dropout to lyrics and 467

style prompts to facilitate classifier-free guidance 468

(CFG) (Ho and Salimans, 2022). The diffusion pro- 469

cess employs an Euler ODE solver with 32 steps 470

and CFG scale of 4 during inference. Training oc- 471

curs in two phases: initial base model training with 472

Lmax = 2048 (≈ 95s), followed by fine-tuning to 473

Lmax = 6144 (≈ 4m45s). 474

Both models were trained using AdamW opti- 475

mizer with β1 = 0.9 and β2 = 0.95. The learning 476

rate was set to 1 × 10−4 with exponential ramp- 477

up and decay. To ensure model stability and per- 478

formance, we maintain a secondary copy of the 479

6Variable bit rate, lower values represent higher quality
7https://github.com/spotify/pedalboard
8https://github.com/huggingface/transformers
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model weights, updated every 100 training batches480

through an exponential moving average (EMA)481

with a decay rate of 0.99, following the approach482

outlined by (Peebles and Xie, 2023). All models483

were trained on 8x Huawei Ascend 910B with fp16484

mixed-precision.

(a) GT (Lossless) (b) GT (MP3 Compressed)

(c) Proposed VAE (d) Stable Audio 2 VAE

Figure 4: Visualization of Spectrograms from (a) loss-
less ground-truth, (b) ground-truth after MP3 compres-
sion, (c) MP3 reconstructed by proposed VAE, (d) MP3
reconstructed by Stable Audio VAE. Boxed regions in-
dicate areas to be analyzed in the main text.

485

4.3 Evaluation Metrics486

Objective Evaluation To evaluate the quality of487

waveform reconstruction, we calculate STOI (Taal488

et al., 2010), PESQ (Rix et al., 2001) and Mel489

cepstral distortion (MCD) (Kubichek, 1993). For490

evaluating the quality song generation, we utilize491

the Phoneme Error Rate (PER) and Fréchet Audio492

Distance (FAD) (Kilgour et al., 2019). We employ493

FireRedASR (Xu et al., 2025), which is currently494

the state-of-the-art Automatic Speech Recognition495

(ASR) model, to recognize the vocal content of the496

generated songs. FireRedASR not only achieves497

remarkably high performance for vocals but is also 498

robust in recognizing singing vocals. Given that 499

ASR may perceive vocal content as different words 500

with consistent pronunciation, such errors do not 501

accurately reflect actual vocal intelligibility; there- 502

fore, we calculate the PER instead of the Word Er- 503

ror Rate (WER) or Character Error Rate (CER). Re- 504

altime factor (RTF) is also calculated using Nvidia 505

RTX 4090 to demostrate the computational effi- 506

ciency of the comparison models. 507

Subjective Evaluation We conducted mean 508

opinion score (MOS) listening tests for subjectively 509

evaluation. Specifically, 30 listeners participated in 510

rating each generated song sample on a scale from 511

1 to 5 across three aspects: musicality, quality and 512

intelligibility. 513

5 Evaluation Results 514

5.1 Waveform Reconstruction 515

We conduct a comprehensive evaluation of wave- 516

form reconstruction performance comparing our 517

VAE with two popular open-sourced baselines: Mu- 518

sic2Latent (Pasini et al., 2024) and Stable Audio 519

2 (Evans et al., 2024b). The evaluation protocol 520

consists of two experimental settings: (1) lossless- 521

to-lossless reconstruction using lossless audio in- 522

puts, and (2) lossy-to-lossless reconstruction using 523

MP3-compressed inputs while maintaining loss- 524

less reference targets. As shown in Table 1, the 525

proposed method achieves superior performance 526

across all metrics in both experimental conditions. 527

Specifically, under lossless input conditions, our 528

model demonstrates 3.8% and 12.3% relative im- 529

provements in STOI and PESQ respectively over 530

the best baseline, while maintaining comparable 531

MCD scores. More importantly, when processing 532

lossy MP3 inputs - a scenario where baseline mod- 533

els completely fail due to their lack of restoration 534

capability - our method maintains robust perfor- 535

mance with only minimal degradation on all three 536

metrics compared to the lossless condition. 537

To further validate the reconstruction quality, we 538

perform spectral visualization comparing the pro- 539

posed VAE with baseline models. Figure 4 reveals 540

three key observations: First, MP3 compression 541

artifacts manifest as both high-frequency attenu- 542

ation (above 32 kHz) and mid-frequency hollow- 543

ing effects (16 kHz - 32 kHz). Second, our VAE 544

successfully addresses both artifact types - it not 545

only generates missing high-frequency components 546

but also restores the spectral continuity in mid- 547
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Table 2: Objective and subjective evaluation results of comparison and ablation systems for song generation.
DiffRhythm-base and DiffRhythm-full represent DiffRhythm with generation length of 1m35s and 4m45s respec-
tively, and w/o align stands for the ablation system without sentence-level alignment.

PER↓ FAD↓ Musicality↑ Quality↑ Intelligibility↑ Generation Length RTF↓
GT (VAE-reconstructed) 16.14% 0.88 4.68±0.06 4.43±0.06 4.17±0.03 - -
SongLM 21.35% 1.92 4.27±0.04 4.06±0.03 3.44±0.03 120 s 1.717
DiffRhythm-base 17.47% 2.11 4.14±0.07 4.19±0.05 3.80±0.04 95 s 0.037
DiffRhythm-full 18.02% 2.25 4.02±0.02 4.21±0.04 3.68±0.07 285 s 0.034

w/o align - 3.16 4.07±0.05 3.04±0.02 - 95 s 0.037

frequency regions (green box). Third, the proposed548

model demonstrates superior harmonic reconstruc-549

tion capability for vocal components, particularly550

in preserving formant structures, resulting in sig-551

nificantly clearer vocal components compared to552

the open-source baseline that produces vague har-553

monics (blue box).554

5.2 Song Generation555

For the evaluation of song generation, we compare556

DiffRhythm with SongLM (Yang et al., 2024), the557

samples of SongLM were kindly provided by the558

authors. As shown in Table 2, the GT songs recon-559

structed via VAE naturally achieves the best perfor-560

mance across all metrics, serving as an upper bound561

for synthesized song quality. Compared to the562

SongLM baseline, DiffRhythm models achieve su-563

perior quality and intelligibility while maintaining564

comparable musicality. The significant 18.2% rela-565

tive reduction in PER further confirms our model’s566

improved vocal content clarity. However, SongLM567

shows slightly better FAD and musicality scores,568

suggesting room for improvement in long-term569

acoustic consistency and melodic expression.570

The full-length DiffRhythm variant exhibits571

marginally degraded PER and FAD than its base572

version, likely due to increased modeling complex-573

ity for longer sequences. Notably, both variants574

maintain RTF below 0.04, achieving a ∼ 50×575

speedup over SongLM, highlighting the compu-576

tational efficiency of our diffusion-based approach577

compared to autoregressive language models.578

Our ablation study reveals the critical role of579

sentence-level alignment. As shown in Table 2,580

removing this approach catastrophically degrades581

intelligibility (unmeasurable PER and intelligibil-582

ity MOS) and audio quality, though interestingly583

preserves basic musical structure. This validates584

our hypothesis that sentence-level alignment is es-585

sential for establishing semantic correspondence586

between tight lyrics and vocals.587

The relatively high PER across all systems may 588

stem from using mixed audio containing both vo- 589

cal and accompaniment without source separation 590

for ASR evaluation, as accompaniment likely inter- 591

feres with ASR recognition. 592

6 Conclusion 593

In this paper, we propose DiffRhythm, the first 594

full-diffusion-based model capable of generating 595

complete stereo songs of 4m45s in just 10 sec- 596

onds, featuring both vocals and accompaniment. 597

The model’s elegant design eliminates the need for 598

complex multi-stage cascading modeling and la- 599

borious data preprocessing, facilitating scalability. 600

DiffRhythm’s non-autoregressive structure ensures 601

rapid inference speeds while preserving high mu- 602

sical quality and lyrical intelligibility. Extensive 603

experimental results demonstrate the effectiveness 604

of our approach and underscore the robust song 605

generation capabilities of DiffRhythm. Further- 606

more, the system’s simplicity and open accessibil- 607

ity—through our release of code and pre-trained 608

models—establish a new foundation for scalable, 609

end-to-end research in song generation. 610

7 Limitations 611

While DiffRhythm demonstrates good capability 612

to generate high-quality full-length songs, two im- 613

portant aspects remain unexplored in our current 614

framework. First, the functionality for editing spe- 615

cific segments within generated compositions has 616

not been investigated. Incorporating random mask- 617

ing of latent representations during training could 618

enable song editing (inpainting) and continuation 619

(outpainting). Second, the model employs short 620

audio clips as style references, integrating natu- 621

ral language conditioning mechanisms would en- 622

able finer-grained stylistic control through textual 623

descriptions. This improves the flexibility of the 624

model by eliminating the need for audio references. 625
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