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Abstract

Geometry problem solving (GPS) represents a
critical frontier in artificial intelligence, with
profound applications in education, computer-
aided design, and computational graphics. De-
spite its significance, automating GPS remains
challenging due to the dual demands of spa-
tial understanding and rigorous logical reason-
ing. Recent advances in large models have en-
abled notable breakthroughs, particularly for SAT-
level problems, yet the field remains fragmented
across methodologies, benchmarks, and evalua-
tion frameworks. This survey systematically syn-
thesizes GPS advancements through three core
dimensions: (1) benchmark construction, (2) tex-
tual and diagrammatic parsing, and (3) reason-
ing paradigms. We further propose a unified ana-
lytical paradigm, assess current limitations, and
identify emerging opportunities to guide future
research toward human-level geometric reasoning,
including automated benchmark generation and
interpretable neuro-symbolic integration.

1. Introduction

Geometry problem solving (GPS) has long posed a persis-
tent challenge in mathematical reasoning and artificial intel-
ligence research (Bobrow et al., 1964; Chou et al., 1996).
Successfully automating GPS demands three core capabili-
ties: (1) parsing geometric information from diagrams and
textual descriptions to extract spatial relationships (Seo et al.,
2015; Zhang et al., 2022), (2) constructing logical reasoning
chains to deduce stepwise solutions (Itzhaky et al., 2013;
Chen et al., 2021; 2022), and (3) performing numerical cal-
culations to derive precise answers (Lu et al., 2021; Chen
et al., 2022). It is worth noting that merging logical reason-
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ing and numerical calculation in GPS is common because
geometric concepts inherently link to numbers, enabling
iterative verification, unified symbolic-numerical represen-
tation, and supporting automated geometric modeling.
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Figure 1. Schematic plot of GPS, which contains geometry calcu-
lation problem and geometry proving problem.

Early research in GPS primarily focused on symbolic
solvers (Seo et al., 2015; Sachan & Xing, 2017), which
relied on computationally intensive search algorithms and
basic deductive reasoning. Though these systems achieved
progress in constrained settings, their dependence on rigid
rule-based frameworks limited applicability to elementary
problems (Grade 6-10 level). Recent continuous break-
throughs in artificial intelligence technologies, especially
with the coming of the large model era (Liu et al., 2023; Bai
et al., 2023; Achiam et al., 2023; Grattafiori et al., 2024;
Liu et al., 2025), propel GPS into a new wave of advance-
ment. Advances in GPS methodologies are now bridging
these historical limitations, positioning the technology as
a foundational tool for emerging interdisciplinary appli-
cations, including automated theorem proving (Loveland,
2016), computer-aided design (CAD) (Bi & Wang, 2020),
and Al-driven educational systems (Lin et al., 2023).

However, the inherent complexity of GPS introduces critical
challenges that impede system performance across three key
areas: benchmark construction, information parsing, and
logical reasoning. First, creating high-quality, fine-grained,
and large-scale benchmarks demands extensive expert anno-
tation (Pan et al., 2025; Deng et al., 2024), limiting dataset
scalability. Second, parsing geometric primitives requires
accurately interpreting complex layouts and relationships
between visual elements (Zhang et al., 2022; 2025). Third,
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Figure 2. Paradigm of geometry problem solving.

logical reasoning frameworks must balance interpretability
with reasoning efficiency (Lu et al., 2021; Ning et al., 2025),
especially in zero-shot cases.

The current GPS research landscape, marked by diverse
methodologies, fragmented technical approaches, and het-
erogeneous evaluation benchmarks, has driven innovation
but also created a disconnected knowledge base. To address
this, we systematically collect, analyze, and synthesize the
existing literatures, offering the GPS community a unified
perspective and actionable roadmap. The main contributions
of this survey are summarized as follows: (1) Comprehen-
sive Survey: To the best of our knowledge, this represents
the first systematic survey dedicated specifically to GPS,
providing the research community with essential founda-
tional knowledge and analytical insights. (2) Structured
Taxonomy: We propose a three-layer taxonomy for current
literature addressing core technical challenges, i.e., bench-
mark construction, parsing, and reasoning. (3) Unified Rea-
soning Paradigm: We develop a systematic paradigm in-
tegrating symbolic reasoning, connectionist reasoning, and
neuro-symbolic reasoning into a unified paradigm for GPS.
(4) Summary of Benchmarks: We analyze benchmark
design methodologies and highlight automated construc-
tion as a pivotal direction for scalable, high-quality dataset
synthesis.

2. Problem Description and Paradigm
2.1. Problem Statement

GPS encompasses the computational resolution of geomet-
ric problems, which fundamentally divide into two cate-
gories (as illustrated in Fig. 1): calculation problems de-

termine quantitative measurements like lengths, areas, and
angles (Seo et al., 2015; Chen et al., 2021), while proof
problems establish geometric truths through deductive ar-
guments (Trinh et al., 2024; Chervonyi et al., 2025). The
left panel of Fig. 1 exemplifies a calculation problem: ap-
plying the central angle theorem (where an inscribed an-
gle subtending an arc is half its central angle), we derive
/ZBOC = 2/Z0CA to compute ZBOC = 50°. The right
panel demonstrates a proof problem: establishing triangle
congruence via the Side-Side-Side (SSS) criterion to deduce
equality of corresponding angles.

Though distinct in objectives, these problem types exhibit
deep interconnections: calculation techniques often rely on
proof-derived theorems, while computational results provide
intuition guiding formal proofs (Chen et al., 2022; Trinh
et al., 2024). Given this inherent interdependence, modern
computational frameworks increasingly adopt integrated
approaches that unify both problem types within cohesive
GPS systems. Formally, we represent the GPS task as

(S, A)=GPS(Xx®Y,Q,T), (1

where X and ) denote problem statements in diagrams
and text, respectively. 7 represents the external knowledge
library. S and A are respectively the solution sequence and
the answer for the question Q.

2.2. GPS Paradigm

We propose a systematic paradigm for GPS that encom-
passes two fundamental stages: parsing and reasoning, as
illustrated in Fig. 2. This paradigm can be formally repre-
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Figure 3. Taxonomy of Geometry Problem Solving.

sented as:

(5 A) =g(f(X¥8),Q),T), @)
where f and g denote the parsing and reasoning function
respectively.

Parsing Stage: Given a geometry problem (X ® ), Q), the
parsing component is to design a function f that transforms
the multimodal input into formal languages: (/'E' ey , Q) =
f(X®), Q), where X, Y, and Q are in the formal language
space 2.

Reasoning Stage: The reasoning component g constructs
a valid logical chain S and calculates accurate values A
by leveraging a comprehensive theorem database 7. Our
framework supports three distinct reasoning paradigms: (1)
Symbolic reasoning employs search-based policies to iden-
tify and apply the most appropriate theorems from the
knowledge base through systematic exploration. (2) Neuro-
symbolic reasoning integrates neural networks as theorem
predictors while maintaining the logical rigor of formal de-
ductive reasoning. (3) Connectionist reasoning constructs
end-to-end neural architectures that approximate the entire
reasoning process as a black-box mapping function. The
first two approaches maintain strict adherence to formal
logical deduction using theorems from the knowledge repos-
itory, while the connectionist approach relies on learned

representations to approximate the reasoning process.

2.3. Proposed Taxonomy

A rigorous approach to automated GPS must address three
core challenges: (1) Benchmark Construction: What con-
stitutes a well-defined geometric problem? (2) Parser: How
can problems be formally interpreted? (3) Reasoner: What
systematic methods yield correct solutions? Our paradigm
decomposes these into modular components (as illustrated
in Fig. 3), with subsequent sections detailing their imple-
mentation: Section 3 introduces the Benchmark, which an-
swers (i) by formalizing problem scope and diverse datasets.
Section 4 presents the parser, addressing (ii) via examin-
ing parsing methodologies including formal language space,
diagram parser and text parser. Section 5 discusses the
reasoner, resolving (iii) through contrasting two dominant
reasoning paradigms: ML frameworks and large language
model(LLM)-based systems.

3. Benchmark Construction

This section reviews the evolution of GPS benchmarks,
as depicted in Fig. 4. Since 2015, benchmark develop-
ment has focused on enhancing precision, expanding prob-
lem variety, and increasing overall scale. The advent of
LLMs significantly accelerated this trend, primarily due
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Figure 4. Research trend of benchmarks.

to two factors: LLMs underscored the importance of data
scale for superior performance, and they provided power-
ful tools for automated problem generation, transforming
benchmark construction from a manual to a scalable process.
Existing benchmarks are categorized by their construction
technique: manual construction, LLM-assisted annotation,
LLM-assisted augmentation, and LLM-assisted synthesis.
Further details on these benchmarks are provided in Ap-
pendix 8.1.

3.1. Manual Construction

GeoS built the first dataset for GPS (Seo et al., 2015), cover-
ing 186 SAT plane geometry questions where every question
has a textual description in English accompanied by a dia-
gram and multiple choices. To further enhance the dataset
scale, GeoS++ collected a total of 1,406 SAT style questions
with more complex concepts (Sachan & Xing, 2017) across
grades 6-10, while Geometry3K collected 3,002 problems
from textbooks across grades 6-12 (Lu et al., 2021). Con-
sidering solution processes are also important in the GPS,
PGPS9K added solution sequences as labels (Zhang et al.,
2023a) and constructed a dataset of 9,022. To construct
benchmarks with Chinese middle school exams, GeoQA
(Chen et al., 2021) and advanced GeoQA+(Cao & Xiao,
2022) were proposed. The annotated operations required to
solve the problem in GeoQA are limited to a maximum of
4 steps, but that in GeoQA+ is with up to 8. To unify the
proving problem with the calculation problem to construct
the UniGeo benchmark (Chen et al., 2022), UniGeo col-
lects 9,543 proving problems and heritage 4,998 calculation
problems from GeoQA. Considering imperfect annotation

limits the GPS to be SAT-level, Zhang et.al. proposed a
formal geometry theory and extended the annotation to the
IMO-level (Zhang et al., 2024d; 2023b). Thus, two datasets
are constructed, i.e., FormalGeo7k and FormalGeo-IMO.
The former contains 6,981 geometry problems (SAT-level to
IMO-level), while the latter includes 18 IMO-level challeng-
ing geometry problems. GeoEval integrates seven public
datasets and newly collected geometry problems, covering
areas such as plane geometry, solid geometry, and analytic
geometry, to provide a benchmark for the GPS field (Zhang
et al., 2024a). It consists of four subsets: GeoEval-2000,
which includes 2,000 problems; GeoEval-backward, con-
taining 750 problems designed for backward reasoning;
GeoEval-aug, featuring 2,000 augmented problems with
varied rephrasing; and GeoEval-hard, comprising 300 prob-
lems that focus on solid and analytic geometry.

3.2. LLM-assisted Annotation

LLMs exhibit dual capabilities in understanding multimodal
geometric content and generating structured solution se-
quences, enabling their application in benchmark annotation.
Researchers leverage LLMs to generate step-by-step solu-
tion labels, considering that detailed reasoning descriptions
significantly enhance human comprehension. GPSM4K
(Jaiswal et al., 2024) and GeoVQA (Anand et al., 2024)
constitute complementary benchmarks sourced from Indian
mathematics textbooks (Grades 6-12), collectively contain-
ing approximately 4,400 calculation and proof problems.
Both leverage Gemini Pro Vision to decompose textbook so-
lutions into fundamental reasoning components, enhancing
computational interpretability. GPSM4K employs Gemini
Vision Pro for automated diagram captioning, enriching vi-
sual accessibility, while GeoVQA utilizes Gemini Vision
Pro + Gemini Pro to dissect problems systematically, cov-
ering identifying key concepts, performing computations,
and structuring solutions for multimodal question answer-
ing. GeoSense (Xu et al., 2025) employs LLMs to gener-
ate principle-level annotations for 1,789 geometric prob-
lems sourced from existing benchmarks and educational
platforms. These annotations codify essential geometric
knowledge into three classes, i.e., definitions, theorems, and
formulas. To ensure reliability, Xu et. al. developed a semi-
automated pipeline where GPT-40 and human experts collab-
oratively identify necessary principles, contextualize their
application within geometric diagrams, and verify mathe-
matical expressions for computational accuracy. GNS260K
addresses a critical gap in plane geometry datasets: the ab-
sence of natural language solution descriptions (Ning et al.,
2025). Leveraging GPT-4’s advanced reasoning capabilities,
it generates human-interpretable solving traces for 9,426
unique diagrams, scaled through augmentation to 18,852
knowledge prediction samples, 86,732 symbolic parsing
samples, and 154,433 problem reasoning samples. The an-
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notation methodology employs a two-stage pipeline: (1)
parsed problem clauses and symbolic solutions serve as
structured input. (2) GPT-4 converts formal solutions into
pedagogical narratives using description-focused prompts.
This comprehensive annotation enables chain-of-thought
reasoning in GPS systems, significantly enhancing both
interpretability and educational applicability.

3.3. LLM-assisted Augmentation

LLMs demonstrate significant generative capabilities for
enhancing dataset quality. By automatically generating di-
verse variants and refining questions from existing data,
LLMs can substantially improve a dataset’s diversity, com-
plexity, and scale. This approach has become a widely
adopted strategy for data augmentation. GeoMath exempli-
fies this technique by utilizing GPT-3.5 for data augmenta-
tion through text rewriting and image caption generation.
Specifically, it rephrases original problem statements in five
distinct ways, expanding the sample size sixfold while in-
creasing linguistic diversity. This method generates richer
training examples, strengthening model generalization (Xu
et al., 2024). Building on this paradigm, the Geol70K
dataset employs ChatGPT to augment existing geometric
datasets (GeoQA+ and Geometry3K). Key augmentation
strategies include (1) equation solving and value scaling, (2)
re-formulating conditions as unknowns, and (3) systematic
sentence paraphrasing. Geol70K provides both alignment
data (linking problems to geometric diagrams) and instruc-
tion data (problem-solving steps) derived from GeoQA+
and Geometry3K training sets (Xu et al., 2024). The final
dataset comprises approximately 60,000 geometric image-
caption pairs and approximately 110,000 question-answer
pairs, representing a significant scale advancement in geo-
metric reasoning resources.

3.4. LLM-assisted Synthesis

Researchers have increasingly leveraged LLMs for gen-
erating geometry problems due to their powerful capabil-
ities. The primary goal is to utilize generative models
to create accurate, non-contradictory problems, ensuring
that the required theorems are clearly defined and the rea-
soning steps for problem-solving are controllable. Image-
generation oriented methods, exemplified by GeoGPT4V
(Cai et al., 2024), employ multi-modal fusion through a
three-stage framework encompassing problem simplifica-
tion, Wolfram code generation, and image scoring, utilizing
49K generated samples alongside 19K open-source data
to achieve text-image correspondence for intuitive model
training. Reverse reasoning methodologies, represented by
GeomVerse (Kazemi et al., 2023) and GeoMM (Deng et al.,
2024), adopt backward generation strategies that construct
multi-hop reasoning problems through predefined geometric
constructs, with GeoMM specifically implementing a Re-

verse Chain-of-Thought framework processing 20 geometric
shapes across 87K samples to generate multi-step reasoning
question-answer pairs. Symbolic reasoning approaches, no-
tably AlphaGeometry (Trinh et al., 2024; Chervonyi et al.,
2025) and GeoGen (Pan et al., 2025), leverage symbolic
engines and traceback algorithms to derive mathematical
facts from random geometric diagrams, with AlphaGeome-
try2 scaling to 0.3 billion training samples while GeoGen
integrates symbolic reasoning with large language model ca-
pabilities, producing 45,526 question-answer pairs through
GeoExpand and 129,230 initial diagrams via GeoSynth’s
predicate sampling methodology. Knowledge-directed gen-
eration, as demonstrated by GeoUni (Cheng et al., 2025),
represents the methodological frontier by precisely gener-
ating geometric diagrams aligned with specific knowledge
points, ensuring tight correspondence between textual prob-
lems and visual representations for customized educational
applications. These methodological developments reveal
a systematic evolution from elementary text-image pairing
to sophisticated knowledge-directed generation, character-
ized by fundamental distinctions in generation strategies
(forward versus reverse mechanisms), control mechanisms
(difficulty adjustment versus knowledge targeting), data scal-
ability (thousand-level samples to billion-scale datasets),
and application domains (general-purpose generation ver-
sus educational customization), thereby establishing a com-
prehensive theoretical framework that advances geometric
problem generation through diversified technical paradigms
and scalable methodological innovations.

4. Parser

In our proposed paradigm, parsers f are designed to map
a geometry problem (X @ ), Q) into a formal language
representation (X~ e, Q), where the output belongs to a
formal language space 2. A formal language is a rigorously
defined system of symbols and rules, commonly used in
computer science and mathematics to describe and analyze
structured information. In the context of GPS, formal lan-
guages enable the translation of geometric elements into
symbolic expressions that support precise logical manipu-
lation. Compared to latent features, formal representations
offer several advantages: they provide greater transparency
and verifiability, facilitate robust symbolic reasoning, and al-
low for seamless integration of expert geometric knowledge
(Seo et al., 2015; Chen et al., 2021; Trinh et al., 2024; Cher-
vonyi et al., 2025; Zhang et al., 2023b). In contrast, latent
features often lack interpretability, struggle with rigorous
logical inference, generalize poorly to novel structures, and
face difficulties in incorporating domain expertise (Cao &
Xiao, 2022; Ning et al., 2025; Zhang et al., 2023a; Xia et al.,
2024). Hence, this paper focuses on surveying parsers that
utilize formal languages, owing to their inherent advantages.
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4.1. Diagram Parser

The development of diagram parsing techniques has shown
significant advancement over time. GeoS pioneered this area
using a publicly available diagram parser that provided con-
fidence scores for literals and identified visual elements by
maximizing pixel coverage, text-visual agreement, and ele-
ment coherence (Seo et al., 2014). This approach could iden-
tify various shapes including lines, circles, and polygons,
while serving dual purposes: computing diagram scores and
extracting visual literals unavailable from text. Inter-GPS
subsequently improved upon this foundation by developing
a fully automatic parser without manual intervention (Lu
et al., 2021). This system applied Hough Transformation
to extract geometric primitives, then employed RetinaNet
for detecting diagram symbols and text regions, with Math-
Pix handling optical character recognition. Unlike previous
methods, Inter-GPS successfully managed special relational
symbols such as parallel, perpendicular, and isosceles mark-
ings. PGDP further advanced the field through deep learning
and graph reasoning (Hao et al., 2022), introducing an end-
to-end model (PGDPNet) that utilized modified instance
segmentation for primitive extraction and graph neural net-
works for relation parsing and classification, incorporating
both geometric features and prior knowledge. The most re-
cent innovation, DFE-GPS-SigLIP, represents a multimodal
approach integrating three key components (Zhang et al.,
2025): a Diagram Formalizer, a Projection module, and
a large language model. This system processes diagram
features through SigLIP (Vision Encoder), aligns diverse
inputs within the LLM’s semantic space.

4.2. Text Parser

The development of text parsing techniques for geometry
problems has undergone multiple evolutionary stages. GeoS
implemented a three-phase parsing pipeline: initially map-
ping textual terms to corresponding geometric concepts, sub-
sequently identifying relationships between these concepts,
and finally processing implications and coordinating con-
junctions (Seo et al., 2014). GeoS employed a hypergraph
structure to represent literals, where nodes corresponded
to geometric concepts (constants, variables, functions, or
predicates) and edges captured the relationships between
concepts. The system first identified concepts within the
text, then learned affinity scores for hypergraph edges, and
ultimately completed relationships to satisfy type matching
requirements in the formal language. GeoS++ enhanced
this approach by adopting a part-based log-linear model that
integrated multiple steps into a unified framework while
maintaining a similar three-phase process (Sachan & Xing,
2017). However, GeoS++ decomposed its model into rep-
resenting concepts and representing relationships and then
utilized a rule-based method similar to GeoS for relation-
ship completion. Inter-GPS diverged from these approaches

by employing template rules to transform problem text into
formal language (Lu et al., 2021). This system deliberately
avoided sequence-to-sequence learning methods due to the
limited scale of geometry datasets and the sensitivity of sym-
bolic reasoning to noise, instead implementing rule-based
parsing techniques with regular expressions to achieve more
precise parsing results.

5. Reasoner

In this section, we introduce the reasoner, the central com-
ponent in GPS systems. While Section 2.2 details the three
reasoning paradigms (symbolic, neuro-symbolic, and con-
nectionist), this section classifies reasoners by their imple-
mentation tools: Machine Learning-based (ML-based) and
LLM-based approaches. Details are presented in Apppendix
8.2

5.1. ML-based Techniques
5.1.1. RULE-BASED TECHNIQUE

Rule-based techniques in GPS, often rooted in data mining,
leverage the deductive nature of geometric reasoning. These
approaches model geometry problems as logical systems:
given values act as initial facts, geometric principles serve
as rules, and the derivation of unknown values functions as
logical deduction (Seo et al., 2015; Sachan & Xing, 2017;
Zhang et al., 2024c;a).

GeoS pioneered this paradigm by translating geometry prob-
lems into logical expressions. Its solver utilized submodu-
lar optimization with greedy selection and basin-hopping
combined with sequential least squares programming to
maximize global constraint satisfaction (Seo et al., 2015).
Extending this foundation, GeoS++ parsed axiom informa-
tion from mathematics textbooks and employed log-linear
models to score axiom application sequences, effectively
learning optimal theorem application strategies (Sachan &
Xing, 2017). FGPS further advanced the field by incor-
porating symmetric problem-solving algorithms: forward
search derives new conditions from initial ones until the goal
is reached, while backward search decomposes goals into
sub-goals until they match known conditions (Zhang et al.,
2024c;d). This approach organizes the problem-solving
process into a hypertree structure, where conditions are hy-
pernodes and theorems are hyperedges. Experiments show
that various search strategies (e.g., breadth-first, depth-first,
random, and beam) offer differing performance benefits
based on problem characteristics.

5.1.2. NN-BASED TECHNIQUE

Recent research in computational geometry has integrated
neural networks (NNs) into problem-solving frameworks
through two distinct approaches: as theorem predictors
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within neuro-symbolic systems and as end-to-end reasoners
in connectionist paradigms.

In the neuro-symbolic paradigm, NNs function as theorem
predictors to guide symbolic reasoning. Inter-GPS exem-
plifies this approach by formulating GPS as goal-directed
search, incorporating theorem knowledge as conditional
rules for step-by-step symbolic reasoning (Lu et al., 2021).
The integration of a theorem predictor significantly en-
hances search efficiency by inferring likely theorem appli-
cation sequences, addressing the limitations of brute-force
enumeration strategies. Wu et al. advanced this paradigm
with their Explainable Top-Down Problem Solver (TD-PS),
which mimics human expert reasoning by starting from
the target and working backward (Wu et al., 2024). This
approach employs target decomposition and condition pro-
cessing mechanisms to ensure explainability while using
neural-guided theorem prediction to constrain the search
space effectively.

Alternatively, connectionist reasoning approaches em-
ploy NN as direct reasoners. GeoQA utilizes an LSTM
decoder with attention mechanisms over multimodal infor-
mation to generate sequential programs guided by embed-
dings (Chen et al., 2021). PGPSNet further refines this
approach by encoding diagram images with CNN and prob-
lem text with pre-trained language models (Hao et al., 2022),
fusing these modalities through bidirectional GRU encoders.
A notable innovation in PGPSNet is its self-limited GRU de-
coder, which significantly reduces representation and search
spaces to accelerate training and inference. This architecture
employs simplified clauses describing basic relationships
rather than complex multi-order logic forms, achieving per-
formance comparable to more complex tree decoders but
with substantially improved computational efficiency.

5.2. LLM-based Techniques
5.2.1. IN-CONTEXT LEARNING

In-Context Learning (ICL) has emerged as a significant
capability of LLMs, enabling them to perform new tasks
by conditioning on demonstration examples provided in the
input prompt without explicit parameter updates. Recent
research has leveraged this capability to address the complex
domain of GPS through several innovative approaches.

G-LLaVA pioneered a method that concatenates mapped
image features with text embeddings as input to LLMs,
demonstrating superior performance over GPT4-V on ge-
ometry problems (Gao et al., 2023). Building on this foun-
dation, DFE-GPS introduced a more structured approach
by processing three input types, i.e., diagram features ex-
tracted by a Diagram Encoder, formal diagram language
representations, and natural language inputs (Zhang et al.,
2025). Further advancing the field, Geo-LLaVA enhanced

performance through dataset augmentation and Retrieval
Augmentation Generation (RAG) (Xu et al., 2024), while
GeoX employed a Generator-and-Sampler Transformer to
create geometry content-aware queries and eliminate unin-
formative representations (Xia et al., 2024). GeoX’s for-
malized pre-training strategy demonstrated particular effec-
tiveness in downstream geometry tasks through its gener-
ation of Minimal Sufficient Representations. GeoUni in-
troduced a significant methodological advancement with
Geo-Reasoning-Adapter trained via a comprehensive re-
ward function encompassing format, formalization, and ac-
curacy components (Cheng et al., 2025). This approach
substantially improved performance on multiple-choice and
open-ended geometry questions. Departing from purely
connectionist reasoning approaches, AlphaGeometry and
AlphaGeometry2 positioned LLMs as auxiliary line pre-
dictors within a neuro-symbolic paradigm, using models
like Gemini to predict auxiliary line construction before
verification through symbolic reasoning (Trinh et al., 2024;
Chervonyi et al., 2025).

5.2.2. CHAIN OF THOUGHT

Chain-of-Thought (CoT) prompting has emerged as a signif-
icant technique for enhancing language models’ reasoning
capabilities by generating intermediate steps before produc-
ing final answers. This approach is particularly valuable
for geometric problem solving, which requires multi-hop
mathematical reasoning across both textual and visual infor-
mation.

Research from GeomVerse demonstrates that while Vision-
Language Models (VLMs) perform adequately on simpler
problems, their effectiveness significantly diminishes with
increased reasoning complexity (Kazemi et al., 2023). How-
ever, training these models with CoT prompting substan-
tially improves their geometric reasoning capabilities, espe-
cially when finetuned to generate both solutions and reason-
ing processes.

Several innovative approaches have extended the basic CoT
paradigm. Wang et al. proposed a two-step zero-shot
methodology that first generates a diagram graph to en-
hance the model’s comprehension of geometric information,
followed by problem-solving using this intermediate rep-
resentation (Wang & Ma, 2024). Ning et al. introduced
GNS, a neural-symbolic framework that parses problems
into symbolic clauses for explicit geometric comprehen-
sion and precise computation (Ning et al., 2025). Further
advancing this field, Yan et al. developed GeoQwen, con-
ceptualizing the problem-solving process as a reasoning tree
where each node represents a solution step (Yan & Zhong,
2024). This approach implements backtracking when reach-
ing impasses and employs a theorem predictor to identify
relevant theorems, thereby reducing the search space and
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improving reasoning efficiency.

5.2.3. PROGRAM OF THOUGHT

Program-of-Thought (PoT) prompting is an advanced tech-
nique where large language models are guided to generate
executable code, representing the reasoning steps required to
solve a problem. A persistent challenge with CoT finetuned
Visual Language Models (VLMs) is their susceptibility to
calculation errors and incorrect formula application, partic-
ularly in geometry problems requiring extended reasoning
chains.

To address these limitations, Sharma et al. introduced Geo-
Coder, proposing modular code-finetuning as an alternative
approach (Sharma et al., 2024). This method generates
Python code utilizing a predefined geometry library, offer-
ing three key advantages: deterministic calculations through
code execution, reduced formula errors through predefined
mathematical functions, and enhanced interpretability via
templated print statements. AlphaEvolve transforms geo-
metric problems into algorithmic challenges aimed at find-
ing the optimal geometric configurations under specific con-
ditions (Novikov et al., 2025). It employs a multi-stage
heuristic search approach to explore a vast solution space in
search of the best algorithm to solve geometric problems.

Research by Duan et al. suggests that reasoning ability sur-
passes computational power in importance for geometric
problem-solving. Recognizing the complementary strengths
of CoT excelling in reasoning while PoT provides compu-
tational precision has led to hybrid methodologies (Duan
et al.). The Reason-and-Execute (RaE) framework exem-
plifies this integration, embedding PoT within CoT as an
execution mechanism. RaE employs reverse thinking to
identify necessary geometric knowledge and logical steps
while generating executable code blocks for precise arith-
metic operations (Duan et al., 2024).

5.2.4. CHAIN OF AGENT

Mouselinos et al. adopted simulacra-based conversational
agents to construct Chain of Agent for GPS (Mouselinos
et al., 2024).In mathematical reasoning, a Chain of Agents
could be employed by assigning one agent to parse and un-
derstand the word problem, another to identify the relevant
mathematical operations or theorems, a third to perform
the symbolic or numerical calculations, and a final agent to
synthesize the steps and present the solution. Studies sug-
gest that the resulting cross-domain collaborative dialogue
enables more sophisticated geometric problem-solving than
traditional single-agent approaches by leveraging comple-
mentary cognitive strengths and distributing complex rea-
soning processes across specialized components.

6. Challenges and Future Work

Enhanced Multimodal Understanding and Logical Rea-
soning Capabilities: Future advancements will focus on
two key LLM capabilities: (1) enhanced multimodal un-
derstanding of dynamic geometry (Goldenberg & Cuoco,
2012), including motion analysis and property evolution
tracking, and (2) robust logical reasoning for complex ana-
Iytic geometry (Fischer, 2006).

Deep Fusion of Algebraic and Geometric Methods: Fu-
ture LLM-powered GPS systems will integrate algebraic
and geometric reasoning through three key capabilities:
(1) automatic conversion of geometric problems into alge-
braic formulations, (2) application of symbolic computation
tools (e.g., Wu’s method (Wen-Tsiin, 1984), Grobner bases
(Becker et al., 1993)), and (3) geometric interpretation of
algebraic results. This cross-paradigm approach is expected
to facilitate breakthroughs in automated theorem proving,
particularly for complex geometric inequalities that current
methods struggle with.

Creative Inductive Capabilities: Future LLMs will revo-
lutionize geometric research by autonomously generating
novel conjectures (Chen et al., 2025; Li et al., 2025) and
discovering hidden patterns in complex structures. By com-
bining learned geometric knowledge with symbolic reason-
ing, these systems will serve as Al collaborators, proposing
testable hypotheses, identifying new symmetries, and accel-
erating mathematical exploration beyond human intuition
alone, while maintaining formal rigor.

Self-Verification Ability: Causal reasoning modules can
act as an internal monitor in the GPS task, flagging steps
that violate fundamental spatial or relational expectations
before errors propagate (Kiciman et al., 2023; Wang, 2024).
Integrating intuitive, causality-based plausibility checks can
greatly enhance the robustness and reliability of automated
GPS by enabling real-time detection and correction of rea-
soning errors, similar to human problem-solving.

7. Conclusion

This survey offers a comprehensive and systematic overview
of GPS, tracing its developmental trajectory, especially
within the era of large Al models. We establish a systematic
paradigm and propose a structured taxonomy, classifying ex-
isting methodologies into three key technical perspectives:
benchmark construction, parser, and reasoner, with each
component further subdivided. Furthermore, we discuss cur-
rent limitations and challenges within the field, identifying
several promising directions for future research. This work
provides valuable insights and a foundational framework to
catalyze the advancement of GPS.
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8. Appendix
8.1. Details for Benchmarks

Detailed information about benchmarks is presented in Ta-
ble. 1.

8.2. Details for Reasoners

Detailed information about benchmarks is presented in Ta-
ble. 2.

8.3. Related Benchmarks

Benchmarks for Diagram Parsing: Since diagrams play
an important role in GPS, many researchers concentrate on
constructing benchmarks for geometry diagrams with fine-
grained annotation. The PGDP5K dataset contains 5,000
diagram samples (Hao et al., 2022), consisting of 1,813
non-duplicated images from the Geometry3K dataset and
other 3,187 images collected from three popular textbooks
across grades 6-12 on mathematics website. In contrast to
previous datasets, diagrams in PGDP5K have more complex
layouts such as multiple classes of primitives and compli-
cated primitive relations. Tangram, includes 1,080 diverse
geometric diagrams sourced from primary and secondary
school exams, competitions, and textbooks, covering from
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simple basic geometric shapes to complex combinations,
aiming to evaluate the performance of LMMs on geometric
element recognition (Tang et al., 2024). Each diagram is
associated with four questions about the diagram. Synth-
Geo0228K is a collect of over 228,000 geometric diagrams,
generated from a single template by modifying point posi-
tions and orientations, with rotation being a common data
augmentation method (Zhang et al., 2025). SynthGeo228K,
comprising 462 templates, provides a comprehensive explo-
ration of basic geometry through the relationships between
points, lines, and triangles, polygons, and circles.

Benchmarks for Mathematical Visual Reasoning: Re-
cent advances in multimodal learning have produced sev-
eral specialized datasets for mathematical visual reason-
ing. MathVista (Lu et al., 2023), MathVerse (Zhang et al.,
2024b), and MathVision (Awais et al., 2024) represent sig-
nificant contributions to this field, all designed to evaluate
multimodal models’ performance through rich metadata
annotations. These datasets differ primarily in their data col-
lection approaches: MathVista integrates existing resources,
MathVerse adapts publicly available materials, and Math-
Vision collects entirely new samples from mathematical
competitions. MathVista comprises 6,141 samples with
detailed metadata annotations including question types, an-
swer types, and task categories. MathVerse contains 2,612
high-quality mathematical problems with diagrams, each
transformed into six variants with varying information distri-
bution across modalities: text-dominant, text-lite, text-only,
vision-intensive, vision-dominant, and vision-only. Math-
Vision features 3,040 mathematics-visual question-answer
pairs, meticulously curated through a four-stage filtering
process by ten university students. Besides, math reasoning
with visual content is also an interesting topic.
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Table 1. Benchmarks in geometry problem solving.

Benchmark Scale Level Type Format Source
GeoS 186 SAT-level Calculation Choice-Answer SAT
(Grades 6-10)
GeoS++ 1,406 SAT-level Calculation Choice-Answer SAT & Textbook
(Grades 6-10)
Geometry3K 3,002 SAT-level Calculation Choice-Answer Textbook
(Grades 6-12)
PGPS9K 9,022 SAT-level Calculation Solution Sequence Textbook
(Grades 6-12)
GeoQA 4,998 SAT-level Calculation gy ottt ¢ Sl Exams (Chinese)
(Grades 6-12) Sequence
GeoQA+ 7,528 SAT-level Calculation Key point & Solution Exams (Chinese)
(Grades 6-12) Sequence
. Calculation & . . . .
UniGeo 14,541 SAT-level . Solution Sequence Online Education Website
(Grades 6-12) Proving
FormalGeo7K 6,987 SATlevel to Calculagon & Solution Sequence Online Website
IMO-level Proving
GeoEval- Calculation & . Geometry3K, PGPS9K,
2000 2,000 SAT-level iy Solution Sequence UniGeo, MATH. GeoQA4.
GeometryQA, MathQA
GeoEval- Calculation & . G trv3K. PGPS9K
L Solution Sequence cometrysK., )
backward 750 SAT-level Proving (Backward Reqasoning) UniGeo, MATH, GeoQA+,
GeometryQA, MathQA
Calculation & ] Geometry3K, PGPS9K,
GeoEval-aug 2,000 SAT-level T Solution Sequence UniGeo, MATH, GeoQA+.
GeometryQA, MathQA
Calculation & . Geometry3K, PGPSOK,
GeoEval-hard 300 SAT-level Proving Solution Sequence UniGeo, MATH. GeoQA 4.
GeometryQA, MathQA
(GLEslLliS s 4,440 SAT-level Calculagon & Solution Sequence Textbook (Indian)
GeoVQA (Grades 6-12) Proving
GeoSense 1,789 SAT-level Calculation Solution Sequence Online Website
(English & Chinese))
GNS260K 154,433 SAT-level Calculation Solution Sequence Synthesis
(Grades 6-12) (PGPS9K,GeoQA+,Geol170K)
GeoMath 9,155 SAT-level Calculapon & Solution Sequence Online Edugatlon Website
Proving (Chinese)
Geol70K 110,000 SAT-level Calculation Solution Sequence Synthesis
(Grades 6-12) (Geometry3K, GeoQA+)
Synthesis
GeoGPT4V 23,955 SAT-level Calculation Solution Sequence (UniGeo-Calculation,
(Grades 6-12) Geometry3K, GeoQA+)
GeoMM 87,000 SAT-level Calculation Solution Sequence Synthesis
GeoExpand 45,526 SAT-level Calculation Solution Sequence Synthesis
(Geometry3K and PGPS9K)
GeoSynth 62,868 SAT-level Calculation Solution Sequence Synthesis
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Table 2. Reasoners in geometry problem solving.

Reasoner Technique Paradigm ‘ Reasoner Technique Paradigm
ML-based Techniques
GeoS . GeoS+ .
(Seo et al.. 2015) Rule-based Symbolic (Sachan & Xing, 2017) Rule-based Symbolic
FGPS . InterGPS
(Zhang et al., 2024c) Rule-based Symbolic (Lu et al., 2021) NN-based N euroj
Symbolic
E-GPS GeoQA ..
(W et al., 2024) NN-based SNeLtl)rcij (Chen et al., 2021) NN-based  Connectionist
ymbolic
PGPSNet ..
(Hao et al., 2022) NN-based  Connectionist
LLM-based Techniques
G-LLaVA .. DFE-GPS ..
(Gao et al., 2023) ICL Connectionist (Zhang et al., 2025) ICL Connectionist
Geo-LLaVA .. GeoX ..
(Xu et al.. 2024) ICL Connectionist (Xia et al., 2024) ICL Connectionist
GeoUni L AlphaGeometry
(Cheng et al., 2025) ICL Connectionist | pinh ot al., 2024) ICL Neuro-
Symbolic
AlphaGeometry2 GeomVerse L.
(Chervonyi et al., 2025) ICL SNe‘l‘)r‘if (Kazemi et al., 2023) CoT Connectionist
ymbolic
Two-Stage CoT — GNS -
(Wang & Ma, 2024) CoT Connectionist (Ning et al., 2025) CoT Connectionist
GeoQwen .. GeoCoder ..
(Yan & Zhong, 2024) CoT Connectionist (Sharma et al., 2024) PoT Connectionist
RaE Simulacra-
PoT Connectionist Conversational Agents CoA Connectionist

(Duan et al., 2024)

(Mouselinos et al., 2024)
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