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Abstract

Ad-hoc teamwork (AHT) requires agents to infer the behavior of previously unseen
teammates and adapt their policy accordingly. Conventional approaches often rely
on fixed probabilistic models or classifiers, which can be brittle under partial ob-
servability and limited interaction. Large language models (LLMs) offer a flexible
alternative: by mapping short behavioral traces into high-level hypotheses, they
can serve as world models over teammate behavior. We introduce COLLAB, a
language-based framework that classifies partner types using a behavior rubric
derived from trajectory features, and extend it to RECOLLAB, which incorpo-
rates retrieval-augmented generation (RAGQG) to stabilize inference with exemplar
trajectories. In the cooperative Overcooked environment, COLLAB effectively
distinguishes teammate types, while RECOLLAB consistently improves adap-
tation across layouts, achieving Pareto-optimal trade-offs between classification
accuracy and episodic return. These findings demonstrate the potential of LLMs
as behavioral world models for AHT and highlight the importance of retrieval
grounding in challenging coordination settings.

1 Introduction

Multi-agent reinforcement learning (MARL) has achieved remarkable success in several domains,
from zero-sum games such as Go [Silver et al.||2016], to robotics [de Witt et al.||2020]], autonomous
driving [Zhou et al.,2020b], and cooperative control tasks [[Samvelyan et al., | 2019, |Lin et al.| 2023].
Within MARL, cooperative MARL focuses on training teams of agents to solve a common task by
interacting with the environment and with each other. Although this particular setting has shown
impressive results in controlled environments [Rashid et al., 2020blal |Son et al., 2019, Yu et al.| 2022],
it typically assumes that all agents are trained under the same algorithm, which limits its applicability
in heterogeneous and realistic settings. Moreover, despite advances in addressing challenges such as
non-stationarity [Nekoei et al.| [2023]], credit assignment [Zhou et al., 2020a], cooperative MARL
requires that all teammates be known in advance. However, in practice, many real-world settings
often involve heterogeneous agents that are not jointly trained in a shared environment, such as fleets
of UAVs with different specifications working together, or different autonomous vehicles sharing the
same roads.

To address such scenarios, the ad-hoc teamwork (AHT) framework was proposed [Stone et al.,
2010], which aims at enabling an autonomous agent to collaborate effectively with previously unseen
teammates without prior coordination. Successful AHT requires the ability to rapidly infer the
behavior of a teammate and adapt one’s own strategy accordingly. This capability is especially
important in MARL, where partner policies can be diverse and partially observable. A central
challenge in this setting is reammate modeling, which refers to constructing representations or beliefs

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: .



about another agent’s latent policy type based on partial observations of its behavior [Albrecht and
Stone}, 2018]]. Prior approaches include probabilistic reasoning over discrete teammate types, as in
PLASTIC [Barrett et al., 2017], and contract-based frameworks such as M?RL [Shu and Tian, 2019],
which employ managerial agents to guide self-interested workers. Model-based approaches such
as TEAMSTER [Ribeiro et al., [2023|] further propose separate modeling of the environment and
teammate behaviors in model-based ad hoc teamwork. Meanwhile, recent work on the N-Agent
Ad Hoc Teamwork (NAHT) framework [Wang et al.} 2024]] extends AHT to dynamic settings with
varying teammates. While effective in some domains, these methods require carefully designed
state abstractions and likelihood models that may be brittle under partial observability or in more
semantically complex environments.

Large Language Models (LLMs) offer a complementary approach by reasoning over natural-language
summaries of observed behavior to infer teammate types [[Gao et al.,|2024]]. LLMs can consume
rich, structured prompts that describe recent interaction histories and generate semantically grounded
inferences about teammate behavior. Although recent works have demonstrated LLM-based reasoning
in competitive games [Bakhtin et al., 2023| Richelieu et al.|[2024] and embodied decision-making [Li
et al., [2024]], their application as structured world models over teammates in cooperative MARL
domains remains underexplored. Moreover, retrieval-augmented generation (RAG) [Gao et al.,[2023]
provides a mechanism for grounding LLM predictions in prior experience by retrieving relevant
examples from offline trajectories, which can potentially enhance the robustness of LLM-based agents
in ambiguous settings.

In this paper, we fill this gap by proposing a novel framework that leverages LLMs as world models for
AHT. Specifically, we propose COoperative LLm-based Agent Belief or COLLAB, which classifies
the type of an unknown teammate based on their recent trajectory history and routes the interaction to
a pre-trained best-response policy. Building on recent advances in retrieval augmentation, we further
introduce RECOLLAB, a retrieval-augmented variant that enriches the LLM prompt with retrieved
summaries of similar teammate behaviors from a labeled trajectory database. To support experimental
evaluation, we also contribute a labeled dataset for the cooperative Overcooked domain [[Carroll et al.,
2019, |Lowe et al.l 2024]], which contains five different teammate behavior types induced via reward
shaping.

Our main contributions are as follows:

1. Behavioral World Modeling: We formulate LLM-based teammate type classification as a form
of world modeling for AHT.

2. Teammate Reasoning with Retrieval: We propose COLLAB and RECOLLAB, bridging
prompt-based reasoning with retrieval-augmented grounding in MARL.

3. Robust Early Teammate Identification: We empirically demonstrate their effectiveness in the
Overcooked environment and evaluate our methods against established baselines. Our results
demonstrate that LLM-based teammate world models achieve competitive or superior early-type
identification compared to baselines, and that retrieval augmentation improves robustness in
ambiguous or noisy settings.

2 Related Work

Ad-hoc Teamwork. Ad-hoc teamwork (AHT) is a long-standing problem in multi-agent systems,
which focuses on enabling autonomous agents to collaborate effectively with previously unseen
teammates without prior coordination or shared knowledge [Stone et al.,|2010|]. Early approaches
focused on explicit teammate modeling, where the agent maintains a belief over possible teammate
types and adapts its policy accordingly. Barrett et al.|[2013]] explore robust teaming under limited
information, and demonstrated applications to more complex domains such as robot soccer [Barrett,
and Stone} 2015]. Building on this, the PLASTIC framework [Barrett et al., 2017] represents a
canonical example in the teammate modeling literature. It uses Bayesian belief updates over a discrete
teammate-type space combined with best-response policy selection. Extensions include online
learning of teammate models [[Albrecht and Stone} [2018]], policy reuse, and intention recognition.
Model-based methods such as TEAMSTER [Ribeiro et al.,2023|] further decouple environment and
teammate modeling, while the N-Agent Ad Hoc Teamwork (NAHT) framework [Wang et al., [2024]]



extends AHT to settings with dynamically varying teammates. While these approaches yield strong
performance, they typically rely on carefully designed state abstractions or likelihood models, which
may be brittle in partially observable or semantically complex environments.

Multi-Agent Reinforcement Learning. Multi-agent reinforcement learning (MARL) extends
single-agent RL to settings where multiple agents interact within a shared environment. In MARL,
most of the work focuses on value decomposition, including VDN [Sunehag et al.| 2017] and
QMIX [Rashid et al.l|2020b]], which factorize joint action-value functions into agent-wise utilities,
and QTRAN [Son et al 2019]], which generalizes decomposition via additional value function
constraints. In policy gradient methods, Independent PPO (IPPO) [De Witt et al., 2020] and Multi-
Agent PPO (MAPPO) [Yu et al.| 2022] train agents with decentralized policies using independent
or centralized critics, respectively. In contrast to these MARL methods, which assume training of
all agents, AHT considers a single agent that must collaborate with unknown teammates in control
of their own actions. In this paper, we adopt IPPO as our base MARL algorithm. For empirical
evaluation, we use the cooperative Overcooked environment [[Carroll et al., 2019], a benchmark
requiring coordination and division of labor, implemented in the JaxMARL framework [Lowe et al.,
2024]. This two-player setting enables us to induce distinct teammate types for evaluating our
proposed COLLAB and RECOLLAB methods.

LLMs for MARL. LLMs have recently been integrated with multi-agent decision making to enable
agents that reason about partner intentions and coordinate through language. In the strategic game of
Diplomacy, Bakhtin et al.| [2023]] combined LLM-based communication with search-based planning
to achieve human-level play. In cooperative settings, ProAgent shows that LLMs can act as proactive
teammates: it uses language to infer task context, anticipate partner needs, and adapt policies for
zero-shot coordination, yielding strong gains across cooperative benchmarks [Zhang et al,[2024a]. A
recent study on Mutual Theory of Mind (ToM) deploys an LLM agent with ToM and communication
modules in a real-time shared-workspace task, finding that language-based modeling improves mutual
understanding even when raw task performance gains are modest—underscoring both the promise
and limits of LLMs for behavior inference in interactive collaboration [Zhang et al.,|2024b].

Retrieval-Augmented Generation. Retrieval-Augmented Generation (RAG) [Gao et al., [2023]]
combines parametric LLM knowledge with non-parametric retrieval from a database of relevant
examples. RAG has been widely used in knowledge-intensive NLP tasks and has recently been applied
to embodied agents and multi-modal reasoning [Zhang et al.,|2025]]. In MARL, retrieval has been
explored for retrieving relevant past multi-agent behaviors from a skill database to augment limited
demonstrations, enabling more effective policy learning for cooperative mobile robot manipulation
tasks [Kuroki et al.l [2024]]. However, its integration with LLM-based teammate modeling has not
yet been studied. Our proposed RECOLLAB applies RAG to retrieve offline trajectory snippets to
ground LLM predictions in concrete prior experience, which further improves robustness in AHT.

3 Background and Problem Formulation

We model the cooperative ad-hoc teamwork scenario as a two-agent partially observable Markov
game (POMG) G = (S, Ap, A1, Qo, 1, P, 19, 71,7) where S is the set of environment states, .Ag
and A; are the discrete action spaces for the teammate and the controlled agent, respectively. In
this model, P : § x Ay x A; — A(S) defines the state transition function, ; : S — A(O;) is the
observation function for agent i € {0, 1} producing partial observations o} ~ €;(s;), rewards are
r; : S x Ag x Ay — R, and discount factor is y € (0, 1]. Since we consider the cooperative setting,
we assume rg = 11 = 1.

In this model, agents do not have access to the true transition function P (and may not know the
exact teammate policy), and must act based on partial observations. The goal of the agent ¢ is to learn
a policy 7 (possibly history dependent), which is a mapping 7¢ : H* — A(A;), where H¢ denotes
the space of local action-observation histories for agent ¢. Unless otherwise stated, we consider
stochastic Markov policies for the controlled agent and the teammate may exhibit diverse behaviors
captured by the considered model type. In this mode, the teammate’s policy 7%7 which is unknown
to the controlled agent and is drawn (per trajectory) from a finite set of M possible teammate types
T = {71, 72,...,Tar} where each type represents a distinct behavioral strategy, potentially induced
by different training curricula or reward shaping. The controlled agent has access to a corresponding
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Figure 1: System diagram of COLLAB and RECOLLAB. The Overcooked environment produces
observed trajectories from a controlled agent interacting with a teammate. These trajectories are
transformed into prototype feature vectors (e.g., action histograms, dwell times, cumulative reward),
which are matched against behavior rubrics to model teammate types. In COLLAB, an LLM
classifies the teammate type directly from the behavior rubric. In RECOLLAB, the LLM additionally
conditions on retrieved exemplar trajectories from a database, grounding its classification. Both
approaches output a predicted teammate type with associated confidence and rationale, which is used
to select the best-response policy from a library of trained policies.

set of best-response policies: IT = {7%™ 7b72  7b7a} where 717 is optimized to maximize
expected return when paired with teammate of type 7,,.

Problem statement. We consider the cooperative ad-hoc teamwork scenario where the goal is to
infer the teammate type 7 as quickly and accurately as possible from the changing history h; and
select actions using the corresponding best-response policy 7''" to maximize the team’s discounted
return. We formalize this problem of teammate type classification as learning a mapping function:

forH—=T, 7 = f@(ht)> (D

where H is the space of possible histories. In this paper, we model fy as either a prompt-based LLM
(COLLAB) or a retrieval-augmented LLM (RECOLLAB), where h; is supplemented with retrieved
summaries from an offline trajectory database to improve robustness.

4 Methods

To solve the problem of teammate type classification (T), we frame this as a world modeling problem
wherein the controlled agent, which is restricted from a fundamental source of information, must
infer the teammate’s behavior type 7 € T from partial observations in order to form the best-response
policy. To achieve this, we leverage LLMs as lightweight world models that reason over structured
descriptions of teammate behavior. We propose two methods: COLLAB, which classifies using
statistical prototypes summarized in a behavior rubric, and RECOLLAB, which augments COLLAB
with retrieval from an offline trajectory database to resolve ambiguities and enhance robustness.

4.1 Behavior Modeling and Rubric Construction

In complex multi-agent environments such as Overcooked [[Carroll et al.| [2019], raw trajectories
are typically high-dimensional and thus difficult for LLMs to interpret directly. This occurs for
two main reasons: 1) LLMs struggle to extract relevant features from episodic trajectories because
they lack an understanding of the underlying game mechanics, and 2) they lack knowledge of the
specific behavioral characteristics of each teammate type. To address these limitations, we construct



a higher-level rubric of teammate behaviors from an early probing window that captures the most
relevant features required to discriminate between teammate types and is easy for an LLM to ingest.
Formally, let f = (f, f2, ..., fm) denote the feature vector computed over the first P steps of an
episode probing period, where each feature f; encodes a behavioral statistic such as dwell time near
a station, number of interactions with pots, or cumulative reward.

Feature selection. To retain only discriminative features, we estimate the mutual information (MI),
Shannon|[[1948]], between each feature f; and the teammate type label 7 € T

)
TUm) = 2 pldon ) low o s

This ranking highlights which behav1ora1 dimensions most strongly reduce uncertainty about 7.
Empirically, features such as dwell time at the window or plate pile exhibit high MI, whereas handoff
events and blocked events are less informative. We keep the top-r ranked features (typically r < 20)
to define the rubric.

Rubric construction. For each teammate type 7 € 7, we compute summary statistics (mean and
standard deviation) of the selected features across multiple offline episodes:

wi- =Elfj [ 7], o) =/ Var[f; | 7]

The rubric function (7)) = Rubric(7) thus consists of behavior prototypes {(1;.-,0;-) : j =
1,...,r} for each type 7 € T. These serve as reference points describing in natural language how a
typical teammate allocates its time and actions in the probe window.

42 COLLAB

We first introduce COLLAB, our base method for teammate type classification in AHT. COLLAB
leverages an LLM as an implicit world model over teammates and classifies the teammate by
comparing observed behavior fingerprints against rubric prototypes. The observed behavior prototypes
f=(f1,..., fr) from the probe phase are converted into a structured natural language description,
d(f) = Describe(f), which is presented to the LLM along with the behavior rubric. The model

outputs the predicted type as:
T= fQ(d(f)7 T(T))7

where fy denotes the LLM, d(f) is the language-based representation of the prototype features, and
r(7T) is the behavioral rubric to follow. COLLAB exploits the LLM’s reasoning ability to interpret
structured cues without training a task-specific classifier.

43 RECOLLAB

Although COLLAB classifies teammates by comparing observed fingerprints against rubric proto-
types, it can fail miserably in settings when multiple teammate types yield overlapping statistics (e.g.,
in the Overcooked environment Plate vs. Mixed). To address this issue, we introduce RECOLLAB,
a retrieval-augmented variant that grounds LLM reasoning in concrete trajectory exemplars.

We build an offline database D = {(hgf,)7 7)}Y, from rollouts up until the probing time P of
controlled agents paired with each teammate type 7 € 7. We collect N probing trajectories for each
teammate type, each of which utilizes a different random seed to ensure a diverse search database.

The behavior feature vector £ is computed from trajectory h(i), which is then converted to a natural
language description using d(f (')) = Describe(f")). This is then embedded into a vector space

using an encoder Ep = f4(d (£9))), where [s is alanguage embedding model. These embeddings
form the keys for similarity search. At inference, given an observed probe trajectory hp and its
corresponding behavior prototype description d(f), we compute its embedding E'p and retrieve the
top-k nearest neighbors from D:

R(d(B)) = {(d(£),d(t?)) : i € TopK,, [s(@(d(F)), p(d(E))))]},

where s(-, ) is a cosine similarity function. The LLM is then prompted with the structured description
of the observed fingerprint d(f), the rubric r(7), and the retrieved exemplars R (d(f)). This enhances



Table 1: Classification accuracy across three Overcooked layouts (mean=std over 5 seeds).

Method Cramped Room Asymmetric Advantage Coordination Ring
Random 0.20+0.01 0.20+0.01 0.20+0.01
Logistic Regression 0.96-:0.00 0.69+0.15 0.81+0.14
PLASTIC 0.81+0.08 0.69+0.15 0.58+0.17
CoLLAB 0.66+0.19 0.39+0.00 0.35+0.14
RECOLLAB (k = 5) 0.92+0.08 0.77+0.12 0.96:0.00

Table 2: Cumulative returns across three Overcooked layouts (mean-+tstd over 5 seeds).

Method Cramped Room Asymmetric Advantage Coordination Ring
Oracle 188.0+1.6 272.0+£51.5 188.0+32.5
Static 45.6+3.2 189.6+7.4 44.0+0.00
Random 58.4+17.8 116.0+£14.3 86.4+20.3
Logistic Regression 129.6+10.9 200.8+£12.0 140.0+41.4
PLASTIC 119.2+21.1 200.8+12.0 133.6+39.6
CoLLAB 103.2+23.7 149.6+:14.2 66.4+21.0
ReCoLLAB (k = 5) 120.8+15.7 181.6+22.1 146.4+36.5

the prompt with grounded evidence of how real teammates of each type behave under similar probe
conditions and outputs:
7= fo(d(f),r(T), R(d(f)))-

By grounding abstract rubric features with retrieval, RECOLL AB mitigates classification errors in
ambiguous settings and stabilizes predictions.

4.4 Policy Adaptation

Policy adaptation. Once a type 7 is predicted, the controlled agent selects the corresponding best-
response policy 7%7 from the policy library II. To prevent instability from repeated switching, we
route policies only once, immediately after the probe window. This means that a major hyperparameter
in our framework is the probe length P of this early trajectory window. The longer this period,
the more stable the prediction will be, but at the cost of potential gains in cumulative reward.
Both COLLAB and RECOLLAB integrate information-theoretic fingerprints with language-model
reasoning to serve as lightweight behavior models. Rather than fitting a parametric classifier, our
methods exploit the LLM’s ability to interpret structured cues against a rubric of known behavioral
prototypes, functioning as a world model that infers latent teammate types during the probe phase.

5 Experimental Setup and Metrics

Environments and Layouts. We evaluate all methods in the cooperative Overcooked environment
using the JaxMARL framework [Lowe et al.,[2024]]. To capture diverse coordination challenges, we
select three layouts with distinct structural properties. Our first layout Cramped Room, is a small,
narrow kitchen where agents must share a tight space to access ingredients, pots, plates, and the
serving window, making blocking inevitable and coordination essential. Our second layout from
Overcooked is Asymmetric Advantage, which is an asymmetric kitchen layout where one agent has
direct access to key stations (e.g., onion and pot), while the other must navigate a longer path, creating
strong role specialization pressures. Our last considered environment is Coordination Ring, which
is a circular kitchen where onions, pots, plates, and the serving window are arranged sequentially
around a loop, requiring agents to coordinate their direction of movement to avoid blocking. These
environments present increasing levels of difficulty, ranging from relatively constrained coordination
to highly structured role specialization.

Teammates and Best Response Policies. Episodes are 400 timesteps long, with synchronous
actions. We train five fixed teammate policies 797, one for each behavior type induced via reward
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Figure 2: Pareto Frontier Study. We plot the teammate-type classification accuracy vs. the obtained
cumulative reward and estimate the Pareto optimal frontier. RECOLLAB consistently lies near or
directly on the Pareto frontier.

shaping. These include default (no reward shaping), pot-focused (reward for placing onions in the
pot), plate-focused (reward for picking up plates), serve-focused (reward for delivering completed
soups), and mixed (combined shaping to encourage proficiency across subtasks). Each teammate
policy is trained with PPO for 6 million timesteps. For each type 7 € T, the controlled agent policy
717 is trained with standard rewards while paired with 7%7, yeilding a set of best-response policies.

Offline Dataset for RAG. We collect a dataset of 10 evaluation episodes per teammate type per
layout. During the probing phase of length P = 20 timesteps, we always use the best-response
policy to the default teammate. Once the probe trajectory has been converted to natural language,
we embed the trajectory using the text-embedding-3-large language embedding model from
OpenAl [OpenAl, 2024]|. This dataset is used exclusively for retrieval in RECOLLAB and is disjoint
from evaluation episodes.

Evaluation and Metrics. At the beginning of every episode, we sample a teammate type 7 ~ 7T .
As described in the previous section, the best response policy to the default teammate is used during
the probing phase. We report the teammate type classification as well as the cumulative reward over
an episode. For both COLLAB and RECOLLAB, we utilize GPT-5 as the base LLM [OpenAl,
2025].

Baselines. We compare COLLAB and RECOLLAB against several baselines. These include
Oracle, which has access to the ground-truth teammate type at ¢ = 0, Static, which maintains the
same default policy throughout the episode, and PLASTIC [Barrett et al.,[2017] baseline, which
performs Bayesian belief update with handcrafted likelihood functions over teammate actions. As
a sanity check, we also compare our methods with the Random baseline. This baseline randomly
chooses the best-response policy at every time step ¢. Finally, the Logistic Regression baseline
performs the logistic regression classifier fit to the features from the behavior rubric (7).

6 Results and Discussion

Teammate type classification. Table[T|reports teammate-type classification accuracy across three
Overcooked layouts. We observe that a simple Logistic Regression baseline achieves surprisingly
strong performance, attaining the highest accuracy in Cramped Room and remaining competitive
in both Asymmetric Advantage and Coordination Ring. This finding highlights that the engineered
fingerprint features already provide significant discriminative power, such that a lightweight linear
classifier can separate teammate types effectively. By contrast, PLASTIC displays variable perfor-
mance: it achieves strong results in Cramped Room but struggles in the other two layouts, reflecting
the brittleness of Bayesian updating when teammate behaviors are overlapping or sparsely expressed.
COLLAB, which relies only on rubric-based prompting of an LLM, consistently underperforms
across layouts. This suggests that the rubric alone provides insufficient grounding for LLM clas-
sification. In contrast, RECOLLAB substantially improves robustness by incorporating retrieval,
outperforming PLASTIC in all three layouts. These results indicate that retrieval grounding stabilizes
the LLM’s performance, particularly in more challenging layouts where teammate behaviors are less
easily separable.
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Figure 3: Probe-length ablations. Teammate-type classification accuracy and episodic returns as a
function of probe length P.

Cumulative returns. Table 2| compares the cumulative rewards achieved under each method when
the controlled agent adapts its best-response policy based on the predicted teammate type. As
expected, the Oracle establishes the performance ceiling, while random and static policies tend
to stand as the performance floor. Among adaptive methods, Logistic Regression, PLASTIC, and
RECOLLARB all produce substantially higher returns than COLLAB, confirming the importance of
accurate teammate modeling for ad-hoc teamwork. Notably, RECOLLAB edges out PLASTIC in
Coordination Ring and surpasses it as well as Logistic Regression in Coordination Ring. Logistic
Regression again performs very competitively, particularly in Asymmetric Advantage, suggesting that
in certain layouts simple classifiers suffice for effective adaptation.

Discussion. Figure [2| plots each method’s cumulative reward and teammate-type classification
accuracy against each other and estimates the Pareto optimal frontier. RECOLLAB consistently
lies near, or directly on this frontier. Overall, the results reveal three main insights. First, the strong
performance of Logistic Regression highlights the surprising discriminative power of fingerprint
features, reinforcing the need to compare against lightweight baselines. Second, RECOLLAB
consistently improves upon COLLAB and in many cases rivals or surpasses PLASTIC, especially in
more difficult layouts. This demonstrates that retrieval grounding provides stability and robustness
beyond what rubric-based prompting alone can achieve. Third, the divergence between classification
accuracy and cumulative return underscores that accurate teammate-type inference is necessary but
not sufficient; robustness to misclassification and stability of policy switching also play critical roles
in maximizing reward. Taken together, these findings suggest that retrieval-grounded LLMs offer an
interpretable and extensible alternative to Bayesian methods, while also revealing key limitations
of current trajectory representations and prompting strategies. We view the development of richer
fingerprint features, hybridized approaches combining retrieval with probabilistic priors, and scaling
to more diverse teammate behaviors as promising directions for future work.

7 Ablation Studies

In addition to the main results, we conduct ablation studies to analyze two key factors in teammate-
type classification and adaptive performance: the length of the probe phase () and the number of
retrieval exemplars (k). We focus on the Coordination Ring layout which is the most difficult of the
three in terms of teammate behavior complexity. These studies provide insight into the adaptation
speed and robustness of each method.

7.1 Effect of Probe Length P

Figure [3|reports classification accuracy and cumulative reward as a function of probe length P €
{5, 10, 20, 40, 80}. We find that both classification accuracy and cumulative returns are maximized
at probe length P = 20. Accuracy rises from near-random at P = 5 to nearly perfect at P = 20,
after which performance begins to diminish. The dropoff in returns is due to longer probe phases
increasing the time of sub-optimal cooperation which can be more difficult to break out of. These
results highlight a trade-off between adaptation speed and performance: shorter probes allow faster
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decision-making but risk misclassification, while a probe at length P = 20 strikes the best balance
by achieving high accuracy and near-optimal returns without excessive delay.

7.2 Effect of Retrieval Exemplars &

We next vary the number of retrieved exemplar trajectories k € {1, 3,5, 10} to evaluate the impact of
retrieval grounding. Results are shown in Figure[d] Varying the number of retrieved exemplars yielded
only modest differences in both teammate-type classification accuracy and episodic returns. Accuracy
remains relatively stable across values of &, and returns do not show consistent improvements with
larger retrieval sets. This suggests that while retrieval grounding is important for RECOLLAB ’s
overall performance, the precise number of exemplars plays a less critical role. In practice, small
values such as k = 3-5 appear sufficient to stabilize performance, and additional retrievals offer
diminishing returns. These results highlight that the primary benefits of RECOLLAB arise from
conditioning on retrieved examples at all, rather than from scaling the retrieval set size.

8 Conclusion

We introduced COLLAB, an LLM-based framework for teammate type classification and policy rout-
ing in ad-hoc teamwork, and RECOLLAB, its retrieval-augmented variant that grounds predictions
in prior trajectory data. By framing type classification as a form of world modeling over teammates,
our approach leverages the reasoning capabilities of LLMs while maintaining structured outputs for
downstream control.

In the cooperative Overcooked domain, RECOLLAB achieves competitive or superior early clas-
sification accuracy and team reward compared to the PLASTIC and Logistic Regression baselines.
These findings suggest that LLM-based world models, when paired with targeted retrieval, can serve
as effective agents in structured multi-agent RL settings without extensive fine-tuning. Our work
opens several directions for future exploration, including scaling to continuous teammate behavior
spaces, integrating online policy adaptation, and extending retrieval to multi-modal or human-agent
teaming scenarios.

By bridging structured LLM reasoning, retrieval, and best-response policy selection, we take a
step toward more flexible, generalizable agents capable of robust ad-hoc teamwork in complex
environments.
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