Under review as a conference paper at ICLR 2026

LOST IN THE NON-CONVEX LOSS LANDSCAPE: HOW
TO FINE-TUNE THE LARGE TIME SERIES MODEL?

Anonymous authors
Paper under double-blind review

ABSTRACT

Recently, large time series models (LTSM) have become popular and important
because they exhibit characteristics similar to large language models, such as flex-
ible context length, scalability, and task generality, outperforming the advanced
task-specific models in the domain. However, existing research indicates that the
pre-trained LTSM can show a poor non-convex loss landscape (indicating poor
trainability). Hence, directly fine-tuning pre-trained LTSM shows overfitting, which
leads to poor fine-tuning performance, even worse than training from scratch on the
downstream datasets. This severely diminishes the value of the pre-trained LTSM.
To address this, we propose a new fine-tuning method called Smoothed Full Fine-
tuning (SFF). Specifically, before fine-tuning, we first construct an auxiliary LTSM
with a smooth loss landscape (indicating good trainability) through random initial-
ization. Second, we utilize it to smooth the loss landscape of the pre-trained LTSM
through linear interpolation between their weights. As a result, the smoothed LTSM
acquires good trainability while retaining good pre-training knowledge, thereby
achieving better performance when fine-tuned on the downstream dataset. We also
explain why SFF is effective from the perspective of optimization theory: inter-
polation perturbs sharp minima without obviously harming originally flat regions,
thereby aiding sharp minima escape to better and smoother basins. Extensive exper-
iments on popular datasets show that our method indeed improves the performance
of eight popular LTSMs, e.g., Timer, TimesFM, MOMENT, UniTS, MOIRALI,
Chronos, TTMs, and Sundial, in different downstream tasks. Our codes are avail-
able at the link: https://anonymous.4open.science/r/SFF-0014.

1 INTRODUCTION

Large models developed through the generative pre-training transformer (GPT) have exhibited several
advanced capabilities not found in smaller models: flexible context length, the generalization ability
to fit multiple domains, the versatility to handle various scenarios and tasks, and the scalability where
performance improves with the increase in the scale of parameters and pre-training corpora. In
this context, large time series models (LTSM), e.g., Timer Liu et al|(2024), TimesFM Das et al.
(2024), and MOMENT |Goswami et al.| (2024)), are proposed to introduce the similar power of
GPT into time series analysis and improve overall performance in forecasting |Box et al.| (2015]),
interpolation [Friedman| (1962)), and anomaly detection Ren et al.| (2019) tasks. After pretraining
on the large-scale time series dataset, the LTSM can better capture universal features such as trend,
amplitude, frequencies, and phases Goswami et al.| (2024])), thereby benefiting the downstream tasks.

However, theoretically, the current study shows that large-scale training may cause models to converge
to sharp minima |[Keskar et al.[(2016) characterized by a non-convex loss landscape |Li et al.|(2018)),
which in turn leads to optimization difficulties during fine-tuning. Experimentally, in Figure|l| we
visualize the loss landscape of the pretrained LTSM on the downstream datasets, and it shows severe
local protrusions (the area enclosed by the black curve in Figure[l]), which corresponds to the above
theoretical findings. Existing research also shows that such a steep and non-convex (non-smooth)
loss landscape indicates poor trainability of a model and can lead the model to fall into poor local
minimums that exist between the protrusions (e.g., orange arrows in Figure[T[(a)), making the model
more prone to severe overfitting and resulting in poorer generalization [Li et al.|(2018). We further
examine the training and test losses of directly full fine-tuning the LTSM and found that the training
loss is always the lowest, while the test loss is even higher than that of training from scratch. The
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Figure 1: Loss landscape comparisons based on the LTSM Timer and exchange rate dataset. Smoother
is better. The unsmooth loss landscape shows a non-convex structure and indicates poorer trainabil-
ity |L1 et al.| (2018)), e.g., Figure Era). More cases are shown in Appendix Figure|2| and Figure@

results are shown in Appendix Figure[9]due to limited space. This is consistent with the characteristics
of overfitting and corresponds to our analysis above.

Intuitively, the occurrence of the non-convex loss landscape can be caused by overfitting during the
pre-training phase. For example, learning specific features of the pre-training data rather than general
features, or falling into sharp minima [Keskar et al.|(2016)). Due to the non-convex loss landscape, no
matter which current fine-tuning method is used, such as Full Fine-tuning (FF), Linear Probing (LP),
or Linear Probing then Full Fine-tuning (LPFF) Kumar et al.| a good fine-tuning performance cannot
be achieved, because they cannot smooth the non-convex loss landscape. This hinders the pre-trained
LTSM from optimizing to the better local minimum during fine-tuning (e.g., dark blue area at the
bottom of the loss landscape in Figure[T|a)). Therefore, an effective measure to mitigate the negative
impact of the “non-convex loss landscape” on fine-tuning for downstream tasks. Fortunately, we
also empirically find that the LTSM initialized randomly generally has a smoother loss landscape, as
shown in Figure[T(b). This naturally raises a question: Can we leverage the smooth landscape in
Figure[I[b) to help the pre-trained one in Figure[I{a) achieve better convex structure (smoothed loss
landscape) and thus improve its trainability, while still retaining the pre-trained knowledge?

Based on these insights, we propose Smoothed Full Fine-tuning (SFF) to better exploit the pretrained
knowledge of LTSMs for improving their fine-tuning performance. The method consists of two key
steps. First, we construct an auxiliary LTSM by random initialization. Unlike the pretrained model,
this auxiliary one has a smoother and more convex loss landscape (Figure [T[b)), which makes it
more trainable. However, it lacks pretrained knowledge, as illustrated in Figure[T(d): the minimum
of the randomly initialized model is much higher than that of the pretrained one, explaining why
the pretrained model can perform zero-shot prediction. Second, we smooth the pretrained model’s
loss landscape by linearly interpolating its weights with those of the auxiliary LTSM. The resulting
smoothed LTSM inherits the pretrained knowledge of the original model while gaining the improved
trainability of the auxiliary one. As shown in Figure[I[e), the minimum loss of the smoothed model
remains much lower than that of the randomly initialized model, confirming that pretrained knowledge
is well preserved. We provide further empirical evidence in Section 5.4}

Overall, smoothing reduces severe protrusions in the pretrained loss landscape (Figure[T|c)), making
it more convex and facilitating convergence. Gradient descent is then more likely to reach better
local optima (as illustrated by the dark blue arrows), thereby improving fine-tuning stability and
effectiveness. The proposed fine-tuning strategy only requires linear interpolation of model parameters
before fine-tuning, without increasing memory and computation overhead during fine-tuning. We also
explain why SFF is effective from the theory of deep learning optimization: interpolation perturbs
sharp minima without obviously harming originally flat regions, thereby aiding the escape of sharp
minima to better and smoother basins. Details can be found in section[3]

In summary, our contributions are as follows:

* We reveal a key finding that pretrained LTSM may suffer from overfitting during pretraining,
exhibiting a poor convex structure in the loss landscape and showing lower trainability.
Consequently, the fine-tuning performance in the downstream tasks is limited.

* We are the first to propose a weight-interpolation based fine-tuning strategy called Smoothed
Full Fine-tuning (SFF) to mitigate the overfitting issue of pretrained LTSM. SFF smooths
the loss landscape of the pre-trained LTSM through linear interpolation of model weights
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between the pre-trained one (with good pre-trained knowledge but poor trainability) and a
randomly initialized one (with poor pre-trained knowledge but good trainability). Smoothed
LTSM achieves improved trainability while retaining good pre-trained knowledge, thereby
facilitating better convergence during fine-tuning. We also explain SFF’s effectiveness
from an optimization perspective (section[3.1)). SFF does not incur additional memory
overhead or time complexity, and we provide a new insight for fine-tuning large models.

* We have validated the effectiveness of our method on time series forecasting (TSF) and
anomaly detection tasks. Our method outperforms the popular Full Fine-tuning (FF), Linear
Probing (LP), or Linear Probing then Full Fine-tuning (LPFF) strategies. Our method
improves the performance of eight popular LTSMs with diverse architectures (encoder-only,
decoder-only, encoder-decoder, and MLP only) and model sizes (3.8GB to 3MB).

2 RELATED WORKS

Popular fine-tuning approaches include full fine-tuning, linear probing, and linear probing first and
then full fine-tuning (LP-FF) (Kumar et al.). We have placed the related work about fine-tuning,
optimization strategies, and time series foundation models in the appendix [A.3|due to limited space.

Difference from weight interpolation in existing works. To the best of our knowledge, weight
interpolation hasn’t been explored for fine-tuning based on loss landscape theory. Although weight
averaging and interpolation (Vlaar & Frankle| [2022) have been studied in model merging (Wortsman
et al.|[2022)) and continual learning (Kozal et al.,[2024)), these works don’t target the core challenge
we identify in LSTMs, and our work is fundamentally different from them in the following aspects:

(1) Different goals. Existing interpolation methods (Wortsman et al.,2022; [Kozal et al.l[2024) are
primarily designed for model ensembling—e.g., interpolating among multiple well-trained models
to improve generalization or mitigate catastrophic forgetting. In contrast, our method leverages
interpolation to smooth the loss landscape of a single pretrained model by a randomly initialized
model, thereby making it more trainable during fine-tuning.

(2) Different pipelines. Previous works typically use the interpolated model directly for downstream
tasks without further training. In our case, the pretrained model begins with a steep, irregular loss
landscape. After interpolation smooths this landscape, we proceed with additional fine-tuning to
utilize the smoothing effect for better performance.

(3) New theoretical analysis. Our method is built upon a key conceptual contrast: the flat, smooth
loss landscape of a randomly initialized model versus the steep, irregular landscape of a pretrained
one. We formalize this contrast through theoretical analysis and proof, which further shows—also
theoretically—why our interpolation strategy can effectively exploit this difference to enhance
fine-tuning performance.

3 SMOOTHING THE LOSS LANDSCAPE OF THE PRE-TRAINED LTSM FOR
FINE-TUNING

We propose the smoothed fine-tuning strategy to boost the performance of fine-tuning various pre-
trained LTSMs, and the overview of the proposed smoothed fine-tuning is shown in Figure 2}

3.1 MOTIVATION AND THEORETICAL ANALYSIS

In this section, we explain why Smoothed Full Fine-tuning (SFF) is effective from the theory of
deep learning optimization. Specifically, the region of the loss landscape where the model weights
are located can be divided into flat and sharp areas |Li et al,| (2018). Flat regions imply better
generalization because the model is more tolerant to weight changes within flat regions [Keskar et al.
(2016)); Hochreiter & Schmidhuber| (1997); [Foret et al.|(2020). This is also why our SFF can make
linear interpolation between randomly initialized weights and the pre-trained model’s weights for a
smoother landscape and better fine-tuning effect. Doing so does not significantly affect the state of
the weights in the flat region due to their high tolerance towards the weight perturbation. For weights
in non-flat regions, SFF’s effect is similar to adding momentum (similar to the concept of
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momentum in the Adam Kingma & Ba| (2014) optimizer) through random weight interpolation,
allowing them to escape the non-flat regions for a smoother one and a better fine-tuning effect.
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Figure 2: Smoothed Full Fine-tuning (SFF). By linearly interpolating the pretrained and randomly
initialized LTSMs, we obtain a version that preserves pretrained knowledge while enjoying a smoother
and more trainable loss landscape for better fine-tuning effects.

Next, we provide a more rigorous theoretical derivation to prove the effectiveness of SFF.

3.1.1 INFLUENCE OF INTERPOLATION ON SHARP AND FLAT LOSS LANDSCAPE

Given an MSE loss function £(©) and the © denotes model parameters. To obtain a minimum £(0),
the corresponding parameters ©* can be a sharp minimum or a flat minimum. Inspired by
2016), we use the Hessian matrix to formally characterize the sharpness and flatness of the loss
landscape in the following analysis. By analyzing the maximum eigenvalue Ay, () of the Hessian
matrix H = VQE(@*) (H € R%4 where d denotes feature dimension), we can obtain the definitions
of the sharp and flat minimum as follows:

Theorem 1 (Sharp minimum). The Hessian V2L (©*) has large eigenvalues (i.e., Ayax(V2L(0%)) >
7 where T > 0 is a threshold), meaning steep loss landscape and small parameter perturbations lead
to large loss increases.

Theorem 2 (Flat minimum). The Hessian V2L (©*) has small eigenvalues (i.e., Apar(V2L(O%)) < T
where T > 0), meaning flat loss landscape and the loss is robust to parameter perturbations.

Proof details for the above Theorems are shown in the Appendix section[A.2}

Smoothing (perturbing) sharp minima. SFF interpolation strategy defines smoothed parameters
as O3 = aOf + (1 — a)O4, where O7F (pre-trained LTSM) are easier to lie in a sharp minimum
(Figure[T[a)) due to large-scale pretraining (Keskar et all 2016). In contrast, ©, (randomly initialized)
lies in a flat region, as shown in Figure[T[b), and we will further demonstrate in the next section
why mainstream Kaiming or Xavier initializations yield a flat loss landscape. After pre-training
the LTSM, for the sharp minimum points O3, its largest eigenvalue is Apax(VZL(07)) > 7. For O,
are randomly initialized in a flat region, and so the largest eigenvalue is Apax (VZL£(02)) < 7.

Under a local quadratic approximation of the loss function around the interpolation path, the Hessian
at O3 can be approximated by a convex combination of the Hessians at ©F and O,:

V2L(03) =~ aV2L(07) + (1 — a)VZL(Oy) )
Consequently, the maximum eigenvalue satisfies:
Amax (V2L(03)) £ admax (VEL(O7)) + (1 — @) Amax (V2L(O2)) 2)

Since Amax (V2L(02)) < Amax(VZL(07)) (flat vs. sharp), it follows that A\ (VZL(03)) <
Amax (V2L(©7)) for a € (0,1). This suggests that interpolation reduces local sharpness, i.e., helps
“sharp weights” escape the non-flat regions for a smoother one and a better fine-tuning effect. This
provides theoretical support for SFF’s smoothing effect.
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Preservation of flat regions. After pre-training the LTSM, for the flat minimum points O3, interpo-
lation preserves its flatness.

Both (:)T and O, lie in flat regions of the loss landscape, i.e.,
Amax (VQJC(@T)) <7, Amax (V2L(®2)) <7 3)

Similarly, the Hessian at the interpolated point O3 = a©j + (1 — )0 satisfies V2L(03) ~
aV2L(07) + (1 — a)V2L(O3). Consequently, we can derive that:

Amax (V2L£(03)) S amax (VZL(O7)) + (1 — ) Amax (VZL(O2)) <ar+(1—a)T =7 (4

Hence, ©3 remains in a flat region. According to (Foret et al.}[2020), this indicates that interpolation
does not harm existing flat minima ©7.

In summary, from the perspective of mathematical rigor, we ensure that interpolation smooths
(perturbs) sharp minima without obviously harming originally flat regions, thereby aiding sharp
minima escape to better and smoother basins.

3.1.2 DISCUSSION ON PARAMETER INITIALIZATION AND THE SMOOTHNESS OF THE
CORRESPONDING LOSS LANDSCAPE

Visualizations show that initialization methods like Kaiming and Xavier [Glorot &
yield a smooth loss landscape. Based on this observation, we apply them as auxiliary
initialization schemes for LSTM to promote smoothed full finetuning. In this section, we further
study this phenomenon from a theoretical standpoint. Prior work [Fort & Scherlis| (2019) quantifies
the smoothness of the loss landscape under Kaiming and Xavier initializations by the ratio of the

trace of the Hessian matrix Tr(H) to its Frobenius norm || H||  and has demonstrated ﬁgll\? >1

from both theoretical and experimental perspectives, i.e., mainstream initialization indeed produce a
smooth, flat, and more easily optimizable loss landscape. We further provide a theoretical analysis for
this conclusion. Specifically, according to the symmetry of H, we explicitly expand the formula as:

Te(H)  Tr(H) Te(H) YN
11l /st pe VRUETH) VYN

This indicates that the sum of eigenvalues greatly exceeds the square root of the sum of squared
eigenvalues, suggesting that most eigenvalues are positive and relatively evenly distributed rather
than containing extreme outliers, i.e., most cases belong to A(V2£(0*)) < 7 where 7>0. According
to the definition of Theorem 1 and Theorem 2, this indicates that the loss surface exhibits a smooth,
valley-like geometry dominated by positive curvature. As a result, most random descent directions
remain stable and low-curvature, making the optimization process easier and more consistent.

> 1 5)

In contrast, if ﬁ;}ﬁg < 1, it indicates a balanced mix of positive and negative eigenvalues A, leading

to a steep and unsmooth loss landscape. As a result, convergence becomes slower and the optimizer
is more likely to fall into suboptimal local minima.

Therefore, Kaiming or Xavier initialization offers a stable and smooth loss landscape. In our work,
we adopt them for randomly initializing the auxiliary LSTM.

3.2 SMOOTHING THE LOSS LANDSCAPE THEN FINE-TUNING

We define the training set as D = {(X1, Y1), ..., (Xn, Yn)}, where Xy = |21, 22,. .., 2] € R
with length ¢ for all v time variables. We divide the pre-trained LTSM into two parts: model backbone
G(X, ®1) and linear head Wye,a1 € R*h, X is an input time series and ®; are the parameters of
the pre-trained LTSM backbone. d and h are the output sizes of the backbone and linear head.

For simplicity, we define the parameters of auxiliary LTSM are ©2 = [®2, Wyeuan], including
LTSM backbone and its head. Given an coefficient «v, we can obtain the new model weights
O3 = [®3, Wheaa3] through linear interpolation between parameters of auxiliary LTSM (O2) and
pre-trained LTSM (©;). As a result, the formula of full fine-tuning, linear probing, and loss function
can be formulated as Eq.[6] Eq.[7} and Eq. [§] respectively:

f(X,03) = G(X,a®; + (1 — a)P2)" (aWheaat + (1 — @) Wheaa2) (6)
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f(X,03) = G(X,a®1 + (1 — ) P2)froen(@Wheaat + (1 — @) Whearo) 7
arg omin Y0 L(f(Xa01+ (1 a)8s). ) ®)
(X:,Yi)eD

where « is the interpolation coefficient and controls the proportion of pre-trained knowledge retained.
The larger «v is, the more pre-trained knowledge is preserved.

Smoothing the loss landscape can be implemented in a few lines of PyTorch, and we provide example
code in the Appendix Algorithm [T}

4 EXPERIMENTAL SETTINGS

LTSM Baselines. We use the eight popular LTSMs as baselines with diverse architectures, including
encoder-only (Moirai Woo et al.| (2024a) and MOMENT |Goswami et al.| (2024))), decoder-only
(Sundial [Liu et al] (2025)), Timer [Liu et al| (2024), and TimesFM Das et al|(2024)), encoder-
decoder (Chronos Ansari et al.|(2024) and UniTs|Gao et al.| (2024)), and light-weight MLP model
(TTMs |[Ekambaram et al.[(2024)). They also include models of different sizes, ranging from larger
TimesFM (3.8GB) to smaller TTMs (3MB). We verify that our method can enhance their performance.
We download these pre-trained models from the official links for experiments, e.g., with model sizes
being 851MB, 2.6GB, and 3.8GB for Timer, MOMENT, and TimesFM, respectively.

Fine-tuning baselines. In addition to comparing with typical fine-tuning baselines, e.g., full fine-
tuning (FF), linear probing (LP), and linear probing first and then full fine-tuning (LP-FF). We also
incorporated various optimization strategies employed during model training, such as label smoothing,
SAM (Foret et al} [2020), SWA (Izmailov et al, 2018), Mixout F, and L2-SP
[2018)). Comparison results are shown in the Appendix Table[I0[due to limited space. More details
about datasets, evaluations, and implementation details are shown in Appendix @

5 EXPERIMENTAL RESULTS

We conduct extensive experiments to validate the effectiveness of the proposed smoothed fine-tuning,
including 8 TSF datasets and 250 anomaly detection datasets, also involving 8 popular LTSMs. To
ensure the effectiveness of our method is not a random occurrence, we have conducted experiments
with multiple random seeds under varying available data proportions. Our method also achieves
improvements on the imputation task, as shown in Appendix Figure[I0]due to limited space.

We also evaluate different initialization schemes and random seeds on SFF in Appendix Section[A.7.]
Tables[IT]and[I2} The results show that mainstream initializations (e.g., Kaiming, Xavier) consistently
yield stable gains, and SFF shows no noticeable sensitivity to the initialization seed.

Table 1: MSE of fine-tuning LTSM Timer for time series forecasting under different proportions of
available data. SFF, FF, and TFS are smoothed full fine-tuning, full fine-tuning, and training from
scratch, respectively. Full standard deviations are shown in the Appendix Table [I7] The results,
improvements, and standard deviations under the available data proportion 1% to 20% are shown in
Appendix Table [T5]and Table[16] Similarly, MAE results are shown in Tables|[I8] [T9} and 20}

Data proportion | 25% | 50% | 75% | 100%
Methods ‘ SFF FF TFS ‘ SFF FF TFS ‘ SFF FF TFS ‘ SFF FF TFS
Exchange 0.0805 0.0865 0.1441 | 0.0802 0.0891 0.114 | 0.0802 0.0914 0.1026 0.08 0.091  0.0981
Standard deviation | £4.5¢-4 +1.9e-4 £2.0e-3 | £5.4e-4 +2.3e-3 £9.9e-4|£1.2e-3 +1.6e-3 £8.8e-4|+£7.6e-4 +1.3e-4 £1.2e-3
ETTh1 ‘ 0.3506 0.355 0.3788 ‘ 0.3494 03573 0.367 ‘ 0.3493  0.358 0.3593 ‘ 0.3547 03709 0.36
ETTh2 ‘ 0.271 0.2866 0.2891 ‘ 0.273  0.2905 0.2775 ‘ 0.2772 03032 0.2796 ‘ 0.2737 03047 0.2777
ETTml | 0298 03049 0333 | 02955 03069 03189 | 0.2956 03092 0.3116 | 0.2954 03128 0.3093
ETTm2 | 0.1594 0.1707 0.1741 | 0.1605 0.1718 0.1627 | 0.1623 0.1838 0.1651 | 0.16 0.1784 0.1644
Weather | 0.144  0.1472  0.1627 | 0.1441 0.1523 0.1538 | 0.1466 0.1665 0.1559 | 0.1443 0.1612 0.1526
Electricity | 0.1303 0.1344 0.1365 | 0.1301 0.1347 0.1327 | 013  0.1367 0.1326 | 0.1304 0.1344 0.1324
Traffic | 03488 03582 03688 | 0.3497 03586 03552 | 0.3478 0.361 03606 | 0.3551 03599 0.3609
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Figure 3: MSE of different fine-tuning strategies on the test set of various datasets with varied
available data proportions (1% to 100%).

5.1 FINE-TUNING TIMER FOR MULTIVARIATE TIME SERIES FORECASTING (TSF) AND
ANOMALY DETECTION

Experiments show that training from scratch (TFS) requires substantially more data to achieve good
accuracy, while pretrained LSTMs reach—or even surpass—TFS’s full-data performance using only
10-25% of the data. However, pretrained LSTMs often exhibit poor trainability due to overfitting,
resulting in steep and unsmooth loss landscapes that weaken fine-tuning. As a result, full fine-tuning
(FF) may struggle to improve—and can even degrade—as data increases (Figure 3). In contrast,
our Smoothed Full Fine-tuning (SFF) consistently outperforms FF across all data proportions, with
performance improving as more data is used. Across nine public datasets, SFF reduces MSE by an
average of 3% and up to 6.5% over FF (Table[T). These results demonstrate that SFF effectively
smooths the loss landscape, enhances trainability, and better leverages pretrained knowledge—without
any additional memory or computation.

Similarly, in the anomaly detection task, we observe that the TFS overall performs better than FF.
When using MSE as a confidence measure for anomaly detection, the higher the predicted MSE for
anomalous segments, the better. As shown in Table 2] the average MSE for anomalous segments
obtained through TFS is overall higher than that of FF. In contrast, the SFF achieves significantly
higher MSE predictions for anomalous segments compared to both FF and TFS, which demonstrates
the superiority of our SFF.

Table 2: Results on anomaly detection. We report the predicted MSE of the anomalous segments, and
the higher is better. There are a total of 250 datasets. Due to space limitations, we sequentially report
the average MSE and Wins in six groups under four random seeds. The MSE and standard deviation
of each dataset are shown in Appendix Table @ and Table @

Group 1 (41 datasets) Group 2 (41 datasets) Group 3 (41 datasets)
SFF FF TFS SFF FF TFS SFF FF TFS
MSE Wins | MSE  Wins | MSE  Wins | MSE Wins | MSE Wins\ MSE Wins| MSE Wins | MSE Wins\ MSE  Wins

0.136 313 | 0.072 43 | 0073 53 ]0.206 32.0|0.098 53 |0.089 3.7 |0.209 30.3|0.104 50 |0.112 57

+14e2 +1.7 |£13e2 +1.9 |£1.6e-2 +0.47|7.7e-3 0.82 |4.0e-3 0.94 [1.0e-2 047 [29e-2 1.7 [1.0e-2 0.0 |2.le2 17

Group 4 (41 datasets) Group 5 (41 datasets) Group 6 (45 datasets)
SFF FF TFS SFF FF TES SFF FF TES
MSE  Wins | MSE  Wins | MSE  Wins | MSE Wins | MSE Wins \ MSE Wins| MSE Wins | MSE  Wins \ MSE  Wins

0201 337 | 0.084 33 | 0.087 4.0 [0.163 29.0|0.078 33 | 0.09 87 |0.157 343[0.085 5.0 | 0.09 5.7
+2.9¢-2 +0.47|+9.9e-3 +£0.47|£8.1e3 £0.82|34e2 22 [6.2e3 047 [24e2 19 [6.7e3 12 |9.8e3 2.4 [3.6e3 24

5.2 APPLYING SMOOTHED FULL FINE-TUNING (SFF) FOR OTHER LTSMS

As shown in Table EL for TimesFM and MOMENT, FF also performs worse than TFS in some cases,
which indicates that the pre-trained LTSM may indeed suffer from overfitting issues. However, our
SFF fine-tuning strategy outperforms both FF and TFS. Compared to FF, SFF achieves average
improvements of 11.45% for TimesFM and 8.31% for MOMENT under different data proportions.

Moreover, as shown in Table EI, the experiments on more LTSMs, including UniTS, MOIRAL,
Chronos, TTMs, and Sundial, SFF consistently outperforms FF, which indicates that the interpolation-
based smoothing strategy of SFF can indeed improve the fine-tuning effect of LTSM. This is because
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Table 3: MSE of applying our smoothed fine-tuning (SFF) on other LTSMs TimesFM and MOMENT.
Full standard deviations and MAE results are shown in Appendix Table @ and Table@

Data proportion | 25% (TimesFM) |  100% (TimesFM) |  25% (MOMENT) |  100% (MOMENT)
Methods | SFF FF TFS | SFF FF TFS | SFF FF TFS | SFF FF TFS
Exchange 0.1139  0.1276  0.1209 | 0.1149 0.1452  0.1199 | 0.1502 0.2648 0.1564 ‘ 0.1064 0.1448  0.1091

Standard deviation | 2.0e-3  4.2e-3  2.9e-4 | 6.3e-4 1.7e-2 2.3e-3 | 2.4e-3 4.6e-4 3.6e-3 | 58e-4 l.de-4 2.6e-4
ETThl | 03955 04382 04638 | 0.406 05101 04358 | 0.4287 04454 0454 | 0.3757 03951 0387
ETTh2 [ 03232 03384 0.3325 | 0.3198 0.3483  0.347 | 0.3199 03328 0.3326 | 0.2818 0.2936 0.2979
ETTml | 0.3429 04001 03903 | 0.3478 03756 0.3926 | 0.3457 0.3587 0.3538 | 0.3139 03148 0.3272
ETTm2 | 01983 02061 02091 | 0.2026 02122 0225 | 01793 0.192 0.1846 | 0.1692 0.172  0.1736
Weather | 0.0865 0.0885 0.1995 | 0.082 0.1184 0.1902 | 0.1673 0.1682 0.169 | 0.1548 0.1558 0.161

interpolation perturbs sharp minima without obviously harming originally flat regions, thereby aiding
the escape of sharp minima to better and smoother basins.

Overall, our method works across various architectures of LTSMs, including encoder-only, decoder-
only, encoder-decoder, and MLP-only, showing universality and generalizability.

Table 4: MSE of fine-tuning more LTSMs for the TSF task with prediction length 96. “-” indicates
that the preprocessed version of the dataset is not provided in the official codes (Chronos) or that it
runs out of memory (Sundial). The results on length 720 are shown in Appendix Table @

|UniTS-SFF UniTS-FF|MOIRAI-SFF MOIRAI-FF|Chronos-SFF Chronos-FF| TTMs-SFF TTMs-FF |Sundial-SFF Sundial-FF
ETThl | 0.656 0.678 | 0.448 0501 | 0773 0799 | 0367 0371 | 0.368 0.372

ETTh2 | 0.364 0374 | 032 0321 | - - | 0275 0278 | 0293 031
ETTml| 0.355 0365 |  0.308 0348 | 0.687 0724 | 0309 0308 | 0.419 0.428
ETTm2| 0.179 0.184 |  0.181 0.184 | - - | 017 0.178 | 0.182 0.195
Weather|  0.171 0.198 |  0.166 0173 | 1137 1276 | 0157  0.159 | 0179 0.186
Elect. | 0.309 0476 |  0.221 0226 | 0.861 0885 | 0149 0151 | - -
Traffic | 0.877 1195 | 0476 0497 | 0.831 0834 | 0453 0462 | - -

Table 5: MSE of comparing our smoothed full fine-tuning (SFF) with linear-probing (LP) and
linear-probing then full fine-tuning (LPFF) Full standard deviations and MAE results
are shown in Table[25]and Table[26] The average performance is reported for each group of three
different data proportions, e.g., “Avg. on 1%, 2%, 3%”. The MSE, MAE and standard deviations

under each proportion are shown in Appendix Tables 27} [28] 29} 30} 31| and 32}

Data proportion | Avg. on 1%, 2%, 3% | Avg. on 4%, 5%, 10% | Avg. on 15%, 20%, 25% | Avg. on 50%, 75%, 100%

Methods ‘ SFF LP LPFF‘ SFF LP LPFF‘ SFF LP LPFF ‘ SFF LP LPFF

Exchange 0.0856 0.5943 0.4801|0.0848 0.5906 0.4186|0.0816 0.563 0.1743 [0.0812 0.474 0.0962
Standard deviation | 4.4e-4 7.3e-3 3.9e-3|3.7e-4 7.2e-3 6.7e-3|6.1e-4 6.6e-3 7.4e-3 | 8.3e-4 4.7e-3 1.9e-3

ETThl [0.3722 0.8806 0.7171|0.3641 0.8594 0.6367|0.3523 0.7955 0.4127 |0.3529 0.6356 03731
ETTh2 | 028 04427 0.4026] 0.278 04375 0.3707]0.2768 0.4234 0.3113 |0.2758 0.3849 03001
ETTml [0.3448 1.046 0.7038|0.3162 1.0043 0.4772] 0.301 0.8975 0.3245 |0.2976 0.6608 03124
ETTm2  [0.1723 0.3555 0.3024]0.1663 0.3499 0.2559|0.1623 03297 0.1847 |0.1616 0.2771 0.1804

Weather [0.1515 0.324 0.2478| 0.146 0.3082 0.1741]0.1441 0.2699 0.1481 |0.1453 0.2013 0.1565
Electricity [0.1346 0.6069 0.181 | 0.132 0.3242 0.1398]0.1305 0.2023 0.132 |0.1301 0.1561 0.1335
Traffic [0.3678 0.9577 0.4081|0.3562 0.5999 0.36380.3494 0.4529 0.3572 |0.3516 0.4079 0.3575

5.3 COMPARE SFF WITH OTHER FINE-TUNING STRATEGIES

We compare SFF with the popular fine-tuning strategies, linear-probing (LP), and linear-probing
then full fine-tuning (LPFF) The results in Table 5] show that SFF outperforms LP and
LPFF under multiple proportions of finetuning data, with average MSE improvements of 7.17% to
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41.57% compared to the best competitor LPFF. This demonstrates that SFF is indeed an effective
new fine-tuning strategy. It smooths the sharp regions of the loss landscape first, and achieves better
trainability and fine-tuning.

5.4 DISCUSSION OF RETAINED PRETRAINING KNOWLEDGE AFTER SMOOTHING THE LOSS
LANDSCAPE

Impact of smoothing the loss landscape on convergence speed. We record the test loss of different
fine-tuning strategies at each epoch, as shown in Figure ] Pre-trained model possess general
knowledge and can quickly extract universal features from time series, thereby only requiring a few
fine-tunings to converge. In Figure[d both SFF and FF converge within the first epoch (enclosed
by the red rectangles). This indicates that SFF-based LTSM also effectively retains the pre-trained
knowledge after smoothing the loss landscape through model interpolation. Moreover, SFF converges
to a lower MSE than FF, indicating that the smoothing process enhances the trainability of the LTSM,
consistent with our design motivation.

—— Training From Scratch (TFS) —— Full Fine-tuning (FF) —e— Smoothing loss landscape then Full Fine-tuning (SFF)
0.12 A ] 0.171 14 4

w HOAO //’—_ wo! %014 \

= 0.10 A = 0.38 | = = 0134
a 0.15 1
= T T T T T L T T T T T T T T T T T T T T T
2 4 6 8 10 2 4 6 8 10 T2 4 6 8 10 2 4 6 8 10

Epochs (Exchange) Epochs (ETTh1) Epochs (Weather) Epochs (Electricity)

Figure 4: Different methods of forecasting on the test set of various datasets at each epoch.

Impact of smoothing the loss landscape on zero-shot forecasting. Since the pre-trained knowledge
is still well-preserved after smoothing, what is its impact on zero-shot prediction? As shown in Table[6]
the smoothed LTSM improves zero-shot accuracy on seven datasets, with average gains of 6.13%
(Timer) and 35.75% (TimesFM). These results, averaged over multiple seeds, confirm that smoothing
guides the pretrained model to a better local optimum. Besides, Figure [5]shows that an interpolation
coefficient o ~ (.85 yields the best zero-shot performance, achieving sufficient smoothing with
enough preservation of pretrained knowledge. Moreover, as shown in Table[7] the smoothing process
also generally brought about an increase in the accuracy of zero-shot prediction on more LTSMs,
including MOIRAI, Chronos, TTMs, and Sundial, showing our method’s generalizability.

Table 6: Smoothing the loss landscape then perform zero-shot forecasting. MAE results are shown in
Table[33] The result of random initialization is ignored since it shows significantly poor performance
due to a lack of pre-trained knowledge, as “Re-initialize” shown in Figure E}

Traffic
Timer +Smooth

Weather
Timer +Smooth|

ETTm2
Timer +Smooth

Electricity
Timer +Smooth

ETTh2
Timer +Smooth

ETTml1

ETThl
Timer +Smooth

Timer +Smooth

MSE‘ 0454 0399 ‘ 0316  0.289 ‘ 0.816  0.794 ‘0.225 0.209 ‘ 0.19 0.179 ‘0‘210 0.203 ‘0.479 0.463

Std. +0 +1.3e-3 +0 +2.2e-3 +0 +1.2e-2| +0 £1.6e-3 +0 +£9.0e-4| +0 £6.2e-4| +0 £6.6e-4
|TimesFM +Smooth|TimesFM +Smooth|TimesFM +Smooth|Tim.FM +Smooth|Time.FM +Smooth|Tim.FM +Smooth|Tim.FM +Smooth
MSE| 0.782 0.741 1.865 0.382 1.359 0.993 | 1.375 0.256 0.397 0.227 0.94 0.886 | 1.665 1.521
Std. +0 +7.9e-3 +0 +4.8e-4 +0 +2.4e-2| +0 £5.8¢-3 +0 +4.3e4| +0 £3.6e-3|] 0 £1.3e-2
—== Timer —== Timer —== Timer L5177 --2 Timesfm 1.5 —== TimesFM
0.6 4 --- Re-initialize 0.7+ --- Re-initialize 0.34 --- Re-initialize 22T Resmitialize — = TimesFM 0.75 A --- Re-initialize
—e— +Smooth —e— +Smooth —e— +Smooth 104 = ¥smooth 1o - Reditalize | —e— +Smooth
0.6 . 2 —e— +Smooth =207
i .
0.55 0.65 0.75 0.85 0.95 0.55 0.65 0.75 0.85 0.95 0.55 0.65 0.75 0.85 0.95 0.55 0.65 0.75 0.85 0.95 0.55 0.65 0.75 0.85 0.95 0.55 0.65 0.75 0.85 0.95
Coefficient a (ETTh12) Coefficient a (ETTm12) Coefficient a (Weather) Coefficient a (ETTh12) Coefficient a (ETTm12) Coefficient a (Weather)

Figure 5: Impact of interpolation coefficient o on zero-shot forecasting.

5.5 HYPERPARAMETER SENSITIVITY ANALYSIS

Influence of the interpolation coefficient .. As shown in Figure[f] although the coefficient v in SFF
may affect performance, across most « values (0.1-0.75), SFF achieves lower MSE than standard full
fine-tuning (red dashed line). This also confirms that smoothing improves trainability and enables
pretrained LTSMs to better leverage knowledge for higher fine-tuning accuracy.
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Table 7: Zero-shot forecasting MSE of more LTSMs with prediction length 96. UniTS is not included
since it focuses on few-shot learning. The results on length 720 are shown in Appendix Table @

MOIRAI +Smooth ‘ Chronos +Smooth ‘ TTMs +Smooth ‘ Sundial +Smooth

ETTh1 ‘ 0.419 0.405 ‘ 0.816 0.779 ‘ 0.364 0.362 ‘ 0.394 0.385
ETTh2 ‘ 0.305 0.295 ‘ ‘ 0.277 0.275 ‘ 0.306 0.303
ETTml ‘ 0.557 0.552 ‘ 0.697 0.655 ‘ 0.322 0.315 ‘ 0.365 0.362
ETTm2 ‘ 0.227 0.219 ‘ ‘ 0.171 0.172 ‘ 0.2 0.191
Weather ‘ 0.192 0.189 ‘ 1.259 1.087 ‘ 0.158 0.158 ‘ 0.175 0.173
Elect. ‘ 0.21 0.197 ‘ 0.823 0.822 ‘ 0.166 0.167 ‘ -
Traffic [ 0.555 0.544 [ 0.854 0.836 [ 0.514 0.516 [ -
034 0245 0.160 F==== o153 -
0.240 0.155 - FF
w033 w u $ 0.132
= = 0.235 = 0150 = 0.1314 :L\/

T T T T T T T T T 0.230 4 T T T T T T T T T T T T T T T T T T T T T T T T T T T
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.1 02 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Interpolation coefficient @ (ETTh12) Interpolation coefficient a (ETTm12) Interpolation coefficient @ (Weather) Interpolation coefficient a (Electricity)

Figure 6: TSF of different interpolation coefficients « on the test set of various datasets. The available
data proportion is 100%. ETTh12 denotes that the MSE is average on the ETTh1 and ETTh?2 datasets.

Table 8: MSE performance of adding randomly initialized parameters to the pre-trained UniTS. The
percentages in the first column indicate the proportion of parameters subject to weight perturbation.

[ ETThl | ETTh2 | ETTml | ETTm2 | Weather | Electricity | Traffic

Proportion (17.91%)-96 0.678 0.373 0.359 0.181 0.192 0.474 1.194
Proportion (35.82%)-96 0.665 0.366 0.356 0.181 0.182 0.464 1.135
Proportion (53.73%)-96 0.656 0.364 0.36 0.181 0.183 0.462 1.138
Proportion (100%)-96 0.662 0.367 0.355 0.179 0.171 0.309 0.877
Proportion (17.91%)-720 0.735 0.431 0.626 0.419 0.339 0.492 1.305
Proportion (35.82%)-720 0.711 0.434 0.627 0.416 0.337 0.466 1.27
Proportion (53.73%)-720 0.704 0.431 0.595 0.418 0.334 0.431 1.238
Proportion (100%)-720 0.707 0.436 0.496 0.419 0.324 0.355 1.01

Influence of the interpolation proportion of model parameters. Notably, SFF operates at the
parameter level, not the layer level (e.g., LayerNorm, FFN), without favoring specific layers. The key
factor is the proportion of interpolated parameters. To verify this, we start from the first UniTS block
and gradually increase the proportion of parameters undergoing weight interpolation (perturbation),
observing fine-tuning performance across datasets. As Table[§]shows, larger datasets benefit from
more interpolation (MSE: 100% < 53.73% < 35.82% < 17.91% for Electricity and Traffic), whereas
smaller datasets benefit from less (MSE: 53.73% < 100% for ETTh1 and ETTh2). This is reasonable
because larger datasets support broader parameter updates, exploring more non-convex regions
and escaping sharp minima, while smaller datasets may under-train if too many parameters are
interpolated, harming performance.

6 CONCLUSION

In this work, we identify a key challenge: pretrained LSTMs often suffer from poor trainability
during fine-tuning due to a steep, unsmoothed loss landscape, which limits the benefits of pretraining.
We address this with a lightweight strategy that first smooths the loss landscape—without additional
memory or computational cost—and then performs downstream fine-tuning. This improves trainabil-
ity while preserving pretrained knowledge, yielding consistently stronger performance. Theoretically,
SFF works by perturbing sharp minima without affecting inherently flat regions, allowing the sharp
minima to escape unfavorable basins. Extensive experiments on eight public datasets using eight
pretrained LSTMs of varying architectures and sizes confirm that the improvements are robust
across seeds and data regimes. We believe these insights may also benefit fine-tuning in broader
pretrained-model settings.

10
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7 ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics. In this study, no human subjects or animal experi-
mentation were involved. All datasets used in this paper were sourced in compliance with relevant
usage guidelines, ensuring no violation of privacy. We have taken care to avoid any biases or dis-
criminatory outcomes in our research process. No personally identifiable information was used, and
no experiments were conducted that could raise privacy or security concerns. We are committed to
maintaining transparency and integrity throughout the research process.

8 REPRODUCIBILITY STATEMENT

The efforts we have made to ensure the reproducibility of our algorithms and experimental results are
as follows:

* We ran four random seeds in our experiments and reported the mean and standard deviation
of the results to enhance reproducibility.

* We added an anonymous code link to the ABSTRACT for convenient download. The codes
include the hyperparameter settings used in the experiments. By providing the code and
detailed hyperparameter settings, we ensure that our algorithms and experimental results are
reproducible.
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A TECHNICAL APPENDICES AND SUPPLEMENTARY MATERIAL

A.1 THE USE OF LARGE LANGUAGE MODELS (LLMS)

Large Language Models (LLMs) were used to aid in the writing and polishing of the manuscript.
Specifically, we used an LLM to assist in refining the language, improving readability, and ensuring
clarity in various sections of the paper. The model helped with tasks such as sentence rephrasing and
enhancing the overall flow of the text.

It is important to note that the LLM was not involved in the ideation, research methodology, or
experimental design. All research concepts, ideas, and analyses were developed and conducted by
the authors. The contributions of the LLM were solely focused on improving the linguistic quality of
the paper, with no involvement in the scientific content or data analysis.

The authors take full responsibility for the content of the manuscript, including any text generated or
polished by the LLM. We have ensured that the LLM-generated text adheres to ethical guidelines and
does not contribute to plagiarism or scientific misconduct.

A.2 PROOF FOR THEOREMS ABOUT SHARP MINIMUM AND FLAT MINIMUM

We start by performing a second-order Taylor expansion of the loss function £(©*) at the minimum
point ©*:

1
L(OF +6) ~ L(O) + §6TV2£(®*)6

. ©
~ 5(sTv%(e)*)(s
where ¢ is a small parameter perturbation (e.g., |§| < 1).
The loss change after perturbation can be formulated as:
1 1
AL = L(O* +6) — L(O%) ~ §5Tv2£(@*)5 ~ §5TH5 (10)

The largest AL is governed by the Apax of the Hessian H = V2L£(©%).

Let unit vector vy, be the eigenvector corresponding to eigenvalue Ay,,«. Perturbing in the direction
of vmay yields the largest AL because vy, represents the largest curvature (Foret et al., [2020), i.e.,
steepest direction, in the loss landscape. Let § = € - Umax (€| < 1), the Eq.[L0|can be reformulated as:

1
AL ~ §e~v$axHe-vmax (11)

According to eigen equation, H Vpmax = AmaxUmax, We can further obtain

1 1 1
A»C ~ §€2U[—r:ax)\maxvmax ~ 562vr;raxvmax)\max ~ 562)\max (12)

Hence, AL is closely related to Apay, the larger A\ is, the sharper the loss landscape, so parameter
perturbations in many directions can noticeably increase the loss. Conversely, the smaller A, is,
the flatter the landscape remains, and perturbations won’t obviously raise the loss (Hochreiter &
Schmidhuber, [1997)).

A.3 RELATED WORKS

Fine-tuning large time series models. Most works focus on designing pre-training architecture and
collecting large-scale time series dataDas et al.| (2024); |Goswami et al.| (2024); [Woo et al.|(2024b);
Liu et al.| (2024) to enrich and improve the foundations of LTSM. The fine-tuning technique has
received relatively less attention in the field of large time series models. The traditional fine-tuning
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strategies are either full fine-tuning (adjusting all model parameters) or only fine-tuning the prediction
head (also called linear probing). In the computer vision domain, Kumar et al.| points out that full fine-
tuning can achieve worse accuracy than linear probing in the condition of meeting out-of-distribution
(OOD) data when the pretrained features are good and the distribution shift is large. To address
this, they propose to linear probing first and then full fine-tuning (LP-FF) to improve the fine-tuning
performance of the pre-trained model in the OOD condition. In our study, we also apply LP-FF to
fine-tune the LTSM as a baseline to compare with our method.

Various optimization strategies can also be used for fine-tuning. Specifically, SAM (Sharpness-Aware
Minimization) (Foret et al.}[2020) updates parameters not only by the loss at the current point, but
also by the flatness in a small neighborhood, so the optimizer is less likely to fall into high-curvature
sharp minima. Note, however, that SAM needs one extra forward—backward pass, so its training
cost is twice that of ordinary training. SWA (Stochastic Weight Averaging) (Izmailov et al.| [2018))
is an ensemble-like strategy: it saves several weight snapshots taken after the model has converged
and averages them to produce the final weights, reducing randomness and over-fitting. Mixout (Lee
et al.) randomly replaces a subset of the fine-tuned weights with their pre-trained counterparts
during training, mitigating catastrophic forgetting and over-fitting. L2-SP (Xuhong et al., 2018)
adds an L2 penalty between the current weights and the pre-trained weights to the loss, preventing
the fine-tuned model from drifting too far away from the pre-trained solution and thus preserving
pre-trained knowledge while curbing over-fitting.

Small time series models. Recently, many small end-to-end models for time series analysis (e.g.,
forecasting) have been proposed. At first, transformer-based methods Wu et al.|(2021); Zhou et al.
(2022); [Liu et al.| (2021)); |Chen et al.| (2024); [Nie et al.| (2023); [Zhou et al.| (2021); [Zhang et al.
(2025a)); Zhang & Yan| (2023); |Kim et al.| (2024) greatly promoted the development of the field.
Lately, methods based on simple linear layers Wang et al.| (2024b); [Zhang et al.| (2025b); [Wang
et al.| (20244); [Zeng et al.| (2023)); [Ekambaram et al.| (2023)); [Chen et al.| (2023)) and CNNs Bai
et al. (2018)); [Luo & Wang|(2024ajb) have also become popular, thanks to their high efficiency and
competitive performance. However, these methods also have some limitations, such as the inability
to flexibly handle context length, and they need to retrain the model when using historical inputs of
different lengths. They also lack generalizability across different tasks. Moreover, due to the lack of
pre-trained knowledge, these methods typically require longer training times to converge. In contrast,
pretrained Large time series models (LTSM) exhibit characteristics similar to large language models,
such as flexible context length, scalability, and task generality, showing potential to outperform the
task-specific models [Liu et al.| (2024); Das et al.| (2024); Goswami et al.| (2024).

Large time series models (LTSM). Existing efforts toward LTSMs can be categorized into two
groups, with one being large language models for time series. FPT [Zhou et al.| (2023) partially
fine-tunes GPT-2 on different downstream tasks. LLM4TS (Chang et al.|(2023)) encodes time series
into numerical tokens to utilize LLMs for time series forecasting. TimeLLLM [Jin et al.| aligns the text
prompt with time series to enhance prediction. These methods demonstrate the potential of LLMs
for time series analysis. Another category includes pre-trained models on large-scale time series.
Moirai Woo et al.|(2024b), an encoder-only architecture, transforms time series into varied token sizes
for better handling varied frequencies and then performs the pre-training strategy of mask modeling
for time series forecasting. MOMENT |Goswami et al.| (2024), an encoder-decoder architecture,
adopts a BERT-style mask modeling pre-training strategy and supports various downstream time
series tasks. TimesFM Das et al.|(2024) is a decoder-only Transformer pre-trained on Google Trends
for forecasting, exhibiting notable zero-shot ability. Timer [Liu et al.| (2024)) conducts GPT-style
pre-training on the carefully processed and collected UTSD dataset and has achieved advanced
accuracy on various tasks, including forecasting, imputation, and anomaly detection.

A.4 PYTORCH CODES TO SMOOTH THE LOSS LANDSCAPE OF THE PRETRAINED LTSM

We show the example codes to use the randomly initialized LTSM to smooth the loss landscape of the
pretrained one in Algorithm [T} By combining the strengths of the randomly initialized LTSM (good
trainability with a smoother loss landscape) and the pretrained LTSM (good pretrained knowledge),
the convergence of the smoothed LTSM can be improved during fine-tuning.
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Algorithm 1: Smoothing the loss landscape of the pre-trained LTSM for fine-tuning

def Smoothing_ Landscape (modell,model?2):

"""modell: pre-trained LTSM, modell: randomly initialized LTSM""""

for paraml, param2 in zip (modell.parameters (), model2.parameters()):
# Smoothing the loss landscape of modell through interpolation
modell.copy_ ((modell % alpha + model2 * (1 - alpha)))

# Next, the smoothed modell is applied for fine-tuning

# without increasing memory and computational overhead

return modell

A.5 MORE DETAILS ABOUT REPRODUCING PAPER RESULTS

Datasets. In forecasting and imputation, we conduct extensive experiments on eight well-known
datasets, including Exchange rate, Weather, Electricity, Traffic, and four ETT datasets (ETThl,
ETTh2, ETTml1, ETTm2). Details can be seen in Appendix [A.6] and Table [9] In the anomaly
detection task, following previous work [Liu et al.| (2024); Wu & Keogh| (2021), we use UCR
Anomaly Archive (containing 250 datasets) Wu & Keogh| (2021)) for anomaly detection.

Evaluations. Following Timer Liu et al.| (2024), we uniformly use MSE (Mean Squared Error) and
MAE (Mean Absolute Error) to evaluate the performance of methods on forecasting, imputation, and
anomaly detection tasks. In forecasting, we investigate the performance of the proposed smoothed
fine-tuning under different proportions of available fine-tuning data. The proportions range from 1%
to 100%. In anomaly detection, similar to Timer Liu et al.| (2024), MSE is used as a confidence level
to evaluate the effectiveness of anomaly detection. The higher the predicted MSE of the anomalous
segments, the better, as this reduces the risk of normal segments being misjudged as anomalies.

Implementation details. The interpolation coefficient « is selected from 0.3, 0.5, 0.7, 0.9 for all
tasks. For fairness, we use the source codes of each baseline and follow their recommended settings.
Within each baseline, the configurations for “baseline” and “baseline-finetuning” are kept identical,
ensuring that any performance change is attributable solely to the fine-tuning method (e.g., direct full
FT vs. smoothed full FT). Settings may differ across baselines due to their public implementations,
so accuracies between baselines are not directly comparable. When the recommended input length
causes out-of-memory issues (e.g., Sundial), we reduce it while still keeping “baseline” and “baseline-
finetuning” consistent. All experiments run four random seeds with NVIDIA 3090 GPUs using
PyTorch, reporting the mean and standard deviation.

Following |Liu et al.|(2024), the input and prediction lengths of Timer are fixed at 672 and 96. Based
on the limited computing resources and settings supported by each model, the input lengths for
MOMENT and TimesFM are 512 and 256, while the forecast lengths are 96, and 128, respectively.
Following Timer |Liu et al.| (2024), the fine-tuning epochs are fixed at 10, and we report the best
metric in all epochs. The learning rate is 3e-5 and the optimizer is Adam. More details can be found
in our source code.

When implementing the baseline LTSMs, we download the weights from their official links, e.g.,
which are listed as follows:

* Timer’s codes and pre-trained weights can be downloaded from the linksfﬂ

* TimesFM’s codes and pre-trained weights can be downloaded from the linksfﬂ The model
weight path on Hugging Face is “google/timesfm-2.0-500m-pytorch”. We adopt the latest
2.0 version.

* MOMENT’s codes and pre-trained weights can be downloaded from the linkm The model
weight path on Hugging Face is “AutonLab/MOMENT-1-large”.

'"https://github.com/thuml/Large-Time-Series-Model?tab=readme-ov-file
https://drive.google.com/drive/folders/150aiAl4005gFqZMID210t X2 fxHbpgcUs
*https://github.com/google-research/timesfm
‘nttps://huggingface.co/google/timesfm-2.0-500m-pytorch
Shttps://github.com/moment-timeseries-foundation-model/moment-research
®https://huggingface.co/AutonLab/MOMENT-1-large
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A.6 MORE DETAILS ABOUT PUBLIC DATASETS

The statistics of the eight well-known datasets are shown in Table[9] covering a range of variables and
sampling frequency. These datasets involve applications in industrial machines, energy, and weather
domains. They have been widely employed in the literature for time series analysis tasks|Nie et al.
(2023); Liu et al.[(2024); Goswami et al.[ (2024); Woo et al.| (2024b); Zhou et al.| (2023); |Chang et al.
(2023); Jin et al..

Table 9: Statistics of eleven public datasets. Data size denotes the number of samples in train,
validation, and test set for the single variable. In the experiment, each variable is separately split
to construct samples and then merged, so the total number of samples needs to be multiplied by the
number of variables. Frequency denotes the sampling interval of time points.

Variable
7

Datasets Data size (single variable)
ETTh1,ETTh2 (8545, 2881, 2881)

I I [ Frequency

| | |
ETTm1,ETTm2 ‘ 7 ‘ (34465, 11521, 11521) ‘ 15min

| | |

| | |

| | |

| | |

Hourly

Weather 21 (36792, 5271, 10540) 10min
Exchange rate 9 (5120, 665, 1422) Daily
Electricity 321 (18317, 2633, 5261) Hourly
Traffic 862 (12185, 1757, 3509) Hourly

These datasets used in this paper are extensively used for TSF algorithm evaluation, including
exchange rate forecasting in the financial field, electricity consumption forecasting in the energy field,
climate parameter forecasting in the weather domain, and machine parameter (e.g., loads and oil
temperature) forecasting in the industrial field:

¢ Electricity datasetlz] collects the electricity consumption (kWh) every 15 minutes of 321
clients from 2012 to 2014.

« ETT dataselﬂ comprises two sub-datasets, ETT1 and ETT2, collected from two separate
counties. Each sub-dataset offers two versions with varying sampling resolutions (15 minutes
and 1 hour). ETT dataset includes multiple time series of electrical loads and a single time
sequence of oil temperature.

e Weather datasetﬂ contains 21 meteorological indicators, such as air temperature, humidity,
etc, recorded every 10 minutes for the entirety of 2020.

. Trafﬁc@] dataset contains the occupation rate of freeway systems in California, USA. 5).

All datasets can be downloaded from the linkl]

A.7 ADDITIONAL EXPERIMENT RESULTS AND DISCUSSIONS

The experiments in the appendix serve as supplements to those in the main paper, including complete
standard deviations, MAE results, and interpolation experiments. All figures and tables in the
appendix have been appropriately linked and referenced in the main paper. They can be located by
clicking the hyperlinks in the main paper while reading it.

We hope that these extensive experiments can help demonstrate that directly fine-tuning pre-trained
LTSMs may indeed lead to limited performance, as they may overfit during pre-training, resulting
in a steep and unsmoothed loss landscape and poor trainability, thereby degrading and limiting the
fine-tuning performance of pre-trained LTSMs on downstream tasks. Meanwhile, Our proposed
smoothed finetuning can indeed help pre-trained LTSMs achieve better fine-tuning performance on
downstream tasks.

"nttps://archive.ics.uci.edu/dataset/321/electricity

$https://github.com/zhouhaoyi/Informer2020

‘https://www.bgc— jena.mpg.de/wetter/

Uhttp://pems.dot.ca.gov

11https://drive.google.com/drive/folders/lZOYpTUa82_
JCcxIdTmyrO0LXQfvaMovIy
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A.7.1 COMPARISONS BETWEEN SFF AND MORE BASELINES

Comparison with LoRA. We additionally add LoRA fine-tuning as a baseline to highlight the contri-
bution of our method. Since LTSM is mostly < 1 B parameters, we follow the official recommendation
and set the low-rank factor r = 8. As reported in Table[I0] our approach outperforms LoRA. This is
reasonable: LoRA trades full fine-tuning for a low-rank constraint, achieving appealing parameter
efficiency, yet this restriction can limit the model’s fine-tuning capacity.

Comparison with popular optimization strategies. We further compare our method with several
widely used optimization strategies during training. As shown in Table[T0} while some of these
approaches offer modest improvements over standard full fine-tuning, their performance still falls far
short of that achieved by our proposed SFF fine-tuning. The key limitation is that they don’t address
the underlying problem—namely, the highly steep and non-smooth loss landscape of the pre-trained
model. In contrast, SFF explicitly mitigates this problem by first smoothing the landscape and then
fine-tuning, resulting in substantially stronger fine-tuning and adaptation performance.

Influence of different parameter initialization schemes. We have conducted ablations with several
perturbation-based smoothing strategies: standard Gaussian noise (mean = 0, variance = 1), Xavier
Gaussian, Xavier uniform, Kaiming Gaussian, and Kaiming uniform. Tablel'l;fl shows that Xavier- and
Kaiming-based schemes maintain stable performance improvements. Because they consider the stable
gradient variance and can supply a flat loss landscape (demonstrated by (Fort & Scherlis,[2019)) that is
used to smooth the sharp landscape of the pre-trained model for better fine-tuning effect, which is also
aligned with our Theoretical analysis. In contrast, standard Gaussian initialization—lacking variance
control—often pushes parameters into sharper regions of the landscape, resulting in weaker smoothing
and noticeably degraded downstream performance. These findings provide strong empirical evidence
supporting our design choice.

Influence of random seeds on parameter initializations. To assess sensitivity, we further evaluate
SFF under different random seeds while using widely adopted initialization schemes (e.g., Kaiming
uniform). The results in Table[I2]indicate that improved performance remains highly stable across
seeds. This suggests that SFF does not rely on a carefully engineered initialization. Instead, the
mainstream initialization strategy suffices to obtain consistent smoothing and fine-tuning gains. This
is reasonable because the prior work (Fort & Scherlis, 2019) has proven that the underlying design of
mainstream initialization methods ensures the initialized parameters indeed lie in the flat region of
the loss landscape, without being influenced by the random states (seeds). We believe this robustness
is a desirable property for practical deployment.

Table 10: Comparison with more baselines on the LTSM Timer. We independently run four times
with four random seeds to enhance the solidity of the results and report the mean value and standard
deviation.

[ Exchange | ETThl I ETTh2 I ETTml [ ETTm2 |  Weather
Original full fine-tuning 0.09+0.0007 0.367+0.0027 0.304+0.0049 0.312+0.0008 0.176+0.0013 | 0.158+0.0012
LoRA 0.122+0.0003 0.418+0.0005 0.304+0.0006 0.401£0.0019 0.197+0.0001 0.155+0.0004
Label-smoothing 0.09+0.0018 0.364+0.0036 0.303+0.0043 0.312+0.0011 0.177+0.0013 | 0.158+0.0008
SAM 0.088+0.0016 0.362+0.003 0.296+0.0027 0.309+0.0002 0.175£0.0017 0.157£0.0
SWA 0.094+0.0017 0.366+0.0024 0.304+0.0045 0.319+0.0009 0.178+0.0014 | 0.162+0.0005
MixOut 0.09+0.0003 0.376+0.0006 0.297+0.0001 0.348+0.0018 0.184+0.0006 0.16+0.0007
L2-SP 0.09+0.0007 0.368+0.0031 0.304+0.0051 0.315+0.0007 0.177+0.0013 0.16+0.0004
Ours (SFF) 0.081+0.0008 0.355+0.0013 0.274+0.0008 0.297+0.0016 | 0.161+0.0009 | 0.145+0.0006

Table 11: The effectiveness of our SFF (smoothed full fine-tuning) across different parameter
initialization schemes on the LTSM Timer.

[ Exchange | ETThI | ETTh2 [ ETTml | ETTm2 | Weather

Original full fine-tuning 0.09+0.0007 |0.367+0.0027 | 0.304+0.0049 | 0.312+0.0008 | 0.176+0.0013 | 0.158+0.0012
Standard Gaussian perturbation-SFF | 5.986+0.261 | 0.723+0.003 | 1.879+0.275 | 3.876+0.128 |19.031+0.963| 0.447+0.03
Kaiming Normal Distribution-SFF |0.081+0.0006 | 0.353+0.0009 | 0.277+0.001 [0.299+0.0011 |0.164+0.0016[0.146+0.0008
Kaiming Uniform Distribution-SFF |0.081+0.0008 | 0.355+0.0013 | 0.274+0.0008 | 0.297+0.0016 | 0.161+0.0009 | 0.145+0.0006

Xavier Normal Distribution-SFF | 0.081+0.0007 | 0.353+0.001 |0.276+0.0012| 0.3£0.0009 |0.162+0.0001 | 0.145+0.0002
Xavier Uniform Distribution-SFF | 0.082+0.0008 | 0.353+0.0007 | 0.277+0.0006 | 0.3+0.0003 |0.162+0.0001 | 0.145+0.0002
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Table 12: Experiments with four different random seeds (r1, r2,r3, and r4 here) on the LTSM Timer.
The results show that our SFF (smoothed full fine-tuning) is insensitive to the choice of random
initialization distribution. FF denotes original full fine-tuning.

[ Exchange | ETThl [ ETTh2 [ ETTml | ETTm2 | Weather

SFF (Ours)-rl 0.07996 0.3547 0.27379 | 0.29542 | 0.16003 | 0.14605
FF-r1 0.08937 0.36941 | 0.31021 | 0.31134 | 0.17645 | 0.16067
SFF (Ours)-r2 0.08182 0.35772 | 0.27368 | 0.29902 | 0.16259 | 0.14432
FF-r2 0.09071 0.36245 0.3035 0.31282 | 0.17843 | 0.15912
SFF (Ours)-r3 0.08101 0.35766 | 0.27453 | 0.29824 | 0.16129 | 0.14481
FF-r3 0.09102 0.36848 | 0.29699 | 0.31167 | 0.17515 | 0.15851
SFF (Ours)-r4 0.08191 0.35588 | 0.27571 | 0.29938 | 0.16173 | 0.14525
FF-r4 0.08978 0.36815 | 0.30666 | 0.31057 | 0.17546 | 0.15649

A.7.2 GUIDANCE FOR SELECTING «

In practice, we suggest the following guidance to select a:

(1) Empirically recommended values: As illustrated in Figures 5 and 6 of the manuscript, although
different values introduce some variation, the sensitivity analysis demonstrates that SFF consistently
outperforms vanilla fine-tuning across a broad range. Specifically, performs best for zero-shot
prediction, while yields the strongest overall performance under full fine-tuning. These values can
thus serve as reliable initial starting points.

(2) Validation-based tuning: We observe that the trend of test performance with respect to closely
mirrors that on the validation set. Therefore, once a candidate search range is defined, selecting the
that minimizes validation error provides a straightforward and computationally efficient strategy.

(3) Data-driven selection: Automatically learning is indeed a promising direction. In the current
framework, however, the interpolation weights are fixed prior to fine-tuning, which makes adaptive
selection non-trivial. Approaches such as meta-learning could potentially be explored to determine
optimal values across models and datasets. We regard this as an important avenue for future research.

A.7.3 INFLUENCE OF SFF ON NORMALIZATION OR SCALE BETWEEN LAYERS

We discuss this influence in two scenarios:

(1) Fine-tuning after loss landscape smoothing: When weights are smoothed, and the model
is subsequently fine-tuned, the potential mismatch in normalization or scale is negligible. The
model is free to update the relevant parameters during fine-tuning, effectively correcting any minor
discrepancies introduced by interpolation.

(2) Zero-shot forecasting after loss landscape smoothing: First, the random initializations used
for smoothing follow standard schemes (e.g., Kaiming, Xavier), whose typical scales are consistent
with the learnable scale parameters in normalization layers. Second, the “flat” and “sharp” minima
we analyze encompass the entire parameter space, including the weight matrices of normalization
layers. Consequently, in theory, our method does not introduce significant scale or alignment
inconsistencies. Instead, it smooths sharp minima located in suboptimal regions without harming
flat minima, effectively relocating the sharp minima of the normalization layers to more favorable
convergence points and thereby achieving improved and more generalizable performance. Moreover,
we have included formal theoretical derivations and analyses demonstrating that the interpolation
strategy improves sharp minima while not harming flat minima. For details, please refer to lines 182
to 257 and lines 772 to 804 of the revised manuscript.

Moreover, empirically, as shown in Tables [] and[7] (after correcting the minor numerical ordering
oversight), zero-shot forecasting following weight smoothing consistently demonstrates accuracy
improvements, supporting the theoretical reasoning outlined above.

A.7.4 MORE CASES ABOUT THE LOSS LANDSCAPE OF THE PRETRAINED LTSM (FIGURE(I(]
AND FIGURE[g))

As shown in Figure[I0]in main paper and Figure[7)and Figure[§]in the Appendix, we visualize the loss
landscape of different datasets and empirically find that LTSMs initialized randomly typically have a
smooth loss landscape. In contrast, pre-trained LTSMs consistently exhibit steep and non-smooth loss
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landscapes, indicating that this is not a random occurrence. Hence, after pre-training, LTSMs may
indeed show lower trainability, which can affect their fine-tuning performance on downstream tasks.

(a) Original pre-trained  (b) Random (c) Utilizing (b) to (d) Placing (b) and semi-  (e) Placing (b) and semi-
LTSM Initialization smooth (a) transparent (a) in the transparent (c) in the
same coordinate system  same coordinate system

Figure 7: Loss landscape comparisons based on the LTSM Timer and weather dataset. The smoother
the surface, the better.

\a

(a) Original pre-trained () Random (¢) Utilizing (b) to (d% Placing (Ii‘)% a)nd iﬁmi— (e) Placing (b)( a)n_d sclelmi.
LTSM T ransparent (a) in the transparent (c) in the
Initialization smooth (s} same coordinate system same c%ordinate system

Figure 8: Loss landscape comparisons based on the LTSM Timer and electricity dataset. The smoother
the surface, the better.

A.7.5 TRAINING LOSS AND TEST LOSS DURING FINE-TUNING THE PRE-TRAINED LTSM
(FIGURE[9))

We also empirically observe severe overfitting during the fine-tuning of pre-trained LTSM on down-
stream tasks, which is consistent with our analysis of the loss landscape. A steep and non-smooth
loss landscape may cause the model to fall into poor local optima, leading to severe overfitting
(2018). Specifically, as shown in Figure[9] the training loss of directly fine-tuning the Timer
(green lines) is significantly the lowest. However, the test MSE of the fine-tuned Timer (green
bars) is even significantly worse than that of training from scratch on the Timer (black bars) on
the downstream datasets (e.g., ETThl, ETTm1, and Weather) without pre-training. This suggests
that directly fine-tuning Timer leads to severe overfitting [Hastie| (2009), which causes pre-trained
knowledge of it not to be fully utilized for improving the accuracy of downstream tasks.

A.7.6 APPLYING smoothed fine-tuning FOR TIME SERIES IMPUTATION TASK (FIGURE [I0))

As shown in Figure [T0} our method also shows improvement for the imputation task. This indicates
that the poor trainability of the LTSM, caused by overfitting during the pre-training phase, may
impact their performance on various downstream time series tasks, including forecasting, anomaly
detection, and imputation tasks. Our proposed method offers a potential solution to address this issue
and provides a new perspective for fine-tuning the pretrained LTSMs.

A.7.7 SUMMARY OF THE CONTENT IN THE FOLLOWING SECTIONS

The experimental results in the following sections serve as supplements to the experiments in the
main paper regarding complete standard deviations and MAE results under different available data
proportions. Through multiple experiments with different random seeds, we ensure that our proposed
fine-tuning method indeed helps the LTSM achieve better fine-tuning performance and that this is
not a random occurrence. Moreover, our method consistently outperforms other fine-tuning methods
in terms of the MAE metric and across different data proportions, which further demonstrates the
effectiveness of our approach. Our work provides new insights for fine-tuning large models. In the
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Figure 9: Time series forecasting of the LTSM Timer on various datasets with 100% available data
proportion. We show the comparisons of training and testing losses for training from scratch on
(black lines and bars), direct full fine-tuning (green lines and bars), and smoothing the loss landscape
then full fine-tuning (blue lines and bars).
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Figure 10: Time series imputation task on Timer with the mask ratio 25%. The experimental settings
follow the Timer’s codes: https://github.com/thuml/Large-Time—Series—Model?
tab=readme-ov-file.

subsequent content, we provide relevant titles (in a table of contents format) for reference to the
supplementary experimental results without further redundant explanations:

Fintuning MSE with prediction length 720 for more LTSMs (Table[I3).
Zero-shot forecasting MSE with prediction length 720 for more LTSMs (Table [T4).
Forecasting MSE and standard deviations under 1%, 2%, 3% and 4% proportion of available

data (Table[T5).

* Forecasting MSE and standard deviations under 5%, 10%, 15% and 20% proportion of
available data (Table[T6).

* Forecasting MSE and standard deviations under 25%, 50%, 75% and 100% proportion of
available data (Table[T7).

* Forecasting MAE and standard deviations under 1%, 2%, 3% and 4% proportion of available
data (Table[Ig).

» Forecasting MAE and standard deviations under 5%, 10%, 15% and 20% proportion of
available data (Table[T9).

* Forecasting MAE and standard deviations under 25%, 50%, 75% and 100% proportion of
available data (Table [20).

Complete MSE of anomaly detection results on 250 datasets (Table 2T)).
Complete standard deviations of anomaly detection results on 250 datasets (Table 22).

Complete MSE and standard deviations of applying the pretrained LTSMs TimesFM and
MOMENT for time series forecasting (Table 23).

Complete MAE and standard deviations of applying the pretrained LTSMs TimesFM and
MOMENT for time series forecasting (Table 24)).
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* Complete MSE and standard deviations of applying other fine-tuning methods, LP and
LPFF, under grouped data proportions for time series forecasting (Table 23)).

* Complete MAE and standard deviations of applying other fine-tuning methods, LP and
LPFF, under grouped data proportions for time series forecasting (Table 26)).

* Complete MSE and standard deviations of applying other fine-tuning methods, LP and
LPFF, under 1%, 2%, 3%, and 4% proportion of available data for time series forecasting

(Table 27).
* Complete MSE and standard deviations of applying other fine-tuning methods, LP and
LPFF, under 5%, 10%, 15%, and 20% proportion of available data for time series forecasting

(Table [28).

* Complete MSE and standard deviations of applying other fine-tuning methods, LP and LPFF,
under 25%, 50%, 75%, and 100% proportion of available data for time series forecasting

(Table 29).

* Complete MAE and standard deviations of applying other fine-tuning methods, LP and
LPFF, under 1%, 2%, 3%, and 4% proportion of available data for time series forecasting

(Table [30).

* Complete MAE and standard deviations of applying other fine-tuning methods, LP and
LPFF, under 5%, 10%, 15%, and 20% proportion of available data for time series forecasting

(Table31).

* Complete MAE and standard deviations of applying other fine-tuning methods, LP and LPFF,
under 25%, 50%, 75%, and 100% proportion of available data for time series forecasting

(Table[32).

» Complete MAE and standard deviations of zero-shot forecasting after smoothing the loss
landscape (Table[33).

Table 13: MSE of fine-tuning more LTSMs for the TSF task with prediction length 720. SFF, and FF
are smoothed full fine-tuning and full fine-tuning.

‘UniTS—SFF UniTS—FF‘MOIRAI—SFF MOIRAI—FF‘Chronos—SFF Chronos—FF‘TTMs—SFF TTMs—FF‘SundiaI—SFF Sundial-FF

ETThl | 0.704 0741 | 0582 0.634 | - - | 0421 0.424 | 0.485 0.49
ETTh2 | 0.431 0436 |  0.582 0.634 | | 0402 0407 | 0404 041
ETTml| 0.496 0.625 |  0.402 0451 | | 0433 0435 | 0552 0.562
ETTm2| 0.416 0419 | 0361 0356 | | 0374 0376 | 0376 0.387
Weather|  0.324 0.346 | 0319 033 | | 0328 0328 | 036 0.362
Elect. | 0.355 0495 |  0.843 0999 | | 0241 024 |

Traffic | 1.01 1307 | 0.554 0576 | | 0612 0611 |

Table 14: Zero-shot forecasting MSE of more LTSMs with prediction length 720. “-” indicates that
the preprocessed dataset is not included (Chronos) or out of memory (Sundial).

| MOIRAI ~ +Smooth | Chronos  +Smooth | TTMs  +Smooth | Sundial ~ +Smooth

ETThl 0.439 0.447 0421 0424 0.437 0.453
ETTh2 | 0386 04 | | 0404 0408 | 0.409 0.417
ETTml | 0.601 0.603 | | 0435 0439 | 0409 0417
ETTm2 | 0407 0438 | | 0.409 041 | 0397 0.408
Weather | 0.399 0424 | | 0328 0328 | 0354 0357
Elect. | 0253 0255 | | 0257 0255 |

Traffic | 0.62 0622 | | 0624 0622 |
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Table 15: MSE of fine-tuning LTSM Timer for time series forecasting under 1%, 2%, 3% and 4%
proportion of available data. SFF, FF, and TFS are smoothed full fine-tuning, full fine-tuning, and
training from scratch, respectively.

Data proportion | 1% | 2% | 3% | 4%
Methods ‘ SFF FF TES ‘ SFF FF TFS ‘ SFF FF TFS ‘ SFF FF TFS
Exchange

+3.2e-4 £9.0e-4 £7.2e-3|+4.2e-4 £5.5e-4 £6.8¢-3|+5.8¢-4 £8.1e-4 £6.8¢-3|+2.4e-4 £6.2e-4 £6.7¢-3

0.3649 03873 0.5631 | 0.3637 0.3861 0.5614 | 0.3608 0.3846 0.5588 | 0.3606 0.3823  0.545
+6.3e-3 £1.2e-4 +9.8e-3|+6.6e-3 £3.6e-4 *1.1e-2|+6.6e-3 £7.6e-4 *1.1e-2|£7.5e-3 *1.4e-3 +4.7e-3

0.2825 0.2945 0.363 | 0.2747 0.2893 0.362 | 0.2772 0.2896 0.3617 | 0.2752 0.2872 0.3434
+1.0e-3 +4.4e-4 +2.0e-3|£1.7e-3 +1.5e-3 +2.3e-3|+1.9e-3 £7.0e-4 +2.7e-3|+2.7e-3 £2.1e-3 £2.3e-3

0.364 0.3826 0.5342 ‘ 0.3304 0.3484 0.4193 | 0.3252 0.3418 0.4159 | 0.3179 0.3312 0.3884

Standard deviation

ETThl
Standard deviation

ETTh2
Standard deviation

0.0853 0.0887 0.2831 | 0.0858 0.0884 0.2808 ‘ 0.0842 0.0876 0.2803‘ 0.085 0.0879 0.2796

ETTm1
Standard deviation

+4.4e-3 £1.3e-3 £1.1e-2|£2.7e-3 £1.0e-3 +3.0e-3|+£3.4e-3 £8.0e-4 +3.2¢-3|£3.5e-3 +£7.9e-4 +2.3e-3

0.1709 0.1897 0.2531 | 0.173  0.184 0.2524 | 0.1635 0.1758 0.2157 | 0.1654 0.1755 0.216
+2.4e-3 £1.7e-3 £3.2e-3|£2.1e-3 £7.4e-4 +3.4e-3|+£2.4e-3 £3.4e-4 +1.7e-3|£1.4e-3 £6.1e-4 *1.5¢-3

0.1537 0.1564 0.2403 | 0.1505 0.153  0.2259 ‘ 0.1489  0.1525 0.2162‘ 0.147 0.1492 0.2111

ETTm2
Standard deviation

Weather
Standard deviation

+3.9e-4 £6.5e-4 £3.0e-3|+1.5e-4 £9.1e-4 £2.3e-3|+8.7e-4 £1.2e-3 £5.7e-4|+2.9e-4 £8.2e-4 £5.0e-4

Electricity 0.1369 0.1393 0.2285 | 0.1342 0.1367 0.2035 | 0.133  0.1356 0.1857 | 0.1331 0.1358 0.1708
Standard deviation |+7.8e-5 +7.6e-4 +1.5¢-3|£1.9e-4 +7.1e-4 +1.4e-3|£3.3e-4 £6.9e-4 +1.3e-3|+2.5¢-4 +7.4e-4 £6.4e-4
Traffic 0.3743 0.3768 0.5803 | 0.3671 0.3698 0.4794 | 0.3622 0.365 0.4388 | 0.3594 0.3623 0.4199

+2.6e-4 £6.8e-4 £4.1e-3|+1.0e-4 £9.9e-4 £2.4e-3|+2.4e-4 £7.9e-4 £8.0e-4|+2.3e-4 £9.9e-4 £3.2e-4
- 4.07% 37.9 ‘ - 3.64%  34.04 ‘ - 391% 3147 ‘ - 3.4% 28.96

Standard deviation

Avg. Improvements

Max. Improvements - 991%  69.87 - 598%  69.44 - 7.0% 69.96 - 5.75% 69.6

Table 16: MSE of fine-tuning LTSM Timer for time series forecasting under 5%, 10%, 15% and
20% proportion of available data. SFF, FF, and TFS are smoothed full fine-tuning, full fine-tuning,
and training from scratch, respectively.

Data proportion | 5% | 10% | 15% | 20%
Methods | SFF FF TFS | SFF FF TFS | SFF FF TFS | SFF FF TFS
Exchange 0.0854 0.0883 0.2721 | 0.0829 0.0854 0.1919 | 0.0815 0.0845 0.1715 ‘ 0.0805 0.0858  0.157

+1.6e-4 £8.4e-4 +£6.4e-3|+7.2e-4 £69e-4 £1.7e-3|+3.1e-4 £9.4e-4 £9.1e-4|t1.1e-3 £1.4e-3 £2.5¢-3
0.3582 0.3745 0.4509 | 0.3539 0.3654 0.4162 | 0.3528 0.3615 0.3963 ‘ 0.3483 0.3565 0.382

Standard deviation

ETThl
Standard deviation

+4.6e-3 £7.7e-4 £3.2e-3|+2.1e-3 £1.0e-3 £1.2e-3|+1.7e-3 £1.2e-3 £1.3e-3|+1.9e-3 £4.6e-4 £1.2¢-3

0.272  0.2866 0.3288 | 0.2757 0.2855 0.3157 | 0.2728 0.2854 0.3038 | 0.2765 0.2865 0.2929
+3.5e-3 +1.4e-3 £1.2e-3|+2.2e-3 £6.2e-4 £7.0e-4|+3.8e-3 £1.4e-3 £1.3e-3|+1.5e-3 £1.1e-3 £3.7e-4

0.3152  0.3273 0.385 | 0.3046 0.3115 0.3532 | 0.3016 0.3067 0.3428 | 0.2992 0.3059 0.3378
+2.6e-3 £9.4e-4 £2.7e-3|+1.7e-3 £8.7e-4 £1.3e-3|+1.0e-3 £6.1e-4 £1.1e-3|+1.1e-3 £7.1e-4 £1.1e-3

0.1637 0.1745 0.2151 | 0.1614 0.1714 0.1943 | 0.1614 0.1729 0.1846 | 0.162 0.1763 0.1793
+2.9¢-3 £9.4e-4 +1.4e-3|+1.8e-3 £4.9e-4 +5.6e-4|+1.3e-3 £1.1e-3 +2.9¢-4|£7.8e-4 £6.7e-4 +3.7e-4

0.1459 0.1478 0.2024 | 0.1446 0.1464 0.1852 | 0.1442 0.1489 0.1739 | 0.1442 0.1466  0.166
+1.6e-4 £6.5e-4 +3.6e-4|+1.2¢-4 £4.9e-4 +2.0e-4|+1.2e-4 £1.2e-3 £8.3e-5|£2.9e-5 £2.1e-4 +2.6e-4

0.1319 0.1346 0.1621 | 0.1309 0.1338 0.1461 | 0.1309 0.1342 0.1411 | 0.1306 0.1345 0.1378
+2.6e-4 £7.0e-4 +4.4e-4|+1.8e-4 £52e-4 +2.0e-4|+2.3e-4 £55e-4 *1.4e-4|£1.3e-4 +7.8e-4 +8.5¢-5

ETTh2
Standard deviation

ETTml
Standard deviation

ETTm2
Standard deviation

‘Weather
Standard deviation

Electricity
Standard deviation

Traffic 0.3574 0.3604 0.4095 | 0.3518 0.3582 0.3874 | 0.3508 0.3596 0.3788 | 0.349 03579 0.373
Standard deviation |+1.2e-4 +9.4e-4 +2.7e-4|+£8.5e-4 +7.1e-4 +1.6e-4|+1.1e-3 £8.6e-4 +1.0e-4|+1.7e-3 +4.4e-4 +1.8e-4
Avg. Improvements - 3.34% 2597 - 2.84% 1958 - 334% 16.24 - 3.66%  13.63
Max. Improvements - 6.19%  68.61 - 5.83% 56.8 - 6.65%  52.48 - 8.11%  48.73
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Table 17: MSE of fine-tuning LTSM Timer for time series forecasting under 25%, 50%, 75% and
100% proportion of available data. SFF, FF, and TFS are smoothed full fine-tuning, full fine-tuning,
and training from scratch, respectively.

75% \
FF  TES | SFF
0.0914 0.1026‘ 0.08

100%
FF

0.091
+1.3e-4

Data proportion |

Methods |

25% \
FF  TES | SFF

0.0865 0.1441 | 0.0802
+1.9e-4 £2.0e-3 | £5.4e-4

50% \
FF  TFS |
0.114 ‘

SFF TFS

0.0805
+4.5e-4

SFF

0.0802
+1.2¢-3

0.0981
+1.2e-3

0.0891
+2.3e-3

Exchange
Standard deviation

ETThl
Standard deviation

ETTh2
Standard deviation

+9.9e-4 +1.6e-3 £8.8e-4|+£7.6e-4

0.358
+9.3e-4

0.3042
+5.2¢-4

0.3092
+7.3e-4

0.1838
+2.5e-3

0.1665
+1.5e-3

0.1367
+5.8¢e-4

0.3593 | 0.3547
+1.1e-3| £1.4e-3

0.2796 | 0.2737
+7.6e-4 | +3.8e-4

0.3116 | 0.2954
+1.2e-3| +1.5¢e-3

0.1651
+9.3e-4

0.1559
+1.1e-3

0.1326 ‘

0.3709
+3.6e-3

0.3117
+6.0e-3

0.3128
+5.5¢-4

0.1784
+1.4e-3

0.1612
+1.6e-3

0.1344
+5.4e-4

0.36
+1.2e-3

0.2777
+1.6e-3

0.3093
+1.1e-3

0.1644
+1.1e-3

0.1526
+9.2¢-4

0.1324
+8.0e-4

0.3609
+2.5¢e-3

0.3506
+6.1e-4

0.271
+2.5¢-3

0.298
+1.1e-3

0.1594
+9.7e-4

0.144
+5.2e-5

0.1303
+1.7e-4

0.3488
+2.0e-3

0.355
+5.8¢e-4

0.2866
+1.6e-3

0.3049
+5.6e-4

0.1707
+1.3e-3

0.1472
+6.1e-4

0.1344
+9.4e-4

0.3788 | 0.3494
+1.2e-3|£1.1e-3

0.2891 | 0.273
+3.6e-4 | £2.0e-3

0.333 ‘

0.3573
+1.3e-3

0.2905
+8.4e-4

0.3069
+1.1e-3

0.1718
+5.9¢e-4

0.1523
+7.4e-4

0.1347
+9.5¢e-4

0.3586
+5.8¢e-4

0.367 | 0.3493
+8.4e-4| £1.4e-3

0.2775 | 0.2772
+2.9e-4 | £4.8e-4

0.3189 | 0.2956
+7.1e-4| +1.3e-3

0.1627 | 0.1623
+1.8e-4 | £4.3e-4

0.1538 ‘ 0.1466

ETTm1
Standard deviation

0.2955
+1.6e-3

0.1605

+9.3e-4

0.1741
+2.8e-4 | £3.8e-4

0.1627 | 0.1441
+57e-5|£2.1e-4

0.1365 | 0.1301
+5.7e-5| £2.4e-4

0.3688 | 0.3497
+2.0e-4 | £1.5¢e-3

12.28 ‘ - 4.97%

0.16
+1.0e-3

0.1443
+7.3e-4

0.1304

ETTm2
Standard deviation

Weather
Standard deviation

+4.2e-4|+1.3e-4

0.1327 | 0.13
+1.3e-4 | +3.6e-4

0.3552 | 0.3478  0.361
+1.5e-4|£3.2e-3 £1.1e-3

6.82 ‘ - 7.52%

Electricity
Standard deviation

Traffic
Standard deviation

+6.5¢e-4 | +2.0e-4

0.3606 | 0.3551
+3.0e-3 | +2.7e-4

5.47 ‘ - 7.41%

0.3582
+9.2¢e-4

0.3599
+2.2¢e-4

4.64
18.45

- 3.79%
- 6.94%

Avg. Improvements

Max. Improvements 44.14 - 9.99%  29.65 - 12.25% 21.83 - 12.19%

Table 18: MAE of fine-tuning LTSM Timer for time series forecasting under 1%, 2%, 3% and 4%
proportion of available data. SFF, FF, and TFS are smoothed full fine-tuning, full fine-tuning, and
training from scratch, respectively.

Data proportion | 1%

2%

3%

4%

Methods | SFF FF

TFS | SFF

FF

TFS | SFF

FF

FF

TFS

0.2048
+2.3e-4

Exchange
Standard deviation

0.208
+3.9¢e-4

0.3946 | 0.2045
+5.3e-3 | £4.8e-4

0.2083

+5.4e

4

0.3928 | 0.2036
+5.1e-3 | £3.5¢e-4

0.2067
+1.4e-4

0.3923 | 0.2038
+5.1e-3 | +4.3¢-4

0.2071

\
TFS | SFF
‘ +2.0e-4

0.3919
+5.0e-3

ETThl
Standard deviation

0.3973
+3.3e-3

0.4101
+1.6e-4

0.5202 | 0.3962
+4.5e-3 | £3.4e-3

0.4085

+4.5¢

-5

0.5184 | 0.3943
+5.2e-3| £3.5¢e-3

0.4072
+6.2e-5

0.4044
+4.7e-4

0.5168 | 0.3939
+5.1e-3 | £5.3e-3

0.5055
+4.1e-3

ETTh2
Standard deviation

0.3362
+2.0e-3

0.3433
+1.1e-4

0.4109 | 0.3319
+1.8e-3 | £3.2¢e-4

0.340

1

+5.4e

w

0.41 0.3322
+2.0e-3 | £5.2¢e-4

0.3394
+6.5e-5

0.4098 | 0.3339
+2.4e-3 | £5.2e-4

0.3392
+1.8e-3

0.3944
+2.7e-3

ETTml
Standard deviation

0.4085
+2.5e-3

0.4166
+3.8e-4

0.5138 | 0.3838
+6.0e-3 | £2.6e-3

0.3952

+4.8¢

4

0.4507 | 0.3807
+1.9e-3| £1.9¢-3

0.3909
+3.8e-4

0.3824

0.4488 | 0.3755
+1.6e-4

+2.0e-3 | £1.8e-3

0.4303
+1.7e-3

ETTm2
Standard deviation

0.2586
+3.0e-3

0.2738
+1.2¢-3

0.3275 | 0.2591
+2.5¢-3| £1.9e-3

0.2679

+1.7e

4

0.3271 | 0.2523
+2.7e-3 | £2.5¢-3

0.262
+8.5¢e-4

0.2979 | 0.2541
+1.9e-3 | £1.6e-3

0.2609
+7.8e-5

0.2982
+1.6e-3

‘Weather
Standard deviation

0.2028
+5.6e-4

0.2062
+4.0e-4

0.2942 | 0.1996
+2.7e-3 | +2.6e-4

0.2022

+1.3e

4

0.2808 | 0.1978
+2.5e-3 | +7.0e-4

0.2015
+5.4e-4

0.2704 | 0.1954
+5.8¢-4 | £2.3e-4

0.1984
+3.4e-5

0.265
+4.1e-4

0.2342
+8.3e-5

Electricity
Standard deviation

0.2367
+6.8¢-5

0.3243 | 0.2307
+1.4e-3|+3.4e-4

0.2334

+8.8e

-5

0.2976 | 0.229
+1.2e-3| +5.0e-4

0.2315
+5.1e-5

0.2817 | 0.2292
+9.6e-4 | +2.7e-4

0.2318
+8.6e-5

0.2702
+5.5¢-4

Traffic
Standard deviation

02672 027
+2.0e-4 +2.4e-4

0.2611

+2.1e-4

0.3921
+1.7e-3

0.2636

+1.9¢

4

0.3452 | 0.2575
+1.4e-3|1+6.8¢e-5

0.26
+7.4e-5

0.3179 | 0.2559
+5.0e-4 | +9.9¢-5

0.2585
+2.5¢-4

0.3037
+2.0e-4

- 2.25%
- 5.55%

Avg. Improvements
Max. Improvements

27.77
48.1

2.1%
3.28%

25.24
47.94

2.12%
3.7%

23.22
48.1

1.72%
2.61%

21.26
48.0
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Table 19: MAE of fine-tuning LTSM Timer for time series forecasting under 5%, 10%, 15% and
20% proportion of available data. SFF, FF, and TFS are smoothed full fine-tuning, full fine-tuning,
and training from scratch, respectively.

Data proportion | 5% | 10% | 15% | 20%
Methods ‘ SFF FF TES ‘ SFF FF TFS ‘ SFF FF TFS ‘ SFF FF TFS
Exchange

+2.0e-4 +1.7e-4 £4.9e-3|+9.0e-4 +1.8e-4 £1.7e-3|+6.1e-4 £1.8e-4 £1.2¢-3|+1.0e-3 £1.5e-3 £2.9¢-3

0.3923 0.4011 0.462 | 0.3882 0.3952 0.4422 | 0.3884 0.3946 0.4274 | 0.3856 0.3915 0.4173
+3.4e-3 £3.8e-4 +1.5e-3|+1.8e-3 £1.8e-4 +6.8e-4|+1.5e-3 £52e-4 +1.3e-3|£1.4e-3 +6.1e-5 *1.1e-3

0.3325 03399 0.3826 | 0.3327 0.339 0.3686 | 0.3348 0.3385 0.3583 | 0.3332 0.3382 0.3512
+1.2e-3 £9.5e-4 +1.9e-3|+2.3e-3 £9.5e-4 +9.4e-4|+1.7e-3 £89e-4 +2.1e-4|£2.6e-3 +£7.9e-4 +1.9e-4

0.3735 0.3801 0.4283 ‘ 0.3663 0.3706 0.4054 | 0.3644 0.3678 0.3967 | 0.3631 0.3679 0.3926

Standard deviation

ETThl
Standard deviation

ETTh2
Standard deviation

ETTm1
Standard deviation

0.2044 0.2078 0.3867 | 0.2019 0.2059 0.3252 ‘ 0.2009 0.2047 0.3085 ‘ 0.2008 0.2072 0.2936

+1.3e-3 £1.9e-4 +2.0e-3|+8.2¢-4 +4.5e-5 +1.1e-3|£3.1e-4 £7.6e-5 19.8¢e-4|£8.2e-4 +2.5e-5 +1.0e-3

0.2522  0.2599 0.2976 | 0.2516 0.2584 0.2787 | 0.2532 0.2576 0.2707 | 0.2527 0.2622 0.2672
+1.6e-3 £8.6e-5 +1.6e-3|+1.3e-3 £5.0e-4 +6.1e-4|£5.0e-4 £2.9e-4 +2.0e-4|£4.le-4 +4.0e-4 +2.5¢-4

0.1936  0.1968  0.257 | 0.1928 0.1967 0.2385 ‘ 0.1928 0.1978 0.2271 ‘ 0.1932  0.1988 0.2198

ETTm2
Standard deviation

Weather
Standard deviation

+23e-4 £2.2e-5 £5.3e-4|tl.4e-4 £53e-4 £7.3e-5|+1.3e-4 £6.9e-4 £2.9e-5|+3.0e-4 £1.2e-3 £3.8¢e-4

0.2273  0.2303 0.2616 | 0.2263 0.2319 0.2444 | 0.226 0.2312 0.2384 | 0.225 023 02346
+9.1e-5 £5.4e-5 £4.5e-4|+3.2e-4 *£1.4e-3 £3.0e-4|+1.8e-4 £1.1e-3 £2.1e-4|+4.5e-4 £5.0e-4 £1.4e-4

0.2537 0.2571 0.2948 | 0.2501 0.2554 0.2754 | 0.2488 0.2573 0.2678 | 0.2473  0.2573 0.2631
+6.5e-5 £1.8e-4 £2.9e-4|+9.1e-4 £9.1e-5 £2.3e-4|+1.3e-3 £1.9e-3 £1.le-4|+1.5e-3 £1.2e-3 £1.8e-4

- 1.87%  19.39 ‘ - 1.98%  14.37 ‘ - 1.9% 11.57 ‘ - 2.48% 9.94

Electricity
Standard deviation

Traffic
Standard deviation

Avg. Improvements

Max. Improvements - 296%  47.14 - 2.63%  37.92 - 3.3% 34.88 - 3.89%  31.61

Table 20: MAE of fine-tuning LTSM Timer for time series forecasting under 25%, 50%, 75% and
100% proportion of available data. SFF, FF, and TFS are smoothed full fine-tuning, full fine-tuning,
and training from scratch, respectively.

Data proportion | 25% | 50% | 75% | 100%
Methods | SFF FF TFS | SFF FF TFS | SFF FF TFS | SFF FF TFS
Exchange 0.1997 02095 0.2782 | 0.1993 02122 0.2421 | 0.2002 0.2136 0.2266 ‘ 0.2006 0.2153  0.2209

+53e-4 £53e-4 £2.6e-3|+1.0e-3 £2.6e-3 £1.2e-3|+1.7e-3 £7.8e-4 £1.2e-4|+53e-4 £1.1e-3 £4.0e-4
0.3879 0.3902 0.4145 | 0.388 0.3905 0.404 | 0.3858 0.3907 0.3956 ‘ 0.3921 0.3955  0.399

Standard deviation

ETThl
Standard deviation

+4.5e-4 £53e-4 £9.8e-4|1+3.0e-4 +£2.4e-4 £6.6e-4|+2.4e-3 £5.0e-4 £5.5¢-4|+1.4e-3 £l.1e-3 £7.6e-4

0.3325 0.337 0.3467 | 0.3327 0.3421 0.3378 | 0.3387 0.3516 0.3435 | 0.3353 0.3531 0.3436
+1.3e-3 +4.7e-4 £1.4e-4|t14e-3 £7.4e-4 £1.9e-4|+1.8e-4 £1.1e-3 £7.8e-4|+5.7e-4 £1.2e-3 £2.4e-3

ETTh2
Standard deviation

ETTml 0.3599 0.3656 0.3877 | 0.3576 0.3667 0.374 | 0.3566 0.3698 0.3696 | 0.3558 0.3703 0.3669
Standard deviation |+1.7e-3 +1.7e-4 +8.7e-4|£1.8e-3 +1.0e-4 +6.1e-4|+2.0e-3 £5.1e-4 +4.9¢e-4|+1.6e-3 +2.8¢-4 £4.9¢-4
ETTm2 0.249 02562 0.2626 | 0.2497 0.2566  0.253 | 0.2534 0.2635 0.2571 | 0.2472 0.2591 0.2533

+6.4e-4 +£4.6e-4 +2.4e-4|+5.8¢-4 £5.6e-4 +1.6e-4|+3.8¢e-4 £1.5e-3 +6.4e-4|£1.5e-3 £8.1e-4 +5.7¢-4

0.1921 0.1961 0.2146 | 0.1929 0.199 02037 | 0.1971 0.217 0.2098 | 0.192 0.2046  0.203
+2.9e-4 +£4.3e-4 £9.0e-5|+2.1e-4 £1.5e-3 *1.5e-4|+2.9e-4 £1.5e-3 +7.3e-4|£1.5e-3 £1.1e-3 +6.1e-4

0.2245 02289 0.2328 | 0.2247 0.2273  0.228 | 0.2245 0.2292 0.2274 | 0.2239 0.2273  0.2268
+4.2e-4 +£8.4e-4 +1.5e-4|+2.7e-4 £23e-4 +9.0e-5|+4.3e-4 +4.4e-4 +2.1e-5|+£4.2e-4 +£3.3e-4 +2.2¢-4

0.2463 0.2545 0.2599 ‘ 0.2486 02527 0.2512 | 0.2485 0.2538 0.2573 | 0.2444 0.2517 0.2553

Standard deviation

‘Weather
Standard deviation

Electricity
Standard deviation

Traffic
Standard deviation

+1.9e-3 £1.8e-3 +1.5e-4|+1.4e-3 £1.3e-3 +1.6e-4|+4.6e-4 £9.0e-4 +2.6e-3|£3.0e-4 +£2.0e-3 +1.3e-3

- 2.27% 8.8 - 2.56% 4.58 - 3.99% 3.9 - 3.97% 3.72
- 4.68% 2822 - 6.08%  17.68 - 9.17%  11.65 - 6.83% 9.19

Avg. Improvements
Max. Improvements
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Table 21: The complete anomaly detection results on 250 datasets, reporting the average MSE
values of anomalous segments in each dataset under four random seeds, where higher values are
better, because this reduces the risk of normal segments being misjudged as anomalies. The standard
deviation of each dataset is shown in Table @

[ Index | 1 2 3 4 3 6 7 8 9 0 11 12 13 14 15

1 (SFF) | 0.051 0.01 0.004 0435 0.011 0.09 0.112 0.016 0.046 0.166 0.129 0.045 1.112 0.042 0.13
1 (FF) |0.031 0.003 0.002 0.706 0.004 0.002 0.039 0.006 0.005 0.003 0.055 0.033 0.071 0.024 0.096
1 (TEFS) | 0.019 0.005 0.003 0.262 0.005 0.003 0.032 0.009 0.028 0.002 0.139 0.008 0.652 0.034 0.1

2(SFF) | 0.107 0.077 0.002 0.164 0.005 0.002 0.093 0.004 0.082 0.065 0.071 0.053 0.27 0.324 0.043
2(FF) |0.012 0.024 00 0.11 0.005 00 0036 0.002 0.024 0.038 0.069 0.013 0231 0213 0.023
2(TFS) | 0.012 0.026 0.001 0.103 0.006 0.001 0.055 0.002 0.043 0.049 0.02 0.02 0.13 0232 0.028

3 (SFF) | 0.024 0.059 0.007 0.138 0.203 0.583 0.085 0.04 0.314 0.238 0.118 0.24 0.004 0.07 0.029
3(FF) |0.001 0.014 0.003 0.092 0.114 0206 0.038 0.01 0.297 0.195 0.1 0.09 0.002 0.05 0.011

3(TFS) | 0.001 0.013 0.004 0.094 0.124 0.329 0.05 0.026 0.081 0.117 0.108 0.144 0.001 0.05 0.0

4(SFF) | 0.121 0.32 0.106 0.085 0.092 0.348 0.512 0.129 0.54 0.122 0.027 0413 036 0.033 0.006
4 (FF) |0.026 0.095 0.073 0.013 0.016 0.062 0.259 0.003 0.223 0.013 0.026 0.396 0.352 0.005 0.003
4 (TFS) | 0.087 0.184 0.175 0.031 0.079 0.095 0.323 0.005 0.213 0.012 0.015 0.212 0218 0.004 0.003

5(SFF) | 0912 1.184 0.043 0.255 0.017 0.072 0.093 0.042 0.074 0.032 0.062 0.331 0.255 0.058 0.021
5(FF) |0.618 0.078 0.014 0.114 0.001 0.038 0.029 0.014 0.026 0.014 0.007 0.224 0.007 0.063 0.003
S5(TFS) | 0.602 0.133 0.036 0.113 00 0.029 0.053 0.029 0.019 0.015 0.02 0.238 0.004 0.019 0.013

6 (SFF) | 0.29 0.015 0.034 0.142 0.105 0.497 0352 0.134 0.013 0.021 0.141 0.002 0.14 0.011 0.068
6 (FF) | 0334 0.004 0.011 0.12 0.007 0432 0.156 0.002 0.005 0.006 0.14 0.001 0.135 0.006 0.002
6 (TFS) | 0.158 0.005 0.007 0.074 0.007 0.169 0.051 0.001 0.002 0.001 0.081 0.0 0.104 0.007 0.003

7 (SFF) | 0.345 0.003 0.013 0.039 1.293 0.131 0.055 0.318 0.06 0.111 0.097 0.026 0.82 0.198 0.314
7(FF) |0.028 0.001 0.006 0.025 0.779 0.063 0.005 0.065 0.016 0.11 0.031 0.006 0.583 0.085 0.055
7(TFS) | 0.13 0.001 0.014 0.037 0.159 0.114 0.036 0.332 0.015 0.073 0.026 0.006 0.267 0.078 0.094

8 (SFF) | 0.182 0.007 0.119 0.135 0.182 0.004 0.172 0.233 0.073 0.005 0.117 0.081 0.045 0.518 0.014
8 (FF) | 0.155 0.004 0.036 0.058 0.201 0.003 0.07 0.157 0.051 0.007 0.04 0.04 0.038 041 0.008
8 (TFS) | 0.105 0.009 0.111 0.142 0.145 0.003 0.135 0.073 0.046 0.001 0.105 0.039 0.036 0.402 0.014

9 (SFF) | 2133 0.067 0.126 0.118 0.151 0.728 0.213 0.174 0.141 0.035 0.07 0.082 0.05 0.471 0.008
9(FF) [0.795 0.03 0.009 0.026 0.072 0458 0.067 0.151 0.077 0.008 0.035 0.029 0.006 0.478 0.002
9 (TFS) | 1.539 0.031 0.096 0.03 0.144 0437 0.079 0.089 0.08 0.024 0.043 0.055 0.027 0.203 0.002

10 (SFF) | 0.066 0.031 0.478 0.029 0.055 0.004 0.087 0.069 0.202 0.423 0.835 0.103 0.08 0.981 0.085
10 (FF) | 0.028 0.015 0.094 0.004 0.014 0.001 0.043 0.02 0.017 0.135 0.431 0.008 0.056 0.255 0.008
10 (TES) | 0.07 0.027 0.167 0.005 0.06 0.001 0.045 0.014 0.043 0.273 0.462 0.008 0.012 0.382 0.005

11 (SFF) | 0.054 0.073 0.485 0.005 0.143 0.005 0.054 0.176 0.003 1.351 0.048 0.007 0.003 0.046 0.596
11 (FF) | 0.014 0.057 0453 0.003 0.049 0.023 0.031 0.143 0.002 0.077 0.009 0.002 0.001 0.02 0.158
11 (TFS) | 0.049 0.05 035 0.001 0.017 0.001 0.027 0.108 0.002 0.115 0.007 0.003 0.005 0.039 0.371

12 (SFF) | 0.511 0.026 0.184 0.082 0.085 0.26 0.637 0.221 0.092 0.096 0.13 0.014 0.002 0.011 0.137
12 (FF) | 0.349 0.016 0.137 0.016 0.006 0.281 0.091 0.085 0.026 0.102 0.132 0.013 0.001 0.003 0.059
12(TFS) | 0.126  0.025 0.107 0.022 0.159 0.034 0.297 0.071 0.04 0.057 0.07 0.012 0.002 0.004 0.091

13 (SFF) | 0.045 0.067 0.003 0.005 0.075 0.001 0.005 0.045 0.16 0.172 0.034 0.022 0.204 0.023 0.033
13 (FF) | 0.026 0.025 0.001 0.002 0.01 0.002 0.002 0.028 0.01 0.015 0.021 0.018 0.118 0.001 0.015
13 (TFS) | 0.019 0.038 0.001 0.004 0.006 0.002 0.002 0.021 0.014 0.005 0.034 0.016 0.162 0.005 0.03

14 (SFF) | 098 0.579 0.012 0.022 0.014 0.003 0.728 0.02 0.002 0.354 0.042 0.023 0.055 0.068 0.132
14 (FF) | 0.248 0.226 0.003 0.009 0.006 0.001 0.683 0.009 0.0 0.244 0.041 0.018 0.032 0.059 0.074
14 (TFS) | 0.166 0.406 0.01 0.009 0.011 0.002 0.803 0.008 0.0 043 0.023 0.009 0.053 0.041 0.039

15 (SFF) | 0.007 0.052 0.094 0471 0.19 0.003 0.182 0.522 0.193 0.003 0.028 0.31 0.005 0.006 0.356
15 (FF) | 0.004 0.013 0.072 0.263 0.015 0.002 0.098 0.315 0.038 0.001 0.016 0.183 0.001 0.0 0.073
15 (TFS) | 0.007 0.014 0.001 0.447 0.035 0.001 0.114 0.186 0.182 0.003 0.023 0.222 0.001 0.0 0.222

16 (SFF) | 0.003 0.283 0.335 0.013 0.141 0.185 0.165 0.638 1.156 0.14 0.009 0.043 0.105 0.015 0.013
16 (FF) | 0.001 0.175 0.275 0.03 0.049 0.129 0.016 0.299 0.694 0.048 0.006 0.031 0.073 0.009 0.004
16 (TFS) | 0.001 0.102 0335 0.009 0.142 0.109 0.1 0.153 0.774 0.004 0.012 0.033 0.026 0.009 0.008

17 (SFF) | 0.067 0.049 0.358 0.008 0.031 0.107 0.09 0.321 0.024 0.005
17 (FF) | 0.031 0.02 0.405 0.004 0.023 0.091 0.044 0.051 0.015 0.001
17 (TES) | 0.024 0.032 0.211 0.002 0.026 0.073 0.084 0.122 0.022 0.002
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Table 22: Standard deviations on 250 anomaly detection datasets under four random seeds.

[ Index |

1

2

3

7

5

6

7

8

9 10

11

12

13

14

15

1 (SFF)
1 (FF)
1 (TFS)

+6.8¢-3
+1.2e-2
+1.1e-2

+3.0e-3
+2.3e-3
+1.4e-3

+1.3e-3
+7.9e-4
+2.4e-4

+5.0e-2
+0.43
+0.15

+1.2e-3
+1.7e-3
+2.7e-3

+0.12
+1.9e-3
+1.7e-3

1.0e-2
5.0e-2
2.0e-2

1.1e-3
1.3e-3
4.6e-4

3.6e-3 0.11
2.2e-5 1.3e-3
1.8e-2 1.4e-3

1.6e-2
7.5e-4
6.3e-2

2.9e-2
1.8e-2
3.9¢-3

0.68
5.8e-2
0.74

9.2e-3
1.0e-3
5.3e-3

6.8e-3
8.2e-4
3.4e-2

2 (SEF)
2 (FF)
2 (TES)

+5.6e-2
+5.5¢e-3
+1.1e-2

+3.9e-2
+4.4e-3
+4.8e-4

+1.4e-3
+3.9¢-4
+8.5¢e-4

+1.3e-2
+2.1e-4
+7.9e-2

+1.6e-3
+2.1e-3
+4.5¢-3

+6.9¢-4
+3.2e-4
+4.7e-4

1.5e-2
2.6e-2
6.3e-3

3.8e-4
8.7e-4
3.0e-4

2.8e-2 2.1e-2
1.7e-2 3.7e-3
3.0e-2 4.7e-3

1.0e-2
1.7e-2
4.7e-3

2.0e-2
7.3e-3
1.5e-2

2.7e-2
4.2e-2
5.7e-2

4.1e-2
6.3e-2
0.12

3.1e-3
4.0e-3
2.4e-3

3 (SFF)
3 (FF)
3 (TFS)

+1.1e-2
+2.6e-4
+8.4e-4

+2.6e-2
+6.2¢-3
+6.9e-3

+5.1e-4
+3.9e-4
+2.2e-3

+1.4e-2
+7.7e-4
+2.2e-2

+2.4e-2
+3.2e-2
+6.4e-2

+9.6e-2
+2.2e-4
+0.18

2.4e-2
1.2e-2
1.0e-2

6.9e-3
7.3e-4
4.5¢-3

2.3e-2 3.9e-2
5.5e-2 1.9e-2
1.5e-2 4.1e-2

4.9¢e-3
3.5e-2
4.5¢-3

5.3e-2
5.4e-2
7.5e-2

1.1e-3
2.7e-5
1.2e-4

1.3e-2
2.3e-2
2.3e-3

1.6e-2
8.4e-3
1.4e-4

4 (SFF)
4 (FF)
4 (TFS)

+4.2e-2
+5.8e-3
+5.8e-3

+3.4e-2
+1.5e-2
+5.2e-2

+1.3e-2
+7.7e-4
+7.8e-2

+3.0e-2
+2.4e-3
+2.1e-2

+1.7e-2
+3.0e-3
+5.3e-3

+7.8e-3
+2.2e-2
+1.1e-2

0.1
0.18
0.22

9.le-2
1.9e-3
9.8e-4

023 7.7e-2
1.9e-3 5.2e-3
3.9e-2 5.7e-3

3.8e-3
5.7e-5
3.5e-3

3.6e-2
5.5e-2
2.5e-2

0.11
2.6e-2
5.5e-2

3.1e-2
4.3e-3
2.5e-3

3.4e-4
3.4e-4
9.9e-4

5 (SEF)
5 (FF)
5 (TES)

+0.14
+0.15
+0.1

+0.47
+3.9e-2
+0.11

+3.1e-3
+5.1e-3
+2.4e-2

+3.3e-3
+5.0e-2
+4.6e-2

+2.2¢e-2
+5.7¢-4
+7.5e-5

+1.1e-2
+1.8e-2
+7.2e-3

3.4e-2
1.0e-2
1.5e-3

1.5e-2
1.6e-2
4.7e-3

1.9e-2 8.7e-3
1.3e-2 9.3e-3
6.3e-3 3.0e-3

4.6e-2
4.6e-4
4.6e-3

2.4e-2
6.9¢-2
8.8e-2

0.35
4.8e-3
2.0e-3

2.0e-3
1.2e-3
4.4e-3

1.0e-3
2.6e-3
5.9¢-3

6 (SEF)
6 (FF)
6 (TES)

+4.1e-2
+6.8e-3
+6.8e-2

+4.6e-3
+2.9e-3
+5.1e-5

+1.7e-2
+8.2¢-3
+2.3e-3

+1.6e-2
+6.9¢-3
+4.3e-3

+5.4e-2
+6.2e-3
+5.2e-3

+1.2e-2
+7.6e-2
+2.1e-2

0.2
5.6e-2
7.8e-3

9.4e-2
1.7e-3
4.9e-4

1.6e-2 1.3e-2
6.0e-3 5.4e-3
3.9e-4 3.0e-4

5.1e-3
4.7e-3
1.1e-2

7.5e-5
9.2e-5
2.9e-4

4.0e-3
3.3e-4
1.4e-2

1.0e-3
3.4e-5
1.3e-3

9.2e-2
1.8e-3
1.1e-3

7 (SFF)
7 (FF)
7 (TFS)

+0.28
+2.0e-3
+3.7e-3

+6.8e-4
+7.6e-4
+8.3¢-4

+3.5¢-3
+3.1e-3
+9.1e-3

+4.4e-3
+2.7e-3
+1.9e-3

+1.0
+0.41
+1.8e-2

+9.3e-3
+2.4e-2
+7.0e-3

1.1e-2
2.1e-4
1.4e-2

4.9e-2
5.le-2
2.7e-2

1.9e-2 4.4e-3
1.9e-4 2.7e-2
3.0e-3 2.5e-2

6.1e-3
3.4e-2
2.1e-2

6.7e-3
2.1e-3
1.5e-3

0.16
0.1
4.0e-2

1.8e-2
5.4e-2
S5.1e-2

6.2e-3
2.2e-2
1.1e-2

8 (SFF)
8 (FF)
8 (TES)

+1.6e-3
+4.8e-2
+5.9¢-3

+2.3e-4
+9.8e-5
+5.5e-3

+5.8e-3
+1.2e-3
+1.6e-3

+2.8e-2
+1.1e-2
+1.0e-2

+3.2e-2
+2.1e-2
+2.0e-2

+1.7e-4
+1.5¢e-3
+9.2e-4

2.8e-2
1.0e-2
2.0e-2

1.2e-2
2.6e-2
4.9e-2

2.5e-2 1.5e-3
3.8e-3 5.6¢e-3
1.0e-2 1.2e-4

1.5e-2
1.3e-2
2.7e-2

5.1e-2
2.0e-2
2.2e-2

5.4e-3
8.4¢-4
1.6e-3

4.9e-2
1.1e-2
8.6e-2

4.5¢e-4
1.4e-3
3.8e-3

9 (SEF)
9 (FF)
9 (TES)

+0.36
+0.46
+0.96

+5.6e-2
+1.3e-2
+2.3e-2

+0.1
+2.0e-3
+0.12

+4.5e-2
+3.4e-2
+4.0e-2

+2.9e-2
+2.3e-2
+9.2e-3

+7.5e-2
+8.5e-4
+8.7e-2

1.5e-2
7.9¢-2
8.7e-2

2.4e-2
3.2e-2
2.6e-2

3.1e-2 1.2e-2
2.8e-2 9.5e-4
2.4e-2 1.7e-2

1.8e-2
5.4e-4
1.5e-2

3.4e-2
4.8e-3
6.9¢-3

3.3e-2
1.9¢-3
1.8e-2

1.6e-3
1.3e-3
4.7e-2

5.5e-3
6.1e-4
6.4e-4

10 (SFF)
10 (FF)
10 (TFS)

+6.5e-3
+2.9e-3
+1.5e-2

+7.5e-3
+3.3e-3
+1.8¢e-3

+0.27
+7.9e-3
+0.16

+2.3e-2
+5.2¢e-4
+1.1e-3

+2.9e-2
+9.2¢-4
+5.3e-2

+3.4e-4
+2.0e-4
+2.9e-4

2.1e-2
5.4e-3
6.8e-3

2.2e-2
2.2e-2
7.0e-3

5.0e-2 2.4e-2
3.5e-3 2.9e-3
8.6e-3 0.15

0.13
4.8¢-2
0.24

6.3e-2
4.3e-3
2.8e-3

4.9¢-3
9.0e-3
2.2e-3

0.16
0.14
0.18

9.7e-2
3.3e-3
1.3e-3

11 (SFF)
11 (FF)
11 (TFS)

+5.4e-2
+1.2e-2
+6.3e-2

+1.6e-2
+6.8e-4
+1.1e-2

+3.2e-2
+3.1e-2
+3.3e-2

+6.6e-4
+1.5e-3
+3.4e-4

+5.0e-2
+3.7e-2
+9.3e-3

+1.7e-3
+1.5e-2
+2.6e-4

3.6e-3
4.7e-3
7.4e-3

2.4e-2
6.1e-3
2.5e-2

1.3e-:3 0.86
1.1e-3 7.5e-2
8.6e-4 2.9e-2

4.7e-2
4.6e-3
3.1e-3

3.6e-3
9.3e-4
1.0e-3

7.6e-4
2.9e-4
3.6e-3

6.4e-3
1.3e-2
9.9e-3

0.11
0.19
8.9e-2

12 (SFF)
12 (FF)
12 (TFS)

+5.2¢e-2
+1.7e-2
+0.15

+1.4e-3
+5.2e-3
+8.7e-3

+2.2¢e-3
+1.2e-2
+1.8e-2

+4.1e-2
+3.8¢-3
+3.8¢-3

+5.8e-2
+2.0e-3
+5.6e-2

+2.6e-2
+3.3e-2
+4.1e-3

0.39
7.9¢-3
0.35

1.5e-2
5.2e-2
7.3e-2

2.7e-2 4.5¢e-3
9.2e-3 4.8e-2
2.0e-2 2.0e-2

1.2e-2
8.3e-3
1.4e-2

1.5e-3
7.4e-5
1.1e-3

2.3e-4
6.3e-5
6.9e-4

6.3¢-4
1.1e-4
2.1e-4

2.0e-2
2.8e-2
1.1e-2

13 (SFF)
13 (FF)
13 (TFS)

+8.6e-3
+1.6e-2
+1.8e-2

+3.9e-2
+7.7e-3
+3.3e-2

+6.5e-4
+3.6e-4
+3.1e-4

+1.0e-3
+4.5¢-4
+2.5e-3

+3.8e-2
+2.7e-3
+2.2¢-3

+2.2e-4
+2.8e-4
+6.2¢-4

7.7e-4
4.6e-4
2.2e-4

2.5e-3
1.4e-2
5.4e-3

0.1 0.19
1.4e-3 5.5¢-3
2.3e-3 6.le-4

3.5e-3
1.4e-3
2.1e-3

2.1e-3
7.4e-3
5.9e-3

3.9e-2
1.6e-2
5.9e-2

1.6e-2
7.6e-4
5.4e-3

6.8e-3
3.1e-3
5.8e-3

14 (SFF)
14 (FF)
14 (TFS)

+0.91
+5.4e-2
+3.1e-2

+0.15
+4.4e-2
+0.19

+3.1e-3
+2.1e-3
+5.9¢-3

+3.6e-3
+2.9¢-5
+9.0e-3

+4.6e-3
+2.3e-3
+3.2e-3

+5.6e-4
+3.7e-4
+5.3e-4

8.4e-2
2.4e-3
1.3e-2

7.6e-3
8.8e-4
1.3e-3

5.1e-4 2.9e-2
2.3e-4 8.8e-2
1.0e-4 04

6.6e-3
2.5e-2
1.6e-2

2.8e-3
1.0e-2
5.5e-3

1.0e-2
5.6e-3
9.4e-3

6.5¢-3
1.3e-2
1.4e-2

2.4e-2
4.3e-3
2.5e-2

15 (SFF)
15 (FF)
15 (TFS)

+5.2e-4
+8.1e-5
+3.3e-3

+3.9e-2
+7.1e-3
+5.9¢-3

+8.6e-3
+5.3e-3
+5.1e-4

+1.7¢-2
+7.0e-4
+3.7e-2

+6.7e-2
+1.2e-3
+2.0e-2

+1.4e-3
+1.2e-3
+3.6e-4

9.9e-3
3.6e-2
5.1e-2

0.11
0.13
9.3e-2

5.7e-3 8.1e-4
3.2e-2 1.5e-4
1.5e-2 1.4e-3

8.0e-4
3.5e-3
8.2e-3

3.6e-2
9.7e-2
5.1e-2

2.0e-3
3.0e-4
1.2e-3

3.1e-3
1.8e-4
1.6e-4

9.7e-2
1.9¢-2
7.8e-2

16 (SFF)
16 (FF)
16 (TFS)

+3.6e-4
+6.4e-4
+5.4e-4

+4.2e-2
+1.7e-2
+2.4e-2

+1.5e-2
+5.5¢e-2
+0.13

+7.2e-4
+3.7e-2
+1.7¢-3

+2.2e-2
+1.3e-2
+1.8e-2

+8.0e-3
+1.9e-2
+6.8e-2

1.9¢e-2
4.5e-3
5.7e-3

0.13
0.2
0.18

0.12 5.8e-4
8.6e-2 6.5e-2
3.8e-2 1.1e-3

1.8e-3
2.0e-3
6.6e-3

8.4e-4
1.8e-2
1.1e-2

1.0e-2
4.8e-2
2.1e-2

2.5e-3
1.1e-2
5.5e-4

1.8e-3
4.6e-3
1.1e-2

17 (SFF)
17 (FF)
17 (TFS)

+1.8e-2
+1.8e-2
+1.1e-2

+1.2e-2
+3.0e-3
+1.5e-3

+7.7e-2
+3.4e-3
+7.7e-2

+3.0e-3
+2.1e-3
+3.8e-4

+3.4e-3
+4.1e-3
+3.0e-3

+6.8e-3
+1.5e-3
+6.5¢-3

4.2e-3
1.8e-2
4.7e-3

0.13
5.7e-3
4.9e-3

1.4e-3 4.2e-3
5.6e-4 8.5e-5
7.9e-3 1.4e-3
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Table 23: Complete standard deviation and MSE of applying our smoothed fine-tuning (SFF) on other
LTSMs TimesFM and MOMENT.

Data proportion

25% (TimesFM)

100% (TimesFM)

25% (MOMENT)

100% (MOMENT)

Methods | SFF FF TFS | SFF FF TFS | SFF FF TFS | SFF FF TFS
Exchange 0.1139 0.1276  0.1209 | 0.1149 0.1452  0.1199 | 0.1502 0.2648 0.1564 | 0.1064 0.1448 0.1091
Standard deviation | 2.0e-3  4.2e-3  29e-4 | 6.3e-4 1.7e-2 23e-3 | 24e-3  4.6e-4 3.6e-3 | 5.8e-4 lde-4 2.6e-4
ETThl 0.3955 0.4382 0.4638 | 0.406 0.5101 0.4358 | 0.4287 0.4454 0.454 | 0.3757 0.3951 0.387
Standard deviation | 1.9e-3  24e-2  6.0e-4 | 3.6e-3 8.8e-3 2.0e-3 | 2.1e-3 99e-4 1.8e-3 | 4.0e-4 6.5¢-5 1.4e-3
ETTh2 0.3232 03384 0.3325 | 0.3198 0.3483  0.347 | 0.3199 0.3328 0.3326 | 0.2818 0.2936 0.2979
Standard deviation | 2.9e-3  9.0e-3 9.5e-4 | 2.0e-3 3.3e-3 4.7e-3 | 14e-3 2.6e-4 1.5e-3 | 7.8e-4 4.0e-5 1.6e-3
ETTml 0.3429 0.4001 0.3903 | 0.3478 0.3756 0.3926 | 0.3457 0.3587 0.3538 | 0.3139 0.3148 0.3272
Standard deviation | 3.6e-3  7.3e-3 7.2e-4 | 2.9e-3  3.0e-2 4.8e-4 | 1.2¢e-3 1.2e-4 6.6e-4 | 1.0e-4 3.le-5 2.0e-3
ETTm2 0.1983 0.2061 0.2091 | 0.2026 0.2122  0.225 | 0.1793 0.192  0.1846 | 0.1692 0.172  0.1736
Standard deviation | 3.7e-3  2.6e-3 4.0e-4 | 1.5e-3 6.8¢-3 3.8e-3 | 2.1e-4 5.0e-4 6.le-4 | 3.7e-4 3.7e-5 9.5¢-4
Weather 0.0865 0.0885 0.1995 | 0.082 0.1184 0.1902 | 0.1673 0.1682 0.169 | 0.1548 0.1558  0.161
Standard deviation | 4.7e-3  5.6e-3  4.5e-3 | l.le-2  3.0e-:2 4.2e-3 | l.le-4 lde4 1.7e-4 | 1.9e-4 22e-4 14e-4
Avg. Improvements - 7.55% 16.21 - 1535% 16.18 - 10.28%  3.25 - 6.34% 3.54
Max. Improvements - 143%  56.64 - 30.74%  56.89 - 43.28%  5.57 - 26.52% 5.4

Table 24: Complete standard deviation and MAE of applying our smoothed fine-tuning (SFF) on
other LTSMs TimesFM and MOMENT.

Data proportion \ 25% (TimesFM) \ 100% (TimesFM) \ 25% (MOMENT) \ 100% (MOMENT)

Methods \ SFF FF TFS \ SFF FF TFS \ SFF FF TFS \ SFF FF TFS
Exchange 0.2414 0.2519 0.2497 | 0.2422 0.2703 0.2472 | 0.282 0.3844 0.2894 | 0.2322 0.2751 0.2369
Standard deviation | 9.9e-4 4.3e-3 42e4 | 84e-4 1.8e-2 1.7e-3 | 2.3e-3  33e-4 34e-3 | 5.8¢e-4 1.0e-4 3.le4
ETThl 0.405 0.4226 0.4526 | 0.4149 0.4567 0.4344 | 0.4386 0.4455 0.4559 | 0.4022 0.4144 04112
Standard deviation | 4.3e-3  8.0e-3 4.5e-4 | 3.0e-3 2.7e-3 53e4 | 1.2e-3 74e-4 83e-4 | 42e-4 2.6e-5 1.3e-3
ETTh2 0.3731 0.3742 0.3803 | 0.3704 0.3782 0.391 | 0.3695 0.3797 0.3784 | 0.3404 0.35 0.3514
Standard deviation | 1.2e-3  3.9e-3  9.3e-4 | 83e-4 2.6e-3 14e-3 | 14e-3 35e-4 93e-4 | 33e-4 4.le5 8.5e-4
ETTml 0.3851 0.4119 0.4223 | 0.3892 0.3992 0.4227 | 0.3938 0.4054 0.4013 | 0.3783 0.3787 0.3854
Standard deviation | 2.1e-3  3.8¢-3 4.3e-4 | 32e-3 1.5e-2 7.6e-4 | 1.3e-3 13e-4 4.6e-4 | 1.6e-4 24e-5 7.5e-4
ETTm2 0.2823 0.2847 0.2925 | 0.2748 0.2851 0.3119 | 0.2671 0.2769 0.2724 | 0.2587 0.2613  0.2638
Standard deviation | 1.0e-3 1.4e-3 3.8e4 | 1.9e-3 5.1e-3 44e-3 | 6.3e-5 48e-4 49e-4 | 14e-3 1.2e-5 7.5e-4
Weather 0.1135 0.1161 0.2523 | 0.1025  0.152  0.2424 | 0.2213  0.2247 0.2231 | 0.2107 0.2114 0.2142
Standard deviation | 3.3e-3  6.7e-3  4.2e-3 | 14e2 4.0e2 4.2e-3 | 1.1e-3 1.2e-4 3.6e-4 | l.le-4 4.0e-4 25e-4

Avg. Improvements - 3.04% 13.84 10.05% 14.88 - 6.46% 222 - 3.78% 2.12

Max. Improvements - 6.51%  55.01 32.57%  57.71 - 26.64%  3.79 - 15.59%  3.13
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Table 25: Full standard deviation and MSE of comparing our smoothed full fine-tuning (SFF) with
linear-probing (LP) and linear-probing then full fine-tuning (LPFF). The average performance is
reported for each group of three different data proportions, e.g., “Avg. on 1%, 2%, 3% .

Data proportion Avg. on 1%, 2%, 3% Avg. on 4%, 5%, 10% Avg. on 15%, 20%, 25% \ Avg. on 50%, 75%, 100%
Methods SFF LP LPFF SFF LP LPFF LP LPFF LP LPFF
Exchange 0.0856 0.5943 0.4801 | 0.0848 0.5906 0.4186 | 0.0816 0.563 0.1743 | 0.0812 0.474  0.0962

Standard deviation | 4.4e-4 7.3e-3 3.9e-3 | 3.7e-4 7.2e-3 6.7e-3 | 6.1e-4 6.6e-3 T.4e-3 | 83e-4 4.7e-3  1.9e-3
ETTh1 0.3722 0.8806 0.7171 | 0.3641 0.8594 0.6367 | 0.3523 0.7955 0.4127 | 0.3529 0.6356 0.3731
Standard deviation | 6.5e-3  9.2e-3  3.6e-3 | 4.7e-3 82e-3 9.2e-3 | 14e-3 6.7e-3  34e-3 | 1.3e-3 4.5e3  1.8e-3
ETTh2 0.28 04427 0.4026 | 0.278 0.4375 0.3707 | 0.2768 0.4234 0.3113 | 0.2758 0.3849 0.3001

Standard deviation | 1.5e-3 7.3e-3 3.8e-3 | 2.8¢-3 6.8¢-3 1.6e-3 | 2.6e-3 5.8e-3 1.5e-3 | 9.7e-4 3.le-3 1.7e-3

ETTml1
Standard deviation

‘3.56—3 2.6e-2 73e-3 | 2.6e-3 23e2 4.5e3 | 1.0e-:3 1.8e-2 6.8e4 | 1.5¢-3 9.1e-3 1.2e-3
ETTm2 ‘0.1723 0.3555 0.3024 | 0.1663 0.3499 0.2559 | 0.1623 0.3297 0.1847 | 0.1616 0.2771 0.1804

Standard deviation | 2.3e-3 6.2e-3  3.1e-3 | 2.1e-3 5.9e-3 2.0e-3 | 1.0e-3 4.9e-3 9.8e-4 | 6.2e-4 2.7e-3 1.6e-3

0.1515 0.324 0.2478
4.7e-4  4.2e-3  4.le-3

Weather
Standard deviation

0.146 0.3082 0.1741
1.9e-4 3.4e-3  3.5e-3

0.1441 02699 0.1481
6.6e-5 1.9e-3  5.6e-4

0.1305 02023 0.132
1.8e-4 19e-4 2.6e-4

0.1453 0.2013  0.1565
3.6e-4 8.2e-4 1.le-3

0.1301 0.1561 0.1335
2.7e-4 89e-5 5.8e-4

0.1346 0.6069  0.181
2.0e-4 1.le-3  8.6e-4

0.132 0.3242  0.1398
2.3e-4 43e4 2.6e4

Electricity
Standard deviation

0.3448 1.046  0.7038 ‘0.3162 1.0043  0.4772 ‘ 0.301 0.8975 0.3245 ‘02976 0.6608 0.3124

Traffic 0.3678 0.9577 0.4081 | 0.3562 0.5999 0.3638 | 0.3494 0.4529 0.3572 | 0.3516 0.4079 0.3575
Standard deviation | 1.3e-4 2.2e-3 4.4e-4 | 42e4 19e-3 37e4 | 1.8e-3 4.4e-4 T4e-4 | 14e-3 1.5e4 Sde4
Avg. Improvements - - 41.14% - - 30.02% - - 13.04% - - 6.95%
Max. Improvements - - 82.17% - - 79.74% - - 53.18% - - 15.59%

Table 26: Full standard deviation and MAE of comparing our smoothed full fine-tuning (SFF) with
linear-probing (LP) and linear-probing then full fine-tuning (LPFF). The average performance is
reported for each group of three different data proportions, e.g., “Avg. on 1%, 2%, 3%”.

Data proportion Avg. on 1%, 2%, 3% Avg. on 4%, 5%, 10% Avg. on 15%, 20%, 25% \ Avg. on 50%, 75%, 100%
Methods SFF LP LPFF SFF LP LPFF SFF LP LPFF SFF LP LPFF
Exchange 0.2047 0.5867 0.5287 0.2013 0.5714 0.3048 | 0.2014 0.5244  0.2202

2039 0.5848  0.4886
3.5e-4  2.6e-3 1.4e-3 1

0.4006 0.644  0.5865
3.4e-3 48e-3 1.3e-3

0.3345 046  0.4366
9.5e-4 4.1e-3 2.le-3

0.3942 0.7198 0.597 | 0.3735 0.7061 0.4873

‘ Jde-4  2.6e-3  3.9e-3
23e-3 89e-3 2.le-3 ‘ 1.3e-3  83e-3 1.2e-3

7.2e-4 25e-3  6.6e-3

0.3886 0.6134 0.4376
l.1e-3  3.8e-3 2.le-3

0.3358 0.4488 0.3671
1.8e-3  3.3e-3 1.3e-3

0.3637 0.6695 0.3874
9.5e-4 6.7¢-3  3.5e-4

1.1e-3  2.1e-3  2.8e-3

0.3905 0.5504 0.4097
1.4e-3  2.8e-3  1.0e-3

0.3365 0.4248 0.3558
73e-4  19e-3 1.2e-3

0.3592 0.5751 0.3759
1.8e-3  3.6e-3 6.5e-4

Standard deviation

ETTh1

Standard deviation S5e-3  4.4e-3 3.9e-3

ETTh2
Standard deviation

.3347 0457  0.4154

0.
5
0.3963 0.6364  0.5505
3
0.
1

4e-3 3.9e-3  9.5e-4

ETTml
Standard deviation

ETTm2
Standard deviation

0.2601 0.3958 0.3636 | 0.2547 0.3926 0.3328

2.5e-3 3.5e-3 1.7e-3 | 1.5e-3 3.4e-3 1.le-3 | 52e-4 29e-3 1.3e-3 | 82e-4 1.7e-3 1.5e-3

Weather
Standard deviation

0.2005 0.3584  0.299
5.1e-4 28e-3 2.9e-3

0.1941 0.3472  0.2298
2.0e-4 23e-3 3.1e-3

0.1929 0.3189 0.2007
2.4e-4 13e-3 6.5e-4

0.1946 0.2598 0.2072
6.8e-4 6.2e-4 1.7e-3

0.2251 0.3048 0.2269
3.5e-4  6.6e-5 1.2e-4

Electricity
Standard deviation

0.2312 0.6057 0.2824
3.1e-4 23e-3 6.4e-4

0.2275 0411 0.2387
22e-4 83e-4 29e-4

0.2243 02599 0.227
37e-4 7.8e-5 69e-4

0.2523 0.381  0.2778 ‘02512 0349 0.2711

Traffic 0.2619 0.6062 0.3052 | 0.2532 0.4331 0.263 | 0.2474 0.3423 0.2519 | 0.2474 0.2972 0.2486
Standard deviation | 3.9e-5 4.8e-4 2.2e-4 | 4.0e-4 9.6e-4 1.0e-4 | 1.8e-3 2.0e-4 1.le-3 | 6.2e-4 1.6e-4 3.3e-4
Avg. Improvements - - 30.51% - - 22.06% - - 9.43% - 4.77%
Max. Improvements - - 61.28% - - 58.27% - - 33.96% - 8.54%
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Table 27: Full standard deviation and MSE of comparing our smoothed full fine-tuning (SFF) with
linear-probing (LP) and linear-probing then full fine-tuning (LPFF) under 1%, 2%, 3%, and 4%
proportion of available data.

Data proportion 1% 2% 3% 4%
Methods SFF LP LPFF SFF LP LPFF SFF LP LPFF SFF LP LPFF
Exchange 0.0857 0.5944 0.4841 | 0.0863 0.5943 0.4788 | 0.085 0.5943 0.4773 | 0.0852 0.5943 0.4763
Standard deviation | 3.2e-4 7.3e-3 4.5e-3 | 42e-4 73e-3 3.0e-3 | 5.8e-4 7.3e-3 4.2e-3 | 24e-4  73e-3  3.9e-3
ETTh1 0.3737 0.8809 0.7219 | 0.3731 0.8806 0.7159 | 0.37 0.8804 0.7134 | 0371 0.8731 0.7677
Standard deviation | 6.3e-3  9.le-3  3.0e-3 | 6.6e-3 9.2e-3 3.4e-3 | 6.6e-3 9.2e-3 43e-3 | 7.5¢-3 7.7e-3 5.3e-3
ETTh2 0.2839 0.4428 0.4047 | 0.2769 0.4427 0.402 | 0.2797 0.4427 0.4012 | 0.279 0.4394 0.3874

Standard deviation | 1.0e-3  7.3e-3 4.le-3 | 1.7e-3  73e-3 3.7e-3 | 1.9e-:3 7.3e-3 3 2.7e-3  69e-3 2.5e-3
0.3301 1.0393 0.6424

ETTml1 0.3702 1.0585 0.8141 | 0.3343 1.0401 0.6548 0.3229 1.0215 0.5353
Standard deviation | 4.4e-3  2.7e-2 4e-3 | 2.7e-3  2.6e-2  6.6e-3 | 3.4e-3  2.6e2 6.7¢-3 | 3.5¢-3 24e2  5.0e-3
3

2.1e-3  6.3e-3  3.0e-3 | 24e-3  6.0e-3 2.6e-3 | 1.4e-3  6.1e-3  2.1e-3

0.1507 0324 0.2477 | 0.1499 0.3207 0.223 | 0.1474 0.3175 0.2
1.5e-4 42e-3 4.5e-3 | 87e-4 4.0e-3 49e-3 | 29e-4 3.8e-3 6.5¢-3

Standard deviation | 2.4e-3  6.3e-3  3.5e-3

0.1541 0.3273  0.2726
39e-4 44e-3  2.8e-3

Weather
Standard deviation

0.1369 0.7664 0.2197
7.8e-5 79e-4  9.6e-4

0.1342 0.5866 0.1698
1.9e-4  1.4e-3  9.8e-4

0.133  0.4678 0.1535
33e-4  12e-3  6.5e-4

0.1331  0.3911 0.1464
2.5e-4  5.6e-4 4.6e-4

Electricity
Standard deviation

Traffic
Standard deviation

0.3743 1.1903  0.4536
1.0e-4  2.4e-3  1.1e-3

0.3671 0917  0.3941
l.4e-5 1.7e-3 1.7e-4

0.3622 0.7658 0.3767
2.7e-4  24e-3  3.3e-5

0.3594 0.6768 0.3688
2.6e-4 2.6e-3 2.2e-4

- 58.38% 34.83
- 85.66% 82.11

- 62.35% 44.78
- 85.58%  82.3

- 61.21% 40.11
- 85.48% 81.98

- 59.87%  37.4
- 85.7%  82.19

Avg. Improvements

154 ‘ 0.1759 0.3568 0.3139 ‘ 0.1668 0.3528 0.2779 ‘ 0.1674 0.3527 0.2757
Max. Improvements ‘ ‘ ‘

|

|

| ;
ETTm2 ‘0.1744 0.3569 0.

Table 28: Full standard deviation and MSE of comparing our smoothed full fine-tuning (SFF) with
linear-probing (LP) and linear-probing then full fine-tuning (LPFF) under 5%, 10%, 15%, and 20 %
proportion of available data.

Data proportion 5% 10% 15% 20%
Methods SFF LP LPFF SFF LP LPFF SFF LP LPFF SFF LP LPFF
Exchange 0.0856 0.5936  0.468 | 0.0838 0.5838 0.3114 | 0.082 0.5737 0.2205

0.0818 0.5613 0.1646
1.1

1.6e-4  7.4e-3  3.0e-3 Jde-3  6.7e-3  6.2e-3

0.3646 0.8618 0.6158
4.6e-3  87e-3 1.2e-2

7.2e-4  7.0e-3 1.3e-2

0.3568 0.8434  0.5265
2.1e-3  82e-3 l.le2

3.le-4 6.8¢-3 1l.le-2

0.3551 0.8139 0.4433
1.7e-3  6.6e-3  4.2e-3

Standard deviation

ETThl
Standard deviation

0.3509 0.7926  0.4029
1.9e-3  6.9e-3  3.5¢-3

ETTh2 0.277 0.4386 0.3743 | 0.2782 0.4346 0.3503 | 0.2776 0.4279 0.3223 | 0.2785 0.423 0.3116
Standard deviation | 3.5e-3  7.0e-3  1.7e-3 | 2.2e-3  6.6e-3 6.9e-4 | 3.8¢-3 6.2e-:3  1.6e-3 | 1.5e-3 5.7e¢-3  1.5e-3

0.3006 0.8982 0.3229
1

Standard deviation | 2.6e-3  2.4e-2 52e-3 | 1.7e-3  2.le-2 3.2e-3 | 1.0e-3 1.9e-2 S.le-4 de-3  1.8e-2

8
0.1631 0.3297 0.1862
7.8e-4  4.9e-3

8
0.1443 0.2654 0.1488
29e-5 2.0e-3 7.5e-4

0.1306 0.1989 0.1321
1.3e-4 1.5e-4 3.2e-4

ETTm2
Standard deviation

0.1679 0.3525 0.2738
29e-3  6.1e-3  2.2e-3

0.164 0.3444 0.2182
1.8e-3  5.6e-3  1.6e-3

0.1633 0.3368 0.1942
1.3e-3  53e-3 1.3e-3

0.1461 0.3116 0.1721
1.6e-4 3.5e-3 3.2e-3

0.1447 0.2956 0.1501 | 0.1443 0.2823 0.1476

12e-4 22e-3 7.4e-4

Weather
Standard deviation

1.2e-4  2.8e-3

6.
0.1309 0.246  0.1329
1.8e-4 58e-4 1.9e-5

0.3518 0.503  0.3588
9.8e-4 8.0e-4 8.3e-4

- 53.5%  21.96
- 85.65%  73.09

0.1319 0.3355 0.1402 0.1309 0.2179 0.1321

23e-4 2.7e-4 2.6e-4

Electricity
Standard deviation

2.6e-4 1l4e-4

2.9e-4
0.3576 0.6198 0.3639
2.8¢e-5 23e3 7.le5

- 57.17%  31.11
- 85.58%  81.71

0.349 04505 0.3571
1.9e-3  42e4 1.2e-3

- 4936% 12.45
- 8543% 503

0.3508 0.4671 0.3578
1.2e-3  4.4e-4 5.8e-4

- 51.22% 159
- 85.71%  62.81

Traffic
Standard deviation

Avg. Improvements

ETTml ‘0.3189 1.0209 0.5224‘ 0.307 09706 0.374 ‘ 0.303 09274 0.3353
Max. Improvements ‘ ‘ ‘
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Table 29: Full standard deviation and MSE of comparing our smoothed full fine-tuning (SFF) with
linear-probing (LP) and linear-probing then full fine-tuning (LPFF) under 25%, 50%, 75 %, and
100% proportion of available data.

Data proportion 25% 50% 75% 100%
Methods SFF LP LPFF SFF LP LPFF SFF LP LPFF SFF LP LPFF
Exchange 0.0811 0.5541 0.1377 | 0.0809 0.5163 0.1011 | 0.0819 0.4667 0.0958 | 0.0809 0.439 0.0917
Standard deviation | 4.5e-4  6.1e-3  4.7e-3 | 54e-4 54e-3 2.7e-3 | 1.2e-3 4.8e-3 2.0e-3 | 7.6e-4 38e-3 9.2e-4
ETTh1 0.351 0.7801 0.3918 | 0.3509 0.695 0.3724 | 0.3513 0.623  0.3769 | 0.3567 0.5888  0.37
Standard deviation | 6.le-4  6.6e-3 2.4e-3 | 1.1e-3 5.le-3  1.2e-3 | 1.4e-3  44e-3  15e-3 | l.4e-3 4.0e-3  2.8e-3
ETTh2 0.2745 0.4192 0.3001 | 0.2757 0.3985 0.2977 | 0.2778 0.3843 0.3034 | 0.274  0.372  0.2991

2.5e-3  5.5e-3  1.4e-3

0.2995 0.8669 0.3152 | 0.2979 0.7422 0.3103 | 0.2974 0.6467 0.3136
l.1e-3  1.6e-2 6.4e-4 | 1.6e-:3 1.le-2 88e4 | 1.3e-3 87e-3 1.5e-3

‘ ‘2.oe-3 4.0e-3 146e—3‘
ETTm2 ‘0.1608 03226 0.1738‘0.1609 02947  0.1751 ‘ 01627 02771 0.1863

4.8¢-4 3.0e-:3 1.9e-3 | 3.8e-4 2.4e-3 1.7e-3

0.2976 0.5935 0.3132
1.5e-3  7.2e-3  1.3e-3

0.1613 0.2595 0.1798
1.0e-3  2.1e-3  2.9e-3

0.1451 0.1871 0.1573
7.3e-4 6.5e-4 9.le-4

0.1304 0.1491 0.1335
2.0e-4 6.9e-5 6.4e-4

Standard deviation

ETTml1
Standard deviation

Standard deviation | 9.7e-4 4.6e-3 7.9e-4 | 3.8e-4 3.4e-3 8de4 | 43e4 2.7e-3 1.2e3

0.144 02619 0.1479 | 0.1443  0.2248 0.1497 | 0.1468  0.192  0.1624
52e-5 1.5e-3 19e-4 | 2.1e-4 1.0e-3 7.2e-4 | 1.3e-4 79e-4 1.7e-3

Weather
Standard deviation

0.1303 0.1902 0.1317
1.7e-4  1.5e-4  2.0e-4

0.1301 0.1654 0.1324
24e-4  1.0e-4 1.2e-4

0.13  0.1538 0.1345
3.6e-4 9.5e-5 9.7e-4

Electricity
Standard deviation

Traffic 0.3488 0441 0.3567 | 0.3497 0.4164 0.3564 | 0.3502 0.406 0.3587 | 0.3551 0.4014 0.3574
Standard deviation | 2.3e-3  4.5e-4 4.8e-4 | 1.7e-3 2.5e-4 T4e-4 | 2.5¢-3 1.2e-4 33e4 | 7.le-5 75e-5 5.7e-4
Avg. Improvements - 48.49% 9.8 - 42.89%  6.56 37.73%  7.86 - 35.19%  6.22
Max. Improvements - 85.36%  41.1 - 84.33% 19.98 82.45% 14.51 - 81.57% 11.78

Table 30: Full standard deviation and MAE of comparing our smoothed full fine-tuning (SFF) with
linear-probing (LP) and linear-probing then full fine-tuning (LPFF) under 1%, 2%, 3%, and 4%
proportion of available data.

Data proportion 1% 2% 3% 4%
Methods SFF LP LPFF SFF LP LPFF SFF LP LPFF SFF LP LPFF
Exchange 0.2051 0.5867 0.5309 | 0.2052 0.5867 0.528 | 0.204 0.5867 0.5272 | 0.2041 0.5866 0.5267

2.3e-4  2.6e-3 1.5e-3

0.4019 0.6441 0.5884
33e-3  4.8e-3 1.2e-3

0.3389 0.4601 0.4379

4.8e-4 2.6e-3 1.le-3

0.401  0.644 0.5861
3.4e-3  4.8e-3  1.2e-3

0.3323 046  0.4362
2.0e-3 4.1e-3 23e-3 | 324 4le3 2.0e3 | 524 4le3 2.0e-3 | 524 393 1.5e-3

ETTml1 0412 0.7239 0.6419 | 0.3875 0.7179 0.5773 | 0.3835 0.7176 0.5717 | 0.378 0.7119 0.5213

‘ ‘ ‘3.56—4 2.6e-3 1.56—3‘
Standard deviation ‘2.5e—3 9.1e-3  3.6e-3 ‘ 2.6e-3  88e-3 1.4e-3 ‘ 1.9e-3  89e-3  1.3e-3 ‘ 1.8e-3  8.6e-3 8.9e-4

0.3992 0.6439 0.5851
3.5e-3  4.8¢-3  1.4e-3

0.3326 046  0.4356

43e-4  2.6e-3 1.4e-3

0.4012 0.6409 0.6001
53e-3  4.4e-3  1.5e3

0.3344  0.4581 0.4267

Standard deviation

ETThl
Standard deviation

ETTh2
Standard deviation

ETTm2
Standard deviation

0.2628 0.3966 0.3717 | 0.2617 0.3965 0.3709 | 0.2559 0.3942 0.3483 | 0.2564 0.3942  0.347
3.0e-:3  3.6e-3 2.0e-3 | 1.9e-3 3.6e-3 1.7e-3 | 2.5¢-3 3.5e-3  1.5e-3 | 1.6e-3 3.5e-3 1.le-3

Weather
Standard deviation

0.1999 0.3584 0.2994
2.6e-4 2.8e-3 3.2e-3

0.1987 0.3562 0.2779
7.0e-4  2.7e-3  3.7e-3

0.1957 0.3539 0.2567
23e-4 2.6e-3 5.8e-3

0.2034 0.3607 0.3198
5.6e-4  3.0e-3 1.7e-3

Electricity 0.2342 0.6951 0.3184

Standard deviation

0.2307 0.5986 0.2729
3.4e-4 23e-3 8.5e-4

0.229 0.5233  0.256
5.0e-4  2.0e-3  5.6e-4

0.2292 0.4676 0.2476
2.7e-4 l4e-3 44e4

8.3e-5 2.5e-3

5.1e-4
0.2672 0.7112 0.3433
l.le-4 5.1e-4  4.6e-4

- 4727% 33.23
- 66.31% 61.37

Traffic
Standard deviation

0.2611  0.59  0.2946
47e-6 1.5e-4 1.5e-4

- 46.5%  29.86
- 65.02% 61.14

0.2575 0.5175 0.2776
4.7e-6 7.8e-4 T.le5

- 4541% 27.81
- 65.23% 61.31

0.2559 0.4736 0.2694
9.4e-5 12e-3  8.5e-5

- 44.14%  25.73
- 65.21% 61.25

Avg. Improvements
Max. Improvements
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Table 31: Full standard deviation and MAE of comparing our smoothed full fine-tuning (SFF) with
linear-probing (LP) and linear-probing then full fine-tuning (LPFF) under 5%, 10%, 15%, and 20 %
proportion of available data.

Data proportion 5% 10% 15% 20%
Methods SFF LP LPFF SFF LP LPFF SFF LP LPFF SFF LP LPFF
Exchange 0.2046 0.5863 0.5221 | 0.2031 0.5816 0.4169 | 0.2017 0.5766 0.3476 | 0.2019 0.5705  0.298
Standard deviation | 2.0e-4  2.6e-3  1.0e-3 | 9.0e-4 2.6e-3 9.3e-3 | 6.1e-4 2.6e-3 89e-3 | 1.0e-3 2.5e-3 5.7e-3
ETTh1 0.3971 0.6374 0.5467 | 0.3907 0.6308 0.5046 | 0.3904 0.6203 0.4575 | 0.3874 0.6122 0.4314
Standard deviation | 3.4e-3  4.6e-3 4.9e-3 | 1.8¢-3 4.4e-3 5.1e-3 | 1.5e-3 3.8e-3 2.8e-3 | 14e-3  39e-3 2.1e-3
ETTh2 0.3339 0.4576 0.4186 | 0.3359 0.4554 0.4008 | 0.3365 0.4515 0.3769 | 0.3367 0.4485 0.3674

1.2e-3  39e-3  89e-4 | 2.3e-3 3.7e-3 4.2e-4

0.3674 0.6949 0.4256
8.2e-4 7.8e-3 1.8e-3

1.7e-3  3.6e-3  1.3e-3

0.3646 0.6801 0.3959
3.1le-4 7.1e3 1.5e-4

2.6e-3  3.2e-3 1.3e-3

0.3753 0.7116  0.5149 0.3642 0.6701 0.3869
1.3e-3  8.6e-3  8.9e-4 8.2e-4 6.8e-3 S.4e-4

Standard deviation ‘ ‘ ‘ ‘
ETTm2 ‘ 0.2544 0.3941 0.3458 ‘ 0.2534 0.3896 0.3057 ‘ 0.2539 0.3852 0.2866 ‘ 0.2533 0.3811 0.2807

ETTml1
Standard deviation

Standard deviation | 1.6e-3  3.5e-3 1.le-3 | 1.3e-3 3.3e-3  1.0e-3 | 5.0e-4 3.le-3 l4e-3 | 41e4 29e-3 14e-3

0.1935 0.3161 0.2025
3.0e-4 1.4e-3 9.5e-4

0.225 03021 0.2266
4.5e-4 4.5e-5 2.6e-5

Weather
Standard deviation

0.1939 0.3497 0.2289
23e-4 24e-3  3.0e-3

0.2273  0.4226  0.2394

0.193  0.3381 0.2038
l4e-4 19e-3 69e-4

0.2263 0.3427 0.2291
32e-4 3.le4 124

0.193  0.3282 0.1996
1.3e-4 1.5e-3 4.3e-4

0.226 0.3184 0.2274
1.8e-4 1.5e-4 1.6e-4

Electricity
Standard deviation

9.1e-5 7.8e-4

3.2e-4
0.2537 0.4449  0.2639
7.5e-5 1.3e-3  2.8e-5

Traffic
Standard deviation

0.2501 0.3808 0.2557
1.0e-3  3.le-4 1.9e-4

0.2488 0.3548 0.2515
1.4e-3  9.9e-5 3.3e-5

0.2473  0.3404 0.2511
1.6e-3  2.0e-4 1.8e-3

- 37.14%  9.14
- 64.61% 3225

43.28%  23.27
65.1%  60.81

40.34% 16.19
65.08% 51.28

38.52% 11.46
65.02%  41.97

Avg. Improvements
Max. Improvements

Table 32: Full standard deviation and MAE of comparing our smoothed full fine-tuning (SFF) with
linear-probing (LP) and linear-probing then full fine-tuning (LPFF) under 25%, 50%, 75 %, and
100% proportion of available data.

Data proportion 25% 75% 100%

Methods SFF LP LPFF SFF LP LPFF SFF LP LPFF SFF LP LPFF

Exchange 0.2004 0.567 0.2689 | 0.2003 0.5476 0.2251 | 0.2026 0.5206 0.2204 | 0.2013  0.505 0.2151

Standard deviation | 5.3e-4 23e-3 53e-3 | 1.0e-3 2.3e-3 3.7e-3 | 1.7e-3  2.2e-3  2.5e-3 | 5.3e-4 2.0e-3  2.0e-3
ETThl 0.3883 0.6078 0.4238 | 0.3883 0.5753 0.4091

3.0e-4  3.0e-3

1.5e-3
ETTh2 0.3346  0.4337 0.3536
Standard deviation 14e-3  24e-3  1.4e3

‘ ‘ 2.4e-3  28e-3 9.0e4 | l4e-3 2.7e-3 6.8e-4
ETTml ‘ 0.3623 0.6584 0.3794 ‘ 0.3602 0.6101 0.3731

0.339 0.4245 0.3599 | 0.3359 0.4163 0.3539
1.8e-4 1.8e-3 1.4e-3 | 5.7e4 1.5e-3  8.3e-4

0.3595 0.5709 0.3797‘ 0.358  0.5444 0.3748

0.3892 0.5457 04127 | 0394 0.5301 0.4074
Standard deviation

Standard deviation 1.8e-3 4.4e-3  5.6e-4

0.2504 0.3601 0.2653
5.8e-4  2.1e-3

2.0e-3  34e-3 T.2e4 | 1.6e-3 29e-3  6.7¢-4

0.2539 0.3494 02797 | 0.2493  0.3375 0.2683
38e-4 1.7e-3 13e-3 | 1.5e-3 1.4e-3  2.3e-3

ETTm2
Standard deviation

9.2e-4
0.193 02815 0.2002
2.1e-4 69e-4 1.4e-3

Weather
Standard deviation

0.1975 0252 02164 | 0.1934 0.2459 0.2049
29e-4  63e-4 23e-3 | 15e-3 524 1.5e3

0.2247 0.2704  0.2266
27e-4  5.4e-5 l.le-3

Electricity
Standard deviation

0.2245 0.2578 0.2278 | 0.2239 0.2516 0.2266
43e-4  1.0e-4 6.0e-4 | 42e-4 79e-5 3.9e-4

Traffic 0.2463 0.3316  0.2532 | 0.2486 0.3062 0.2465 | 0.2485 0.2951 0.2498 | 0.245  0.2902 0.2494
Standard deviation | 2.2e-3  2.9e-4  1.4e-3 | 1.4e-3  2.5e-4 4.7e-4 | 4.6e-4 14e-4 35e-4 |0.0e+00 8.5e-5 1.8e-4
Avg. Improvements - 36.53%  7.28 3217%  4.27 - 28.07% 26.68%  4.36
Max. Improvements - 64.66% 2547 63.42% 11.02 - 61.08% 9 22 60.14%  7.08

Table 33: MAE of Smoothing the loss landscape then perform zero-shot forecasting.

ETTh2
Timer +Smooth

Traffic
Timer +Smooth

ETTm1
Timer +Smooth

ETTm2
Timer +Smooth

‘Weather
Timer +Smooth|

Electricity

ETTh1
Timer +Smooth|

Timer +Smooth

Std.| +0 £50e4| +0 £lle3| +0 £27e-3| +0 +12e3| £0 £lle-3| +0 +54e4| +0 +52e4
Imp.| - 3.69% | - 195% | - 049% | -  20% | -  212% | - 128% | -  233%

MAE‘ 0434 0418 ‘ 0359  0.352 ‘ 0.61 0.607 ‘ 0.3 0.294 ‘ 0236  0.231 ‘0.312 0.308 ‘0.343 0.335

[TimesFM +Smooth|TimesFM +Smooth|TimesFM +Smooth|Tim.FM +Smooth|Time.FM +Smooth|Tim.FM +Smooth|Tim.FM +Smooth
MAE‘ 0.559 0.55 ‘ 0.541 0.419 ‘ 0.749 0.682 ‘ 0.404  0.335 ‘ 0.278 0.262 ‘ 0.756  0.747 ‘ 0.867  0.834

Std.| +0 +lde3| +0 +2.0e3| +0 +£3.0e-3| +0 +88e-4| +£0 +3.8e-3| +0 +40e3| 0 +4.0e-3
Imp.| - 161% | - 2255%| - 895% | - 17.08%| -  576% | -  1.19% | -  381%
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