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ABSTRACT

Multimodal Large Language Models (MLLMs) have emerged as powerful tools
for processing modalities beyond text by combining a visual encoder with Large
Language Models (LLMs) to incorporate visual context. This integration, how-
ever, leads to higher computational costs during LLM inference, specifically in the
Prefill and Decoding stages. Existing MLLM acceleration methods primarily fo-
cus on reducing the cost of long prefills caused by visual context, but this approach
has limitations: (1) From a latency perspective, it mainly benefits the prefill stage,
offering minimal improvements for decoding. (2) It does not guarantee output
distributions that are identical to those of the original MLLM. To ensure identical
output distribution while mitigating decoding latency, we focus on speculative de-
coding (SD)—an acceleration technique that uses a smaller draft model verified
by a larger model. Despite its importance for LLM acceleration, SD’s applica-
tion to MLLMs remains largely unexplored, even though decoding constitutes a
significant portion of MLLM inference latency. We investigate various drafting
techniques—multimodal, text-only, image-pooling, and caption-based—for mul-
timodal scenarios and analyze their integration with MLLMs. Building on these
insights, we propose In-batch Ensemble Drafting (IbED), which combines prob-
ability distributions from multiple drafting methods via batch inference during
the SD draft phase. This approach requires no additional model parameters, in-
curs minimal overhead, and significantly increases the likelihood of draft tokens
passing verification, thereby enhancing performance and robustness across diverse
input scenarios.

1 INTRODUCTION

Large Language models are rapidly advancing, and in particular, Multimodal Large Language Mod-
els (MLLMs) that can process various modalities beyond text are gaining significant attention (Ope-
nAI, 2023; Anthropic, 2024; Gemini Team Google: Anil et al., 2023). MLLMs share the charac-
teristics of LLMs (Brown et al., 2020; Ouyang et al., 2022; Touvron et al., 2023), which include:
(1) The Prefill Stage, involving parallel processing of the provided input context. (2) The Decod-
ing Stage, where generation is performed through an autoregressive decoding method based on the
processed context. Specifically, decoding n tokens requires a total of n serial runs of the model. In
addition, MLLMs require an extra process before the decoding stage: (3) The Vision Encoder Stage,
where image inputs are converted into visual context tokens by embedding patches through a visual
encoder (Radford et al., 2021). Typically, each image yields several hundred visual context tokens.

As a result, the computational cost of inference with MLLMs has significantly increased. To mit-
igate this cost, various methodologies have been proposed to accelerate MLLMs by focusing on
reducing the number of visual tokens. These approaches include dynamically retaining only the
most important visual tokens based on attention sparsity (Shang et al., 2024), layer-wise pruning
of less significant visual tokens to enhance efficiency (Chen et al., 2024b; Lin et al., 2024), and
reducing redundant key-value caches through consolidation and compression strategies (Liu et al.,
2024b; Wan et al., 2024). Despite effectively minimizing performance degradation from the original
model, these approaches have fundamental limitations: (1) From a latency perspective, reducing
prefill length mainly benefits the prefill stage while offering negligible advantages for the decode
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Figure 2: Framework of single drafting, classic ensemble drafting, and in-
batch ensemble drafting (ours). Each figure visualizes single-token gener-
ation per timestep.

stage; and (2) they inherently rely on approximation, which does not guarantee an identical output
to that of the original MLLM.

Recently, Speculative Decoding (SD) (Leviathan et al., 2023; Chen et al., 2023) has been rapidly
emerging in the field of LLMs. It accelerates language models while preserving the output distribu-
tion generated by the model, offering a quality-neutral advantage. Specifically, SD methods split the
decoding process into two distinct stages: (1) a Draft Phase, where a small “draft” model sequen-
tially creates low-cost tokens; and (2) a Verification Phase, where a large “target” model reviews
these draft tokens in parallel. The efficiency comes from the insight that combining autoregres-
sive decoding with a small model for drafting, followed by parallel verification with a large model,
reduces costs by avoiding the iterative process, compared to using the large model alone for au-
toregressive decoding. In the LLM field, various attempts have been made to enhance acceleration
through SD, such as performing knowledge distillation on the draft model (Zhou et al., 2024), gen-
erating multiple draft candidates to find a better draft (Sun et al., 2024b), or altering the verification
phase based on a tree structure (Miao et al., 2023b).

However, to the best of our knowledge, research on Speculative Decoding for MLLMs has been
far less explored, with only one study (Gagrani et al., 2024) available. This paper is significant
as the first attempt to apply SD to MLLMs, demonstrating that a draft model with multimodality
processing capabilities can surprisingly accelerate the target MLLM even when it does not use the
image input. However, the paper did not factorize and analyze the time cost associated with choosing
each drafting method, and it also has limitations in that it is impossible to know in advance which
drafting method to choose when none shows consistent superiority, leaving these questions for future
work.

In this study, we present a comprehensive analysis aimed at elucidating the fundamental principles
of Multimodal Large Language Model (MLLM) Speculative Decoding across diverse input sce-
narios. Based on extensive benchmarking, we primarily focus on a comparative analysis between
multimodal drafting and text-only drafting approaches.

Secondly, we explore several key questions that arise during the drafting stage when applying SD
to MLLMs: Can a very small model effectively handle multimodality, which often results in long
context lengths during the Prefill Stage? Is it necessary for such a small draft model to process the
lengthy context derived from image inputs? And can effective drafting still occur if this long image
context is compressed or replaced by much shorter text?

Lastly, we propose In-batch Ensemble Drafting (IbED). Based on our observation that different
drafting approaches available in the SD for MLLM settings have unique advantages (Figure 5), this
method combines the probability distributions from these approaches by batch inference to decode
each draft token during the Draft Phase of SD (Figure 2). Unlike conventional ensembles, it requires
no additional model parameters, resulting in negligible cost. This approach significantly improves
the likelihood of draft tokens passing target model verification and enhances performance across
tasks and datasets, making it more robust. Furthermore, it can be effectively integrated with existing
MLLM acceleration techniques that focus on the Prefill stage and SD methods optimized for the
verification phase.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Our method demonstrates a 2-10% performance improvement compared to multimodal drafting for
single-image and two-image scenarios. Moreover, in cases involving five images where multimodal
drafting’s performance significantly deteriorates, our method maintains stable performance, even
surpassing that of text-only approaches.

In summary, the main contributions of our work are:

• We conduct an extensive benchmark of Multimodal Large Language Model for Speculative De-
coding, focusing on a comparative analysis between multimodal drafting and text-only drafting
approaches across diverse input scenarios.

• We investigate various drafting methods available for MLLM acceleration by testing the necessity
of image input during drafting, compressing, or replacing the long context from images with other
modalities. We open-source our custom-trained draft MLLM, evaluated on various tasks, along
with its recipe.

• We introduce In-batch Ensemble Drafting (IbED), which combines various drafting methods with
negligible cost, achieving greater speed-ups and robust performance across diverse scenarios.

2 RELATED WORK

2.1 MULTIMODAL LARGE LANGUAGE MODELS

MLLMs Frontier proprietary MLLMs (OpenAI, 2023; Anthropic, 2024; Gemini Team
Google: Anil et al., 2023) demonstrate state-of-the-art performance across multimodalities beyond
just text. Meanwhile, open-source models like the LLaVA series (Liu et al., 2023; 2024a; Li et al.,
2024b;a) and LLaMA 3.2 (Dubey et al., 2024) are also rapidly advancing. While various methods
exist for embedding image inputs (Yin et al., 2024; Jin et al., 2024), one of the most prominent ap-
proaches, LLaVA, employs an off-the-shelf vision encoder (Radford et al., 2021; Zhai et al., 2023)
and a trainable projector to convert its output into the visual tokens of an LLM.

Inference Acceleration for MLLMs To address the inefficiency of handling visual tokens from
images, several approaches have been proposed based on a common finding: only a sparse subset of
the hundreds of visual tokens is important, allowing for reduced computational cost with minimal
information loss. Shang et al. (2024); Chen et al. (2024b); Lin et al. (2024) dynamically prune
significant visual tokens based on attention sparsity. Further focusing on reducing redundant key-
value caches, (Liu et al., 2024b; Wan et al., 2024) retain key-value vectors by merging or discarding
less critical caches during output generation. However, from a latency perspective, these approaches
primarily benefit the prefill stage while providing negligible advantages for the decode stage.

2.2 SPECULATIVE DECODING

Speculative Decoding for LLMs Although forefront LLMs demonstrate revolutionary perfor-
mance (Brown et al., 2020; OpenAI, 2023; Anthropic, 2024), deploying these large models is com-
putationally intensive, posing significant challenges to serving efficiency. To improve the inference
process for large language models, various approaches have been proposed, ranging from algorith-
mic innovations to system optimizations (Miao et al., 2023a; Khoshnoodi et al., 2024).

Recently, Speculative Decoding (Leviathan et al., 2023; Chen et al., 2023) has gained significant
attention for accelerating inference using a small draft model while preserving the model’s output
distribution. To improve the drafting stage in SD, various efforts have been made, including gen-
erating multiple draft candidates to select the best one (Sun et al., 2024b; Yang et al., 2024), and
finetuning the draft model with knowledge distillation (Zhou et al., 2024). On the other hand, some
research focuses on modifying the verification phase using a tree structure (Miao et al., 2023b). Ad-
ditionally, several studies address cases with exceptionally long prefill lengths (e.g., 100k), which
significantly affect decoding efficiency (Sun et al., 2024a; Chen et al., 2024a). These studies system-
atically varied prefill length and batch size, finding that with prefill lengths of 1k to 10k tokens and
low batch sizes, decoding speed is generally unaffected, which is typical of real-world multimodal
input scenarios.
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Speculative Decoding for MLLMs Most relevant to our work, Gagrani et al. (2024) conducted
the first study on speculative decoding for MLLMs, advocating the use of a draft model for text-only
drafting (i.e., without multimodal input). However, the paper does not provide extensive analysis
between multimodal drafting and text-only drafting approaches across diverse input scenarios, and
it lacks clarity on the source of speedup for text-only drafting—is it due to lower per-token latency
or a higher likelihood of passing the target model’s verification? Additionally, it is unclear which
drafting method to choose when none consistently performs best, limiting the effective use of mul-
tiple drafting strategies. Lastly, we cannot reproduce or verify these issues or explore other possible
draftings, as the training recipe and model checkpoints are not publicly available.

3 PRELIMINARIES

3.1 THEORETICAL LATENCY OF TRANSFORMERS

Compute bounded vs Memory Bounded The latency bottlenecks in transformer models can
be categorized into two primary constraints: compute-boundedness and memory-boundedness.
Compute-bound operations are limited by processing speed, typically during matrix calculations
and attention mechanisms. Memory-bound scenarios arise when available memory becomes a lim-
iting factor, often due to large model sizes or long input sequences. Arithmetic intensity, the ratio
of computational operations to memory operations, bridges these concepts and influences overall
efficiency. High arithmetic intensity operations tend to be compute-bound, while low intensity op-
erations are often memory-bound. In transformers, this balance varies depending on the generation
phase (i.e., prefill or decode), model architecture, hardware specifications, and other factors.

Prefilling Since prefilling requires parallel computations for a large number of tokens, it is
compute-bound, leading to significant increases in latency as the prefill length grows. In the case of
MLLMs, the proportion of visual tokens within the prefill length is significantly large. Therefore,
addressing the redundancy of visual tokens is essential for cost-efficient prefilling.

Decoding Because only one token is processed at each step during decoding, the process is
memory-bound. The memory access cost is divided between the model weights and the key-value
cache. Except for long contexts, model weights dominate this cost. Consequently, decoding latency
remains nearly constant regardless of context length. Similarly, parallel decoding with a small num-
ber of tokens—as in the verification stage of speculative decoding—or slightly increasing the batch
size from 1 has minimal impact on latency.

3.2 SPECULATIVE DECODING

We briefly outline how SD works, using mathematical notations following (Leviathan et al., 2023;
Zhou et al., 2024).

Overview Let Mp be the larger “target” model, whose inference we aim to accelerate, and let
Mq be the smaller “draft” model for the same task. For a given prefix x<t and n = 0, . . . , γ − 1,
following steps are repeated until either an end-of-sequence token is accepted or the maximum
sequence length is reached.:

(1) A Draft phase, where Mq sequentially generates γ draft tokens from q(·|x<t+n).

(2) A Verification phase, where Mp reviews these draft tokens in parallel, comparing them to
p(xt+n|x<t+n).

(3) For sampling, each token xt+n is sequentially accepted with probability min
(
1, p(xt+n|x<t+n)

q(xt+n|x<t+n)

)
.

If any token is rejected before the end of the block, subsequent tokens are discarded, and the rejected
token is resampled from the adjusted distribution norm(max(0, p(x)− q(x))).

Given input, block efficiency τp,q(γ) is defined as the expected number of accepted tokens per block.
For a fixed γ, the maximum block efficiency is γ+1, which occurs when all draft tokens are accepted
and an additional token is sampled by the target model.
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Wall-clock Time Improvement Following Chen et al. (2024a), for a given sequence length S, we
use the notation Tp(S, 1) and Tq(S, 1) to indicate the required time for Mp and Mq , respectively, to
decode a single token. Similarly, TV (S, γ) represents the required time for Mp to verify γ tokens in
parallel. If we ignore the latency of the prefilling stage, we can see the wall-clock time improvement
as:

Token rate (target) =
1

Tp
, Token rate (SD) =

τp,q(γ)

γ · Tq + TV (γ)
, (1)

Speed up =
Token rate (SD)

Token rate (target)
=

τp,q(γ)

γ · Tq

Tp
+ TV (γ)

Tp

≈ τp,q(γ)

γ · Tq

Tp
+ 1

, (2)

Note that the decoding stage is memory bound and TV (γ)
Tp

converges to 1 if we assume a single batch
scenario (Chen et al., 2024a; Fu, 2024). For a given Mp, the choice of Mq determines both the
block efficiency τ and the draft-to-target latency ratio Tp

Tq
. Notably, this ratio remains consistent,

even as the long context varies from under 1K to 3K stemming from the image modality. In our
setting, we empirically demonstrate this consistency in Appendix G.2. To improve the throughput
of speculative decoding, one should focus on improving block efficiency τp,q .

4 ANALYSIS OF SPECULATIVE DECODING FOR MLLMS

1 2 5
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V P D

Figure 3: Time analysis of the
target model’s inference pro-
cess. Each bar corresponds to
prefill lengths of 600, 1200,
and 3000 tokens respectively.

In this section, we systematically study speculative decoding for
MLLMs, evaluating the performance of multimodal and text-only
drafting across various benchmark datasets.

4.1 EXPERIMENT SETTINGS

Models: Target and Draft Models We employ LLaVA-1.5
7B (Liu et al., 2024a) as the target model to accelerate. For
our draft model, we perform visual instruction tuning on LLaMA
68M—used as the draft model in SpecInfer (Miao et al.,
2023b)—by following the training approach of the target model.
We design our draft model with practical use in mind, aiming to ac-
celerate the target MLLM through speculative decoding while con-
sidering deployment costs. We evaluated the model on language
and vision-language tasks and observed that the trained model has
the ability to perceive multimodality 1 (see Appendix H).

Note on the Draft Model To effectively accelerate the target MLLM using speculative decoding,
the relative speed of the draft model to the target model—represented by Tp

Tq
in Equation (1)—is

crucial2 (the ratio Tp

Tq
remains approximately constant across moderate context lengths, as described

in Section 3.1).

Benchmark Datasets and Tasks Selecting benchmark datasets is crucial for evaluating perfor-
mance; however, a benchmark for MLLM speculative decoding has not yet been established. There-
fore, we carefully reviewed existing multimodal datasets for single-image and multi-image settings
(with 2 and 5 images) and curated a set of benchmark datasets specifically for MLLM speculative
decoding. Details of the benchmark datasets are provided in Appendix B. We construct a question-
answering task for all datasets using prompts that guide the model to describe the answer and rea-
soning, allowing it to interpret the question and image descriptively (see Appendix C for prompt
details). This setup aligns with typical MLLM use cases like ChatGPT.

1We also release the trained checkpoint of this model.
2One might consider LLaVA-Next-Interleave 0.5B—the smallest carefully trained off-the-shelf MLLM—

as a draft model, its latency ratios Tp

Tq
in Equation (1) to the 7B and 70B models in the same series exceed 0.5

and 0.1 respectively (QwenTeam), making it unsuitable for achieving speed-up. The speed depends not only
on parameter count but also on the depth-width trade-off of the architecture (Yan et al., 2024).

5
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Draftings: Multimodal and Text-only The multimodal drafting process is the same as the general
MLLM generation process. After concatenating text embeddings and image embeddings, which are
obtained by passing images through a vision encoder and projector, the prefill process is performed
in the language model. Then, tokens are decoded up to a predefined chunk length γ. In our setting,
each image is converted into an embedding of length 576 and γ = 5. In contrast, text-only drafting,
whose potential was first recognized in (Gagrani et al., 2024), eliminates the image input and relies
solely on textual data as input for the draft model. Its generation process then follows that of a stan-
dard LLM. All drafting is performed using greedy decoding with a batch size of 1. The maximum
number of newly generated tokens is fixed at 128. See Appendix C for details on the prompt used
for each drafting.

4.2 TIME ANALYSIS FOR GENERATION PROCESS OF MLLM

By adopting the perspective of LLM acceleration, we divide the generation process of MLLMs into
vision token processing, prefill, and decoding stages to identify bottlenecks.

Target Model: Generation for the Whole Sequence We visualize the factorized generation time
in Figure 3. The time taken in the vision encoder and prefill stages is proportional to the number of
images. Since each image is converted into several hundred context tokens and processed through
the prefill stage, images have a greater impact than text tokens. Decoding time is more variable than
the previous two stages, as the number of decoded tokens depends on the input scenario and the
model’s learned distribution. We selected the TextVQA, Spot, and PororoSV datasets to represent
datasets containing 1, 2, and 5 images, respectively. Though maximum number of newly generated
tokens is fixed, the resulting number of decoded tokens for each dataset in average is 91.89, 116.52,
and 88.17, respectively. In conclusion, the latency induced by the decoding phase exceeds the
combined latency of the other two stages.

Draft Model: Chunk-wise Generation by Drafting The timing trends for the draft model in
the vision encoder and prefill stages align with those of the target model. Multimodal drafting,
which involves processing through a vision encoder, transforms a single image into several hundred
tokens, thereby incurring a higher prefill cost compared to text-only drafting, which operates with a
shorter text context. However, the absolute scale of this cost is very small and can be overshadowed
by the target model’s prefill time. As shown in Figure 9, the per-step latency for decoding tokens
remains consistent up to a context length of 3K (equivalent to around five input images), indicating
no difference in token rate due to the longer context (Section 3.1). Consequently, the ratio Tq

Tp
in

Equation (1), induced by the draft model, remains unchanged regardless of the long context from
the image modality. Since this factor remains the same regardless of the drafting method, the speed-
up in the decoding phase primarily depends on block efficiency γ. The following discussions will
focus on speed-up in terms of block efficiency.

4.3 BLOCK EFFICIENCY AND SPEED-UP BY DRAFTING

Table 1a shows the block efficiency results of multimodal drafting and text-only drafting on various
benchmark datasets. Multimodal drafting provide relatively higher block efficiency (speed-up) then
text-only drafting when there are one or two images in the input. However, when we broaden the
input scenario to cases with five images, the tendencies of the drafting methods are completely
reversed, and the performance drop of text-only drafting for multi-image cases is much less than
that of multimodal drafting. Figure 4 illustrates how multimodal and text-only drafting differ in the
tokens they generate when the image and text prompt are fixed. For example, multimodal drafting,
which references the image, can generate ‘Zane’, whereas text-only drafting cannot.

4.4 SUMMARY: DRAFTINGS

The relative performance of multimodal versus text-only drafting methods varies depending on the
input scenario, with no consistent winner. While multimodal drafting often provides a higher speed-
up, it is less robust compared to text-only drafting. Therefore, it’s difficult to know in advance which
method is better before execution, and even if known, it is difficult to address with a single drafting.
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Target / Draft n = 1 n = 2 n = 5 n = 1 n = 2 n = 5

Model Size Method ChartQA TextVQA VQAv2 Hallusion Spot IEdit PororoSV VIST Avg. Avg. Avg.

LLaVA 1.5 7B / 68M multimodal 2.24 2.12 2.26 2.39 2.34 2.19 1.19 1.16 2.25 2.26 1.17
text-only 2.22 2.03 2.20 2.34 2.27 2.23 2.05 2.05 2.20 2.25 2.05

(a) Block efficiency results of multimodal drafting and text-only drafting.

Target / Draft n = 1 n = 2 n = 5 n = 1 n = 2 n = 5

Model Size Method ChartQA TextVQA VQAv2 Hallusion Spot IEdit PororoSV VIST Avg. Avg. Avg.

LLaVA 1.5 7B / 68M multimodal 1.71 1.61 1.72 1.82 1.78 1.67 0.91 0.88 1.71 1.72 0.89
text-only 1.69 1.55 1.68 1.78 1.73 1.70 1.56 1.56 1.68 1.71 1.56

(b) Speed up results of multimodal drafting and text-only drafting.

Table 1: Speculative decoding results by multimodal drafting and text-only drafting.

What famous race car driver
is this jersey design styled af-
ter?

(a) Instruction

The j er sey design is sty led
after Jeff Gordon , a famous
race car driver . The image
shows three different styles of
a football j er sey designed by
Z ane Cr ump , featuring the
name “ G ordon ” on the back
.

(b) Multimodal

The j er sey design is sty led
after Jeff Gordon , a famous
race car driver . The image
shows three different styles of
a football j er sey designed by
Z ane Cr ump , featuring the
name “ G ordon ” on the back
.

(c) Text-only

The j er sey design is sty led
after Jeff Gordon , a famous
race car driver . The image
shows three different styles of
a football j er sey designed by
Z ane Cr ump , featuring the
name “ G ordon ” on the back
.

(d) Caption

The j er sey design is sty led
after Jeff Gordon , a famous
race car driver . The image
shows three different styles of
a football j er sey designed by
Z ane Cr ump , featuring the
name “ G ordon ” on the back
.

(e) Ensemble

Figure 4: Qualitative samples from the TextVQA dataset by various drafting methods: multimodal,
text-only, caption, and in-batch ensemble. Blue tokens denote acceptance by the target model. The
image caption obtained by the lightweight image captioning model is “A football jersey design by
Zane Crump is shown.”

5 EXPLORING DRAFTING METHODS FOR MLLMS

In this section, we address several questions that arise during the drafting stage when applying SD
to MLLMs, particularly about the necessity of images for drafting and the potential to substitute
the image modality, considering that the draft model is imperfect and its performance can vary
significantly across input scenarios.

5.1 HOW NECESSARY IS THE IMAGE MODALITY FOR DRAFTING?

What if we include image information in the draft model but compress its context? According to
previous studies (Shang et al., 2024; Chen et al., 2024b), although image tokens are more numerous
than text tokens, their importance is relatively sparse, receiving meaningful attention only in certain
layers. Therefore, we can compress these image tokens, using this approach as a simple proxy for
previous work aimed at reducing image prefill tokens.

Multimodal Drafting with Image-pooling To compress image information, we performed aver-
age pooling, preserving the 2D spatial structure of the image just before it is transformed into the text
representation space by the projector. Image prefill tokens are then created by passing the pooled
data through the projector. The notation pool (n) indicates the number of visual tokens remaining
after pooling from the original 576 tokens per image. Since this compression is parameter-free, the
cost is negligible. Additionally, we conducted experiments during the instruction fine-tuning stage
(one of the two stages of training a pretrained LM into an MLLM), where we trained the model
while pooling the images at the same compression rates.

Experimental Results From the perspective of block efficiency, for both the single image dataset
and the multi-image dataset with n = 2, the results after pooling were slightly worse than those with-
out pooling. However, they still outperformed the text-only approach for the single image dataset.
This indicates that even the pooled visual tokens exhibit a certain level of image awareness.

However, multimodal drafting with pooling demonstrated significantly better performance than mul-
timodal drafting without pooling on a multi-image dataset with n = 5. Reducing the tokens from

7
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Target / Draft n = 1 n = 2 n = 5 n = 1 n = 2 n = 5

Model Size Method ChartQA TextVQA VQAv2 Hallusion Spot IEdit PororoSV VIST Avg. Avg. Avg.

LLaVA 1.5 7B / 68M

multimodal 2.24 2.12 2.26 2.39 2.34 2.19 1.19 1.16 2.25 2.26 1.17
pool (144) 2.23 2.08 2.26 2.36 2.23 2.22 2.07 2.09 2.23 2.23 2.08
pool (36) 2.17 2.01 2.21 2.32 2.20 2.23 2.05 2.06 2.18 2.21 2.05
pool (9) 2.20 2.03 2.21 2.34 2.25 2.24 2.06 2.08 2.20 2.25 2.07
pool (1) 2.23 2.03 2.23 2.37 2.25 2.26 2.06 2.07 2.21 2.25 2.06
text-only 2.22 2.03 2.20 2.34 2.27 2.23 2.05 2.05 2.20 2.25 2.05
caption 2.28 2.08 2.24 2.41 2.31 2.29 2.08 2.10 2.25 2.30 2.09

Table 2: Block efficiency results of pooled multimodal drafting and caption drafting.

576 to just 144 significantly decreases the number of tokens, making multimodal drafting—which
has limited capacity to process a large number of images—more robust. In the case of multimodal
drafting with a model fine-tuned through pooling, the trend was maintained while performance im-
proved (see Table 2). To see the full results, refer Appendix D.

5.2 CAN WE REPLACE IMAGE MODALITY WITH ANOTHER ONE FOR DRAFTING?

Even without the image modality (i.e., text-only drafting), we observed substantial speed-ups (block
efficiency), along with more robust performance compared to multimodal drafting. Therefore, is
the image modality truly necessary for drafting? In this section, we investigate how injecting image
information into a text-only draft model without providing image input can enhance block efficiency.

Caption Drafting One of the most straightforward ways to map images to the text modality is
through captions. In our experimental setup, we employ a lightweight image captioning model to
generate captions for each image, using these captions as input for the text-only draft model instead
of the images themselves. We used BLIP (Li et al., 2022; 2023) and Florence (Xiao et al., 2024) as
lightweight image captioning models. The captioning model only needs to perform inference once
during the prefill, with latency shorter than the prefill time of the target model. Further details of the
image captioning models are provided in Appendix E.

Multimodal

Text-only Ca
pt

io
n

2.5%

1.1% 2.7%

47.1%

1.4%1.9%

2.3%

Figure 5: Venn diagram of the
accepted rates for each draft-
ing method on the ChartQA
dataset.

Experimental Results As shown in Table 2, caption-based draft-
ing showed improvements over text-only drafting from the perspec-
tive of block efficiency. Fig. 4 shows that caption drafting outper-
forms text-only and multimodal drafting in image comprehension,
as the lightweight captioning model extracts specific details like
“Zane Crump.” Furthermore, we conducted a detailed investigation
into which tokens each drafting method successfully decoded (i.e.,
passed the target model’s verification) and which tokens it failed to
decode. As shown in Figure 5, no single drafting method encom-
passed all the tokens correctly predicted by the others. Full experi-
mental results of caption drafting are provided in Appendix E.

6 IN-BATCH ENSEMBLE DRAFTING

Algorithm 1 In-batch Ensemble Drafting (IbED)
Input: Generated sequence x1:t until current step t
Parameter: Prompt list [c1, ..., cn] ▷ multimodal, text-only, caption, ...
Output: Next predicted token xt+1

1: procedure IBED(x1:t; [c1, ..., cn])
2: q1, q2, ..., qn = BATCHINFERENCE([c1 + x1:t, c2 + x1:t, ..., cn + x1:t])
3: q = AVERAGE(q1, q2, ..., qn)
4: xt+1 = SAMPLE(q)
5: return xt+1

6: end procedure
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To summarize our conclusions so far: (1) the draft model is not perfect, and even with the same
model, different drafting methods can be applied depending on the input scenario; (2) each ap-
proach shows distinct advantages in achieving ‘robust speed-up,’ as demonstrated through experi-
ments across various scenarios using representative drafting methods—multimodal, text-only, cap-
tion, and pooled. The main issue, however, is that these pros and cons are not easily predictable
without extensive testing across multiple scenarios.

6.1 WHY “IN-BATCH” ENSEMBLE?

Figure 6: Framework of In-batch Ensemble Draft-
ing (IbED). Given an input scenario, all draftings
share the parameters of the draft model Mq , and
the resulting distributions are ensembled to sam-
ple the next token in the draft candidate. For de-
tails, see Algorithm 1.

Unlike typical ensemble learning, which re-
quires multiple models with different parame-
ters, in-batch ensemble drafting works differ-
ently. The model parameters are shared across
all drafting methods, and each drafting out-
puts differently based on the varying context
by batch inference. Increasing the batch size
for a small draft model is nearly cost-free.
Since the Transformer model’s decoding stage
is memory-bound, for moderate context lengths
and small batch sizes (4 or fewer), the latency
of multi-batch inference converges to that of
single-batch inference (Fu, 2024). To empiri-
cally demonstrate this in our setting, we mea-
sured the per-step latency for token decoding
with different batch sizes, as shown in Figure 9.
The latency gap between batch size 1 and larger
sizes is less than 0.1ms, resulting in a negligible
computational cost. Based on Eq. (1), if we assume Tq/Tp = 0.05 and τq,p(γ) = 2.5, the difference
in speed-up between using the draft model with a batch size of 2 versus 1 is mcuh less than 1%.

6.2 HOW TO PROCEED WITH IN-BATCH ENSEMBLE

As discussed earlier, we use four types of drafting for ensemble learning: multimodal drafting (M),
text-only drafting (T), caption drafting (C), and pooled multimodal drafting (P). For each decoding
timestep, we apply a simple weighted averaging ensemble method, and then sample a token from
the averaged distribution to continue drafting. We use equal weight ratios for all ensemble drafting
methods to demonstrate effectiveness without hyperparameter tuning: 1:1 for MT and MC, 1:1:1 for
MTC, and 1:1:1:1 for MTCP. Full experimental results with different weight settings are provided
in Appendix E.

Experimental Results Table 3 and Fig. 7 illustrate the block efficiency results of ensemble draft-
ing. In comparison to single drafting, ensemble drafting demonstrates superior block efficiency
across most datasets, exhibiting not only improved average performance but also consistent enhance-
ment across all datasets. Notably, when n = 5, ensemble drafting achieves performance compara-
ble to or surpassing text-only methods, despite the inclusion of less effective multimodal drafting
techniques. This outcome demonstrates the robustness of ensemble drafting, which is particularly
significant given that the ensemble was constructed using equal weight ratios. Full experimental
results with different weight settings are provided in Appendix E.

Target / Draft n = 1 n = 2 n = 5 n = 1 n = 2 n = 5

Model Size Method ChartQA TextVQA VQAv2 Hallusion Spot IEdit PororoSV VIST Avg. Avg. Avg.

LLaVA 1.5 7B / 68M

M 2.24 2.12 2.26 2.39 2.34 2.19 1.19 1.16 2.25 2.26 1.17
T 2.22 2.03 2.20 2.34 2.27 2.23 2.05 2.05 2.20 2.25 2.05
C 2.28 2.08 2.24 2.41 2.31 2.29 2.08 2.10 2.25 2.30 2.09
P 2.23 2.08 2.26 2.36 2.23 2.22 2.07 2.09 2.23 2.23 2.08
MT 2.26 2.13 2.27 2.39 2.40 2.31 1.94 1.91 2.26 2.35 1.92
MC 2.30 2.17 2.29 2.42 2.39 2.32 1.99 1.93 2.29 2.35 1.96
MTC 2.29 2.15 2.28 2.41 2.41 2.30 2.08 2.06 2.28 2.35 2.07
MTCP 2.29 2.17 2.29 2.42 2.41 2.33 1.99 1.93 2.29 2.37 1.96

Table 3: Block efficiency results of ensemble drafting.
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(c) Multi image datasets (n = 5)

Figure 7: Performance comparison of speculative decoding on various datsets. Our method achieves
the best and most robust block efficiency results compared to multimodal and text-only drafting.

7 LIMITATIONS AND FUTURE WORKS

Integration with Acceleration Methods While our work focuses on a single draft candidate and
single verification scheme to understand the fundamentals of multimodal speculative decoding, other
approaches use multiple draft candidates (Yang et al., 2024; Cai et al., 2024) and multi-verification
schemes with tree attention (Miao et al., 2023b). Our method is easily compatible with token tree
verification and could benefit from such integrations.

Extending to additional Modalities Most MLLMs focus on text and image modalities, but recent
efforts are expanding to include other types, such as audio Fu et al. (2024). A lightweight Automatic
Speech Recognition (ASR) model could convert audio to text for integration into text-only drafting,
particularly since audio data often involves long context and high computational costs. This ap-
proach could also support ensemble drafting, potentially improving performance and robustness.

8 CONCLUSION

This paper provides a comprehensive analysis of MLLM speculative decoding, exploring and inte-
grating drafting techniques for speculative decoding in multimodal scenarios, with a focus on the
often-overlooked decoding stage of MLLM inference. We introduce In-batch Ensemble Drafting
(IbED), which combines probability distributions from multiple drafting methods by batch inference
during speculative decoding, requiring no additional model parameters and adding negligible over-
head. This approach significantly improves block efficiency and robustness across diverse inputs.
Our work demonstrates that efficient acceleration of MLLMs is achievable without compromising
output fidelity, paving the way for practical and widespread applications of MLLMs.
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A TRAINING AND HYPERPARAMETERS

The process for creating LLaVA-ft was divided into two stages: pre-training and instruction fine-
tuning (IFT). Pre-training focuses on training the projector while the parameters of the LLM and
vision encoder are frozen. During the IFT stage, visual instruction tuning is used to teach the LLM
to follow multimodal instructions. The vision encoder remains frozen throughout both stages. We
trained the draft model using datasets curated by the original author of Llava (Liu et al., 2023). For
more training details, see https://github.com/haotian-liu/LLaVA/tree/main.

Hyperparameter Value
Training Epochs 1

Batch Size 256
Learning Rate (LR) 1e-3
LR Schedule Type Cosine

Warm-up Ratio 0.03
Weight Decay 0.0

(a) Hyperparameters used for pretraining LLaVA-ft

Hyperparameter Value
Training Epochs 1

Batch Size 128
Learning Rate (LR) 2e-5
LR Schedule Type Cosine

Warm-up Ratio 0.03
Weight Decay 0.0

(b) Hyperparameters used for fine-tuning LLaVA-ft

Table 4: Training details and hyperparameters.

B BENCHMARK DATASETS

B.1 CURATION OF BENCHMARK DATASETS

Single-Image vs Multi-Image In the LLaVA-1.5 model, each image is represented by 576 visual
tokens. Therefore, the proportion of visual tokens is significantly higher compared to text tokens,
and as the number of images increases, this proportion becomes even larger. Hence, it is important
to examine how the evaluation results vary based on the number of images. Consequently, we assess
the performance of speculative decoding across a range of images, from single-image datasets to
multi-image datasets.

Open-ended vs Closed-ended Although the prefilling stage is significantly more time-consuming
than a single decoding step, speculative decoding has been developed primarily for the decoding
stage rather than the prefill stage. Therefore, open-ended questions are better than closed-ended
ones for generating sufficiently long outputs to evaluate the performance of speculative decoding.

B.2 DETAILS OF SINGLE IMAGE DATASETS

What is the man doing in the street?

(a) VQAv2

How many food item is shown in
the bar graph?

(b) ChartQA

What is the brand of phone?

(c) TextVQA

Are the two yellow lines the same
length?

(d) HallusionBench

Figure 8: Qualitatative samples of single image datasets.

VQAv2 (Goyal et al., 2017) A visual question answering dataset that is well-balanced due to the
inclusion of pairs of images/prompts that are similar but result in different answers. The subset used
for evaluation in our work contains 100 pairs of images and questions.

https://huggingface.co/datasets/lmms-lab/VQAv2
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ChartQA (Masry et al., 2022) An image-text question answering dataset for testing visual com-
prehension of charts. The subset used for evaluation in our work contains 100 pairs of images and
questions.

https://huggingface.co/datasets/lmms-lab/ChartQA

TextVQA (Singh et al., 2019) A visual question answering dataset that requires reading and rea-
soning about text within a provided image. The subset used for evaluation in our work contains 100
pairs of images and questions.

https://huggingface.co/datasets/lmms-lab/textvqa

HallusionBench (Guan et al., 2024) A dataset designed to measure the ability of large vision lan-
guage models to reason despite hallucinations. The subset used for evaluation in our work contains
100 question and answer pairs.

https://huggingface.co/datasets/lmms-lab/HallusionBench

B.3 DETAILS OF MULTI IMAGE DATASETS

Spot the Difference (Jhamtani & Berg-Kirkpatrick, 2018) A dataset of crowd-sourced descrip-
tions of differences between a pair of images. The subset used for evaluation in our work contains
100 annotated image pairs collected using individual frames of security-footage data.

https://huggingface.co/datasets/lmms-lab/LLaVA-NeXT-Interleave-Bench

IEdit (Tan et al., 2019) A dataset to train models to describe the relationship between images via
editing instructions. The subset used for evaluation in our work contains 100 image pairs of a source
image and a target image, accompanied by instructions on how to transform the source image into
the target.

https://huggingface.co/datasets/lmms-lab/LLaVA-NeXT-Interleave-Bench

Pororo-SV (Li et al., 2019) A dataset of stories each created by pairing 5 consecutive frames
from the animated series Pororo with a text description. The subset used for evaluation in our work
contains 100 stories.

https://huggingface.co/datasets/lmms-lab/LLaVA-NeXT-Interleave-Bench

VIST (Huang et al., 2016) A dataset of sequential images paired with three types of descriptions
ranging from isolated factual descriptions to causal, narrative interpretations. The subset used for
evaluation in our work contains 100 sequences of 3 images.

https://huggingface.co/datasets/lmms-lab/LLaVA-NeXT-Interleave-Bench

C SYSTEM PROMPTS AND TEXT-ONLY DRAFTING

We use the following system prompts for their respective tasks. The <image> token is used to
represent image data within a prompt. [QUESTION] and [CAPTION] are a placeholders denot-
ing information unique to each sample of a dataset. For text-only drafting, the <image> token is
replaced by the escape character \n. We experimented with several replacement methods: (1) tok-
enizing the <image> string into three tokens, and (2) retaining the special token <image> without
replacing it with an image embedding. Method (2) resulted in very poor block efficiency, but method
(1) showed comparable block efficiency. Our replacement approach is simple because it ensures that
the prompt length remains consistent before and after replacement.

ChartQA <s> USER: <image> For the following question, provide a detailed explanation of
your reasoning leading to the answer. [QUESTION] ASSISTANT:
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TextVQA <s> USER: <image> For the following question, provide a detailed explanation of
your reasoning leading to the answer. [QUESTION] ASSISTANT:

VQAv2 <s> USER: <image> For the following question, provide a detailed explanation of your
reasoning leading to the answer. [QUESTION] ASSISTANT:

HallusionBench <s> USER: <image> For the following question, provide a detailed explana-
tion of your reasoning leading to the answer. [QUESTION] ASSISTANT:

Spot The Difference <s> USER: Explain the disparities between the first and second image.
<image> <image> Difference: ASSISTANT:

IEdit <s> USER: Please provide instructions for editing the source image to match the target
image. Source Image: <image> Target Image: <image> Instruction: ASSISTANT:

PororoSV <s> USER: Given the progression of the story with the first few images, can you write
a fitting end considering the last image? <image> Caption #1: [CAPTION] <image> Caption #2:
[CAPTION]. <image> Caption #3: [CAPTION] <image> Caption #4: [CAPTION] <image>
Caption #5: ASSISTANT:

VIST <s> USER: With the narratives paired with the initial images, how would you conclude
the story using the last picture? <image> Caption #1: [CAPTION] <image> Caption #2: [CAP-
TION]. <image> Caption #3: [CAPTION] <image> Caption #4: [CAPTION] <image> Caption
#5: ASSISTANT:

D POOLED MULTIMODAL DRAFTING

While we conduct pooled multimodal drafting without further fine-tuning, we also investigate how
the performance of speculative decoding changes when visual instruction tuning is performed using
pooling.

Table 5 presents the block efficiency results for the finetuned draft model across various pooling
methods. The results demonstrate that the block efficiency of the finetuned model is higher than that
of the non-finetuned model.

Target / Draft n = 1 n = 2 n = 5 n = 1 n = 2 n = 5

Model Size Method ChartQA TextVQA VQAv2 Hallusion Spot IEdit PororoSV VIST Avg. Avg. Avg.

LLaVA 1.5 7B / 68M

multimodal 2.24 2.12 2.26 2.39 2.34 2.19 1.19 1.16 2.25 2.26 1.17
pool (144) 2.23 2.08 2.26 2.36 2.23 2.22 2.07 2.09 2.23 2.23 2.08
pool (144, ft) 2.26 2.09 2.26 2.39 2.38 2.24 2.27 2.27 2.25 2.31 2.27
pool (36) 2.17 2.01 2.21 2.32 2.20 2.23 2.05 2.06 2.18 2.21 2.05
pool (36, ft) 2.22 2.06 2.25 2.38 2.36 2.26 2.19 2.23 2.23 2.31 2.21
pool (9) 2.20 2.03 2.21 2.34 2.25 2.24 2.06 2.08 2.20 2.25 2.07
pool (9, ft) 2.23 2.05 2.22 2.37 2.37 2.25 2.18 2.21 2.22 2.31 2.20
pool (1) 2.23 2.03 2.23 2.37 2.25 2.26 2.06 2.07 2.21 2.25 2.06
pool (1, ft) 2.23 2.06 2.21 2.37 2.39 2.27 2.21 2.22 2.22 2.33 2.21
text-only 2.22 2.03 2.20 2.34 2.27 2.23 2.05 2.05 2.20 2.25 2.05

Table 5: Block efficiency results for various pooling methods.

E CAPTION DRAFTING

In this section, we describe various types of lightweight image captioning models that can be used
for caption drafting and report the performance of speculative decoding when each model is utilized.

E.1 MODEL LISTS

BLIP (Li et al., 2022) A vision-language model trained on bootstrapped synthetic captions. It
uses a visual transformer and the text encoder of BERT Devlin et al. (2019) to separately encode
image and text.
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https://huggingface.co/Salesforce/blip-image-captioning-base

BLIP-2 (Li et al., 2023) A vision-language model using a frozen off-the-shelf image encoder and
LLM. A querying transformer trained using boostrapped data is included for cross-modal alignment.

https://huggingface.co/Salesforce/blip2-opt-2.7b

Florence-2 (Xiao et al., 2024) A vision-language model that is instruction-trained for a variety of
tasks. Its architecture consists of a single sequence-to-sequence transformer and a vision encoder.

https://huggingface.co/microsoft/Florence-2-large-ft

E.2 ADDITIONAL EXPERIMENTAL RESULTS

The default caption model utilized in our study is Florence-2, which also supports the generation of
detailed captions. However, the latency associated with generating detailed captions is longer com-
pared to default captions. We report the results obtained using the detailed captions from Florence-2
and additionally evaluate the performance of other off-the-shelf image captioning models such as
BLIP and BLIP-2.

Table 6 presents the block efficiency results for various image captioning models. Florence-2 (C)
refers to our default setting, while Florence-2 (MDC) refers to the more detailed caption.

Table 7 presents the block efficinecy results of ensemble drafting by detailed captions. The block
efficiency is higher in the ensemble result using detailed captions compared to the case with default
captions. Table 8 presents the block efficiency results with detailed caption by various ensemble
weights.

Target / Draft n = 1 n = 2 n = 5 n = 1 n = 2 n = 5

Model Size Method ChartQA TextVQA VQAv2 Hallusion Spot IEdit PororoSV VIST Avg. Avg. Avg.

LLaVA 1.5 7B / 68M

Multimodal 2.24 2.12 2.26 2.39 2.34 2.19 1.19 1.16 2.25 2.26 1.17
Text-only 2.22 2.03 2.20 2.34 2.27 2.23 2.05 2.05 2.20 2.25 2.05
Florence-2 (C) 2.28 2.08 2.24 2.41 2.31 2.29 2.08 2.10 2.25 2.30 2.09
Florence-2 (MDC) 2.27 2.11 2.26 2.44 2.28 2.29 2.10 2.11 2.27 2.29 2.10
BLIP 2.23 2.02 2.23 2.40 2.28 2.27 2.12 2.10 2.22 2.27 2.11
BLIP-2 2.25 2.07 2.23 2.37 2.30 2.29 2.09 2.12 2.23 2.29 2.10

Table 6: Block efficiency results for various image captioning models.

Target / Draft n = 1 n = 2 n = 5 n = 1 n = 2 n = 5

Model Size Method ChartQA TextVQA VQAv2 Hallusion Spot IEdit PororoSV VIST Avg. Avg. Avg.

LLaVA 1.5 7B / 68M

M 2.24 2.12 2.26 2.39 2.34 2.19 1.19 1.16 2.25 2.26 1.17
T 2.22 2.03 2.20 2.34 2.27 2.23 2.05 2.05 2.20 2.25 2.05
C (C) 2.28 2.08 2.24 2.41 2.31 2.29 2.08 2.10 2.25 2.30 2.09
C (MDC) 2.27 2.11 2.26 2.44 2.28 2.29 2.10 2.11 2.27 2.29 2.10
MT 2.26 2.13 2.27 2.39 2.40 2.31 1.94 1.91 2.26 2.35 1.92
MC 2.30 2.17 2.29 2.42 2.39 2.32 1.99 1.93 2.29 2.35 1.96
MC (MDC) 2.31 2.17 2.30 2.46 2.38 2.33 1.99 1.96 2.31 2.35 1.98
MTC (C) 2.29 2.15 2.28 2.41 2.41 2.30 2.08 2.06 2.28 2.35 2.07
MTC (MDC) 2.29 2.15 2.29 2.44 2.40 2.33 2.09 2.08 2.29 2.37 2.08

Table 7: Block efficiency results of ensemble drafting with detailed captions.

F ENSEMBLE DRAFTING

In this section, we investigate how the performance of ensemble drafting varies as we adjust the
ensemble weights. Specifically, given our prior assumption that multimodal drafting generally per-
forms better, we conduct experiments by varying the weight of multimodal drafting from 1 to 4. The
numbers in parentheses represent the weight assigned to multimodal drafting.
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Target / Draft n = 1 n = 2 n = 5 n = 1 n = 2 n = 5

Model Size Method ChartQA TextVQA VQAv2 Hallusion Spot IEdit PororoSV VIST Avg. Avg. Avg.

LLaVA 1.5 7B / 68M

M 2.24 2.12 2.26 2.39 2.34 2.19 1.19 1.16 2.25 2.26 1.17
T 2.22 2.03 2.20 2.34 2.27 2.23 2.05 2.05 2.20 2.25 2.05
C (C) 2.28 2.08 2.24 2.41 2.31 2.29 2.08 2.10 2.25 2.30 2.09
C (MDC) 2.27 2.11 2.26 2.44 2.28 2.29 2.10 2.11 2.27 2.29 2.10
MC (C, 1) 2.30 2.17 2.29 2.42 2.39 2.32 1.99 1.93 2.29 2.35 1.96
MC (C, 2) 2.30 2.17 2.30 2.41 2.39 2.31 1.80 1.71 2.29 2.35 1.75
MC (C, 3) 2.29 2.16 2.29 2.40 2.38 2.29 1.66 1.56 2.29 2.33 1.61
MC (C, 4) 2.28 2.16 2.29 2.40 2.37 2.28 1.56 1.46 2.28 2.33 1.51
MC (MDC, 1) 2.31 2.17 2.30 2.46 2.38 2.33 1.99 1.96 2.31 2.35 1.98
MC (MDC, 2) 2.30 2.17 2.30 2.44 2.37 2.31 1.83 1.73 2.30 2.34 1.78
MC (MDC, 3) 2.28 2.16 2.30 2.43 2.37 2.29 1.68 1.58 2.29 2.33 1.63
MC (MDC, 4) 2.27 2.16 2.29 2.43 2.36 2.27 1.57 1.48 2.29 2.31 1.52
MTC (1) 2.29 2.15 2.28 2.41 2.41 2.30 2.08 2.06 2.28 2.35 2.07
MTC (2) 2.29 2.17 2.29 2.42 2.41 2.30 1.99 1.96 2.29 2.35 1.98
MTC (3) 2.28 2.17 2.29 2.41 2.39 2.29 1.90 1.83 2.29 2.34 1.86
MTC (4) 2.28 2.16 2.29 2.40 2.39 2.28 1.80 1.71 2.28 2.33 1.75
MTC (MDC, 1) 2.29 2.15 2.29 2.44 2.40 2.33 2.09 2.08 2.29 2.37 2.08
MTC (MDC, 2) 2.29 2.16 2.30 2.43 2.41 2.34 2.01 1.95 2.29 2.38 1.98
MTC (MDC, 3) 2.29 2.17 2.30 2.42 2.40 2.32 1.92 1.82 2.29 2.36 1.87
MTC (MDC, 4) 2.28 2.17 2.30 2.42 2.39 2.30 1.81 1.71 2.29 2.34 1.76

Table 8: Block efficiency results with detailed captions for various ensemble weights.

Target / Draft n = 1 n = 2 n = 5 n = 1 n = 2 n = 5

Model Size Method ChartQA TextVQA VQAv2 Hallusion Spot IEdit PororoSV VIST Avg. Avg. Avg.

LLaVA 1.5 7B / 68M

M 2.24 2.12 2.26 2.39 2.34 2.19 1.19 1.16 2.25 2.26 1.17
T 2.22 2.03 2.20 2.34 2.27 2.23 2.05 2.05 2.20 2.25 2.05
C 2.28 2.08 2.24 2.41 2.31 2.29 2.08 2.10 2.25 2.30 2.09
P 2.23 2.08 2.26 2.36 2.23 2.22 2.07 2.09 2.23 2.23 2.08
MT (1) 2.26 2.13 2.27 2.39 2.40 2.31 1.94 1.91 2.26 2.35 1.92
MT (2) 2.26 2.13 2.29 2.39 2.40 2.29 1.76 1.69 2.27 2.34 1.73
MT (3) 2.26 2.13 2.28 2.40 2.38 2.28 1.63 1.54 2.27 2.33 1.58
MT (4) 2.26 2.14 2.28 2.40 2.36 2.26 1.54 1.45 2.27 2.31 1.50
MC (1) 2.30 2.17 2.29 2.42 2.39 2.32 1.99 1.93 2.29 2.35 1.96
MC (2) 2.30 2.17 2.30 2.41 2.39 2.31 1.80 1.71 2.29 2.35 1.75
MC (3) 2.29 2.16 2.29 2.40 2.38 2.29 1.66 1.56 2.29 2.33 1.61
MC (4) 2.28 2.16 2.29 2.40 2.37 2.28 1.56 1.46 2.28 2.33 1.51
MTC (1) 2.29 2.15 2.28 2.41 2.41 2.30 2.08 2.06 2.28 2.35 2.07
MTC (2) 2.29 2.17 2.29 2.42 2.41 2.30 1.99 1.96 2.29 2.35 1.98
MTC (3) 2.28 2.17 2.29 2.41 2.39 2.29 1.90 1.83 2.29 2.34 1.86
MTC (4) 2.28 2.16 2.29 2.40 2.39 2.28 1.80 1.71 2.28 2.33 1.75
MTCP (1) 2.29 2.17 2.29 2.42 2.41 2.33 1.99 1.93 2.29 2.37 1.96
MTCP (2) 2.28 2.17 2.29 2.41 2.40 2.31 1.90 1.81 2.29 2.35 1.85
MTCP (3) 2.28 2.16 2.29 2.40 2.40 2.31 1.79 1.70 2.28 2.35 1.75
MTCP (4) 2.28 2.16 2.29 2.40 2.39 2.29 1.71 1.62 2.28 2.34 1.67

Table 9: Block efficiency results of ensemble drafting for various weights.

G LATENCY ANALYSIS

G.1 PREFILL VS DECODE

This experiment shows how long it takes to perform prefill versus autoregressive decoding on our
68M VLM draft model. With sequence length set to 200 and batch size 1, we found that the latency
of prefilling is slightly higher than autoregressive decoding, as shown in Table 10, and in Table 11
and Figure 9. This is because the model processes longer sequences during the prefill stage. For
models this small, the autoregressive stage is neither bounded by memory nor computation and can
leverage GPU cache to store parts of KV cache and therefore leads to lower autoregressive decoding
latency compared to the prefilling stage.

Stage Time Taken (ms)
Prefill 35.6

Decode 27.1

Table 10: This table shows the time taken for prefill stage and autoregressive decoding stage on our
68M VLM draft model.
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G.2 PREFILL LENGTH

The experiment examines the time taken to perform the prefill operation for different sequence
lengths, specifically at lengths of 200, 1200, and 2200 tokens. The results are summarized in Table
11, which shows the time taken in milliseconds (ms) for each sequence length. We perform this on
an A100 GPU on our 68M VLM draft model. This table shows that at our draft model’s size, prefill
time does not vary with different prefill lengths since we are not computationally bound.

Prefill Length Time Taken (ms)
200 35.6
1200 35.7
2200 35.7

Table 11: This table shows the time taken for prefill stage at different sequence lengths for our 68M
VLM draft model.

G.3 BATCH SIZE

This experiment shows how decoding time changes as we increase batch size.
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Figure 9: This figure shows the per-step autoregressive decoding latency for different batch sizes
across varying auto-regression steps on our 68M VLM draft model.

ANALYSIS

Figure 9 illustrates the per-step latency for different batch sizes (from 1 to 64) as the number of
auto-regression steps increases from 0 to 200. The x-axis represents the number of auto-regression
steps, while the y-axis shows the per-step latency in milliseconds (ms) for our 68M multi-modal
draft model.

Several key observations can be made from this figure: The per-step latency increases slightly with
larger auto-regression steps. However, this increase is marginal, suggesting that the model maintains
consistent performance across a wide range of sequence lengths. The plot shows that increasing
batchsize does not affect per-step decoding latency as we are neither bounded by computation nor
by memory bandwidth.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

H EVALUATION OF TARGET AND DRAFT MODELS ON MULTIMODAL TASKS

In this section, we present a comprehensive evaluation of both target and draft models on multimodal
tasks to better understand the multimodal performance of the model itself. We evaluate LLaVA-
1.5 7B, which serves as the target model in our experimental setting, and LLaVA-1.5 68M, which
functions as the draft model. Additionally, to investigate the relationship between image-aware
capability and language modeling proficiency, we fine-tune LLaVA-1.5 68M using varying numbers
of visual tokens per image.

Table 12 shows the evaluation results on various MLLM tasks. For the 7B model, it shows signifi-
cantly better performance for each task compared to the 68M model, but it can be confirmed that the
68M model also meets the minimum performance requirements. As the number of visual tokens in-
creases, it can be observed that the performance of multimodal improves, whereas the performance
of text-only slightly decreases. This suggests that the limited capacity of the 68M model is shared
between image-aware capabilities and language modeling capabilities.

Fig. 10 presents qualitative evaluation samples from the OCRBench dataset, comparing the perfor-
mance of LLaVA-1.5 7B and 68M models. Both LLaVA-1.5 7B and 68M models provided accurate
responses, whereas the text-only LLaVA-1.5 68M model failed to answer correctly due to its lack of
image-processing capabilities.

ChartQA OCRBench TextCaps

Model Size # visual tokens Method Accuracy Accuracy METEOR ROUGE

LLaVA 1.5 7B 576 (default) multimodal 0.20 0.207 0.249 0.48

LLaVA 1.5 68M

576 (default)

multimodal

0.09 0.048 0.133 0.254
144 (finetuned) 0.08 0.039 0.125 0.251

36 (finetuned) 0.02 0.025 0.106 0.176
9 (finetuned) 0.00 0.009 0.116 0.192
1 (finetuned) 0.00 0.002 0.066 0.136

LLaVA 1.5 68M

576 (default)

text-only

0.04 0.014 0.064 0.132
144 (finetuned) 0.06 0.017 0.076 0.141

36 (finetuned) 0.07 0.016 0.080 0.161
9 (finetuned) 0.07 0.017 0.085 0.178
1 (finetuned) 0.08 0.016 0.079 0.152

Table 12: Evaluation results on MLLM tasks.

What is written in the image?

(a) Instruction

The image has the word “friend”
written on it.

(b) Multimodal (7B)

The word “friend” is written in the
image.

(c) Multimodal (68M)

The image is a type of text that is
written in the image.

(d) Text-only (68M)

Figure 10: Qualitative evaluation samples from the OCRBench dataset by LLaVA-1.5 7B and 68M.

I DRAFT MODEL WITHOUT VISUAL INSTRUCTION TUNING

In this section, we examine the performance of speculative decoding when using a pretrained
LLaMA 68M model without visual instruction tuning as the draft model. Furthermore, we assess
the performance of a model fine-tuned through visual instruction tuning using text only, without a
visual encoder.

Table 13 shows the block efficiency results of pretrained and finetuned LLaMA 68M. In the case of
the LLaMA 68M, it has not been fine-tuned with the dataset used for training the target model, its
performance is inferior compared to the text-only LLaVA 68M.
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Target / Draft n = 1 n = 2 n = 5 n = 1 n = 2 n = 5

Model Size Method ChartQA TextVQA VQAv2 Hallusion Spot IEdit PororoSV VIST Avg. Avg. Avg.

LLaVA / LLaMA 7B / 68M pretrained 2.06 1.75 1.83 2.23 1.95 2.06 1.76 1.72 1.97 2.00 1.74
finetuned 2.21 2.03 2.24 2.37 2.27 2.27 2.02 2.05 2.21 2.27 2.04

LLaVA / LLaVA 7B / 68M multimodal 2.24 2.12 2.26 2.39 2.34 2.19 1.19 1.16 2.25 2.26 1.17
text-only 2.22 2.03 2.20 2.34 2.27 2.23 2.05 2.05 2.20 2.25 2.05

Table 13: Block efficiency results of pretrained and finetuned LLaMA 68M.

J ADDITIONAL ANALYSIS ON MULTIMODAL DRAFTING AND TEXT-ONLY
DRAFTING

Figure 11 analyzes the frequency of correctly decoded tokens by dataset as decoding progresses. In
the very early stages, text-only drafting tends to outperform multimodal drafting, as the text context
alone is often sufficient (e.g., ‘The jersey design’ in Figure 4 can be easily inferred from the text
prompt alone). However, when image information becomes necessary, multimodal drafting gains
an advantage, until the middle-to-later stages, where the accumulated text context leads to similar
performance for both methods.
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(a) HallusionBench (n = 1)
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(b) Spot-the-Diff (n = 2)
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(c) VIST (n = 5)

Figure 11: Histograms of accepted token count according to normalized time step on various
datasets.
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