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ABSTRACT

In practical settings, differentially private Federated learning (DP-FL) is the dom-
inant method for training models from private, on-device client data. However,
recent work has suggested that DP-FL may be enhanced or even outperformed by
methods that rely on DP synthetic data Wu et al. (2024); Hou et al. (2024). The
primary algorithms for generating DP synthetic data for FL applications require
careful prompt engineering; prompts are based on public information and/or iter-
ative private client feedback. Our key insight is that the private client feedback
collected by prior methods for generating synthetic data Hou et al. (2024); Xie
et al. (2024) can be viewed as a preference ranking. Our algorithm, Preference Op-
timization for Private Client Data (POPri) harnesses client feedback using powerful
preference optimization algorithms such as Direct Preference Optimization (DPO)
to fine-tune LLMs to generate high-quality DP synthetic data. We substantially
improve the utility of DP synthetic data relative to prior work; on our bioRxiv
dataset, POPri closes the gap between next-token prediction accuracy in the fully-
private and non-private settings by up to 68%, compared to 52% for prior synthetic
data methods, and 10% for state-of-the-art DP federated learning methods. We
showcase the performance of POPri on (1) an existing benchmark from Xie et al.
(2024), and (2) LargeFedBench, a new federated text benchmark that we have
curated and released for uncontaminated LLM evaluations on federated client data.

1 INTRODUCTION

Many important machine learning (ML) applications feature sensitive datasets that are distributed
across client devices (e.g. mobile devices). Such ML models are often hosted on client devices;
these on-device models offer privacy, latency, and storage benefits relative to centrally-hosted models.
Examples include Google’s GBoard (Hard et al., 2019; Xu et al., 2023b; Wu et al., 2024) and Apple’s
mobile automatic speech recognition system (Paulik et al., 2021). Today, federated learning (FL) is
the most widely-used approach in practice for learning on-device models; it trains models locally on
user devices and aggregates model updates on a central server McMahan et al. (2017a). FL protects
the privacy of client data in part by adopting differentially private (DP) Dwork (2006) optimization
techniques, a combination we refer to as DP-FL McMahan et al. (2017a); Kairouz et al. (2021b);
Nguyen et al. (2022); Xu et al. (2023a).

With breakthroughs in large language model (LLM) capabilities (Anil et al., 2023; Team et al.,
2023; Achiam et al., 2023; Guo et al., 2025) several research teams have used LLMs to better train
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Figure 1: Left: Private Evolution (PE)-based techniques. Clients generate scores which summarize
the similarity of the synthetic data to their private samples. These are privately aggregated to refine
the synthetic data generation for future iterations. Traditional PE (brown) uses a prompt-based
method. POPri (blue) improves a naive fine-tuning method (PE+SFT, purple) by fine-tuning the
LLM using preference optimization rather than fine-tuning directly on aggregated client feedback.
Right: Next-token prediction accuracy on the bioRxiv dataset at privacy level ϵ = 1. POPri closes
the accuracy gap between the fully-private and non-private settings by 68%, compared to 52% for
prior synthetic data methods, and 10% for DP federated learning methods.

models on private client data. A common strategy applies standard optimization algorithms (e.g., DP
stochastic gradient descent, DP-SGD (Abadi et al., 2016b)) to fine-tune models on private client data
(Kurakin et al., 2023; Charles et al., 2024). These approaches have an important limitation in the
on-device setting: frontier LLMs today are too large to fit on client devices, let alone train on them
Radford et al. (2019); Touvron et al. (2023); Yuan et al. (2023).

To sidestep the size issue, Wu et al. (2024); Hou et al. (2024) view the problem of learning from
distributed, private client data (partially) as a DP synthetic data problem. These approaches use
LLM-assisted workflows to generate privacy-preserving synthetic data, similar to client data, at the
server; then they train the on-device model at the server on the synthetic data. This avoids storing the
LLM on client devices. In more detail, Wu et al. (2024) use prior public information about the clients
to create LLM-generated synthetic data for pretraining. However, prior information may not always
be available. Moreover, the tailored prompt design was not refined based on clients’ realized data.

PrE-Text (Hou et al., 2024) uses Private Evolution (PE) (Lin et al., 2023; Xie et al., 2024) to iteratively
refine prompts based on client feedback. Clients assess synthetic samples’ relevance to their data and
sends this feedback back to the server, which allows the server to discard irrelevant synthetic samples
and update synthetic sample generation prompts. Finally, a downstream model is fine-tuned on the
relevant synthetic data. This method of utilizing LLMs for on-device learning has some shortcomings:
(1) it relies entirely on prompting to teach the LLM to generate relevant synthetic data, and does not
fine-tuning the weights. (2) Discarding irrelevant samples may lose valuable information, as seen in
RLHF (Ouyang et al., 2022).

In this paper, we demonstrate how to better utilize LLMs for on-device learning: we propose POPri
(Preference Optimization for Private Client Data), an algorithm that reformulates synthetic data-based
approaches for private on-device learning as an LLM preference optimization problem.

Contributions. In summary, our contributions are:

(1) We propose POPri, a novel method that casts private on-device learning under the synthetic data
framework as an LLM preference optimization problem. Prior work in this space relied on PE, which
uses client feedback exclusively to generate new prompts (Hou et al., 2024; Xie et al., 2024). We
alter this feedback to instead provide client preferences, and subsequently exploit recent advances in
preference optimization—namely, Direct Preference Optimization (DPO) (Rafailov et al., 2023).

(2) We demonstrate the utility of POPri on a new benchmark set of datasets (see contribution #3), as
well as a dataset collected from PubMed (Yu et al., 2023; Xie et al., 2024). Across all datasets, POPri
achieves the best downstream metrics. In Figure 1, on our bioRxiv dataset at privacy level ϵ = 1.0,
POPri outperforms PE-based algorithms by 2 percentage points, and closes the gap between fully
private and non-private baselines by over 68%, compared to 52% for PE. It outperforms DP-FL-based
methods even more. Additional experimental details, results, and ablations are provided in Section 5.

(3) We create and maintain LargeFedBench, an uncontaminated federated benchmark for LLMs,
featuring client-separated data from: (1) congressional records in English-speaking countries, and (2)
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abstracts from bioRxiv, collected starting in April 2023. To our knowledge, this is the first dataset
with both (a) over 1,000 clients (congressional records contains 134k clients and bioRxiv contains 72k
as of August 2024), and (b) regular updates, allowing researchers to filter data to avoid contaminated
evaluations (Magar & Schwartz, 2022; Zhou et al., 2023; Yang et al., 2023; Roberts et al., 2023).

2 PROBLEM STATEMENT AND BACKGROUND

We consider a set S of clients, S = {S1, . . . , Sn}, where Si = {s(i)1 , . . . , s
(i)
mi} denotes the private

text data of client i ∈ [n], and mi denotes the number of text samples held by client i. We consider
the partial participation setting, where only a subset of clients can participate in communication with
the server at any point in time (Kairouz et al., 2021a; McMahan et al., 2017a), reflecting practical
private on-device learning deployments. We assume L clients participate in each round t ≤ T and
denote this set St. We do not assume an a priori upper bound on mi. A central server aims to align a
pre-trained downstream model Φ with private client data, producing an aligned model Φ̃. The server
may utilize a separate pre-trained public LLM Ψ in the process, assuming access to the weights of
both Φ. and Ψ. However, it must adhere to two constraints: (1) client data cannot leave client devices,
and (2) the final model Φ̃ must protect user-level differential privacy (DP).

Neighboring datasets. We say two datasets S and S ′ are neighboring if they differ in at most one
client’s data (i.e., a user-level guarantee). That is, there exists an i ∈ [n] such that for all j ̸= i,
Sj = S′

j .

User-level (distributed) differential privacy (DP). A randomized mechanism M is (ϵ, δ)-DP if,
for any pair of neighboring datasets S, S ′

that differ by one sample and any possible output set
E, it holds that Pr[M(S) ∈ E] ≤ eϵPr[M(S ′

) ∈ E] + δ. The post-processing property of a DP
mechanism ensures that any data-independent transformation applied to its output preserves the same
DP guarantees (Dwork, 2006; Dwork & Roth, 2014).

Goal The server seeks an algorithm to optimize the downstream next-word prediction performance
of Φ̃ on a test set of private client data, subject to an (ϵ, δ)-DP constraint.

Related work There are two main approaches for learning from private data in NLP tasks. The
first are DP optimization-based approaches, where LLMs are fine-tuned using DP-SGD (Abadi et al.,
2016a) on private data (Bommasani & Schofield, 2019; Kurakin et al., 2023; Charles et al., 2024).
However, when client data cannot leave client devices, central servers cannot use this method. An
alternative approach is to train models directly on client devices, using a method called DP-FL
(McMahan et al., 2017a; Kairouz et al., 2021a). In DP-FL, (small) model weights are iteratively send
to clients for on-device DP optimization. However, DP-FL cannot be done with large models like
LLMs, which are too large to fit on client devices. The second type of approach for learning from
private data are synthetic data based approaches. The idea is to create a synthetic version of the client
data satisfying DP guarantees (Yue et al., 2023a; Mattern et al., 2022; Xie et al., 2024), which we can
fine-tune models on. In the private on-device setting, Hou et al. (2024) show that fine-tuning a small
model on DP synthetic text data on the server side can actually outperform DP-FL. Wu et al. (2024)
show that pretraining an on-device model on DP synthetic text can improve DP-FL.

3 POPRI

POPri (Preference Optimization for Private Client Data) is a natural reformulation of private on-
device learning from synthetic data as an LLM preference optimization problem, which enables the
use of powerful LLM alignment methods like DPO (Rafailov et al., 2023).

What client feedback should we collect? A major reason for the success of Private Evolution
(PE) is the fact that it privately collects data structures that are low-dimensional (relative to model
gradients). In PE, the server generates K synthetic data samples (Xie et al., 2024; Hou et al., 2024).
Each client computes a histogram counting how often each of the private samples is closest to one of
the K samples. The client returns a DP histogram by adding Gaussian noise.
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POPri changes the feedback stage by asking the server to generate J samples from each of K prompts,
which allows clients to build a preference dataset. Specifically, each client scores each synthetic
sample by computing the average cosine distance between each synthetic sample and the private data.
Using these client scores, the server can construct a “higher scoring response” and “lower scoring
response” pair (a “preference pair”) for each of the K prompts. We make use of this information as
follows.

How should we use client feedback? Three natural candidates for using client feedback are: (1)
In-Context Learning. We could use the highest-scoring samples as in-context examples for LLM Ψ,
following the PE approach (Hou et al., 2024; Xie et al., 2024). However, in-context learning often
underperforms compared to fine-tuning (Mosbach et al. (2023), Figure 1, Table 1). (2) Supervised

POPri PE + SFT Evaluation Data

Figure 2: 2-PCA visualization of synthetic data from POPri and PE+SFT, and evaluation data. Naively
fine-tuning with SFT on PE-generated synthetic data does not make best use of client feedback.

Fine-Tuning (SFT). One could fine-tune the LLM Ψ on the highest-scoring samples using next-word-
prediction loss, similar to the SFT baseline evaluated by Ouyang et al. (2022) and Rafailov et al.
(2023). However, the highest-scoring samples are not perfect, and SFT incorrectly treats them as
ground truth (Figure 2 and Table 1). (3) Preference Optimization (PO). Methods like DPO (Rafailov
et al., 2023) instead optimize the LLM to generate higher-scoring samples using preference pairs,
leveraging low-dimensional scores from client feedback. POPri uses this approach, as we expect
it to yield higher-quality synthetic data. We avoided RLHF (Ouyang et al., 2022) due to its high
computational demands for training a reward model and did not choose IPO (Gheshlaghi Azar et al.,
2024) based on an ablation in Appendix F.4.

3.1 POPRI ALGORITHM

Pseudocode can be found in Algorithm 1. Algorithmically new steps that differ from PE are in blue .

1. Initial sample population. We start with an initial set of samples Ω, which come from a publicly
available source, either available on the internet or text generated by a publicly available LLM.

2. Synthetic sample generation. We create K prompts (prompt in Appendix C). For each of the
K prompts, we generate J synthetic samples (by running the prompt independently J times). In total,
the server generates K × J synthetic samples and sends them to every client in round t, St.

3. Scoring the quality of the synthetic samples using private client feedback. Next, each
client that received synthetic data score each synthetic sample. Specifically, each client calculates
the average cosine similarity between each K × J synthetic sample and the entire client dataset
(Algorithm 2). These similarities for every synthetic sample are arranged into a vector. We clip this
vector to a norm of 1, which caps the contribution of each client (similar to how gradient updates are
clipped per client in DP-FL (McMahan et al., 2017a)). This is done primarily for privacy reasons,
as we will elaborate later. Clipping also ensures that the contribution of clients with large amounts
of data does not overwhelm the contribution of clients with small amounts of data. We then add
N (0, σ2I/L) (where I is the identity matrix of size KJ×KJ) noise to the resulting vector to ensure
DP (σ2 controls the (ϵ, δ)). Finally, we aggregate scores via secure aggregation (Bonawitz et al.,
2016), yielding a DP score for each synthetic sample that reflects its relevance to client data.

4. LLM Preference Optimization. Our key insight is that generating J synthetic samples from
K prompts and scoring them with DP client feedback enables the creation of a preference dataset. For
each prompt, we designate the highest-scoring sample as “chosen” and the ℓ-th highest as “rejected”.
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This resulting preference dataset can then be passed, along with the LLM Ψ, into the DPO preference
optimization loss (Rafailov et al., 2023):

min
Ψ

E
x,yω
yr

[− log s(τ log(
Ψ(yω|x)
Ψ(yr|x)

)− τ log(
Ψref(yω|x)
Ψref(yr|x)

))]

where Ψref is a fixed LLM checkpoint (we use a public one), τ controls Ψ’s deviation from Ψref, x
is the prompt, yω and yr are the chosen and rejected samples, Ψ(y|x) is the generation probability,
and s is the sigmoid function. The expectation is taken with respect to the empirical distribution (i.e.
real samples). DPO loss fine-tunes Ψ to favor generating chosen samples over rejected ones. To
reduce GPU memory use, we apply LoRA (Hu et al., 2021) with rank 4 and α = 8 on all attention
and projection matrices. After fine-tuning on K prompts and preference pairs, we return to step (2)
to generate new synthetic data with the updated Ψ.

5. Synthetic data generation for downstream tasks. Using the final version of Ψ, we generate
a large set of synthetic data Ssyn,T+1 which is used to fine-tune Φ into Φ̃. Φ̃ is then sent to all the
client devices, where they can perform inference without communicating information to the server.

Privacy guarantees. Because each client’s vector is clipped to 1, and the only information revealed
to the server (or any other party) is the aggregated vector, the sensitivity of the algorithm is 1. We
add N (0, σ2I/L) noise to each client’s vector, so the vector given to the server has noise N (0, σ2I),
satisfying the Gaussian Mechanism with sensitivity 1. To calculate privacy, we can use a privacy
accountant like OPACUS.ACCOUNTANTS.ANALYSIS.RDP (Yousefpour et al., 2021), and input
T (number of rounds we run the algorithm), q (fraction of clients sampled per round), δ, and set σ to
get the desired ϵ value.

4 LARGEFEDBENCH: A FEDERATED BENCHMARK FOR LLM EVALUATION

The most widely used federated learning text datasets, released by Reddi et al. (2020) include
StackOverflow and Shakespeare text but present two challenges: (1) They pre-tokenize inputs in a
non-invertible way, which prevents researchers from using custom tokenizers adopted by several
LLMs. (2) They risk evaluation contamination, as state-of-the-art LLMs may have been trained on
similar public datasets (Magar & Schwartz, 2022; Zhou et al., 2023; Yang et al., 2023; Roberts et al.,
2023). To our knowledge, no benchmarks today have both production-level client numbers (at least
10,000) and prevent evaluation contamination (Ye et al., 2024).

We release LargeFedBench, a benchmark comprising two new datasets, Congressional Speeches
and bioRxiv, for experiments over federated client data. These datasets (a) allow researchers to
easily avoid contamination, and (b) provide enough distinct clients to simulate production settings.
Congressional Speeches (“Congress”)1 contains 134k speeches or debates from US, UK, and
Canadian transcripts. Each speech is treated as a client, with 64-token spans as samples. The bioRxiv
dataset 2 includes 72k biology paper abstracts, each treated as a client dataset, with 64-token spans as
samples. More details are in Appendix G.

Our datasets are updated every 6 months and sorted by date, so researchers can select datasets
generated after their model’s knowledge cutoff date. E.g., we use data from LargeFedBench published
between the dates of April 2023 to August 2024 to avoid contamination with our LLM evaluation
model, LLaMA-3-8B (AI@Meta, 2024)—which has a knowledge cutoff of March 2023.

5 EXPERIMENTS

Datasets We evaluate POPri on the LargeFedBench datasets (Congress and bioRxiv), as well as a
third PubMed dataset (Yu et al., 2023; Xie et al., 2024) used in the evaluation of Private Evolution
(Aug-PE) (Xie et al., 2024). PubMed contains abstracts of medical papers published between August
1-7, 2023 (details in Appendix E.2.2).

1https://huggingface.co/datasets/hazylavender/CongressionalDataset
2https://huggingface.co/datasets/hazylavender/biorxiv-abstract
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Table 1: Next-token prediction accuracy (%, ↑) of different algorithms. The highest accuracy across
all methods is in bold. All standard deviation error bars are less than 0.5.

Dataset Method Data Type On-device Model ϵ = ∞ ϵ = 7 ϵ = 1 ϵ = 0

bioRxiv

DP-FedAvg Original

DistilGPT2 72.2

61.7 61.7

60.6
DP-FTRL Original 61.8 61.8

PE Synthetic 66.2 66.3
PE + SFT Synthetic 64.8 64.6

POPri (ours) Synthetic 68.6 68.6

Congress

DP-FedAvg Original

DistilGPT2 74.5

69.2 69.2

68.4
DP-FTRL Original 69.1 69.1

PE Synthetic 70.3 70.4
PE + SFT Synthetic 70.0 70.2

POPri (ours) Synthetic 71.3 71.3

Dataset Method Data Type On-device Model ϵ = ∞ ϵ = 4 ϵ = 1

PubMed

PE GPT-2-Large, Synthetic (2000)
BERTsmall 47.6

27.9 27.2
PE Llama-2-7b-chat-hf, Synthetic (2000) — 27.5
PE Opt-6.7b, Synthetic (2000) — 27.9

POPri (ours) Synthetic (2000) 29.2 29.4

Models. We use LLaMA-3-8B (Grattafiori et al., 2024) as the LLM Ψ (knowledge cutoff: March
2023 AI@Meta (2024)) and ‘all-MiniLM-L6-v2’ for embedding-based semantic distance. DistilGPT2
(Sanh et al., 2019), with 82M parameters, serves as the on-device model. For synthetic text generation,
the max sequence length is 64 for bioRxiv and Congressional Speeches, and 512 for PubMed. During
training, we select the best validation-performing checkpoint for final evaluation.

Metrics. We primarily evaluate each method under next-token prediction accuracy of the final
downstream on-device model Φ̃. In some ablations we also measure the distance of the synthetic
dataset to the private dataset using the Fréchet Inception Distance (FID) (Heusel et al., 2017).

Baselines. We compare POPri with baselines: (1) DP-FedAvg (McMahan et al., 2017b), (2) DP-
FTRL (Kairouz et al., 2021a), and (3) Private Evolution methods (PrE-Text (Hou et al., 2024), Aug-PE
(Xie et al., 2024)). DP-FedAvg and DP-FTRL fine-tune the downstream model Φ on client data,
while Private Evolution generates synthetic data for fine-tuning. On PubMed, we compare Aug-PE
using similarly sized models (∼8B parameters), though their best results rely on GPT-3.5 (175B),
limiting direct comparison. We also include fully private (ϵ = 0) and fully non-private (ϵ = ∞)
baselines. The ϵ = 0 baseline evaluates the public DistilGPT2 checkpoint without fine-tuning, while
ϵ = ∞ fine-tunes DistilGPT2 on the private training set. More details are in Appendices D and E.2.

All baselines use a privacy guarantee of (ϵ, δ)-DP where δ=3×10−6 and ϵ=1 or ϵ=7 for each of the
bioRxiv and Congressional Speeches datasets. For PubMed, we set δ = 1

Npriv·log(Npriv)
(Npriv is

the number of private samples) and ϵ=1 or ϵ=4 and fine-tune BERTsmall for fair comparison to the
results from Xie et al. (2024). Details for all baselines are in Appendix E.1.

5.1 RESULTS

Table 1 shows next-token prediction accuracy for baseline models (DP-FedAvg, DP-FTRL, Private
Evolution) and POPri, assuming full client participation for fair comparison. POPri outperforms all
baselines and reduces the gap between fully private (ϵ = 0) and fully non-private (ϵ = ∞) learning
by 48-69%, compared to PE’s 31-49%. PE+SFT performs similarly or worse than PE. We find that
accuracy is largely independent of ϵ, consistent with prior DP synthetic data work (Xie et al., 2024;
Hou et al., 2024). POPri outperforms Aug-PE even with a 2000-sample budget. Note that POPri can
generate many more samples than Aug-PE (Xie et al., 2024), because Aug-PE is limited to model
API access and synthetic sample generation is costly.

We also perform comprehensive ablations on POPri. Our main findings are: (1) Client participation:
As we vary client sampling or the number of clients that participate in each round, POPri consistently
outperforms competing baselines. Moreover, it is less sensitive to number of clients than some
FL-based methods (Figures 5 and 6). (2) Number of rounds: POPri does not monotonically improve
as the number of rounds increases. Instead, some form of early stopping (in terms of rounds) is
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necessary to obtain the best synthetic data quality and prevent overfitting (Figure 4). (3) POPri
Hyperparameters: We demonstrate the effects of changing the preference optimization algorithm,
the index of the “rejected” sample ℓ, and the temperature of LLM inference. These ablations are in
Appendix F.

6 CONCLUSION

Private on-device learning is important when data is stored on edge devices with hardware, storage,
and privacy constraints. We propose POPri, which recasts synthetic data-based approaches for private
on-device learning as an LLM preference optimization problem. POPri makes several novel design
choices in how it gathers and utilizes client feedback to generate DP synthetic data, which is used to
finetune a downstream on-device model. POPri outperforms DP-FL and synthetic data baselines on
the downstream next-word-prediction task, including on LargeFedBench, a new federated benchmark
we have curated.

Our work is only a first step in learning private synthetic data with preference optimization, and many
important questions remain. First and foremost, in POPri, it would be important to understand a
more systematic method for selecting the ranked sample to be used as a “negative” sample in the
preference optimization. Our current algorithm heuristically uses the 5th-ranked sample (out of
10) for the “negative” preference sample as a way to balance noisy preference feedback, which can
reverse preference orderings. It would be interesting to understand if this heuristic could be learned
(and adapted) in an online fashion, and/or if one could make use of robust preference optimization
algorithms like that of Chowdhury et al. (2024). Moreover, it would be useful to understand how
POPri (and any possible improvements on it) can be made robust to adversarial clients who provide
adversarially incorrect preferences.
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A ALGORITHMIC DETAILS

Algorithm 1 POPri
1: Input: Clients private data {Si}i∈[n], Number of rounds T , Number of generated samples Nsyn, Noise

multiplier σ, LLM Ψ, embedding model Γ, base prompt η, participating clients in each round St, “rejected”
index ℓ, initial sample set Ω, number of clients sampled L

2: Output: Synthetic data Ssyn,T+1

3:
4: All clients i ∈ [n] embed private samples, Ei = Γ(Si)
5: Server initializes LLM Ψ1 = Ψ
6: for t← 1 ... T do
7: Server:
8: Initialize the response vector R = ∅
9: for k ← 1 . . .K do

10: Generate prompt ηk = Ψ(η,Ω),
11: Generate J responses Rkj = Ψt(ηk), j ∈ [J ]

12: end for
13: Send embeddings Esyn,t = {Γ(Rkj)}k∈[K],j∈[J] to all clients in St

14:
15: Client i ∈ St:
16: Scoresi,t ← SIMILARITY(Esyn,t, Ei)
17: Send Scoresi,t +N (0, σ2I/L) to Server
18:
19: Server:
20: Securely aggregate DP client scores: Scorest = 1

n

∑
i Scoresi,t +N (0, σ2I)

21: Set P [k, j] as the j-th highest score response for prompt ηk, according to Scorest
22: Initialize preference dataset Pt = ∅
23: for k ← 1 . . .K do
24: Select positive synthetic sample: Pt[k, 1] = Pt[k, 1]

25: Select negative synthetic sample: Pt[k, 2] = Pt[k, ℓ]

26: end for
27: Fine-tune: Ψt+1 ← DPO(Ψt, {ηk}k∈[K],Pt)

28: end for
29: Server:
30: Output final synthetic data Ssyn,T+1 from ΨT

Algorithm 2 SIMILARITY
1: Input: Embeddings of private client data Ei for i ∈ St, embeddings of synthetic data Esyn, total synthetic

samples M = K × J
Scores← 0M

2: Scores[j] = (1/|Ei|)
∑

epri∈Ei

⟨epri,ej⟩
∥epri∥∥ej∥

for ej ∈ Esyn

3: return Scores

B RELATED WORK

There are two main approaches for learning on private data.

DP optimization-based approaches In natural language processing (NLP) tasks with privacy
constraints, DP optimization algorithms (e.g., DP-SGD Abadi et al. (2016b)) are often used to
fine-tune massively pretrained LLMs on private data Bommasani & Schofield (2019); Kurakin et al.
(2023); Charles et al. (2024). However, in settings where client data cannot leave client devices due
to privacy concerns, central servers cannot conduct this private fine-tuning.

An alternative approach is to train models directly on client devices, using a server to coordinate
information exchange between clients; in DP federated learning (DP-FL) McMahan et al. (2017a);
Kairouz et al. (2021a), (small) model weights are iteratively sent to clients for on-device DP opti-
mization. DP-FL has struggled to keep up with the growing size of LLMs; many LLMs cannot be
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stored or trained on client devices Collins et al. (2023). Recent work explores how to train LLMs
in the DP-FL framework. Proposed approaches include training only subsets of parameters Charles
et al. (2023), as well as memory-efficient zero-order optimization Zhang et al. (2024); Malladi et al.
(2023). However, these methods still require the storage of the entire model on-device, limiting their
practicality.

Synthetic data-based approaches An alternative approach to DP optimization involves generating
private synthetic data using LLMs, followed by directly fine-tuning downstream models. Server-side
synthetic data generation bypasses client hardware limits, and DP’s post-processing property allows
reuse without extra privacy loss Yue et al. (2023a). In the centralized DP setting (where the server is
trusted to gather all the data, as opposed to our private on-device setting), prior studies have shown
that training downstream models on DP synthetic text achieves performance comparable to privately
training on real data (Yue et al., 2023a; Mattern et al., 2022; Xie et al., 2024). In the private on-device
setting, Hou et al. (2024) show that fine-tuning a small model on user-level DP synthetic text data on
the server side can actually outperform DP-FL. Similarly, Wu et al. (2024) show that pretraining an
FL model on private synthetic data can improve the final outcome of DP-FL.

One approach for generating synthetic text data is to fine-tune an LLM (with DP-SGD) on private
data (Kurakin et al., 2023; Yu et al., 2024) and then using it for synthetic data generation. However,
client hardware constraints render this approach infeasible on-device. Recent works have relied
instead on privacy-aware prompt engineering Wu et al. (2024); Xie et al. (2018); Hou et al. (2024).
An important framework by Lin et al. (2023) called Private Evolution (PE) is the basis for several
competitive DP synthetic text algorithms, including Aug-PE Xie et al. (2024) and PrE-Text Hou
et al. (2024). Roughly, these algorithms use the public LLM Ψ to generate synthetic data, score each
synthetic data according to its closeness to the client data, and discard synthetic data with low scores.
The surviving synthetic data are used as in-context examples for Ψ to generate synthetic data. Private
Evolution may sacrifice data quality in two ways: First, it uses in-context learning, which is often
less effective than fine-tuning (Mosbach et al., 2023). Second, discarding low-score synthetic data
may lose useful information (Ouyang et al., 2022). We address both by turning the DP synthetic
generation problem into an LLM preference optimization problem.

C IMPLEMENTATION DETAILS OF POPRI

C.1 MODEL AND HYPERPARAMETERS

We choose LLaMA-3-8B as the data generator in POPri and we fine-tune it iteratively during the
course of the algorithm. To fine-tune the LLaMA-3-8B model, we use LoRA fine-tuning with rank 4,
α = 8, applied to all the projection matrices in LLaMA-3-8B. We adapt the AdamW optimizer with a
cosine learning rate scheduler with the learning rate ranging from 3 ·10−7 to 8 ·10−7. In the Congress
and bioRxiv evaluations, the sample set Ω is a subset of the c4 dataset (Raffel et al., 2019), which is a
large scale dataset from 2019, which we use for fair comparison with Private Evolution (PrE-Text),
though we do not know their exact initial sample set because they did not release it. For the PubMed
evaluation, the sample set Ω is a set of 2000 samples generated using the PubMed generation prompt
in Table 16 of the Aug-PE paper, generated by LLaMA-3-8B-Instruct (which has a knowledge cutoff
of March 2023), for comparison with Aug-PE (Xie et al., 2024). For each iteration, we fine-tune the
models for 2 epochs and select the best checkpoint with the lowest FID score relative to the validation
dataset. This checkpoint is used for synthetic data generation and as the starting point for the next
iteration. The batch size is set to 24.

In each round we generate 18000 synthetic data samples for the clients to evaluate. This is accom-
plished with 1800 prompts, each generating 10 samples for clients to rank. We select the 1st and
5th ranked sample for a given prompt for the “selected” and “rejected” data samples in the DPO
preference dataset. We describe the experiments regarding which rank to use for constructing the
preference dataset in detail in Appendix Section F.5. To test the scaling relation with the number of
clients per round and the total number of clients participating in the training, we set up the parameters
and privacy budget shown in Table 2. The ‘all-MiniLM-L6-v2’ sentence transformer model is used
as the embedding model in POPri. We note that we adopt “sentence-t5-base” sentence transformer
for PubMed during the step of fine-tuning BERTsmall, which follows the setting in AUG-PE. We
ensure POPri follows privacy guarantee of (ϵ, δ)-DP = (1, 3× 10−6) or (7, 3× 10−6) for both the
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List of 6 diverse original text samples:

Original Text Sample 1
The observations showed that the object is four million times more massive than the sun and is the
size of one astronomical unit (AU), a span equal to Earth's distance from the sun. Sgr A* has a mass
density at least a trillion times greater than any known cosmic object.

Original Text Sample 2
In response to the general question, they need to study self-protection away from their marital
baggage. They need to learn about home security, mobile security, the nature of crime, de-escalation,
the law, escape tactics, awareness, and on and on. When it

Original Text Sample 3
Under the Patriot Act of 2001, the government significantly expanded its authority in regards to
electronic surveillance (Henderson, 2002). One of the chief complaints is that the government can
investigate anything that is considered “significant.” The problem here is that there is

Original Text Sample 4
The life history advance program shall be funded from any of the following: monies provided by the
general fund; amounts in the presidential family partnership fund; or monies provided by the
revolving fund.

Original Text Sample 5
As you meet with employers this summer, get in touch with the team....

Figure 3: The synthetic data generation prompt for POPri. The black text marks the input prompt,
and the brown text after “Original Text Sample 4” is generated. The generated text between “Original
Text Sample 4” and “Original Text Sample 5” is collected and used as a synthetic sample.

bioRxiv and the Congressional Speeches datasets and run with 20 iterations for DP-FedAv, DP-FTRL,
PrE-Text for comparison. For AUG-PE, we set (ϵ, δ)-DP = (1, 2.72 × 10−6) or (4, 2.72 × 10−6).
PubMed experiments are run with 10 iterations.

In terms of models for downstream tasks:

• For BioRxiv & Congressional Speeches, we fine-tuned the pre-trained DistillGPT2 for
next-token prediction. We set the max sequence length as 64, number of generated synthetic
data as 1,000,000, the batch size as 160, the learning rate as 2e−4, and the number of epochs
as 80.

• For PubMed, to compare with (Yue et al., 2023b), we follow their procedure to leverage
pre-trained BERTsmall Turc et al. (2019). We set the max sequence length as 512, number
of generated synthetic data as 2000, batch size as 32, learning rate as 3e-4, the weight
decay as 0.01, and the number of epochs as 10. To compare with Xie et al. (2024), we set
up the (ϵ, δ)-DP value and hypterparameter according to their choice. For example, they
set δ = 1

Npriv·log(Npriv)
following Yue et al. (2023b). To achieve δ = {1,4}, we use noise

multiplier σ = {13.7, 3.87} for 10 iterations under DP on all PubMed data. Note that our
noise multiplier values are slightly different than Xie et al. (2024) due to different methods
for calculating differential privacy.

C.2 PROMPT DESIGN

To compare with other data generator methods, we adopt the prompts used in the baseline models
against which we compare. We generate the synthetic data using an approach similar to that in
PrE-Text Hou et al. (2024). Figure 3 shows an example of the prompt we use for prompting Llama-3B
for generating synthetic data. For PubMed, while running POPri, we still adopt the prompt shown in
Figure 3 but reduce the number of examples to two in order to accommodate longer sequence lengths.

D IMPLEMENTATION DETAILS OF BASELINE MODELS

In this section we provide implementation details for the baseline algorithms. We use two DP-FL
baselines: DP-FedAvg and DP-FTRL. For the PE baseline, we implement PrE-Text Hou et al. (2024)
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for the evaluations on the bioRxiv and Congressional Speeches datasets. Because the PrE-Text
evaluation is focused on datasets with samples with max sequence length of 64 and the PubMed
dataset has samples with longer sequence lengths, for the PE baselines on the PubMed dataset we
directly compare against the Aug-PE results from Xie et al. (2024).

D.1 DP-FEDAVG

We employ the FedAvg federated optimization algorithm McMahan et al. (2017a) to fully fine-
tune DistilGPT2, avoiding linear probing due to its poor performance in DP language models Lin
et al. (2021). Our training configuration includes a batch size of 2, a sequence length of 64, 20
communication rounds, and either full or partial client participation. For differential privacy (DP),
we utilize secure aggregation Bonawitz et al. (2016) and introduce Gaussian noise McMahan et al.
(2017a). We evaluate the model using next-token prediction accuracy across various numbers of
training epochs on the clients. We tune the learning rate within the range [0.01, 0.06] and the clipping
threshold between [0.01, 0.4], selecting the model with the best performance on the evaluation set for
reporting. The noise is scaled to ensure a privacy guarantee of (ϵ, δ)-DP where δ = 3·10−6 and ϵ =
{1,7}, representing two distinct privacy regimes. The noise multipliers are σ = {19.3, 3.35} when
considering all the data, and the settings for partial participation experiments are shown in Table 2.

D.2 DP-FTRL

We also use the DP variant of Follow-The-Regularized-Leader (DP-FTRL) algorithm McMahan et al.
(2017a), which shows amplified results comparing to FedAvg without using privacy amplification, to
fully fine-tune DistilGPT2. The hyperparameter settings are similar to DP-FedAvg other than the
noise multipliers. The noise multipliers are σ = {19.5, 3.35} when considering all the data, and the
settings for partial participation experiments are shown in Table 2.

D.3 PRE-TEXT

We follow similar settings as Hou et al. (2024) with some modifications. The privacy budget is similar
to DP-FedAvg and POPri, with a privacy guarantee of (ϵ, δ)-DP where δ = 3·10−6 and ϵ = {1,7} with
σ = {19.3, 3.35} for full participation and partial participation in Table 2. We set the thresholds H =
0.1626, T = 20, and Nsyn = 1024. We adopt the “all-MiniLM-L6-v2” sentence transformer model
for text embedding generation.

E EXPERIMENTAL DETAILS

E.1 PRIVACY ACCOUNTING

The precise privacy settings we use and their corresponding ϵ values, as calculated by their corre-
sponding privacy budget computation methods, are reported in Table 2. DP-FedAvg (McMahan et al.,
2017a) and Private Evolution (PrE-Text) (Hou et al., 2024) both use the Gaussian mechanism, and
thus use similar computations. In both cases, we use the privacy accountant of the Opacus library
Yousefpour et al. (2021). For DP-FedAvg, we calculate privacy by inputting the number of rounds,
the client sampling ratio, setting the noise multiplier to be the product of σ and the clipping threshold,
choosing a δ ≪ 1/|S|, and setting σ for the desired ϵ. Private Evolution (PrE-Text) (Hou et al., 2024)
also uses the Gaussian mechanism, so we use the same accounting except the noise multiplier is the
product of σ and the maximum number of samples per client. For DP-FTRL, we follow the privacy
accounting methods from their implementation. For Private Evolution (Aug-PE) (Xie et al., 2024),
we report their reported ϵ directly.

E.2 EVALUATION DETAILS FOR DIFFERENT DATASETS

E.2.1 LARGEFEDBENCH EVALUATION

For the bioRxiv and Congressional Speeches datasets, we use the PrE-Text version of Private
Evolution because the PrE-Text evaluation focused on datasets with samples with max sequence
length of 64.
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Table 2: Experiment privacy budget settings.

Total # of # of clients
σ1

a, ϵ = 7 σ1
a, ϵ = 1 σ2

b, ϵ = 7 σ2
b, ϵ = 1clients per round

10000 500 0.67 1.6 7.5 43
10000 1000 0.82 2.5 6.7 39
10000 2000 1.09 4.3 5.8 34
10000 2500 1.23 5.2 5.8 34
10000 5000 1.92 9.9 4.8 28
10000 7500 2.63 14.7 3.35 19.5
10000 10000 3.35 19.3 3.35 19.5

1000 1000 3.35 19.3 3.35 19.5
2000 1000 1.92 9.9 4.8 28
4000 1000 1.23 5.2 5.8 34
17000 1000 0.7 1.8 7.5 44
72000 1000 0.52 1.14 8.9 52

133000 1000 0.475 1.05 9.5 55

72000 72000 3.35 19.3 3.35 19.5
133000 133000 3.35 19.3 3.35 19.5

a For DP-FedAvg, PrE-Text, POPri.
b For DP-FTRL
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Figure 4: PCA visualization of POPri synthetic data embeddings over rounds. Right (6) Panels: PCA-
2 plots of synthetic and evaluation data from the best checkpoint each round for 20 iterations. The
orange (round 7) and maroon clouds represent the lowest FID score and validation set, respectively.
Top Left: FID score vs. rounds. Bottom Left: Median distance to the medoid vs. rounds. Excessive
rounds lead to overfitting.

E.2.2 PUBMED EVALUATION

For PubMed, our Private Evolution baseline compares to Aug-PE, which has already been evaluated
on PubMed Xie et al. (2024). Note that PubMed was used by Xie et al. (2024) to evaluate central DP
algorithms. In the central DP setting, there are no clients; all private data is held at the server and the
goal is to release a model with DP guarantees. The notion of neighboring dataset in central DP is
a centrally held dataset that is the same except for a single data sample. To compare our algorithm
directly with results reported for Private Evolution (Aug-PE) (Xie et al., 2024), we replicate the
central DP setting for this dataset by having one PubMed abstract per client and sampling all clients
every iteration (or “round”, in our case). We do not compare directly with the results reported in the
PrE-Text paper (Hou et al., 2024) because they did not release the precise datasets used.

F ABLATION STUDIES

F.1 DATA DISTRIBUTION EVOLUTION

Synthetic datasets are often generated using a different language model than the one being aligned
(Guo et al., 2024), making alignment off-policy as the model evolves. This impacts synthetic data
quality, with FID scores initially improving but then worsening. Figure 4 shows PCA embeddings
across iterations, where data distribution shifts from clustered to true-like, then back—likely due to
overfitting. Early stopping can mitigate this.
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Table 3: Ablation results including varying which client ranked-data is chosen as the ‘rejected’
sample for DPO, varying the temperature for the text synthesis process, and varying the preference
optimization method.

Rank Temperature Alignment Algorithm

Rank Accuracy (%) Temperature Accuracy (%) Algorithm Accuracy (%)

3th 68.6 0.5 68.1 DPO 68.6
5th 68.6 1.0 68.6 IPO 67.1
7th 67.7 2.0 68.4
10th 66.4

F.2 CLIENT SELECTION STRATEGIES

Each round, a fixed number of clients is randomly subsampled for feedback. Figure 5 shows next-
token prediction accuracy (%) across varying clients per round and total clients. POPri consistently
outperforms baselines and remains robust to changes in client count, unlike most baselines. Figure 6
shows the effect of changing the number of clients per round and the number of total clients when
ϵ = 7.0. We find that POPri outperforms the baseline across the board. We also find that POPri is
significantly less sensitive to the fraction of clients used per round than the baseline methods. This
makes POPri especially useful in settings in which baseline performance may suffer, such as very
high client participation regimes.
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Figure 5: Next-token prediction accuracy of four methods as a function of client fraction per round.
POPri improves performance and reduces sensitivity to client fraction. Left panels vary clients
per round with the same total, right panels vary total clients with the same per-round count. Top
and bottom panels use different datasets, with all methods having privacy budget (ϵ, δ)-DP = (1,
3× 10−6).

F.3 TEMPERATURE

Temperature is a key parameter for controlling the diversity of LLM-generated outputs. Increasing
the temperature encourages the model to produce less frequent tokens, enhancing diversity. Here
we explore the effects of changing temperature in the POPri process and list the results in Table 3.
Low temperatures leads to clustering of the text embedding in some regions which does not represent
the over all data distribution. However, setting the temperature too high can lead to overly random
and potentially incoherent results. Therefore they both lead to lower model accuracy. We therefore
choose temperature = 1.0 as our default setting.
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Figure 6: Next-token prediction accuracy (%) of four methods with privacy budget (ϵ, δ)-DP =
(7, 3× 10−6) for different number of clients per round with the same total number of clients (left
panel) and different total number of clients with the same number of clients per round (right panel).
Top two panels are generated with Biorxiv data, and the bottom two panels are generated with the
Congressional Speeches dataset.

F.4 ALIGNMENT METHODS

As shown in Fig 4, over-fitting causes data clustering that misrepresents the true distribution. We
compare two alignment methods: DPO and IPO (Gheshlaghi Azar et al., 2024), which IPO is designed
to mitigate DPO’s overfitting to preference data. In this section we explore IPO’s performance in our
setting. According to Gheshlaghi Azar et al. (2024), IPO may help training by alleviating over-fitting,
which is a common problem for the DPO algorithm and which affects POPri as well. We show the
comparison of next-token prediction accuracy reported by running DPO and IPO algorithm in Table 3.
In our case, IPO does not seem to address the overfitting issues and results in worse performance. We
therefore choose DPO as our alignment method for finetuning the LLM.

F.5 REJECTED SAMPLE SELECTION

Unlike vanilla DPO, we select the “chosen” and “rejected” pair from J samples for each of K
prompts. The highest-scoring sample is always the “chosen,” but the “rejected” sample could vary.
In detail, we construct the DPO preference data via client feedback by generating ten samples from
the same prompt and then picking the “selected” and the “rejected” samples. The samples with the
highest scores among the ten examples are picked as the “selected” sample in the DPO preference
dataset. We experiment on which rank should utilized as the “rejected” sample in the DPO preference
dataset. In Table 3 we show the results of varying which rank is selected for the “rejected” sample.
Perhaps surprisingly we find that the 10th rank is not favored. In Fig 7 we further explore the effects
by examining the “rejected” and “selected” sample FID scores as a function of round. In the left
panel where the “selected” sample FID values are shown, their magnitude and trends behave similarly
before they reach the best results (marked by colored dashed vertical lines). For the “rejected” sample
FID shown in the right panel, the 5th rank “rejected” samples yield the lowest FID score and therefore
smaller gap between the preference sample pairs. However, we also find that smaller rank does not
always yield better results. This may result from the boundary between the “rejected” and “selected”
samples becoming undistinguishable for rank < 5th due to DP noise. We therefore select 5th rank
samples as our “rejected” DPO preference samples.
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Figure 7: Ablation study for selecting rejected sample in the preference data. Here we generate 10
samples for each prompt and select Nth ranked data as the rejected sample, where N is 3, 5, 7, or 10.
The vertical lines indicate the round at which the best next-word-prediction accuracy was achieved for
each choice of rank. Note that the model that produces the lowest overall FID (not the lowest selected
sample FID or the lowest rejected sample FID) is the best synthetic data generation model, since on
the final round all generated samples are utilized to form the synthetic dataset. We hypothesize that
round 7 corresponds to the highest accuracy for the rank 5 model because after that point, the selected
sample FID is higher than the rejected sample FID, which would mean the preference dataset has
become mis-aligned with the objective of generating good synthetic data.

bioRxiv Congressional  Speeches

Figure 8: The distribution of how many tokens are in each client’s dataset for the bioRxiv and
Congressional Speeches datasets.

G DATASETS

bioRxiv. This dataset consists of abstracts from bioRxiv papers with appropriate copyright permis-
sion from April 2023 to August 2024. This was done by using the bioRxiv public API to retrieve the
abstracts of the paper with permitted licenses (i.e. ‘CC BY NC ND’, ‘CC BY ND’, ‘CC BY NC’,
‘CC BY’, ‘CC0’). This dataset consists of 72k abstracts (clients), each of which we split into chunks
of 64 tokens to form samples.

Congressional Speeches. This dataset consists of speeches from US, UK and Canada congres-
sional/parliamentary transcripts from April 2023 to August 2024. All speeches are published under a
permissive license which allows for third-party use (as detailed in the dataset cards). There are 134k
speeches (clients) in total, and 1930 unique speakers. We collected this dataset by using public APIs
to retrieve data from each country’s official congressional/parliamentary library website. Then we
sanitized the data by removing (1) boilerplate procedural language, (2) sentences with more than 30%
of the characters not being letters, and (3) some written notation that does not correspond to spoken
words. We split each speech into chunks of 64 tokens each. We believe that this dataset is a major
contribution because spoken language may be more resistant to contamination (especially for the UK
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Table 4: Dataset details.

Dataset # Train Samples # Validation Samples # Test Samples Max Sequence Length Average # of samples per client

bioRxiv 72000 2000 1584 64 6.6 ± 2.6
Congressional Speeches 133000 4200 1547 64 5.0 ± 16.3
PubMed 75316 14423 4453 512 1

and Canada parliamentary debates). Because they are more conversational and have a large degree of
improvisation (many debates are off-the-cuff), they are less likely to be generated by LLMs.

We are committed to update the dataset periodically with the latest data to allow future researchers to
test their algorithms or ideas against an uncontaminated dataset.
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