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ABSTRACT

Large Vision-Language Models (LVLMs) show remarkable multimodal progress,
but their reliability is undermined by hallucinations, the tendency to generate text
that contradicts visual input. Recent work has established a strong link between
hallucination and the model’s attention to visual tokens. However, the current
understanding of the Visual Attention Sink (VAS) phenomenon—where LVLMs
persistently assign high attention to uninformative background tokens—remains
superficial, leaving both its underlying mechanisms and its connection to the hal-
lucination phenomenon unexplored. In this work, we present the first in-depth
analysis of VAS. Using logit lens, we uncover a key property we term Vocabu-
lary Fixation: VAS tokens consistently map to a small, fixed set of semantically
vacuous words across all layers. Based on this observation, we propose Vocabu-
lary Fixation-Based Identification (VFI) to reliably localize visual sink tokens
in LVLMs. Furthermore, we establish a strong correlation between VAS and hal-
lucination, and introduce the Non-Sink Visual Attention Ratio (NVAR), a novel
metric to precisely identify attention heads critical for mitigating hallucination.
Building on this foundation, we propose Sink-Aware Visual Attention Enhance-
ment (SAVAE), a training-free method that adaptively strengthens the attention of
these targeted heads to salient visual content during inference. Extensive experi-
ments across multiple LVLMs and benchmarks demonstrate that SAVAE signifi-
cantly outperforms existing decoding strategies in mitigating hallucination, while
introducing no additional computational overhead.

1 INTRODUCTION

(b)   SAVAE Head Selection(a)  Average Head Selection

Figure 1: Attention maps for generating “phone”. (a)
The average of all heads exhibits the attention sink
phenomenon, with focus scattered on the background.
(b) In contrast, heads selected by our method, SAVAE,
concentrate attention precisely on the target object.

Large Vision-Language Models (LVLMs),
which extend large language models
(LLMs) with the ability to process vi-
sual inputs, represent a major advance-
ment in artificial intelligence (Liu et al.,
2023; Chen et al., 2023; Zhu et al., 2023).
Nevertheless, LVLMs remain susceptible
to the problem of hallucination (Sun et al.,
2024b; Zhou et al., 2024; Huang et al.,
2024; Bai et al., 2024), where the gener-
ated text fails to align with the visual con-
tent. Such inconsistencies undermine both
the accuracy and reliability of LVLMs in
multimodal tasks, thereby limiting their
practical deployment.

Extensive research has focused on mitigating hallucinations in LVLMs, yielding a variety of
training-based and training-free interventions (Yu et al., 2024; Leng et al., 2024; Chen et al., 2024;
Li et al., 2025). A critical line of inquiry within these efforts has been to analyze the root causes of
the phenomenon. From this research, a key finding has emerged: insufficient attention to visual
tokens during text generation is a primary cause, which has naturally led to a common mitigation
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(b)

The image features a man sitting at a 
dining table, holding a cell phone in his 
hand. He appears to be looking at the 
phone while eating a meal. The table is 
set with various items, including a wine 
glass, a cup, a fork, a knife, and a bowl…

(a)

559

157

5
105

198

Please help me describe the 

image in detail.

Figure 2: Illustration of the Visual Attention Sink (VAS) phenomenon in LLaVA-1.5 7B. (a) At-
tention heatmap for the token “phone”, where several irrelevant background tokens act as attention
sinks (highlighted). (b) Logit lens analysis of the hidden states for the 10 visual tokens to which
the current output token assigns its highest attention, along with their immediate neighbors. This
visualization reveals the distinct and non-semantic representations of the identified sink tokens.

strategy of enhancing the visual attention of certain heads during decoding (Jiang et al., 2025; Liu
et al., 2024b). However, a significant limitation persists in these approaches: the selection of which
heads to modify often relies on heuristics and lacks a principled, quantitative standard for identifying
the most critical, hallucination-related heads.

Meanwhile, recent work has revealed the Visual Attention Sink (VAS) phenomenon in LVLMs,
where the model allocates high attention to specific, often semantically irrelevant, visual tokens. For
instance, as shown in Figure 2 (a), when generating the token “phone”, the model’s second and third
highest attention scores are assigned to irrelevant background tokens (559 and 157). Yet, despite
such clear empirical evidence, the current understanding of VAS remains superficial. The existing
identification method (Kang et al., 2025) is largely a direct adaptation of a text-based approach,
leaving the fundamental properties of VAS unexplored. Consequently, the potential role of VAS in
critical failure modes like hallucination remains a significant and unaddressed research question.

Motivated by this gap, this paper presents the first in-depth analysis of the VAS mechanism, em-
ploying a logit lens approach as exemplified in Figure 2 (b). This analysis uncovers a core property
we term Vocabulary Fixation: VAS tokens consistently decode to a small set of fixed, meaning-
less words across all layers. This failure of semantic processing not only explains why these tokens
typically manifest as uninformative background patches but also provides the direct foundation for
our proposed identification method, Vocabulary Fixation-Based Identification (VFI). Specifically,
VFI quantifies this fixation by scoring each visual token based on the frequency with which its de-
coded representations across all layers fall into this pre-identified set of semantically vacuous words.

Building on this foundation, we investigate the link between VAS and hallucination. Our experi-
ments reveal a strong correlation: greater attention allocated to VAS tokens corresponds to a higher
propensity for hallucination. This finding leads us to propose the Non-Sink Visual Attention Ratio
(NVAR) as a novel criterion for selecting hallucination-related heads, as high-NVAR heads more
effectively focus on salient visual information. Based on this, we introduce Sink-Aware Visual At-
tention Enhancement (SAVAE), a method that mitigates hallucination by selectively strengthening
the visual attention of these high-NVAR heads. As illustrated in Figure 1, heads selected by our
method exhibit a precise focus on target objects, unlike the scattered attention of average heads.

Extensive experiments confirm SAVAE’s superiority: it not only significantly outperforms existing
methods in mitigating hallucination across multiple benchmarks, but does so with zero additional
computational overhead, demonstrating both state-of-the-art effectiveness and practical efficiency.

Our main contributions are summarized as follows:

• We uncover Vocabulary Fixation, a core mechanism of visual attention sinks that explains why
they manifest as uninformative background tokens. This key insight directly enables our novel
identification method, VFI, for reliably localizing them across diverse LVLMs.
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• We introduce SAVAE, a training-free method that uses a novel metric, NVAR, to identify and
selectively enhance hallucination-critical attention heads, thereby mitigating hallucinations.

• Through extensive experiments, we demonstrate that SAVAE sets a new state-of-the-art in hal-
lucination mitigation, substantially outperforming prior decoding methods while incurring zero
additional computational overhead.

2 RELATED WORK

Reducing Hallucinations in MLLMs. Mitigating MLLM hallucinations (Li et al., 2023a; Zhou
et al., 2023; Liu et al., 2024a) is typically approached via either model fine-tuning (e.g., RLHF-
V (Yu et al., 2024)) or training-free interventions at inference time. These interventions include
enhancing visual attention (PAI (Liu et al., 2024b), Devils (Jiang et al., 2025)), applying contrastive
decoding (VCD (Leng et al., 2024), HALC (Chen et al., 2024)), or steering activations (VISTA (Li
et al., 2025)). While PAI and Devils are the most related to our work, their head selection criteria
are based on heuristics and lack a principled, quantitative standard—the key gap we address.

Attention Sink in Language Models. The attention sink phenomenon, where semantically vacuous
tokens attract disproportionate attention due to massive activation patterns, is a well-documented
artifact in language models (Xiao et al., 2023; Sun et al., 2024a). While this concept has been
extended to the visual domain as the visual attention sink (VAS) with initial mitigation efforts (Kang
et al., 2025), a deep, mechanistic understanding remains critically lacking. Key questions regarding
the origins of VAS, its relationship to text-based sinks, and its direct impact on hallucination are still
unexplored. Our work provides the first in-depth investigation aimed at answering these questions.

3 FROM VAS TO HALLUCINATION: MECHANISMS AND EVIDENCE

3.1 PRELIMINARIES

Autoregressive Generation in LVLMs. Large Vision-Language Models (LVLMs) generate re-
sponses autoregressively by modeling the conditional probability of the next token. At each timestep
k, the model predicts the token yk based on the preceding context, which comprises a sequence of
image tokens Iv, a text prompt It, and previously generated tokens Io. These components are con-
catenated to form a single input sequence I.

Attention Mechanism in LVLMs. The core component enabling token interaction is Multi-Head
Attention (MHA). Following (Elhage et al., 2021), at layer ℓ, the representation for a token xℓ−1

i is
updated by attending to all previous tokens Xℓ−1

≤i = {xℓ−1
0 , . . . ,xℓ−1

i } as follows:

MHAℓ,h(xℓ−1
i ) =

∑
j≤i

Aℓ,h
i,j x

ℓ−1
j W ℓ,h

OV , Aℓ,h
i = softmax

(
(xℓ−1

i W ℓ,h
Q )(Xℓ−1

≤i W ℓ,h
K )⊤

√
Dk

)
. (1)

Here, W ℓ,h
Q ,W ℓ,h

K ∈ RD×Dk are the query and key projection matrices, and W ℓ,h
OV ∈ RD×D is the

output-value projection matrix. The attention weight Aℓ,h
i,j quantifies the contribution of token xℓ−1

j

to the updated representation of token xℓ−1
i . Our analysis focuses on the cases where i ∈ Io and

j ∈ Iv, which correspond to the attention paid to visual tokens during the generation process.

Logit Lens(nostalgebraist, 2020). To probe the model’s internal processing of visual information,
we use the Logit Lens method. It maps an intermediate visual hidden state vℓ

i directly to a distribu-
tion over the vocabulary V by applying the model’s final unembedding matrix, WV ∈ R|V|×d:

p(V|vℓ
i ) = softmax(WV · vℓ

i ) ∈ R|V|, (2)

where pj(V|vℓ
i ) corresponds to the probability of the j-th vocabulary token. We then select the most

probable token from this distribution as the textual explanation for the hidden state vℓ
i .

3.2 SETUP FOR EXPLORATORY ANALYSIS

Motivated by the methodology of Devils (Jiang et al., 2025), our exploratory analysis is based on a
random selection of 500 images from the COCO 2014 validation set (Lin et al., 2014). This dataset

3
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(a) (b)

Figure 3: Empirical basis for our VFI method on LLaVA-1.5 7B (500 samples). (a) The distribution
of Vocabulary Trajectory Sets for object tokens is shown to be highly concentrated, confirming the
Vocabulary Fixation phenomenon. (b) This concentration leads to a distinct U-shaped distribution
of Vocabulary Fixation Scores, which provides a clear and principled basis for selecting a threshold
τ to effectively separate normal tokens from VAS tokens.

is chosen for its diversity object categories and providing a rich set of ground-truth annotations for
each image. For this analysis, we examine the outputs of LLaVA-1.5 7B and 13B, Shikra-7B, and
MiniGPT4-7B. We employ greedy search to generate a detailed description for each image, using
the prompt: “Please help me describe the image in detail”.

By comparing the generated text against the ground-truth annotations, we categorize all mentioned
objects into two sets: real object tokens, Oreal, and hallucinated object tokens, Ohall. This data
provides the empirical foundation for our subsequent investigation into the relationship between
VAS and hallucination.

3.3 UNDERSTANDING AND DETECTING VAS TOKENS VIA LOGIT LENS

Prior work (Jiang et al., 2025) demonstrates that normal visual tokens follow a structured semantic
trajectory through the model’s layers, progressing from Visual Information Enrichment in the
shallow-to-mid layers to Semantic Refinement in the mid-to-deep layers, where they acquire clear
meaning. Our logit lens analysis in Figure 2 (b), however, reveals that VAS tokens completely defy
this productive pattern. Instead of evolving semantically, they consistently map to a small, fixed
set of meaningless words across all layers. We define this persistent, non-semantic mapping as the
Vocabulary Fixation of Visual Sink Tokens.

To examine this phenomenon’s generality, we define the Vocabulary Trajectory Set for a visual
token vi as the sequence of its most likely decoded word at each layer:

VT (vi) = {ŷ1i , ŷ2i , . . . , ŷLi }, (3)

where ŷℓi is the argmax decoding token of the hidden state vℓ
i . We then aggregate these trajectory

sets, which are computed for the 10 visual tokens to which each object token (from Section 3.2)
assigns its highest attention. The overall distribution on LLaVA-1.5 7B is shown in Figure 3 (a).

This analysis statistically validates the Vocabulary Fixation phenomenon. The most frequent to-
kens decoded from VAS token trajectories are highly concentrated in a small set of recurring, mean-
ingless vocabulary items (e.g., <s>, kwiet), corroborating our case study in Figure 2 (b).

This finding suggests that rather than contributing to visual-semantic understanding, VAS tokens
are captured by an internal mechanism that confines them to a semantically inert subspace
throughout the LVLM’s processing layers. This mechanism, in turn, provides a compelling ex-
planation for the common observation that VAS tokens are typically located in background regions
and are devoid of meaningful semantic content. To demonstrate the generality of this finding, we
present the distribution of Vocabulary Trajectory Sets for additional models in Appendix B.1.

3.4 VOCABULARY FIXATION-BASED IDENTIFICATION

Quantifying Vocabulary Fixation. Based on the Vocabulary Fixation phenomenon observed in
Section 3.3, we propose a method to identify VAS tokens. First, we construct a model-specific set,

4
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Ŝ, containing the most frequent, semantically vacuous tokens from our statistical analysis. For any
given visual token vi, we then compute its Vocabulary Fixation Score, f(vi), defined as the number
of times its Vocabulary Trajectory Set, VT (vi), contains a token from Ŝ:

f(vi) =
∑

ŷ∈VT (vi)

1Ŝ(ŷ). (4)

A visual token vi is identified as a VAS token if f(vi) meets or exceeds a predefined threshold τ .

Parameter Selection. The parameters Ŝ and τ are determined empirically. The selection of the
fixed vocabulary set Ŝ is guided by the concentrated nature of the Vocabulary Fixation phenomenon
(Figure 3). To ensure high recall, we set its size to 10 for LLaVA-1.5 and MiniGPT-4, manually
excluding any tokens with explicit semantic meaning (e.g., “in”). For Shikra, where the fixation is
even more pronounced and primarily on the <s> token, we use a more targeted set of size 1.

Once Ŝ is defined, we determine the threshold τ . By visualizing the distribution of Vocabulary
Fixation Scores, we consistently observe a distinct U-shaped pattern across all models. This holds
true for our main example in Figure 3 (b) and is further demonstrated across additional models in
Appendix B.1. This pattern creates a natural separation between low-scoring (normal) and high-
scoring (sink) tokens, allowing us to intuitively select an effective threshold from the distribution’s
valley (e.g., τ = 23 for LLaVA-1.5-7B). Crucially, the clarity of this separation ensures that the final
identification is not sensitive to minor perturbations of this threshold value.

Final Identification Rule. With both the set Ŝ and the threshold τ established, the final identifica-
tion rule is as follows:

Isink = {vi ∈ Iv | f(vi) ≥ τ}. (5)

The complete, step-by-step process for this framework is formalized in Algorithm 1 in Appendix G.
To further underscore the superiority of our approach, we also provide a case study in Appendix C
that contrasts VFI with the massive activation-based method (Kang et al., 2025).

3.5 NVAR: A METRIC FOR IDENTIFYING HALLUCINATION-RELATED HEADS

(a) (b) LLaVA-1.5 7BMiniGPT4

Figure 4: NVAR distribution of (a) MiniGPT4
and (b) LLaVA-1.5 7B

To develop a principled method for selecting
hallucination-related heads, we first need a
metric that quantifies their focus on meaning-
ful, non-sink visual information. To this end,
we introduce the Non-Sink Visual Attention
Ratio (NVAR), defined as the proportion of a
head’s total attention budget that is allocated
to non-sink visual tokens:

NVAR(ℓ,h)(yk) ≜

∑
vi∈Iv\Isink

A
(ℓ,h)
k,i∑

vi∈I A
(ℓ,h)
k,i

. (6)

The set of sink tokens, Isink, is identified using our VFI (Section 3.4). A higher NVAR score thus
indicates a head that is more robust against the sink effect and better grounded in visual information.

We validate NVAR by analyzing its statistical relationship with hallucination within a critical subset
of heads. Acknowledging the functional specialization of heads (Deiseroth et al., 2023; Zhang et al.,
2024; Ge et al., 2024; Zheng et al., 2024), we first select the top 450 heads with the highest mean
NVAR scores. Within this pre-selected group, we compare the NVAR distributions for real versus
hallucinated object tokens. The results visualized in Figure 4 reveal a stark contrast: real object
tokens are associated with significantly higher NVAR scores, while hallucinated tokens exhibit
markedly lower ones. This provides strong evidence that NVAR is a reliable indicator of factual
grounding, making it a principled criterion for identifying the heads most critical to the hallucination
phenomenon. This finding holds consistently across additional models, as shown in Appendix B.2.

Furthermore, to provide a deeper characterization of the VAS tokens, and due to space constraints,
our analysis of their positional distribution is presented in Appendix B.3.
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Table 1: Performance of SAVAE(Ours) against baselines. Best results are in bold. Pink cells mark
potentially unreliable CHAIR scores. Superscripts show the % change vs. the best baseline. †Re-
evaluated using the baseline’s CHAIR hyperparameters on all benchmarks for consistency.

Model Method CHAIR POPE POPE Chat
CHAIRs ↓ CHAIRi ↓ F1 ↑ Acc. ↑ F1 ↑ Acc. ↑ F1 ↑

LLaVA-1.5-7B

Greedy 48.2 14.2 76.4 84.8 85.5 85.5 83.4
PAI 23.8 6.2 76.8 85.9 86.0 85.5 83.4
Devils 27.2 7.0 76.1 85.5 85.8 87.6 86.9
VISTA† 15.6 5.2 67.3 56.7 63.3 — —
SAVAE(Ours) 18.2−23.5% 3.8−38.7% 76.7 86.1+0.2% 86.2+0.2% 88.0+0.5% 87.0+0.1%

MiniGPT-4-7B

Greedy 28.2 8.8 73.7 76.8 76.6 77.7 76.9
PAI 22.6 7.6 72.9 74.7 76.3 79.1 78.8
Devils 21.9 7.9 71.5 72.3 75.9 79.4 78.7
VISTA† 18.0 4.3 68.3 66.6 74.4 — —
SAVAE(Ours) 21.8−0.5% 6.9−9.2% 72.5 74.3−3.3% 77.0+0.5% 80.2+1.0% 80.2+1.8%

Shikra-7B

Greedy 56.8 14.8 75.4 80.6 81.2 76.4 78.3
PAI 36.1 9.8 75.4 81.3 81.1 76.5 77.5
Devils 26.2 9.3 73.0 80.5 80.4 75.7 77.7
VISTA† 32.8 9.8 73.4 79.0 76.8 — —
SAVAE(Ours) 15.8−39.7% 5.0−46.2% 71.8 80.2−1.4% 81.3+0.1% 76.0−0.7% 78.5+0.3%

LLaVA-1.5-13B
Greedy 41.6 11.1 79.3 82.6 84.5 85.4 83.2
Devils 29.0 8.6 79.9 71.4 77.2 87.8 86.4
SAVAE(Ours) 21.8−24.8% 5.0−41.9% 79.8 82.5−0.1% 84.7+0.2% 87.9+0.1% 86.6+0.2%

4 SINK-AWARE VISUAL ATTENTION ENHANCEMENT

Having established the Non-Sink Visual Attention Ratio (NVAR) as a reliable indicator of factual
grounding, we now introduce the Sink-Aware Visual Attention Enhancement (SAVAE) method.
SAVAE is a training-free, two-stage process that leverages NVAR to identify and strengthen the
attention heads most critical for preventing hallucination.

Stage 1: A Principled Criterion for Head Selection. Building directly on the findings from Sec-
tion 3.5, the core of our approach is to select the attention heads that consistently demonstrate a high
NVAR. We compute a representative score, NVAR, for each head by averaging its NVAR values
across the set of real-object tokens (Oreal) obtained in Section 3.2:

NVAR
(ℓ,h)

=
1

|Oreal|
∑

yk∈Oreal

NVAR(ℓ,h)(yk). (7)

The K heads with the highest NVAR are then selected to form the target set T for reinforcement.

Stage 2: Collective Attention Reinforcement. With the set T of hallucination-critical heads iden-
tified, we apply our reinforcement mechanism during inference. The pre-softmax attention scores
of each selected head (ℓ, h) ∈ T are augmented by a scaled bonus derived from the attention pattern
of the entire layer. This allows the most effective heads to be guided by a more holistic signal:

A
(ℓ,h)
k,i ← A

(ℓ,h)
k,i + α

1

H

H∑
h′=1

∣∣∣A(ℓ,h′)
k,i

∣∣∣ , ∀vi ∈ Iv, (8)

where α is the enhancement hyperparameter and H is the total head count per layer. This targeted
mechanism selectively boosts the model’s focus on effective visual information, thereby directly
counteracting the influence of VAS. The complete SAVAE framework is formalized in Algorithm 2.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Models. We evaluate our method on LLaVA-1.5 (7B, 13B) (Liu et al., 2023), Shikra (7B) (Chen
et al., 2023), and MiniGPT-4 (7B) (Zhu et al., 2023) to assess its generalizability and scalability.

Evaluation Benchmarks. Following prior work (Liu et al., 2024b; Jiang et al., 2025), we evalu-
ate our method on several hallucination benchmarks. We use CHAIR (Rohrbach et al., 2018) for

6
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Table 2: AMBER benchmark results on LLaVA-1.5-7B. Best results are in bold. Superscripts show
the % change vs. the best baseline.

Model Method Generative Discriminative AMBER
CHAIRi ↓ Cover ↑ Hal ↓ Cog∗ ↓ Acc. ↑ F1 ↑ Score ↑

LLaVA-1.5-7B

Greedy 6.0 50.6 27.4 2.8 74.8 77.6 85.8
PAI 5.0 46.2 20.5 1.7 78.0 81.2 88.1
Devils 3.8 46.0 20.7 1.2 77.8 81.3 88.8
SAVAE(Ours) 3.6−5.3% 51.7+2.2% 20.2−1.5% 1.3+8.3% 78.6+0.8% 82.7+1.7% 89.6+0.9%

Table 3: Comparison of head selection strategies on LLaVA-1.5 7B.

Model Selecting Strategy CHAIR POPE POPE Chat
CHAIRs ↓ CHAIRi ↓ F1 ↑ Acc. ↑ F1 ↑ Acc. ↑ F1 ↑

LLaVA-1.5-7B Max Attention 7.8 4.4 65.8 85.9 85.6 86.0 85.5
SAVAE(Ours) 18.2 3.7 76.7 86.1 86.2 88.0 87.0

captioning evaluation and POPE (Li et al., 2023b) for query-based object probing, along with its
conversational variant, POPE-Chat. To assess out-of-domain performance and fine-grained errors,
we also employ AMBER (Wang et al., 2023). Further details are provided in Appendix D.1.

Baselines. We evaluate SAVAE against several state-of-the-art hallucination mitigation strategies.
The most closely related methods are PAI (Liu et al., 2024b) and Devils (Jiang et al., 2025), which
also enhance visual attention but rely on heuristic criteria for head selection. We also compare
against an approach with a distinct mechanism: the activation steering method VISTA (Li et al.,
2025). To ensure a fair comparison, VISTA is evaluated on POPE using its CHAIR hyperparameters,
with a detailed justification provided in Appendix D.2.

Implementation Details. We set the enhancement hyperparameter α to 0.6 for LLaVA-1.5 7B and
MiniGPT-4, and to 0.7 for LLaVA-1.5 13B and Shikra. Across all models, the number of selected
attention heads, K, is consistently set to 450. Our main experiments employ a greedy decoding strat-
egy, while results using beam search and sampling-based decoding are provided in Appendix E.1.
Further details on our hyperparameter settings can be found in Appendix D.3.

5.2 MAIN RESULTS

Superior Performance Across All Benchmarks. As detailed in Table 1, SAVAE demonstrates a
clear superiority over competing methods across all evaluated benchmarks. Our approach excels
in both long-form captioning (CHAIR) and short-form query (POPE) settings. For the CHAIR
benchmark, SAVAE achieves the best Cs and Ci scores, drastically reducing the CHAIRi score by
38.7% on LLaVA-1.5-7B and 46.2% on Shikra-7B relative to the strongest baseline (ignoring two
unreliable results from VISTA). Similarly, on both POPE and POPE-Chat, SAVAE consistently
yields higher F1 scores. This robust performance underscores the effectiveness and generalizability
of our method for hallucination mitigation.

Scalability to Larger Models. To assess the scalability of our approach, we applied SAVAE to the
LLaVA-1.5 13B model. As shown in Table 1, our method continues to yield significant improve-
ments, confirming its effectiveness is not limited to a specific model size. This result highlights the
robust scalability of SAVAE.

Strong Out-of-Domain Generalization. To test the generalization of our MSCOCO-derived head
selection strategy, we perform an out-of-domain evaluation on the AMBER benchmark using
LLaVA-1.5 7B. The results, shown in Table 2, reveal that SAVAE maintains a significant perfor-
mance gain over the baseline. This robust performance on an unseen data distribution confirms
the strong generalization ability of our approach. This finding is further supported by results on
additional models, which are detailed in Appendix E.2.
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Figure 5: Ablation on hyperparameters α and K for LLaVA-1.5 7B. Red boxes highlight the param-
eter combinations we used.

Table 4: Ablation study on the sample size for
LLaVA-1.5 7B.

CHAIR POPE
Num CHAIRs CHAIRi F1 Acc F1

10 18.8 3.7 76.5 86.1 86.2
100 18.8 3.7 76.5 85.9 86.1
300 18.6 4.8 76.9 85.9 86.1
500 18.2 3.7 76.7 86.1 86.2
1000 18.2 3.7 76.7 86.1 86.2

Table 5: Ablation on the sink token penalty fac-
tor β for LLaVA-1.5 7B.

CHAIR POPE
β CHAIRs CHAIRi F1 Acc F1

0.0 18.2 3.7 76.7 86.1 86.2
0.1 20.2 4.5 76.8 86.1 86.2
0.3 19.0 4.1 77.0 86.2 86.2
0.6 19.8 4.7 76.8 86.1 86.2
0.9 19.2 4.7 76.9 86.2 86.3

5.3 ABLATION STUDIES AND ANALYSIS

Impact of Hyperparameters α and K. We investigate the impact of hyperparameters α and K by
searching over the ranges [0.3, 0.8] and [350, 550], respectively. The results, illustrated for LLaVA-
1.5 7B in Figure 5, reveal a clear trade-off. Aggressively increasing α and K effectively suppresses
hallucination (lower CHAIR scores) but comes at the cost of reduced generation quality, as indicated
by lower F1 scores. Therefore, our final hyperparameters are chosen to strike an optimal balance,
maximizing hallucination suppression while preserving the model’s fluency and coherence. Ablation
studies for our other models are presented in Appendix E.3.

Superiority of NVAR for Head Selection. We demonstrate NVAR’s superiority by ablating its
core component: sink-awareness. As shown in Table 3, selecting heads based only on total visual
attention (Isink = ∅) results in significantly lower F1 scores across all benchmarks on LLaVA-1.5
7B. This confirms that high raw visual attention is a flawed proxy for effective grounding, as it is
easily captured by redundant sink tokens. NVAR’s crucial advantage is its ability to filter this noise,
isolating heads that truly focus on salient visual content.

Ablation on Sample Size. We performed an ablation on the number of samples used for our analysis
in Section 3.2. As shown in Table 4, key performance metrics across all benchmarks stabilize once
the sample size reaches 500. Therefore, we adopt a sample size of 500 for all experiments, as this
provides a robust estimate of performance without incurring unnecessary computational costs.

6 FURTHER ANALYSIS

6.1 EFFECT OF PENALIZING ATTENTION TO VAS TOKENS

Given the perceived redundancy of VAS tokens, we test the hypothesis that explicitly penalizing
their attention could further improve performance. To do this, we introduce a penalty factor β,
where β = 0 recovers our default SAVAE method. As β increases, the enhancement for sink tokens
is progressively reduced. The results in Table 5 indicate this strategy offers no significant benefit and
can even be detrimental, causing a notable performance drop on CHAIR. This finding, consistent
with prior work (Gu et al.), thus justifies our adoption of the simpler, global enhancement strategy.

6.2 STATISTICAL CORRELATION BETWEEN VAS AND HALLUCINATION

To provide further statistical evidence linking VAS to hallucination, we analyze the Visual Attention
Sink Ratio (VASR), conceptually defined as the proportion of a head’s visual attention captured by

8
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Shikra (c)(a) (b)MiniGPT4

(d) Please help me describe the image in detail.

LLaVA-1.5 7B

SAVAE (ours)

The image features a woman playing tennis on a clay court. She is in a ready position, 
holding a tennis racket and preparing to hit the ball. The woman is wearing a red shirt 
and appears focused on the game. The tennis ball is in the air, close to the woman, and 
she is poised to make contact with it. The scene captures the intensity and skill of the 
sport, as the woman is fully engaged in the game.

The woman is wearing a red shirt and a white hat while playing tennis on a clay court. 
She is holding a tennis racket and is in a ready position to hit the ball. The court is 
brown and the woman is in the middle of the court.

Figure 6: Analysis of the Visual Attention Sink Ratio (VASR) and the effectiveness of SAVAE. (a)
and (b) present the statistical distributions of VASR for MiniGPT4 and Shikra. (c) illustrates the
evolution of the VASR score during a single generation. (d) A case study demonstrates SAVAE
correcting a baseline hallucination by redirecting the model’s focus from irrelevant VAS tokens (as
shown in the heatmap) back to the salient visual target.

sink tokens (Isink). Analyzing the top 300 attention heads with the highest total sum of attention
to the visual tokens, we find a strong statistical correlation: hallucinated tokens are consistently
associated with a significantly higher VASR (Figure 6 (a, b) and Appendix B.2). However, while a
strong indicator of hallucination on a token-level, VASR is unsuitable for head selection because its
value for any given head is highly context-dependent, fluctuating dramatically based on the token’s
grounding status, rather than reflecting a stable property of the head itself.

To further illustrate this dynamic, we visualize the evolution of the VASR score over the course of
a single generation in a case study shown in Figure 6 (c). As the generation progresses, the VASR
steadily increases, indicating that the model’s focus gradually shifts towards irrelevant sink tokens,
which ultimately precedes the onset of hallucination.

6.3 CASE STUDY

A case study in Figure 6 (d) illustrates our method’s effectiveness. While the baseline hallucinates
that “The tennis ball is in the air”, our method provides a factually accurate description. The attention
visualizations reveal the mechanism behind this correction: the baseline, when generating “ball”,
suffers from severe VAS, with attention scattered onto irrelevant background. In contrast, the heads
selected by SAVAE demonstrate a precise focus on the target object when generating “racket”,
thereby preventing the hallucination. Additional case studies are presented in Appendix F.

7 CONCLUSION

This paper provides the first mechanistic analysis of visual attention sinks (VAS) in LVLMs, re-
vealing a core property we term Vocabulary Fixation, where VAS tokens consistently decode to a
fixed set of semantically vacuous words. This discovery provides the foundation for our Vocabu-
lary Fixation-Based Identification (VFI) method for reliably localizing these tokens, which in turn
enables our primary contribution, Sink-Aware Visual Attention Enhancement (SAVAE). SAVAE
leverages our NVAR metric to identify hallucination-critical heads and selectively strengthen their
focus on salient visual content. Our experimental results demonstrate that LVLMs can significantly
reduce hallucination through principled, sink-aware edits to the attention map at inference time. We
believe our work contributes to a deeper, mechanistic understanding of the VAS phenomenon and
its link to hallucination, offering a new direction for improving the reliability of LVLMs.

9
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ETHICS STATEMENT

In this paper, we propose a method to analyze and mitigate hallucinations, a key failure mode that
undermines the trustworthiness of LVLMs. Our work is intended to be a positive contribution to-
wards developing more reliable and factually grounded AI systems. The core of our analysis, VFI,
provides a new tool for auditing and understanding the internal mechanisms of these models, which
we believe serves the broader goal of AI safety and transparency. We recognize that any deep
analysis of model internals could potentially be used to identify new vulnerabilities; however, our
primary contribution, SAVAE, is a defensive mechanism designed to make models more robust. We
welcome feedback from the community on further considerations for the responsible development
and deployment of this technology.

REPRODUCIBILITY STATEMENT

To ensure full reproducibility, we provide all necessary details in Section 5 and the Appendices. Our
experimental setup, including the specific models used and their versions, is detailed in Section 5.1.
The datasets, splits, and benchmark configurations for both analysis and evaluation are provided
in Appendix D. All hyperparameters for our core contributions, the VFI method (Ŝ and τ ) and the
SAVAE method (α and K), are specified in Appendix D.3. The complete algorithmic frameworks
for VFI and SAVAE are formalized in Appendix G. To facilitate immediate review, we have included
the core implementation code in the supplementary materials. Upon acceptance, the full codebase
for our analysis and the SAVAE implementation, along with all scripts required to reproduce our
results, will be open-sourced under an MIT license.
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(a)  MiniGPT4

(b)  Shikra

(c)  LLaVA-1.5 13B

Figure 7: Empirical basis for our VFI method across three different models: (a) MiniGPT4, (b)
Shikra, and (c) LLaVA-1.5 13B. For each model, the left plot visualizes the distribution of Vocab-
ulary Trajectory Sets, confirming that the Vocabulary Fixation phenomenon is highly concentrated.
The right plot shows the distribution of the resulting Vocabulary Fixation Scores, where the distinct
U-shaped pattern provides a clear and principled basis for selecting a threshold τ to effectively sep-
arate normal from VAS tokens.

A THE USE OF LARGE LANGUAGE MODELS

Throughout the preparation of this manuscript, large language models were employed exclusively
for light stylistic refinement and the occasional grammatical adjustment. Every conceptual insight,
analytical thread, and interpretive conclusion emerged from the authors themselves; no algorith-
mic assistance was solicited for the framing, design, or substance of the work, and full scientific
responsibility rests with the human contributors alone.

B MORE STATISTICAL RESULTS

B.1 EMPIRICAL RESULTS FOR VFI ON ADDITIONAL MODELS

Figure 7 presents the empirical results for our VFI method on MiniGPT4, Shikra, and LLaVA-1.5
13B. The results reveal that MiniGPT4 and Shikra exhibit a more pronounced Vocabulary Fixation
phenomenon compared to the LLaVA-1.5 series, which indicates a stronger underlying VAS effect
in these models. This is also reflected in the more heavily populated right tail of their U-shaped
Vocabulary Fixation Score distributions.

For all these models, the U-shaped Vocabulary Fixation score distribution provides a clear demarca-
tion between normal and sink tokens. This clear separation allows for a straightforward and robust

14
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Shikra

(b) LLaVA-1.5 7B LLaVA-1.5 13B

LLaVA-1.5 13B(a)

Figure 8: Supporting distributions for NVAR and VASR on additional models. (a) NVAR distribu-
tions for Shikra and LLaVA-1.5 13B. (b) VASR distributions for LLaVA-1.5 7B and 13B.

(a) (b)LLaVA-1.5 7B LLaVA-1.5 13B

Figure 9: Positional distribution of VAS tokens for LLaVA-1.5 7B and 13B within the 576-token
visual sequence. The plots show that VAS tokens are not uniformly distributed, but are instead highly
concentrated in specific index ranges. This suggests that the VAS phenomenon may be intrinsically
linked to the mechanics of the attention mechanism.

selection of the threshold τ . For instance, we can confidently set τ to 31, 32, and 31 for MiniGPT4,
Shikra, and LLaVA-1.5 13B, respectively, as our analysis shows that the final identification is not
sensitive to minor perturbations of these values.

Interestingly, while all these LVLMs are built upon LLaMa-based backbones, their resulting fixation
vocabularies are entirely distinct, highlighting the model-specific nature of this phenomenon.

B.2 NVAR AND VASR DISTRIBUTIONS ON ADDITIONAL MODELS

Figure 8 (a) presents the NVAR distributions for Shikra and LLaVA-1.5 13B. Consistent with our
main findings, real object tokens consistently yield higher NVAR scores than hallucinated tokens
across these additional models. This result further validates the effectiveness and generalizability of
NVAR as a criterion for selecting hallucination-related attention heads.

Part (b) of Figure 8 shows the VASR distributions for LLaVA-1.5 7B and 13B, confirming that
hallucinated tokens are associated with higher VASR scores. Furthermore, when considering these
results in conjunction with those presented in Figure 6, we can observe the relative severity of the
VAS phenomenon across all four tested models. Shikra exhibits the most pronounced effect, while
LLaVA-1.5 7B shows the mildest.
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559

157

5
105

198

Figure 10: A case study of the hidden state visualization for VAS tokens. The plot shows the
hidden state distribution at layer 5 for five prominent VAS tokens identified in an output sequence.
The established sink dimensions for LLaVA-1.5 7B, specifically dimensions 1415 and 2533, are
highlighted in red for reference.

B.3 POSITIONAL DISTRIBUTION OF VAS TOKENS

To further investigate the properties of VAS tokens, we analyzed their positional distribution within
the visual sequence. As shown in Figure 9, we present the statistical distribution of the relative
indices (from 0 to 575) for VAS tokens in LLaVA-1.5 7B and 13B. The results reveal that VAS tokens
tend to be highly concentrated in specific index ranges, rather than being uniformly distributed. This
positional bias suggests that the emergence of the VAS phenomenon may be intrinsically linked to
the mechanics of the attention mechanism itself.

C COMPARISON BETWEEN VFI AND THE MASSIVE ACTIVATION-BASED
METHOD

As there are no direct quantitative metrics to evaluate the performance of VAS identification meth-
ods, we provide a qualitative case study in this section to demonstrate the superiority of our VFI
method over the massive activation-based approach of (Kang et al., 2025).

We revisit the example from Figure 2, where the model generated the token “phone”. Among the
top-10 most attended visual tokens, five of them (tokens 5, 105, 157, 198, and 559) were identified
as clear VAS tokens. To compare the two identification methods, we visualize the layer-5 hidden
state distributions for these five tokens in Figure 10, highlighting the massive activation dimensions
Dsink = {1415, 2533}.
The visualization reveals a critical discrepancy: while several tokens exhibit the phenomenon, to-
kens 105 and 198 do not show massive activation in the designated dimensions. The massive
activation method would therefore fail to identify these two tokens. In contrast, our VFI method
successfully identifies all five VAS tokens, demonstrating its superior robustness and coverage in
detecting the full range of VAS behaviors.

D ADDITIONAL EXPERIMENTAL SETUPS

D.1 DETAILED BENCHMARK AND EVALUATION METRICS

CHAIR (Rohrbach et al., 2018). The Caption Hallucination Assessment with Image Relevance
(CHAIR) metric quantifies hallucination in image captions by comparing generated object mentions
against a pre-compiled set of ground-truth objects for each image. An object is considered a hallu-
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cination if it is mentioned in the caption but is absent from this ground-truth set. It comprises two
scores: instance-level (CHAIRI) and sentence-level (CHAIRS), calculated as follows:

CHAIRI =
|{hallucinated objects}|
|{all mentioned objects}|

, (9)

CHAIRS =
|{captions with hallucinated objects}|

|{all captions}|
. (10)

Our evaluation is conducted on 500 randomly sampled instances from the MSCOCO 2014 validation
set. To specifically assess long-form generation, we adopt the setup from PAI(Liu et al., 2024b) and
Devils(Jiang et al., 2025), generating descriptions with a ‘max new tokens’ of 512 using the prompt:
“Please help me describe the image in detail.”.

POPE (Li et al., 2023b). The Polling-based Object Probing Evaluation (POPE) is a benchmark
designed within the VQA paradigm to assess object hallucination. It evaluates LVLMs by posing
binary questions about object presence, such as “Is there a <object> in the image?”.
The questions are constructed using objects from three distinct sampling strategies to test different
aspects of model knowledge: random (objects chosen randomly from the dataset), popular (fre-
quently occurring objects), and adversarial (objects semantically related to those present in the
image). Experimental Setup. We evaluate on 500 images from the COCO test set, with 6 ques-
tions per split for each image, reporting both Accuracy and F1 scores. Furthermore, following (Liu
et al., 2024b), to comprehensively examine performance in conversational contexts, we extend the
evaluation to include both single-turn and multi-turn dialogues, a setup we term POPE-Chat.

AMBER (Wang et al., 2023). AMBER is a comprehensive benchmark designed to evaluate multiple
facets of hallucination, including object, attribute, and relation errors, across both discriminative and
generative tasks. While its discriminative tasks are evaluated using standard metrics (e.g., Accuracy,
F1 Score), its generative tasks employ a suite of four specific metrics to assess the quality and faith-
fulness of model responses. Let Robj be the set of objects mentioned in the model’s response, Gobj
be the set of ground-truth objects, and Hobj be a pre-annotated set of common human hallucinations.
The generative metrics are defined as follows:

• CHAIR: Evaluates the proportion of hallucinated objects among all objects mentioned by
the model. Note: This is equivalent to the instance-level CHAIR, and is referred to as
CHAIRi in our main text.

CHAIR = 1−
|Robj ∩Gobj|
|Robj|

. (11)

• Cover: Measures the proportion of ground-truth objects that are correctly mentioned in the
model’s response (i.e., object recall).

Cover =
|Robj ∩Gobj|
|Gobj|

. (12)

• Hal: A binary metric that indicates whether any hallucination occurred in the response.

Hal =
{
1, if CHAIR > 0

0, otherwise
. (13)

• Cog: Assesses the similarity between the model’s hallucinations and those common to
humans.

Cog =
|Robj ∩Hobj|
|Robj|

. (14)

Finally, to provide a single, unified measure of performance, AMBER also proposes the AMBER
Score, which combines the F1 score from discriminative tasks and the CHAIR score from generative
tasks:

AMBER Score =
1

2
× (1− CHAIRi + F1) . (15)

The final reported scores are the average values of these metrics across all queries in the benchmark.
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Table 6: Performance of the VISTA method across different models and λ values.

Method Model λ
CHAIR POPE

CHAIRs CHAIRi F1 Acc F1

VISTA

LLaVA 0.01 48.4 13.2 75.9 83.1 84.6
0.17 15.6 5.2 67.3 56.7 63.3

MiniGPT-4 0.01 35.0 9.2 69.5 76.8 77.7
0.10 18.0 4.3 67.3 66.6 74.4

Shikra 0.01 55.2 15.1 74.0 82.4 82.4
0.12 32.8 9.8 73.4 79.0 76.8

Table 7: Hyperparameter settings.

Model α K τ |Ŝ|

LLaVA-1.5-7B 0.6 450 23 10
MiniGPT-4-7B 0.4 450 31 10
Shikra-7B 0.7 450 32 1
LLaVA-1.5-13B 0.7 450 31 10

D.2 THE TRADE-OFF BETWEEN THE CHAIR AND POPE BENCHMARKS

In this section, we discuss the importance of maintaining consistent hyperparameters across the
POPE and CHAIR benchmarks to provide a comprehensive and fair evaluation of a method’s ef-
fectiveness. As detailed in Appendix D.1, POPE and CHAIR represent two distinct hallucination
scenarios: short-form queries and long-form descriptions, respectively. It is often possible to op-
timize performance for a single benchmark by aggressively tuning hyperparameters. For example,
a higher intervention strength (such as α in our SAVAE method or λ in VISTA) can significantly
improve CHAIR scores.

However, this often comes at the cost of degraded performance on other benchmarks. Overly ag-
gressive settings can force the model into a conservative generation mode, where it produces only
the safest responses, sometimes even leading to repetitive text. This behavior, in turn, typically re-
sults in lower scores on benchmarks like POPE. Therefore, we argue that a method’s true ability
to mitigate hallucination is best demonstrated by robust performance across multiple benchmarks
using a single, unified set of parameters.

As an illustration of this trade-off, we present the results for VISTA under different hyperparameter
settings in Table 6. The results demonstrate the challenge of achieving a strong balance between the
two benchmarks. In our main experiments, all other baseline methods maintain a consistent set of
hyperparameters across benchmarks. To ensure a fair and standardized comparison, we adopt this
same principle for our evaluation. Consequently, we use the hyperparameter settings proposed for
VISTA on the CHAIR benchmark as its single configuration for all evaluations.

D.3 HYPERPARAMETER SETTINGS

This section provides a cfomprehensive summary of the hyperparameter settings used for each model
throughout our experiments. The detailed configurations are presented in Table 7.

E SUPPLEMENTARY EXPERIMENTS RESULTS

E.1 PERFORMANCE WITH ALTERNATIVE DECODING STRATEGIES

In this subsection, we present additional experimental results for the beam search and nucleus sam-
pling decoding strategies, which were omitted from the main text due to space constraints. For beam
search, we set the beam size to 5, and for nucleus sampling, the temperature is set to 0.5. The de-
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Table 8: Performance of SAVAE against baselines using beam search decoding. Best results are in
bold. Pink cells mark potentially unreliable CHAIR scores. Superscripts show the % change vs. the
best baseline. †Re-evaluated using the baseline’s CHAIR hyperparameters on all benchmarks for
consistency.

Model Method CHAIR POPE POPE Chat
CHAIRs ↓ CHAIRi ↓ F1 ↑ Acc. ↑ F1 ↑ Acc. ↑ F1 ↑

LLaVA-1.5-7B

Beam Search 47.6 13.0 79.0 84.7 85.4 85.3 83.2
PAI 21.6 6.2 75.8 85.1 85.7 88.1 87.0
Devils 29.0 6.8 80.1 84.9 85.6 88.4 87.6
VISTA† 9.8 5.7 54.3 56.0 63.6 — —
SAVAE(Ours) 20.0−7.4% 5.8−6.5% 78.7 86.0+1.1% 86.2+0.6% 88.1−0.3% 87.1−0.6%

MiniGPT-4-7B

Beam Search 29.0 8.9 72.9 76.9 76.9 77.9 78.0
PAI 23.0 7.5 72.8 75.5 76.9 78.5 78.6
Devils 20.2 6.9 71.9 67.2 74.3 79.3 79.5
VISTA† 15.4 4.6 67.4 64.3 73.4 — —
SAVAE(Ours) 20.0−1.0% 6.6−4.3% 74.3 76.6−0.4% 77.0+0.1% 79.7+0.5% 80.4+1.1%

Shikra-7B

Beam Search 56.6 14.1 77.0 81.1 81.6 77.3 78.5
PAI 35.4 9.2 77.1 82.0 81.3 77.4 77.3
Devils 21.2 8.1 73.6 80.3 80.5 76.9 78.0
VISTA† 31.4 10.7 74.4 79.1 76.9 — —
SAVAE(Ours) 15.0−29.2% 3.4−58.0% 72.2 81.6−0.5% 82.0+0.5% 77.5+0.1% 78.9+0.5%

Table 9: Performance of SAVAE against baselines using sample as decoding strategy. Best results
are in bold. Pink cells mark potentially unreliable CHAIR scores. Superscripts show the % change
vs. the best baseline. †Re-evaluated using the baseline’s CHAIR hyperparameters on all benchmarks
for consistency.

Model Method CHAIR POPE POPE Chat
CHAIRs ↓ CHAIRi ↓ F1 ↑ Acc. ↑ F1 ↑ Acc. ↑ F1 ↑

LLaVA-1.5-7B

Sample 48.2 15.2 73.8 83.2 84.0 85.1 83.1
PAI 41.6 11.3 71.7 83.5 84.2 87.0 85.9
Devils 31.8 7.1 79.9 83.7 84.3 87.3 86.1
VISTA† 16.0 7.9 65.7 82.6 84.0 — —
SAVAE(Ours) 24.8−22.0% 5.5−22.5% 77.2 84.0+0.4% 84.3±0.0% 87.0−0.3% 86.1±0.0%

MiniGPT-4-7B

Sample 33.8 10.4 71.4 67.2 68.2 74.2 74.2
PAI 28.4 12.2 69.1 65.9 68.9 75.4 75.4
Devils 22.2 7.7 71.9 63.0 68.0 75.0 74.5
VISTA† 17.4 4.8 67.7 66.5 67.3 — —
SAVAE(Ours) 22.0−0.9% 7.8+1.3% 72.9 65.3−2.8% 69.0+0.1% 75.7+0.4% 76.7+1.7%

Shikra-7B

Sample 57.4 16.1 73.7 79.7 80.7 75.7 77.7
PAI 41.6 11.4 72.4 80.1 80.2 75.6 76.7
Devils 25.0 8.8 73.3 78.6 79.4 75.2 77.3
VISTA† 32.6 11.0 72.5 78.7 76.4 — —
SAVAE(Ours) 18.2−27.2% 4.6−47.7% 71.3 78.8−1.6% 80.2−0.6% 75.5−0.3% 78.0+0.4%

tailed results are presented in Table 8 and Table 9, respectively. Overall, the findings are consistent
with the conclusions drawn from the greedy decoding experiments in the main text: our method
generally outperforms all baseline approaches across these different strategies.

E.2 AMBER RESULTS ON ADDITIONAL MODELS

In this section, we present the experimental results on the AMBER benchmark for the remaining
models, which were omitted from the main text due to space constraints. As shown in Table 10,
the overall trend is consistent with the conclusions presented in the main paper: our method SAVAE
demonstrates a clear superiority over the baseline approaches.
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Table 10: AMBER benchmark results on MiniGPT-4-7B and Shikra-7B. Best results are in bold.
Superscripts show the % change vs. the best baseline.

Model Method Generative Discriminative AMBER
CHAIRi ↓ Cover ↑ Hal ↓ Cog∗ ↓ Acc. ↑ F1 ↑ Score ↑

MiniGPT-4-7B

Greedy 15.3 63.3 65.2 11.0 64.9 65.1 74.9
PAI 12.3 60.8 51.3 7.2 61.4 61.3 74.5
Devils 11.5 58.8 48.2 6.4 58.0 56.4 72.5
SAVAE(Ours) 11.2−2.6% 61.1−3.5% 48.9+1.5% 6.1−4.7% 61.4−5.4% 61.5−5.5% 75.2+0.4%

Shikra-7B

Greedy 11.2 50.9 49.7 5.6 78.5 82.1 85.5
PAI 7.2 49.3 34.3 3.0 78.0 82.0 87.4
Devils 6.7 45.3 29.5 1.6 71.1 74.1 83.7
SAVAE(Ours) 5.3−20.9% 48.9−3.9% 28.4−3.7% 1.7+6.3% 78.2−0.4% 82.2+0.1% 88.5+1.3%

(a)

(b)

Figure 11: Ablation on hyperparameters α and K for Shikra (a) and MiniGPT4 (b). Red boxes
highlight the parameter combinations we used.

E.3 SUPPLEMENTARY ABLATION RESULTS

In this subsection, we present the supplementary hyperparameter ablation studies for the remaining
models, which were omitted from the main text due to space constraints. Specifically, Figure 11
illustrates the results for Shikra and MiniGPT4, which are consistent with the trade-offs discussed
in the main paper.

F ADDITIONAL CASE STUDIES

In this section, we present several additional case studies to qualitatively demonstrate how our
SAVAE method concentrates attention on key visual content and effectively mitigates hallucination.
Figure 12 visualize four distinct examples. For each example, we contrast the attention map for a
hallucinated object token generated by the baseline model with the attention map for a correspond-
ing real object token from our SAVAE-enhanced model. It is important to note a key methodological
difference in these visualizations: the baseline maps represent the average attention across all heads,
whereas the maps for our method show the average attention of the 450 heads selected by SAVAE.

Additionally, for three of these examples, we provide logit lens visualizations in Figure 13 (following
the approach in Figure 2) to further illustrate the behavior of the identified VAS tokens. These
visualizations confirm that the model allocates disproportionately high attention to these tokens
when a hallucination is produced.

From these examples, we can clearly observe a consistent pattern: when a hallucination occurs,
the baseline model’s attention is often scattered onto irrelevant VAS tokens. The effect of SAVAE
is also made visually evident, as it successfully refocuses the model’s attention onto the grounded
target object.
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Please help me describe the image in detail.
LLaVA-1.5 7B

SAVAE (ours)

The image features a woman sitting on a bed in a bedroom. She is wearing a black 
dress and appears to be looking at something on her laptop, which is placed on her 
lap. The bed is covered with a white comforter, and there are two pillows on it. In 
the room, there are several items scattered around. A cat is present, located near 
the left side of the bed. A cell phone can be seen on the bed, closer to the center. 
Additionally, there are two bottles, one near the left edge of the bed and the 
other on the right side. A vase is also visible, placed near the left edge of the bed.

The image shows a woman sitting on a bed with a laptop computer in front of her. 
She is wearing a black shirt and is looking at the camera. The bed is covered with a 
white comforter, and the woman is sitting on a white bed. The room is decorated 
with a red wall and a black and white curtain. The woman is looking at the camera 
while using her laptop.

Please help me describe the image in detail. LLaVA-1.5 7B

SAVAE (ours)

The image features a small TV sitting on a wooden desk in a room. The TV is 
positioned towards the right side of the desk, and it appears to be turned off. The 
desk is also equipped with a remote control, which is placed near the left side of 
the TV. In addition to the TV and remote, there are two books on the desk, one 
located closer to the left side and the other towards the right side. A person can 
be seen in the background, partially visible on the left side of the image.

The image features a small TV sitting on a wooden desk in a room. The TV is placed 
on a silver stand, and it is situated next to a window. The television is turned off, 
and the room appears to be dimly lit. There are several remote controls on the desk. 
The room has a brown table, and the television is the main focus of the scene.

LLaVA-1.5 7B

SAVAE (ours)

The image features a group of three giraffes standing together in a dirt area. They are positioned close to 
each other, with one giraffe on the left, another in the middle, and the third on the right. The giraffes are 
standing under a tree, which provides shade and a natural environment for them.The scene also includes a 
bench located in the background, possibly for visitors to sit and observe the giraffes. The overall 
atmosphere of the image is serene and peaceful, showcasing the beauty of these majestic animals in their 
natural habitat.

The image features a group of three giraffes standing together in a zoo enclosure. They are surrounded by 
trees and plants, with two of the giraffes eating leaves from a tree. The giraffes are standing in a dirt area, 
which is their natural habitat. The giraffes are positioned in a way that they are facing each other, creating 
a sense of unity among them. The scene is set in a forest-like environment, with the giraffes standing near a 
tree and a fence.

Please help me describe the image in detail.

LLaVA-1.5 7B

SAVAE (ours)

The image features a woman standing outside, holding a donut in her hand. The donut is decorated with red, 
white, and blue colors, making it visually appealing. The woman is wearing a red shirt and appears to be 
smiling as she poses with the donut. In the background, there is a backpack placed on the ground, possibly 
belonging to the woman. The scene seems to be set in an urban environment, with a building visible in the 
background.

The image features a woman wearing a red shirt and holding a donut with red, white, and blue frosting. She 
is smiling and holding the donut in front of her face. The woman is wearing a backpack, and she is standing in 
front of a building. The scene is set in a city, and the woman is holding a donut in her hand.

Please help me describe the image in detail.

Figure 12: Additional qualitative comparison of attention maps. For each case, we contrast the
attention map for a hallucinated token from the baseline model (top row) with a corresponding real
object token from our SAVAE-enhanced model (bottom row), demonstrating SAVAE’s ability to
refocus attention on salient objects.

G ALGORITHMS

For clarity and to facilitate reproducibility, this section provides the detailed algorithmic procedures
for our proposed frameworks. We present the Vocabulary Fixation-Based Identification (VFI)
framework in Algorithm 1 and the Sink-Aware Visual Attention Enhancement (SAVAE) frame-
work in Algorithm 2.
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... In the background, there is a 
backpack placed on the ground, possibly 
belonging to the woman...

Please help me describe the 

image in detail.

565

460

413

389

... A cell phone can be seen on the bed, 
closer to the center. Additionally, there 
are two bottles...

Please help me describe the 

image in detail.

524

413

429

201

510

... A person can be seen in the 
background, partially visible on the left 
side of the image.

Please help me describe the 

image in detail.

191

293

441

Figure 13: Logit lens visualization for three of the case studies from Appendix F. The plots provide
further qualitative evidence that the model allocates disproportionately high attention to the identi-
fied VAS tokens during hallucination.
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Algorithm 1 Vocabulary Fixation-Based Identification (VFI) Framework

Require: LVLM model M ; A dataset of images and ground-truth annotations D; TopK Attended
= 10.

Ensure: The set of Visual Attention Sink tokens Isink for a given image’s visual tokens Iv.
1: /* Phase 1: Data Collection for Analysis (Corresponds to Sec. 3.2) */
2: Oreal ← ∅
3: for each image I with annotations A in D do
4: D ←M(I, “Please help me describe the image in detail.”) {Generate description}
5: Oreal batch, Ohall batch ← CategorizeObjects(D,A)
6: Oreal ← Oreal ∪Oreal batch

7: end for
8:
9: /* Phase 2: Discover Fixed Vocabulary Ŝ and Threshold τ (Corresponds to Sec. 3.3) */

10: Trajectories← []
11: for each real object token yk ∈ Oreal do
12: Vtopk ← GetTopKAttendedVisualTokens(M,yk,TopK Attended) {Top-10 attended visual

tokens}
13: for each visual token vi ∈ Vtopk do
14: VT (vi)← GetVocabularyTrajectory(M,vi) {Decode hidden states}
15: Append(Trajectories,VT (vi))
16: end for
17: end for
18:
19: /* Determine Ŝ based on concentration */
20: Freqs← CalculateTokenFrequencies(Trajectories)
21: Ŝ ← SelectTopTokens(Freqs) {Selects top non-semantic tokens after filtering out semantic

tokens; Size is adaptive (e.g., 10 for high recall)}
22:
23: /* Compute scores and find threshold τ from distribution */
24: Scores← []
25: for each trajectory VT in Trajectories do
26: score← ComputeFixationScore(VT , Ŝ)
27: Append(Scores, score)
28: end for
29: τ ← FindValleyInDistribution(Scores) {Identifies split point in U-shaped distribution}
30:
31: /* Phase 3: VFI Function for Inference (Corresponds to Sec. 3.4) */
32: function IdentifySinks(Iv,M, Ŝ, τ ) {Ŝ, τ are pre-computed in Phase 2}
33: Isink ← ∅
34: for each visual token vi ∈ Iv do
35: VT (vi)← GetVocabularyTrajectory(M,vi)

36: f(vi)← ComputeFixationScore(VT (vi), Ŝ)
37: if f(vi) ≥ τ then
38: Isink ← Isink ∪ {vi}
39: end if
40: end for
41: return Isink
42: end function
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Algorithm 2 Sink-Aware Visual Attention Enhancement (SAVAE) Framework

Require: LVLM model M ; A dataset of images and ground-truth annotations D; VFI function
‘IdentifySinks’; Hyperparameters K,α.

Ensure: A modified text generation process with reduced hallucination.
1: /* Phase 1: Offline Identification of Hallucination-Related Heads */
2: function SelectHallucinationHeads(M,D,K)
3: Oreal ← CollectRealObjectTokens(M,D) {As per Sec. 3.2}
4: NVAR← InitializeMatrix(L,H, zeros) {L,H: num layers, heads}
5: /* Iterate through each token first for efficiency */
6: for each real object token yk ∈ Oreal do
7: Iv ← GetCorrespondingVisualTokens(yk)
8: I ← GetFullContext(yk) {Get all context tokens (text+vision)}
9: Isink ← IdentifySinks(Iv,M) {From VFI Framework, done once per token}

10: Aall heads ← GetAttentionForAllHeads(M,yk) {Get attention tensor for step k}
11: for each head (ℓ, h) from (1, 1) to (L,H) do
12: Aℓ,h ← Aall heads[ℓ, h]
13: Nnumerator ←

∑
vi∈Iv\Isink

Aℓ,h,i

14: Ndenominator ←
∑

vi∈I Aℓ,h,i

15: NVAR score← Nnumerator/Ndenominator {Eq. 6}
16: NVARℓ,h ← NVARℓ,h + NVAR score
17: end for
18: end for
19: /* Finalize the average scores */
20: NVAR← NVAR/|Oreal| {Eq. 7}
21: T ← TopK(NVAR,K) {Select top-K heads}
22: return T
23: end function
24: /* Phase 2: Online Attention Enhancement during Inference */
25: function SAVAE Attention Forward(Aoriginal, T, α)
26: {This function modifies the pre-softmax attention tensor Aoriginal at each generation step.}
27: L,H ← GetModelDimensions()
28: Aenhanced ← Aoriginal {Initialize with original attention}
29: /* Iterate through all layers to apply the enhancement */
30: for ℓ = 1 to L do
31: /* Calculate the collective reinforcement bonus for the current layer ℓ */
32: Bonusℓ ← InitializeVector(size = num visual tokens)
33: for h′ = 1 to H do
34: Bonusℓ ← Bonusℓ + |AttentionScores(Aoriginal, ℓ, h

′)|
35: end for
36: Bonusℓ ← (α/H) ·Bonusℓ
37: /* Apply bonus ONLY to selected heads in this layer for their visual attention */
38: for h = 1 to H do
39: if (ℓ, h) ∈ T then
40: for each visual token vi do
41: Aenhanced[ℓ, h, i]← Aenhanced[ℓ, h, i] +Bonusℓ[i] {Eq. 8}
42: end for
43: end if
44: end for
45: end for
46: return Aenhanced

47: end function
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