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Abstract

Attention is a powerful component of modern neural networks across a wide variety of do-
mains. In this paper, we seek to quantify the regularity (i.e. the smoothness) of the attention
operation. To accomplish this goal, we propose a new mathematical framework that uses
measure theory and integral operators to model attention. Specifically, we formulate atten-
tion as an operator acting on empirical measures over representations of tokens. We show
that this framework is consistent with the usual definition, captures the essential properties
of attention, and that it can handle inputs of arbitrary length. Then we use it to prove
that, on compact domains, the attention operation is Lipschitz continuous with respect to
the 1-Wasserstein distance, and provide an estimate of its Lipschitz constant. Additionally,
by focusing on a specific type of attention, we extend these Lipschitz continuity results to
non-compact domains. Finally, we discuss the effects regularity can have on NLP models,
as well as applications to invertible and infinitely-deep networks.

1 Introduction

Attention (Bahdanau et al., 2014; Vaswani et al., 2017) is a fundamental building block of modern neural
networks. However, despite its ubiquity, much is still not well understood about the mathematical properties
of attention; in this paper, we study the question of regularity. Regularity (i.e. smoothness) is a fundamental
property of neural networks with important implications for topics such as robustness (Virmaux & Scaman,
2018; Finlay et al., 2018; Salman et al., 2019; Bubeck & Sellke, 2021), generalization guarantees (Bartlett
et al., 2017; Neyshabur et al., 2018; Chuang et al., 2021), and uncertainty estimation (Liu et al., 2020; van
Amersfoort et al., 2021). However, because of some special properties of attention such as self-interaction
and the ability to process variable length inputs, special care must be taken to model attention and obtain a
robust theory. For example, it is not clear a priori how to measure the closeness of two inputs to attention
that have different numbers of vectors.

In this paper, we address the technical challenges of studying the regularity of attention by formulating
attention in terms of measure theory and integral operators. More precisely, we propose a framework where
attention is an operator acting on empirical measures over representations of tokens. These measures can
encode an arbitrary number of tokens. By equipping this space of measures with the 1-Wasserstein distance,
our framework allows us to evaluate the regularity of attention in terms of its Lipschitz continuity (see
Figure 1 for an illustration). We investigate the implications of this regularity on a number of concrete
scenarios including cross-attention, which has become important in recent model architectures (Jaegle et al.,
2021; Alayrac et al., 2022). We also study how it can help certain applications by providing robustness to
the learned representations, but hurt others when the regularity of the model does not match the regularity
of the task. Lastly, we study how regularity impacts the properties of self-attention networks such as their
invertibility and the existence of infinite-depth limits.

The paper is organized as follows: we survey some related work in Section 2, then introduce preliminaries in
Section 3 and describe attention using measure theory in Section 4. We then obtain quantitative Lipschitz
continuity estimates for self-attention in Section 5 and apply these results to some concrete problems in
Section 6. Finally, we and conclude in Section 7.
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“A beagle is a [MASK].”
Rd

X = {X1, . . . , XN}

“A beagle is not a [MASK].”
Rd

Y = {Y 1, . . . , YM}

Rd

X̃ = {X̃1, . . . , X̃N}

Rd

Ỹ = {Ỹ 1, . . . , ỸM}

m(X)Am(X)

m(Y )Am(Y )

d(X,Y ) d(X̃, Ỹ )

Figure 1: Illustration of our framework. A sentence, viewed as a set of vectors in Rd, is represented by its
empirical measure on Rd. Above, we visualize two sentences: “A beagle is a [MASK].” (N = 5) and “A beagle
is not a [MASK].” (M = 6). We visualize them by placing a cylinder at the position of the corresponding
token’s representation in the sentence (the cylinders have a height of either 1

N or 1
M ). Self-attention, which

transforms X into X̃, is modelled as an operator on the corresponding empirical measures. We equip
the space of measures on Rd with the 1-Wasserstein distance and show that the self-attention operator is
Lipschitz: d(X̃, Ỹ ) ≤ τ(A)d(X,Y ). In our example, adding not to the sentence modifies the output set.
However, the extent of the modification is constrained by τ(A), see additional details in Section 6.

2 Related Work

As noted by Smola & Zhang (2019), the original notion of attention appears in statistics in the form of the
Watson-Nadaraya estimator (Watson, 1964; Nadaraya, 1964) which implements a data-dependent regression
model. The term “attention” and the modern “query-key-value” formulation comes from Bahdanau et al.
(2014) who use attention for sequence alignment in a recurrent neural translation model. A similar setup was
used in Graves et al. (2014) for differentiable, content-based addressing of a memory array. In Sukhbaatar
et al. (2015) and Seo et al. (2016), attention is used for question answering, machine reading comprehension,
and language modelling. The extremely successful “Transformer” architecture was introduced in Vaswani
et al. (2017) and demonstrated that one could build powerful neural networks using attention as the main
component. This led to important developments in language modelling (Devlin et al., 2018; Radford et al.,
2018; Raffel et al., 2019; Brown et al., 2020), graph modelling (Veličković et al., 2017), image modelling
(Parmar et al., 2018; Dosovitskiy et al., 2020), set modelling (Lee et al., 2018), reinforcement learning
(Baker et al., 2019), and multimodal learning Alayrac et al. (2022) among others.

There has also been recent work studying of the properties of attention-based networks from a theoretical
perspective. In Kim et al. (2021), the authors study the Lipschitz constant of self-attention as a map from
Rd×N → Rd×N ; we will revisit their approach in Section 6. Dasoulas et al. (2021) propose an explicit nor-
malization scheme for self-attention layers so as to enforce Lipschitz continuity. Other works studying various
theoretical aspects of attention (not necessarily regularity) include Edelman et al. (2022); Bhattamishra et al.
(2020); Hron et al. (2020); Levine et al. (2020). Another recent work from Dong et al. (2021) shows that the
other structural components of transformers (i.e., the feed-forward networks and residual connections) are in
fact necessary to avoid rank collapse of the resulting representations. This is an interesting finding because
our focus is on the attention operation itself, and hence our analysis doesn’t include residual connections or
feed-forward networks.
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We were mathematically inspired by Del Moral (2004) who studied self-interacting “Feynman-Kac models”
using semigroup techniques (including contractions for nonlinear operators on measures). An interacting
particle interpretation of attention is studied in Lu et al. (2019) using tools from dynamical systems theory.

3 Preliminaries

3.1 Attention

The fundamental definition of attention is due to Bahdanau et al. (2014), which we provide below with some
additional terminology for the various components that we will study.
Definition 1 (Attention, Bahdanau et al. (2014)). Let K = (k1, . . . , kN ) ⊂ Rdk be a collection of keys, V =
(v1, . . . , vN ) ⊂ Rdv a collection of corresponding values, and q ∈ Rdq a query. Also, let a : Rdq ×Rdk → R

be a measurable similarity function. Then attention is the mapping

Attention(q,K, V ) :=
N∑
i=1

softmatcha(q,K)i · vi,

where softmatcha(q,K) is a probability distribution over the elements of K defined as

softmatcha(q,K)i := exp(a(q, ki))∑N
j=1 exp(a(q, kj))

. (1)

While Attention(•,K, V ) is defined point-wise for a given query, it is almost always used to process a
set of queries Q = {q1, . . . , qM} ⊂ Rdq in parallel. Thus, we will usually write Attention(Q,K, V ) :=
{Attention(qi,K, V )}Mi=1. Also, while |K| = |V | = N , in general M does not have to equal N . When K =
V = Q, we call the following mapping self-attention:

Q 7→ SelfAttention(Q) := Attention(Q,Q,Q).

We are primarily interested in self-attention as it can be composed to arbitrary depth, making it a key building
block of many neural network architectures.

3.2 Markov Kernels

In the sequel, (E, E) denotes a subset of Rd endowed with its Borel σ-algebra, and P(E) the space of
probability measures on E. We use the following notation for expectations w.r.t. µ ∈ P(E): for a real-
valued measurable function f , we denote µ(f) :=

´
f(x)µ(dx) when it exists.

Our framework will heavily rely on linear transformations of measures modelled by Markov kernels; see
e.g. Del Moral (2004) for an account that is consistent with our notation.
Definition 2 (Markov kernel). A Markov kernel is a mapping M : E × E → [0, 1] such that ∀x ∈
E,M(x, •) ∈ P(E) and ∀A ∈ E, x 7→M(x,A) is measurable.

A Markov kernel M defines a linear operator P(E)→ P(E) by µM(dy) :=
´
µ(dx)M(x, dy). It also defines

a linear operator on measurable functions by M(f)(x) :=
´
f(y)M(x, dy). Markov kernels M,N can be

composed by integration, MN(x,dz) :=
´
M(x, dy)N(y,dz).

4 Modelling Attention

In this section, we model attention (Bahdanau et al., 2014) and the Transformer (Vaswani et al., 2017)
in measure-theoretic language. Our construction casts the action of attention on collection of vectors as
a nonlinear Markov transport on P(E) by reformulating existing linear algebra and point-wise operations
in-terms of operators on P(E).
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4.1 Basic Model of Attention

The fundamental parts of Attention from Definition 1 are: the softmatcha operation, the key-value corre-
spondence, and the value-averaging w.r.t. the softmatch distribution. We will treat each of these in turn.

Softmatch and Boltzmann-Gibbs Transformations. At the core of the softmatch function, and indeed
attention itself, are the interactions between queries and keys. These interactions are a specific case of a
nonlinear measure transformation, the Boltzman-Gibbs transformation.
Definition 3 (Boltzmann-Gibbs Transformation). Let g : E → R>0 be bounded and measurable. The
Boltzmann-Gibbs transformation associated to g is the mapping Ψg : P(E)→ P(E):

Ψg(ν)(dy) := g(y)ν(dy)
ν(g) .

To implement the softmatcha operation, we will need a function G : E×E → R∗+ taking the form G(x, y) =
exp(a(x, y)), where a is a similarity function as in Definition 1. We call G an interaction potential.
Definition 4 (Softmatch Kernel). For an interaction potential G, we call the softmatch kernel the family
of Markov kernels {ΨG(ν)}ν∈P(E) indexed by ν ∈ P(E), such that for A ∈ E

ΨG(ν)(x,A) =
ˆ
A

ΨG(x,•)(ν)(dy) =
´
A
G(x, y)ν(dy)´

E
G(x, y)ν(dy) .

In other words, for a given x ∈ E and ν ∈ P(E), the softmatch kernel ΨG(ν)(x, dy) is the Boltzmann-Gibbs
transformation associated to G(x, •). To see how ΨG can be used to model the softmatch operation, we
introduce some simple but useful constructions from measure theory.

Empirical measure mapping. Denote by Pδ(E) := {δx | x ∈ E} the subset of Dirac measures in P(E).
There is a natural bijection between E and Pδ(E) defined by x↔ δx which will be the primary entry point for
measure theory in our model of attention. We can associate to any set of vectorsX = {x1, . . . , xN} ⊆ E ⊆ Rd
a measure in P(E) via the empirical measure mapping:

X 7→ m(X) := 1
N

N∑
i=1

δxi
.

In what follows, we will often use X and {δx1 , . . . , δxN
} interchangeably to represent the individual vectors

and m(X) to represent the joint configuration of X. We will see below that m(X) is a very natural object
to represent this joint configuration and how it behaves with attention.

Now consider a “query” representation δq, “key” representations K = {δk1 , . . . , δkN
}, and the empirical

measure m(K). The softmatch kernel models the interaction between q and K using the left-action of the
Markov kernels ΨG(m(K)) on the Dirac measure δq induced by integration:

δqΨG(m(K)) =
ˆ
δq(dq′)ΨG(q′,•)(m(K)) =

N∑
s=1

G(q, ks)∑N
r=1G(q, kr)

δks
.

Furthermore, given a set of queries Q = {δq1 , . . . , δqM
}, we can leverage the linearity of integration to model

the interaction between the two sets of representations Q and K using the same principle:

m(Q)ΨG(m(K)) = 1
M

M∑
t=1

ˆ
δqt(dq)ΨG(q,•)(m(K)) = 1

M

M∑
t=1

N∑
s=1

G(qt, ks)∑N
r=1G(qt, kr)

δks .

This new measure represents the joint configuration of the set of queries Q after they have interacted with
the keys K through the potential G and the associated Boltzmann-Gibbs transformation. It is a weighted
sum of particle measures, and will allow us to model the softmatch operation from Eq. (1).
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Key-Value Relationships. To generalize the relationship between keys and values, we now introduce the
lookup kernel.
Definition 5 (Lookup Kernel). Assume that the keys and values come from (Borel) measurable subsets of
Rdk ,Rdv resp. A lookup kernel is a Markov kernel, L : Rdk × B(Rdv ) → [0, 1], also denoted L(k, dv), that
maps keys to distributions on values. When the mapping from keys to values is a deterministic function `,
we have L(k,dv) = δ`(k)(dv).

For self-attention, `(x) = x is the natural choice of the deterministic lookup function, and for the Transformer
(see App. A), the natural choice is `(k) = WV k. In general, to study regularity, we assume there exists some
well-behaved function ` : Rdk → Rdv that realizes the correspondence ki ↔ vi — this holds for most realistic
implementations of attention such as those above.
Remark 1. The most general case of attention, when there is no prescribed correspondence between ki and
vi, could be realized by a function such as

`(k) =
N∑
i=1

1{k=ki}vi.

but this is not in general regular without additional assumptions.

Averaging and Measure Projections. In the remainder of this paper, we will make the following
technical assumption, which ensures that the operations we describe are well-defined.
Assumption 1. E ⊂ Rd is convex.

The final element of our construction is the averaging w.r.t. the set of values.

Denote by Π : P(E)→ Pδ(E) the measure projection of a probability measure µ ∈ P(E) onto the subset
of Dirac measures Pδ(E) defined by

Π[µ] := δµ, µ :=
ˆ
xµ(dx) ∈ E (2)

whenever µ exists (e.g. when µ has finite first moments). We claim (to be justified in a moment) that the
averaging w.r.t. values is accomplished by the measure projection Π described in Eq. (2).

The Attention Kernel. Combining these, we obtain a model for attention, the attention kernel.
Definition 6 (Attention Kernel). The attention kernel, denoted A, is the composition of the measure
projection Π, the softmatch kernel and the lookup kernel, defined for q ∈ E and µ ∈ P(E) as:

Aµ(q, dz) := Π[ΨG(q,•)(µ)L](dz) = Π
[ˆ

ΨG(q,•)(µ)(dk)L(k,dv)
]

(dz),

where the softmatch and lookup kernels are composed by integration as described after Definition 2 and Π
is applied to the resulting measure (which is defined per q). Our first result is that this attention kernel is
consistent with attention from Definition 1, for suitable choices of G and L.
Proposition 1. Let G(x, y) = exp(a(x, y)), L(k, dv) = δ`(k)(dv), and Q,K, V be as in the definition of
attention. Then, using the left action of kernels on measures, the mapping:

(Q,K, V ) 7→
{
δq1Am(K), . . . , δqT

Am(K)
}

implements attention as in Definition 1.

Proof. Using the remarks from earlier, for q ∈ Rdq , we have:

ΨG(q,•)(m(K))L =
ˆ N∑

j=1

G(q, kj)∑N
p=1G(q, kp)

δkj
(dk)L(k, dv) =

N∑
j=1

G(q, kj)∑N
p=1G(q, kp)

δvj
(dv).
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Applying Π yields: Am(K)(q,dv) = δ∑N

j=1

G(q,kj )∑N

p=1
G(q,kp)

vj
(dv). Using the (linear) left-action of this kernel on

δqt
, we then obtain:

δqt
Am(K)(dv) =

ˆ
δqt

(dq)Am(K)(q,dv) = δ∑N

j=1

G(qt,kj )∑N

p=1
G(qt,kp)

vj
(dv).

Plugging in the definition of G and using the usual bijection δx ↔ x concludes the proof.

Attention as a System of Interacting Particles. Let us step back and understand the attention kernel
A from a higher level. Consider self-attention: we have effectively factorized the original, linear-algebraic
self-attention operation into a series of measure transformations:

E
x 7→δx−→ Pδ(E) ΨGL−→ P(E) Π−→ Pδ(E) δx 7→x−→ E.

More importantly, we have a closed-form expression for the evolution of the joint configuration m(Q) of Q,
i.e. m(Q) 7→ m(Q)Am(Q). Since interaction with the joint configuration is central to attention, having a
framework that describes its evolution will be vital to further analysis.

Moreover, as we noted earlier, self-attention can be composed arbitrarily. Indeed, let Q0 := Q and consider
the evolution of a the set of “particles” Qh = {δqh

1
, . . . , δqh

M
} for h = 0, 1, 2, . . . ,H − 1 whose dynamics are

given by
qh+1
i ∼ Ah

m(Qh)(qhi , •)

or equivalently as a measure-valued equation

δqh+1
i

= δqh
i
Ah
m(Qh).

Our framework shows that self-attention networks are actually simulating deterministic interacting particle
systems for a finite number of time steps corresponding to the number of layers H. The representations one
obtains are the states of the system after H steps of the dynamics.
Remark 2. Interestingly, the particle interpretation above is studied in Lu et al. (2019) using tools from
dynamical systems theory. The authors recognize the Transformer (with the residual connection) as a coupled
system of particles evolving under diffusion-convection ODE dynamics, and study this system using the a
numerical scheme for the underlying ODE.
Remark 3 (Connection with Expectation). Let us also point out a connection with Bayesian statistics:
when G(q, •) = p(q|•) is a likelihood function, ν 7→ ΨG(q,•)(ν) is the mapping which takes a prior distribution
ν(dk) over keys and returns a posterior distribution P (dk|q). Moreover, assuming that q → k → v forms a
Markov chain, ΨGL(q,dv) models the conditional probability of v|q. Finally, the measure projection operator
effectively reduces this to a measure concentrated on a single point, E[v|q], which is consistent with the
existing interpretation of attention.

Recovering the Traditional Definition. We have introduced a framework for attention-based models
that uses measure theory and Markov kernels as the principal building blocks, and we have shown that it
is equivalent (i.e. Proposition 1). It is reasonable to wonder if there is a way to recover the traditional
linear-algebraic definition of attention from our framework, and the answer is yes.

Before proceeding, recall three basic facts about Markov kernels and measures on discrete spaces:

1. probability measures are stochastic vectors,

2. Markov kernels are stochastic matrices, and

3. integration against these kernels is matrix multiplication.
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Suppose now that E is the discrete set E = {1, . . . , N} and let Q = {q1, . . . , qN}, K = {k1, . . . , kN}, and
V = {v1, . . . , vN} be subsets of Rd. Then we set G : Q × V → R≥0 to be G(i, j) := exp 〈Q[i],K[j]〉,
L : K × 2V is the (discrete) Markov kernel L(i,dj) = δi(dj) and Π : P(V ) → Rd is defined by Π(µ) :=∑N
j=1 V [j]µj =: V ′[i]. Then the analog of the attention kernel is the attention map

Am(K)(i) := Π[ΨG(i,•)(m(K))L].

Having now defined discrete analogs of the components of attention defined in this section, we can make
the following remarks. Firstly, δqi

(dj) is the Kronecker delta δji and m(K) = 1
N 1 where 1 := [1, . . . , 1] (i.e.

N times). Secondly, the Boltzmann-Gibbs Markov kernel ΨG(i,•)(dj) is then equal to the usual softmax
definition:

ΨG(i,•)(m(K))(dj) = softmax(Q[i]KT ).
The softmatch kernel is the stochastic matrix ΨG(m(K)) = softmax(QKT ). Thirdly, composition of kernels
is matrix multiplication, so ΨG(m(K))L = softmax(QKT )Id = softmax(QKT ) since L is the N×N identity
matrix Id. Finally, the attention map corresponds to the matrix multiplications

δQ[i]Am(K) = Π[ΨG(i,•)(m(K))L]

=
n∑
j=1

ΨG(i,•)(m(K))(dj)V [j] =
n∑
j=1

softmax(Q[i]KT )[j]V [j] = softmax(Q[i]KT )V.

This is the attention definition from Bahdanau et al. (2014) and is used widely in the machine learning
community.

We feel that using measures on the representation space rather than the index space offers significant gains.
The reason for this is that distributions on Rd are much more expressive than distributions on {1, . . . , N},
and therefore admit more interesting analysis; see for example our analysis of the regularity of attention in
Section 5 relies on the 1-Wasserstein distance, which is trivial in the discrete case.

4.2 Extension to the Transformer

We now sketch how to extend the measure-theoretic model of self-attention described in the previous section
to the popular Transformer encoder architecture (Vaswani et al., 2017). It is a straightforward application
of the techniques above. We only describe here how our framework can model a single head Transformer1,
and refer the interested reader to Appendix A for the extension to a full multi-headed Transformer. We seek
to model

Transformer(X) = FFN ◦ SelfAttention(X), (3)

where X = {x1, . . . , xN} ⊂ Rd is the input data, SelfAttention(•) is the scaled dot-product attention
(Vaswani et al., 2017) and FFN(•) represents a feedforward neural network. We set ã(x, y) = xT y/

√
d and

let
a(x, y) = ã

(
WQx,WKy

)
, L(k, dv) = δWV k(dv),

where WQ,WK ,WV are matrices in Rd×d. These correspond to the various matrix operations performed
by the Transformer. We let f : E → E be the FFN in (3) and define the FFN kernel as F(x, dy) = δf(x)(dy).
Using the attention kernel A from Definition 6, we define T := AF, and show in the proposition below that
T implements the self-attention transformer (proof in Appendix A).
Proposition 2. Let X = {x1, . . . , xN} ⊂ Rd be a collection of inputs. The nonlinear Markov transport
equation δxi

7→ δxi
Tm(X) implements the self-attention Transformer.

5 Regularity of Attention

In this section, we consider self-attention as a non-linear map from P(E) to P(E) through A : µ → µAµ.
To derive a Lipschitz contraction estimate, we must first metrize P(E).

1We only consider the encoder part of the transformer, since it uses self-attention. Our framework is fully compatible with
the cross-attention from the transformer decoder (Vaswani et al., 2017), see Section 6.1.
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Background. We will work with the Wasserstein metric on P(E). Let P1(E) be the set of probability
measures with finite 1st moment. The 1-Wasserstein distance between µ, ν ∈ P1(E) is

W1(µ, ν) := sup
f∈Lip1(E)

∣∣∣∣ˆ fdµ−
ˆ
fdν

∣∣∣∣ .
W1 is a metric on P1(E) which turns the pair W1 := (P1(E),W1) into a complete, separable metric space
(Villani, 2008, Ch 6).

5.1 Lipschitz Contractions: Bounded Case

We now derive a Lipschitz contraction estimate for the map µ 7→ µAµ on the metric space (P1(E),W1) via
an inequality of the form:

sup
µ6=ν

W1(µAµ, νAν) ≤ τ(A)W1(µ, ν)

for some constant τ(A) to be determined. In this Section, we make the additional assumption.
Assumption 2. E ⊂ Rd is compact.

We will estimate the Wasserstein contraction coefficient defined below.
Definition 7 (Wasserstein Contraction Coefficient). Let Φ : P1(E) → P1(E) be a (possibly nonlinear)
mapping. We define the Wasserstein contraction coefficient by

τ(Φ) := sup
µ6=ν

W1(Φ(µ),Φ(ν))
W1(µ, ν) .

Remark 4. This definition is a natural extension of two concepts from applied probability: it is the gen-
eralization of the total variation contraction coefficient studied in Del Moral (2004) for nonlinear Markov
operators to the 1-Wasserstein distance; it is also the extension of the generalized ergodic coefficient from
Rudolf et al. (2018) to nonlinear Markov operators.

Also, for f : E → R, the Lipschitz semi-norm is ‖f‖Lip := supx6=y |f(x)− f(y)|/d(x, y). For a function G of
two variables, G : E × E → R, set:

‖G‖Lip,∞ := sup
x∈E
‖G(•, x)‖Lip ‖G‖∞,Lip := sup

x∈E
‖G(x, •)‖Lip.

Theorem 1. Let E ⊂ Rd be compact and convex, and let A be the attention kernel from Definition 6 with G
an interaction potential s.t. G(x, y) ≥ ε(G) > 0, ‖G‖Lip,∞ <∞ and ‖G‖∞,Lip <∞. Then the 1-Wasserstein
contraction coefficient τ(A) of A considered as a mapping P(E)→ P(E) via A : µ 7→ µAµ satisfies

τ(A) ≤ τ(Π)τ(ΨG)τ(L)

where τ(ΨG) = 2(‖G‖Lip,∞+‖G‖∞,Lip)diam(E)
ε(G) and τ(Π) = d. Additionally, if L(x,dy) = δ`(x)(dy), then τ(L) =

‖`‖Lip.

Proof. See Appendix B.

Corollary 1. Let K = {k1, . . . , kN} ⊂ E ⊂ Rd and V = {v1, . . . , vN} ⊂ E ⊂ Rd and the attention function
Attention(•,K, V ) be as in the original definition of attention from Bahdanau et al. (2014), Definition 1.
Assume that the components of Attention(•,K, V ) satisfy Theorem 1. Then the mapping

q 7→ Attention(q,K, V )

is Lipschitz continuous as a mapping from Rd → Rd with the Euclidean distance, and moreover

‖Attention(q1,K, V )−Attention(q2,K, V )‖2 ≤ d3/2 · ‖`‖Lip ·
2‖G‖Lip,∞diam(E)

ε(G) · ‖q1 − q2‖2
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Proof. Using elements from the proof of Theorem 1 in Appendix B, we have:

‖Attention(q1,K, V )−Attention(q2,K, V )‖1 = W1(δq1Am(K), δq2Am(K))

≤ d · ‖`‖Lip ·
2‖G‖Lip,∞diam(E)

ε(G) ·W1(δq1 , δq2)

= d3/2 · ‖`‖Lip ·
2‖G‖Lip,∞diam(E)

ε(G) · ‖q1 − q2‖2

using ‖x‖2 ≤ ‖x‖1 ≤
√
d‖x‖2 and that ‖`‖Lip = 1 for vanilla self-attention where `(x) = x.

5.2 Lipschitz Contractions: Unbounded Case

The results of Section 5.1 depend on the boundedness of the representation space E. While this is sufficient
to provide rather general estimates on the Lipschitz coefficient for attention that are verified by reasonable
choices for G and L, it is natural to question if it is necessary. As we will discuss below, the answer is
affirmative, at least in full generality.

In recent work by Kim et al. (2021), the authors investigate Lipschitz constants for self-attention on X =
{x1, . . . , xN} as a mapping from Rd×N → Rd×N without assuming E is bounded. They show that, for
the case of G(x, y) = exp 〈x, y〉 on the whole of Rd, attention is not Lipschitz by proving that the norm
of the Jacobian is unbounded (Kim et al. (2021) Theorem 3.1). The authors then show that using instead
the interaction potential G(x, y) = exp(−‖x− y‖22/

√
d) leads to a Lipschitz bound independent of diam(E)

(Kim et al. (2021) Theorem 3.2). They also provide empirical evidence that this potential function does not
severely degrade performance.

We provide below an analysis of a similar Gaussian interaction potential G(x, y) = exp(−‖x−y‖22) as in Kim
et al. (2021)2 for unbounded E = Rd. We are able to use a set of tools and approach similar to those from
Section 5.1 but exchange the boundedness assumption on E for exponential decay of G(x, y) and ‖∇G(x, y)‖
as ‖x− y‖2 →∞. The proofs are in Appendix C.
Theorem 2. Let E=Rd and suppose X = {x1, . . . , xN}, Y = {y1, . . . , yM} ⊂ Rd. Let G(x, y) = exp(−‖x−
y‖22) and Π be the usual projection onto Pδ(Rd). Then for µ = m(X) and ν = m(Y ),

W1(µAµ, νAν) ≤ 2τ(Π)τ(L)
[
‖G‖∞ +

√
d+ 2 +

√
d

√
ln(min(N,M)) + 1

2e‖G‖Lip

]
W1(µ, ν).

Theorem 2 provides an alternate path to the Lipschitz constant of self-attention compared to methods based
on computing Jacobians (Kim et al., 2021). In particular, Theorem 2 applies to sequences of tokens of
various lengths and allows for studying the effect of perturbing a sequence by e.g. removing a given word, or
negating a sentence, which is out of immediate reach for Jacobian-based techniques. Finally, we can recover
a bound for sequences of equal lengths:
Corollary 2. Applying Theorem 2 to the case of N = M gives:

W1(µAµ, νAν) ≤ 2dτ(L)
[
√
d

√
lnN + 1

2e‖G‖Lip + ‖G‖∞ +
√
d+ 2

]
W1(µ, ν).

Optimality of Lipschitz Estimates. First, let us consider the O(diam(E)/ε(G)) dependence in The-
orem 1 in the case of bounded E (recall ε(G) := infx∈E G(x)). While in practice these values may lead
to large bounds, we do not believe they indicate obvious inefficiencies in our technique. Indeed, we cannot
simultaneously relax the finiteness of diam(E) and ε(G) in the general case: dot-product attention is a non-
pathological counterexample (Kim et al., 2021). We believe it is likely than one cannot relax diam(E) <∞
in the general case either, but we will study this in future work.

2We chose the un-parameterized potential for simplicity, we see no reason our framework would not extend to the parame-
terized case as well.
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Second, for a trained attention network, diam(E) < ∞ and ε(G) > 0 are automatically satisfied, so these
estimates can be used to study the very common use-case of pre-trained models. A potentially useful
consequence of these estimates is an easy “knob” to control the regularity of an attention model by controlling
diam(E) (e.g. by projecting on a ball of fixed radius).

Finally, the appearance of an additional factor of
√
d is the cost we pay for using W1, which relies on the

`1 metric in Rd, to provide `2- Lipschitz bounds. This is likely not optimal; it may be possible to derive a
similar result with the 2-Wasserstein which would likely enjoy the good properties of the Wasserstein distance
without the penalty of

√
d (since ‖x − y‖2 = W2(δx, δy)) but it will not use the Lipschitz duality we have

exploited in this paper which is specific to W1.

6 Discussion

In this section, we will apply the analysis developed above to discuss some consequences of regularity. Firstly,
we will show that a common use of attention (called “cross attention”) is also (Lipschitz) continuous w.r.t.
the input keys. We then highlight cases where regularity either helps or hurts performance on various tasks.
Finally, we discuss the implications of regularity on the invertibility of self-attention networks, and the case
of infinitely deep, weight-tied self-attention networks.

6.1 Cross Attention is Continuous w.r.t. Keys

Although we have been primarily interested in the question of self-attention so far, the tools we have de-
veloped also apply to other uses of attention. One common example is cross-attention, i.e. when the
keys and values are the same, but the queries can be different q,X 7→ Attention(q,X,X). This is used in
practice when one wants to construct a context-specific representation of q in the same “semantic space”
as X (hence X provides the values). Notably, this is used in the seqence2sequence (or encoder-decoder)
architecture (Sutskever et al., 2014), where X represents the encoded sequence and q represents the current
element being decoded, see e.g. Bahdanau et al. (2014); Vaswani et al. (2017). There has also been recent
work in proposing new attention-based architectures in which cross-attention plays a critical role such as the
Perceiver (Jaegle et al., 2021; Alayrac et al., 2022).

Our framework shows that the resulting representation is Lipschitz continuous w.r.t. the output semantic
space X. Note that this result highlights the flexibility of our results: two input spaces X,Y need not even
have the same length!
Proposition 3. Suppose that q ∈ Rdq X := {x1, . . . , xN} ⊂ Rdk and Y := {y1, . . . , yN ′} ⊂ Rdk are sets of
vectors for N,N ′ ∈ N, and suppose that the assumptions of Theorem 1 hold. Then

‖Attention(q,X,X)−Attention(q, Y, Y )‖2 ≤ d · τ(L)2‖G(q, •)‖Lipdiam(E)
ε(G) ·W1(m(X),m(Y ))

Proof. We can adapt an argument from the proof of Theorem 1. Firstly, for simplicity write µ := m(X), ν :=
m(Y ) and note that

‖Attention(q,X,X)−Attention(q, Y, Y )‖2 ≤ ‖Attention(q,X,X)−Attention(q, Y, Y )‖1
= W1(δqAµ, δqAν).

Then by Proposition 5

W1(δqAµ, δqAν) = W1(δqΠ[ΨG(•,•)(µ)L], δqΠ[ΨG(•,•)(ν)L])
= W1(Π[ΨG(q,•)(µ)L],Π[ΨG(q,•)(ν)L]) ≤ τ1(Π)τ1(L)W1(ΨG(q,•)(µ),ΨG(q,•)(ν))

≤ τ1(Π)τ1(L)2‖G(q, •)‖Lipdiam(E)
ε(G) W1(µ, ν) = d · τ1(L)2‖G(q, •)‖Lipdiam(E)

ε(G) W1(µ, ν).

10
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In the case that |X| = |Y | = N , we can obtain an explicit formula forW1(m(X),m(Y )) (see e.g. Bobkov &
Ledoux (2014), Lemma 4.2):

W1(m(X),m(Y )) = inf
σ∈Σ(N)

1
N

N∑
i=1
‖xs − yσ(s)‖1

where xs ∈ X, ys ∈ Y and Σ(m) is the set of permutations on m elements.

6.2 Robustness and Perturbations

Robustness to noisy inputs and adversarial examples. Robustness and Lipschitzness are very tied
concepts (Bubeck & Sellke, 2021). One effect of the smoothness of attention is that the representations it
produces are “robust to errors” to a certain degree. For instance, in the encoder-decoder setup mentioned
above, if the outputs of an encoder are incorrect or noisy, an attention-based decoder still has a chance of
performing adequately. This robustness has been used in Anderson et al. (2020) to operate self-attention
transformer models on reduced-size vocabularies by hashing, where the model must be robust to hash
collisions of the larger original vocabulary. The authors of that paper compare this robustness to error
correcting output codes (Dietterich & Bakiri, 1994; Berger, 1999). Our framework provides a potential
mathematical basis for this phenomenon in transformers.

Negated Sentences. This robustness is not always desirable, however. Indeed, our regularity results may
also explain some recent observations on the behavior of deep language models with respect to negation.
Table 4 of Kassner & Schütze (2019) shows that negated sentences are often given identical predictions to
the original ones: for instance, both “A beagle is a type of [MASK]” and “A beagle is not a type of [MASK]”
get a prediction of “dog”. To address the issue, Hosseini et al. (2021) had to regularize the language model
using an “unlikelihood” objective on generic negated sentences.

One hypothesis for why this phenomenon occurs without specific regularization is a “regularity mismatch”
between the input space and the output space of the model. On one hand, negation is a type of perturbation
in “token space” that drastically changes the semantic content of the sentence, i.e. it is highly irregular. On
the other hand, our analysis — specifically, Prop. 3 — suggests that the resulting embeddings will not change
“too much” in response to this perturbation. If the embeddings are close with and without negation, i.e.
the model is “too smooth” w.r.t. perturbations in token space, the scoring network (often a linear classifier)
will not be able to distinguish between the resulting embeddings and the model will fail.

Our modelling could potentially be used to derive predictions of the distance between a self-attention net-
works’ contextual embeddings as a function of the context (e.g. for sentences with and without a “not”) to
test this hypothesis. Moreover, it could even potentially be used to design better model components (e.g.
input embedding spaces) that reduce this “regularity mismatch” for specific perturbations that are highly
irregular. See Appendix D for a preliminary experiment illustrating this effect with a pretrained BERT
model Devlin et al. (2018).

6.3 Invertible & Infinite Depth Transformers

Finally, let us briefly mention two important consequences of the Lipschitz regularity of attention: invert-
ibility (also studied empirically in Kim et al. (2021)) and infinite-depth attention networks.

Invertibility. Firstly, as noted in Behrmann et al. (2019), a sufficient condition for invertibility of a residual
network of the form F (x) = FL ◦ · · · ◦ F1(x) where each residual block F` has the form

F`(x) = x+ g`(x)

is the Lipschitz condition ‖g`‖Lip < 1 for ` = 1, . . . , L. The self-attention Transformer from Vaswani et al.
(2017) uses self-attention exactly this way, where g`(X) = SelfAttention(X) (it also uses a feedforward
residual block). Therefore, our results provide sufficient conditions for a deep self-attention transformer to
be invertible. Note that this general conclusion was also used in Kim et al. (2021). Moreover, our analysis

11
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could be applied to the scaled dot product potential function (Vaswani et al., 2017) by enforcing that the
input representations come from a bounded subset of Rd. This is in contrast with the work of Kim et al.
(2021), whose Lipschitz constants only apply to the Gaussian interaction potential.

Infinitely-Deep Attention Models. In the opposite direction of invertibility, infinitely-deep models
have recently been studied in the context of “deep equilibrium models” (Bai et al., 2019). The authors study
representations defined as fixed points

H∗ = fθ(H∗;X) (4)
where fθ is an input-injected nonlinear function and H∗ = {h∗1, . . . , h∗N} is a collection of hidden represen-
tations for the inputs X = {x1, . . . , xN}. Here input-injected means fθ includes a (possibly parameterized)
skip connection sθ from the inputs to the hidden representations of the form

fθ(H;X) = gθ1(H + sθ2(X)).

Note that the Banach Fixed Point Theorem provides a sufficient condition for the existence of H∗: the
mapping H 7→ fθ(H;X) has Lipschitz constant < 1.

In Bai et al. (2019), the authors note that the model in (4) includes the Universal Transformer model
(Dehghani et al., 2018), albeit with the minor modification of including an “input injection” connection. In
this situation, fθ is self-attention so we can apply our theory to obtain sufficient conditions on the existence
of H∗ from Theorem 1 or Theorem 2 depending on the type of attention used. We didn’t find an existence
result such as this in Bai et al. (2019).

In light of our results, we understand why the input injection is important: it produces a data-dependent
fixed point. If (4) had no the skip-connection (and no way to parameterize fθ in-terms of X), the fixed point
H∗ would not depend on the inputs and therefore be of questionable usefulness.

7 Conclusion

In this paper, we have studied the regularity of attention. In particular, we have shown that attention is
Lipschitz continuous under various assumptions, and provided estimates of the Lipschitz constant. To do
so, we have introduced an alternate, but equivalent, modelling paradigm for attention based on measure
theory and integral operators. We then assessed the impact of these regularity results on study practical
applications of attention, including cross-attention; robustness and token-level perturbations in NLP; and
sophisticated extensions to the transformer architecture.
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359–372, 1964.

15

https://proceedings.neurips.cc/paper/2019/file/3a24b25a7b092a252166a1641ae953e7-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/3a24b25a7b092a252166a1641ae953e7-Paper.pdf
https://books.google.ca/books?id=UOHHCgAAQBAJ
https://arxiv.org/abs/2102.11409
https://arxiv.org/abs/2102.11409
https://books.google.ca/books?id=hV8o5R7_5tkC
https://books.google.ca/books?id=hV8o5R7_5tkC
https://proceedings.neurips.cc/paper/2018/file/d54e99a6c03704e95e6965532dec148b-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/d54e99a6c03704e95e6965532dec148b-Paper.pdf


Under review as submission to TMLR

A The Transformer

In this section, we show how to extend the measure-theoretic model of self-attention described in the main
text to the full Transformer encoder architecture (Vaswani et al., 2017)3. This is a straightforward application
of the techniques from the main text. For our purpose, we work with the model

Transformer(X) = FFN ◦MultiHeadSelfAttention(X), (5)

where X = {x1, . . . , xN} ⊂ Rd and FFN represents a feedforward neural network. To incorporate this into
our formalism above, first set ã(x, y) = xT y/

√
d. We can model a single head of the Transformer using the

attention kernel from Definition 6 with:

a(x, y) = ã
(
WQx,WKy

)
, L(k, dv) = δWV k(dv),

where WQ,WK ,WV are matrices in Rd′×d where d′ can possibly be a different dimension than d. To model
multi-headed attention, we note that multi-headedness amounts to processing independent copies of the data
X and combining them with concatenation and matrix multiplication. The “concat-and-matmult” operation
can be written as [

x1
i · · · xHi

] W
O
1
...

WO
H

 = x1
iW

O
1 + · · ·+ xHi W

O
H ,

where each WO
h ∈ Rd

′×d. Hence, letting Oh(x,dy) := δxWO
h
·H(dy), where we have multiplied by the scalar

H, and introducing the mixture kernel

M̂ := 1
H

H∑
h=1

AhOh,

where each h parameterizes its own collection of projection matrices and attention head Ah, we can define
the multi-headed attention attention kernel as

M := Π ◦ M̂, Mµ(x, dy) = Π(M̂µ(x, •))(dy).

Finally, letting f : E → E be the FFN in 5 and defining the FFN kernel as F(x, dy) = δf(x)(dy), we see that
T := MF implements the self-attention transformer as nonlinear measure transport.
Proposition 4 (prop. 2 restated). Let X = {x1, . . . , xN} ⊂ Rd be a collection of inputs. The nonlinear
Markov transport equation δxi

7→ δxi
Tm(X) implements the self-attention Transformer.

Proof. Given the discussion about standard attention, the only new element to be checked is the multi-headed
attention kernel. Consider a fixed X, then

m(X)Mm(X)(dy) = 1
N

N∑
i=1

ˆ
δxiMm(X)(x, dy) = 1

N

N∑
i=1

Mm(X)(xi,dy)

Hence considering a single xi, we see that

Mm(X)(xi,dy) = Π
(

M̂m(X)(xi, •)
)

(dy).

The inner kernel is

M̂m(X)(xi,dy) = 1
H

H∑
h=1

ˆ
Ah
m(X)(xi,dz)Oh(z,dy) = 1

H

H∑
h=1

ˆ
Ah
m(X)(xi,dz)δzWO

h
·H(dy).

3Technically, the Transformer also contains layer normalization and residual connections, which we do not treat here.
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The measure Ah
m(X)(xi,dz) is a delta-measure concentrated on the point

N∑
j=1

exp[ã(WQ
h xi,W

K
h xj ]∑N

p=1 exp[ã(WQ
h xi,W

K
h xk)]

WV
h xj = MultiHeadSelfAttention(xi, X,X)h =: yhi

hence

1
H

H∑
h=1

ˆ
Ah
m(X)(xi,dz)δzWO

h
·H(dy) = 1

H

H∑
h=1

ˆ
δyh

i
(dz)δzWO

h
·H(dy) = 1

H

H∑
h=1

δyh
i
WO

h
·H(dy).

Finally, applying the mapping Π we get a measure that is concentrated on the point

ˆ
E

1
H

H∑
h=1

δyh
i
WO

h
·H(dy)y = 1

H

H∑
h=1

yhiW
O
h ·H =

[
y1
i · · · yHi

] W
O
1
...

WO
H


= MultiHeadSelfAttention(xi, X,X),

which concludes the proof.

B Proofs From Section 5.1

Proposition 5. Suppose µ, ν ∈ P1(E) and G : E × E → R, G(x, y) ≥ ε(G) > 0 is an interaction potential
s.t. ‖G‖∞,Lip <∞ and ‖G‖Lip,∞ <∞. Then, ∀x, y ∈ E:

W1(ΨG(x,•)(µ),ΨG(y,•)(µ)) ≤ 2‖G‖Lip,∞diam(E)
ε(G) · d(x, y),

W1(ΨG(x,•)(µ),ΨG(x,•)(ν)) ≤ 2‖G‖∞,Lipdiam(E)
ε(G) ·W1(µ, ν).

Proof. For the first inequality, let f be any 1-Lipschitz function, and x, y ∈ E. We have:

|ΨG(x,•)(µ)(f)−ΨG(y,•)(µ)(f)| =
∣∣∣∣ˆ G(x, z)f(z)

µ(G(x, •)) −
G(y, z)f(z)
µ(G(y, •)) µ(dz)

∣∣∣∣
≤
∣∣∣∣ˆ G(x, z)f(z)

µ(G(x, •)) −
G(x, z)f(z)
µ(G(y, •)) µ(dz)

∣∣∣∣
+
∣∣∣∣ˆ G(x, z)f(z)

µ(G(y, •)) −
G(y, z)f(z)
µ(G(y, •)) µ(dz)

∣∣∣∣ .
Let us bound the first term:∣∣∣∣ˆ G(x, z)f(z)

µ(G(x, •)) −
G(x, z)f(z)
µ(G(y, •)) µ(dz)

∣∣∣∣ ≤ |µ(G(x, •))− µ(G(y, •))|
µ(G(x, •))µ(G(y, •))

ˆ
G(x, z)|f(z)|µ(dz)

≤
´
|G(x, z)−G(y, z)|µ(dz)

µ(G(x, •))ε(G) µ(G(x, •))‖f‖∞

≤
´
|G(x, z)−G(y, z)|µ(dz)‖f‖∞

ε(G)d(x, y) d(x, y)

≤ ‖G‖Lip,∞‖f‖∞
ε(G) d(x, y).

Let us now bound the second term:∣∣∣∣ˆ G(x, z)f(z)
µ(G(y, •)) −

G(y, z)f(z)
µ(G(y, •)) µ(dz)

∣∣∣∣ ≤ ‖f‖∞ε(G)

ˆ
|G(x, z)−G(y, z)|µ(dz)

≤ ‖G‖Lip,∞‖f‖∞
ε(G) d(x, y).
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Using the fact that ΨG(x,•)(µ)(f̄) = ΨG(y,•)(µ)(f̄) for any constant function f̄ , we can subtract from f any
constant without changing the value of |ΨG(x,•)(µ)(f) − ΨG(y,•)(µ)(f)|. This allows us to assume without
loss of generality that ‖f‖∞ ≤ diam(E) (picking an arbitrary x ∈ E, we have ∀y ∈ E, |f(y) − f(x)| ≤
|y − x|‖f‖Lip ≤ diam(E)). Combining everything, we get:

|ΨG(x,•)(µ)(f)−ΨG(y,•)(µ)(f)| ≤ 2‖G‖Lip,∞diam(E)
ε(G) d(x, y).

Taking the supremum over 1-Lipschitz functions f concludes the first part of the proof.

Let us now prove the second inequality. Similarly, let f be any 1-Lipschitz function, and µ, ν two compactly
supported distributions on (E, E). We use the notation G(z) := G(x, z) for this part because x is fixed. We
have:

|ΨG(µ)(f)−ΨG(ν)(f)| =
∣∣∣∣ˆ G(z)f(z)

µ(G) µ(dz)−
ˆ
G(z)f(z)
ν(G) ν(dz)

∣∣∣∣
≤
∣∣∣∣ˆ G(z)f(z)

µ(G) µ(dz)−
ˆ
G(z)f(z)
ν(G) µ(dz)

∣∣∣∣
+
∣∣∣∣ˆ G(z)f(z)

ν(G) µ(dz)−
ˆ
G(z)f(z)
ν(G) ν(dz)

∣∣∣∣ .
Let us bound the first term:

∣∣∣∣ˆ (G(z)f(z)
µ(G) − G(z)f(z)

ν(G)

)
µ(dz)

∣∣∣∣ ≤ |µ(G)− ν(G)|
µ(G)ν(G)

ˆ
G(z)|f(z)|µ(dz)

≤ ‖G‖LipW1(µ, ν)
µ(G)ε(G) µ(G)‖f‖∞

≤ ‖G‖Lip‖f‖∞
ε(G) W1(µ, ν).

Let us now bound the second term:

∣∣∣∣ˆ G(z)f(z)
ν(G) µ(dz)−

ˆ
G(z)f(z)
ν(G) ν(dz)

∣∣∣∣ ≤ ‖f‖∞ν(G)

∣∣∣∣ˆ G(z)µ(dz)−
ˆ
G(z)ν(dz)

∣∣∣∣
≤ ‖G‖Lip‖f‖∞

ε(G) W1(µ, ν).

Using the same reasoning as above, we can assume without loss of generality that ‖f‖∞ ≤ diam(E), which
gives:

|ΨG(µ)(f)−ΨG(ν)(f)| ≤ 2‖G‖Lipdiam(E)
ε(G) W1(µ, ν).

Taking the supremum over all 1-Lipschitz functions f concludes the proof.

Proposition 6. Suppose that Π : P(E) → Pδ(E) is the measure projection µ 7→ δµ, where µ =
´
xµ(dx).

Then, for µ, ν ∈ P1(E), W1(Π(µ),Π(ν)) ≤ d ·W1(µ, ν).

18



Under review as submission to TMLR

Proof. Denote by πi : E → R the canonical projection onto the i-th coordinate of E ⊂ Rd, and let xi := πi(x).
Moreover, denote F (x) = x, remarking that µ(F ) =

´
F (x)µ(dx) =

´
xµ(dx) = µ. Then

W1(Π(µ),Π(ν)) = W1(δµ(F ), δν(F ))
= ‖µ(F )− ν(F )‖1

=
d∑
i=1
|µ(F )i − ν(F )i|

=
d∑
i=1
|µ(πi ◦ F )− ν(πi ◦ F )|

≤ d · max
i=1,...,d

{|µ(πi ◦ F )− ν(πi ◦ F )|}

≤ d · sup
f∈Lip(1)

|µ(f)− ν(f)|

= d ·W1(µ, ν)

since πi ◦ F ∈ Lip(1) for i = 1, . . . , d.

Proposition 7. Suppose L : E ×E → [0, 1] is a lookup kernel implementing a deterministic lookup function
` : E → E, (i.e. L(x,dy) = δ`(x)(dy)) and suppose that ` is K`-Lipschitz in the 1-norm, then W1(µL, γL) ≤
K`W1(µ, γ).

Proof.

W1(µL, γL) = sup
f∈Lip(1)

∣∣∣∣ˆ f(x)µL(dx)−
ˆ
f(y)γL(dy)

∣∣∣∣
= sup
f∈Lip(1)

∣∣∣∣ˆ f(x)
ˆ
µ(dz)L(z,dx)−

ˆ
f(y)

ˆ
γ(dz)L(z,dy)

∣∣∣∣
= sup
f∈Lip(1)

∣∣∣∣¨ f(x)L(z,dx)µ(dz)−
¨

f(y)L(z,dy)γ(dz)
∣∣∣∣

= sup
f∈Lip(1)

∣∣∣∣¨ f(x)δ`(z)(dx)µ(dz)−
¨

f(y)δ`(z)(dy)γ(dz)
∣∣∣∣

= sup
f∈Lip(1)

∣∣∣∣ˆ f ◦ `(z)µ(dz)−
ˆ
f ◦ `(z)γ(dz)

∣∣∣∣ .
Then since ‖f‖Lip = 1, we have ‖f ◦`‖Lip ≤ ‖f‖Lip‖`‖Lip = K`. Hence, by our earlier estimation techniques:

W1(µL, γL) = sup
f∈Lip(1)

∣∣∣∣ˆ f ◦ `(dz)µ(dz)−
ˆ
f ◦ `(z)γ(dz)

∣∣∣∣
≤ K` sup

g∈Lip(1)

∣∣∣∣ˆ g(dz)µ(dz)−
ˆ
g(z)γ(dz)

∣∣∣∣ = K`W1(µ, γ),

which concludes the proof.

Lemma 1. 1. Suppose that Φ,Γ : P(E)→ P(E) are (possibly nonlinear) mappings. Then

τ(Φ ◦ Γ) ≤ τ(Φ)τ(Γ).

2. Suppose K : E × E → [0, 1] is an integral kernel. Then

τ(K) = sup
x 6=y

W1(K(x, •),K(y, •))
d(x, y) .
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3. Suppose K1,K2 : E × E → [0, 1] are two integral kernels and ν ∈ P(E). Then:

W1(νK1, νK2) ≤
ˆ
ν(dx)W1(K1(x, •),K2(x, •)).

Proof. 1. This is a standard result on Lipschitz constants. We include it for completeness:

τ(Φ ◦ Γ) = sup
µ 6=ν

W1(Φ ◦ Γ(µ),Φ ◦ Γ(ν))
W1(µ, ν)

= sup
µ6=ν

W1(Φ ◦ Γ(µ),Φ ◦ Γ(ν))
W1(Γ(µ),Γ(ν))

W1(Γ(µ),Γ(ν))
W1(µ, ν)

≤ sup
η 6=γ

W1(Φ(η),Φ(γ))
W1(η, γ) · sup

µ6=ν

W1(Γ(µ),Γ(ν))
W1(µ, ν)

= τ(Φ)τ(Γ).

2. Since W1(δx, δy) = d(x, y) and δxK = K(x, •) we have:

sup
x 6=y

W1(K(x, •),K(y, •))
d(x, y) = sup

δx 6=δy

W1(δxK, δyK)
W1(δx, δy) ≤ sup

µ6=ν

W1(µK, νK)
W1(µ, ν) .

For the reverse inequality,

W1(µK, νK) = sup
f∈Lip(1)

|µK(f)− νK(f)|

= sup
f∈Lip(1)

|µ(Kf)− ν(Kf)|

≤ sup
f∈Lip(1)

‖Kf‖Lip · sup
g∈Lip(1)

|µ(g)− ν(g)|

≤ sup
f∈Lip(1)

‖Kf‖Lip ·W1(µ, ν)

and

sup
f∈Lip(1)

‖Kf‖Lip = sup
f∈Lip(1)

sup
x 6=y

´
K(x, dz)f(z)−

´
K(y,dz)f(z)

d(x, y)

= sup
f∈Lip(1)

sup
x 6=y

´
[K(x, dz)−K(y,dz)]f(z)

d(x, y)

= sup
x 6=y

W1(K(x, •),K(y, •))
d(x, y) .

Dividing by W1(µ, ν) gives us the reverse inequality and concludes the proof.

3. By definition, we have:

W1(νK1, νK2) = sup
f∈Lip(1)

|νK1(f)− νK1(f)|

= sup
f∈Lip(1)

∣∣∣∣¨ ν(dx)K1(x, dy)f(y)−
¨

ν(dx)K2(x, dy)f(y)
∣∣∣∣

≤ sup
f∈Lip(1)

ˆ
ν(dx)

∣∣∣∣ˆ K1(x, dy)f(y)−K2(x, dy)f(y)
∣∣∣∣

≤
ˆ
ν(dx)W1(K1(x, •),K2(x, •)).
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Using Propositions 5, 6 and 7 and Lemma 1, we can prove Theorem 1.
Theorem 1. Let E ⊂ Rd be compact and convex, and let A be the attention kernel from Definition 6 with G
an interaction potential s.t. G(x, y) ≥ ε(G) > 0, ‖G‖Lip,∞ <∞ and ‖G‖∞,Lip <∞. Then the 1-Wasserstein
contraction coefficient τ(A) of A considered as a mapping P(E)→ P(E) via A : µ 7→ µAµ satisfies

τ(A) ≤ τ(Π)τ(ΨG)τ(L)

where τ(ΨG) = 2(‖G‖Lip,∞+‖G‖∞,Lip)diam(E)
ε(G) and τ(Π) = d. Additionally, if L(x,dy) = δ`(x)(dy), then τ(L) =

‖`‖Lip.

Proof. We want to bound sup
µ6=ν

W1(µAµ, νAν)
W1(µ, ν) . Let µ 6= ν ∈ P(E), we have:

W1(µAµ, νAν)
W1(µ, ν) ≤ W1(µAµ, νAµ)

W1(µ, ν) + W1(νAµ, νAν)
W1(µ, ν)

Let us start with the first term:

W1(µAµ, νAµ)
W1(µ, ν) ≤

W1(µΠ[ΨG(•,•)(µ)L], νΠ[ΨG(•,•)(µ)L])
W1(µ, ν)

≤ sup
x6=y

W1(Π[ΨG(x,•)(µ)L],Π[ΨG(y,•)(µ)L])
d(x, y)

≤ τ1(Π)τ1(L) sup
x 6=y

W1(ΨG(x,•)(µ),ΨG(y,•)(µ))
d(x, y)

≤ τ1(Π)τ1(L)2‖G‖Lip,∞diam(E)
ε(G) ,

where we used Lemma 1 for the second and third lines, and Propositions 5, 6 and 7 for the third and last.
As for the second term, we have:

W1(νAµ, νAν) = W1(νΠ[ΨG(µ)L], νΠ[ΨG(ν)L])

≤
ˆ
ν(dx)W1(Π[ΨG(x,•)(µ)L],Π[ΨG(x,•)(ν)L])

≤ τ1(Π)τ1(L)
ˆ
ν(dx)W1(ΨG(x,•)(µ),ΨG(x,•)(ν))

≤ τ1(Π)τ1(L)
ˆ
ν(dx)2‖G(x, •)‖Lipdiam(E)

ε(G) W1(µ, ν)

≤ τ1(Π)τ1(L)2‖G‖∞,Lipdiam(E)
ε(G) W1(µ, ν)

where we also used Lemma 1 for the second and third lines, and Propositions 5, 6 and 7 for the third and
last.

C Proofs From Section 5.2

Lemma 2. For any f : Rd → R, we have

‖f‖Lip = sup
x 6=y,‖x−y‖≤1

|f(x)− f(y)|
‖x− y‖

. (6)

Proof. Let x 6= y and L := supx 6=y,‖x−y‖≤1
|f(x)−f(y)|
‖x−y‖ ≤ ∞. First, assume ‖f‖Lip, L < ∞. It is clear that

L ≤ ‖f‖Lip since {x 6= y, ‖x− y‖ ≤ 1} ⊂ {x 6= y}. For the reverse inequality, we split the segment [x, y] into

21



Under review as submission to TMLR

the minimum number of chunks of lengths smaller than 1: x = z1 → z2 → · · · → zk = y (in particular, if
‖x− y‖ ≤ 1 then z2 = y). Then

|f(x)− f(y)| ≤
∑

1≤i≤k−1
|f(zi)− f(zi+1)|

≤ L
∑

1≤i≤k−1
‖zi − zi+1‖ = L‖x− y‖.

which gives ‖f‖Lip ≤ L so L = ‖f‖Lip. Now if ‖f‖Lip = ∞ but L < ∞, by applying the above argument
we can obtain a contradiction. Finally, it suffices to note that the case where ‖f‖Lip < ∞ but L = ∞ is
impossible since ‖f‖Lip ≥ L.

Lemma 3. For any n and (z1, · · · , zn) ∈ Rn+:

f(z1, · · · , zn) :=
∑n
i=1 zie

−z2
i

1 +
∑n
i=1 e

−z2
i

≤
√

lnn+ 1
2e . (7)

Proof. f is clearly bounded on Rn+ (zie−z
2
i → 0 when zi →∞). Let us now compute the partial derivatives

of f . For a given zi:

∂f

∂zi
= e−z

2
i

1 +
∑n
k=1 e

−z2
k

[1− 2z2
i + 2zif(z1, · · · , zn)].

There is only one positive solution of 1− 2z2
i + 2zif∗ = 0, meaning that f reaches its maximum when all its

coordinates are equal. We thus only need to study:

g(x) := nxe−x
2

1 + ne−x2 = xelnn−x2

1 + elnn−x2 . (8)

The change of variable y = lnn− x2 gives g(y) =
√

lnn−yey

1+ey ≤
√

lnn−y
1+e−y with y ∈]−∞, lnn].

On [0, lnn], we clearly have g(y) ≤
√

lnn. Let us consider y ∈]−∞, 0]. We get g2(y) = lnn−y
(1+e−y)2 ≤ lnn−y

e−2y ≤
lnn+ 1

2e with since (2e)−1 is the maximum of of ze−2z on R+. This concludes the proof.

Lemma 4. Let µ1, µ2, ν1, ν2 ∈ W1(Rd). Then

W1(µ1 ⊗ µ2, ν1 ⊗ ν2) ≤W1(µ1, ν1) +W1(µ2, ν2)

Proof. Let γ1 ∈ C(µ1, ν1), γ2 ∈ C(µ2, ν2) be optimal for c(x, y) = ‖x − y‖1. Note that γ1 ⊗ γ2 ∈ C(µ1 ⊗
µ2, ν1 ⊗ ν2), i.e. γ1 ⊗ γ2 is a transfer plan with the correct marginals, by considering

ˆ
Rd×Rd

dγ1 ⊗ γ2(x1, x2, y1, yy) =
ˆ
Rd×Rd

dγ1(x1, y1)dγ(x2, y2)

=
ˆ
Rd

dγ1(x1, y1)
ˆ
Rd

dγ2(x2, y2)

= ν1(dy1)ν2(dy2) = dν1 ⊗ ν2(y1, y2)

and same for the other marginals.
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Thus we have

W1(µ1 ⊗ µ2, ν1 ⊗ ν2) = inf
γ∈C(µ1⊗µ2,ν1⊗ν2)

ˆ
‖(x1, x2)− (y1, y2)‖dγ(x1, x2, y1, y2)

= inf
γ∈C(µ1⊗µ2,ν1⊗ν2)

ˆ
(‖x1 − y1‖+ ‖y1, y2‖)dγ(x1, x2, y1, y2)

= inf
γ∈C(µ1⊗µ2,ν1⊗ν2)

ˆ
‖x1 − y1‖dγ(x1, x2, y1, y2) + · · ·

· · ·+ inf
γ∈C(µ1⊗µ2,ν1⊗ν2)

ˆ
‖x2 − y2‖dγ(x1, x2, y1, y2)

≤
ˆ
‖x1 − y1‖dγ1 ⊗ γ2(x1, x2, y1, y2) +

ˆ
‖x2 − y2‖dγ1 ⊗ γ2(x1, x2, y1, y2)

=
ˆ
‖x1 − y1‖dγ1(x1, y1) +

ˆ
‖x2 − y2‖dγ2(x2, y2)

= W1(µ1, ν1) +W1(µ2, ν2)

Proposition 8. Let E=Rd and suppose X = {x1, . . . , xN} and Y = {y1, . . . , yN} Let µ = m(X), ν = m(Y ).
Then for x ∈ supp (µ) and y ∈ supp (ν), we have

W1(ΨG(x,•)(µ),ΨG(y,•)(ν)) ≤
[
√
d

√
lnN + 1

2e‖G‖Lip + ‖G‖∞ +
√
d+ 2

]
(d(x, y) +W1(µ, ν)).

Proof. We use the Kantorovich formulation of W1. Let f be a function with ‖f‖Lip ≤ 1. Using the same
kind of technique as in Section B, we can assume without loss of generality that f(y) = 0. For simplicity,
we write G(x, •) = Gx. We wish to upper-bound the quantity |ΨGx(µ)(f)−ΨGy (ν)(f)|.

Because ΨGx
and ΨGy

are homonegeous in their measure argument, and for the sake of simplicity, we write
µ =

∑
i δxi ν =

∑
i δyi (which is equivalent to simplifying by 1/N in e.g. the numerator and denominator of

ΨGx). This guarantees in particular that µ(Gx) ≥ 1 and ν(Gy) ≥ 1 (x and y are in supp (µ) and supp (ν)
resp.) and equivalently that 1/µ(Gx) ≤ 1 and 1/ν(Gy) ≤ 1.

Then:

|ΨGx
(µ)(f)−ΨGy

(ν)(f)| = 1
µ(Gx)ν(Gy) |ν(Gy)µ(Gxf)− µ(Gx)ν(Gyf)|

= 1
µ(Gx)ν(Gy) |ν(Gy)µ(Gxf)− ν(Gy)ν(Gyf) + ν(Gy)ν(Gyf)− µ(Gx)ν(Gyf)|

≤ ν(Gy)
µ(Gx)ν(Gy) |µ(Gxf)− ν(Gyf)|+ ν(Gyf)

µ(Gx)ν(Gy) |ν(Gy)− µ(Gx)|. (9)

We start by bounding the second term of (9). We have:

ν(Gyf)
µ(Gx)ν(Gy) |ν(Gy)− µ(Gx)| = ν(Gyf)

µ(Gx)ν(Gy) |(δx ⊗ µ)(G)− (δy ⊗ ν)(G)|

≤ ν(Gyf)
µ(Gx)ν(Gy)‖G‖LipW1(δx ⊗ µ, δy ⊗ ν).
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Here, δx ⊗ µ denotes the product of the two measures on E × E. Since f(y) = 0, we see that f(z) ≤
f(y) + ‖f‖Lip‖y − z‖1 ≤ ‖y − z‖1. This gives:

ν(Gyf)
ν(Gy) =

´
Gy(z)f(z)ν(dz)´
Gy(z)ν(dz) ≤

´
Gy(z)‖y − z‖1ν(dz)´

Gy(z)ν(dz)

≤
∑N
i=1G(y, yi)‖y − yi‖1∑N

i=1G(y, yi)
≤
√
d

∑N
i=1 e

−‖y−yi‖2
2‖y − yi‖2∑N

i=1 e
−‖y−yi‖2

2
,

where we applied Cauchy-Schwartz for the last inequality. Since y = yi for a given i, we are interested in

the quantity
∑N−1

i=1
zie
−z2

i

1+
∑N−1

i=1
e
−z2

i
for arbitrary zi ≥ 0. Applying Lemma 3 with n = N − 1 gives an upper-bound of√

lnN + 1
2e .

Let us now consider the first term of (9):

ν(Gy)
µ(Gx)ν(Gy) |µ(Gxf)− ν(Gyf)| = 1

µ(Gx) |µ(Gxf)− ν(Gyf)|

≤ 1
µ(Gx)‖Gf‖LipW1(δx ⊗ µ, δy ⊗ ν).

To estimate ‖Gf‖Lip we have

‖Gf‖Lip = sup
(x,w) 6=(y,z)

|G(x,w)f(w)−G(y, z)f(z)|
‖(x,w)− (y, z)‖1

where additionally, we can assume that ‖(x,w)− (y, z)‖ ≤ 1 (see Lemma 2). We have:

|G(x,w)f(w)−G(y, z)f(z)| = |G(x,w)f(w)−G(x,w)f(z) +G(x,w)f(z)−G(y, z)f(z)|
≤ |G(x,w)||f(w)− f(z)|+ |f(z)||G(x,w)−G(y, z)|.

For the first term, we see that

|G(x,w)||f(w)− f(z)| ≤ ‖G‖∞,∞‖f‖Lipd(w, z)
≤ ‖G‖∞,∞‖f‖Lip(d(w, z) + d(x, y)).

For the second term, we have

|f(z)||G(x,w)−G(y, z)| ≤ ‖y − z‖1|G(x,w)−G(y, z)|
≤ ‖y − z‖1‖∇G(t1, t2))‖∞‖(x,w)− (y, z)‖1,

for t1 in the segment [x, y] and t2 in the segment [w, z] (this follows directly from the mean value theorem,
note that the gradient is taken with respect to both variables). We used f(y) = 0 and f(z) ≤ f(y) +
‖f‖Lip‖y − z‖1 = ‖y − z‖1 in the first line.

In the Gaussian case:

‖y − z‖1‖∇G(t1, t2))‖∞ ≤ (‖y − t1‖1 + ‖t1 − t2‖1 + ‖t2 − z‖1)2‖t1 − t2‖∞e−‖t1−t2‖
2
2

≤ 2(2 + ‖t1 − t2‖1)‖t1 − t2‖∞e−‖t1−t2‖
2
2 ,

where we used the fact that ‖y − t1‖1 ≤ 1 and ‖t2 − z‖1 ≤ 1 (t1 is in the [x, y] segment and ‖x − y‖1 ≤ 1
by assumption). That upper bound is uniformly bounded with respect to t1 and t2, we let C denote that
constant. A loose upper-bound on C is

√
d+ 2 (which we use in the statement of the proposition).

To conclude, it suffices to note that by Lemma 4 we have

W1(δx ⊗ µ, δy ⊗ ν) ≤W1(δx, δy) +W1(µ, ν).
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Theorem 2. Let E=Rd and suppose X = {x1, . . . , xN}, Y = {y1, . . . , yM} ⊂ Rd. Let G(x, y) = exp(−‖x−
y‖22) and Π be the usual projection onto Pδ(Rd). Then for µ = m(X) and ν = m(Y ),

W1(µAµ, νAν) ≤ 2τ(Π)τ(L)
[
‖G‖∞ +

√
d+ 2 +

√
d

√
ln(min(N,M)) + 1

2e‖G‖Lip

]
W1(µ, ν).

Proof. Firstly, using Proposition 1, we know that µAµ is another empirical measure concentrated on
{Attention(xi, X,X)}, similarly, νAν is concentrated on {Attention(yi, Y, Y )}. This fact allows us to use
the following result from Santambrogio (2015) Equation 6.2

W1(µ, ν) = min

∑
i,j

γijd(xi, yj) | γi,j ≥ 0,
∑
i

γij = 1
M
,
∑
j

γij = 1
N

 ,

Applied to W1(µAµ, νAν), it gives

W1(µAµ, νAν) = min
{∑

i,j

γijd(Attention(xi, X,X),Attention(yj , Y, Y )) |

γi,j ≥ 0,
∑
i

γij = 1
M
,
∑
j

γij = 1
N

}
= min

{∑
i,j

γijW1(Aµ(xi, •),Aν(yi, •)) |

γi,j ≥ 0,
∑
i

γij = 1
M
,
∑
j

γij = 1
N

}
.

Using Lemma 1 for each term, we have

W1(Aµ(xi, •),Aν(yj , •)) ≤ τ(Π)τ(L)W1(ΨG(xi,•)(µ),ΨG(yj ,•)(ν)).

Now, from Proposition 8 (xi belongs to supp (µ) and yj to supp (ν)), we get

W1(ΨG(xi,•)(µ),ΨG(yj ,•)(ν))

≤

[
√
d

√
lnN + 1

2e‖G‖Lip + ‖G‖∞ +
√
d+ 2

]
(d(xi, yj) +W1(µ, ν)).
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Substituting this back into the above formula, we obtain

W1(µAµ, νAν)

≤ min
{∑

i,j

γijW1(Aµ(xi, •),Aν(yi, •)) | γi,j ≥ 0,
∑
i

γij = 1
M
,
∑
j

γij = 1
N

}

≤ τ(Π)τ(L) min
{∑

i,j

γij

[
√
d

√
lnN + 1

2e‖G‖Lip + ‖G‖∞ +
√
d+ 2

]
(d(xi, yj) +W1(µ, ν)) |

γi,j ≥ 0,
∑
i

γij = 1
M
,
∑
j

γij = 1
N

}

= τ(Π)τ(L)
[
√
d

√
lnN + 1

2e‖G‖Lip + ‖G‖∞ +
√
d+ 2

](
W1(µ, ν)+

min
{∑

i,j

γijd(xi, yj) | γi,j ≥ 0,
∑
i

γij = 1
M
,
∑
j

γij = 1
N

})
= τ(Π)τ(L)

[√
d

√
lnN + 1

2e‖G‖Lip + ‖G‖∞ +
√
d+ 2

]
(W1(µ, ν) +W1(µ, ν))

= 2τ(Π)τ(L)
[√

d

√
lnN + 1

2e‖G‖Lip + ‖G‖∞ +
√
d+ 2

]
W1(µ, ν),

where we used in particular
∑
i,j γij = 1. The inequality being valid for both M and N , taking the min

gives the result.

D Preliminary Experiments

Below is an analysis for the “regularity mismatch” hypothesis from Section 6.2 on the modified “ConceptNet”
dataset from Tenney et al. (2019). We measure the 1-Wasserstein distance between original and negated
input sentences and relate that distance to the amount of overlap between the model’s prediction on those
sentences. We use a pretrained BERT-base model Devlin et al. (2018) without modification to the model.
This model includes confounding factors such as LayerNorm, residual connections, and feed-forward networks,
but we feel it can be illustrative nonetheless.

Firstly, we see that using the 1-Wasserstein distance to compare inputs of different lengths is sensible;
it reveals that ConceptNet has two distinct negation types (see Figure 2(b)) producing different input
perturbation distances (x-axes in Figure 2(a)). Secondly, the regularity of self-attention networks is clearly
demonstrated by the positive correlation between input distance and output distance in Figure 2(a). Finally,
we find that the mean perturbation distance is statistically significantly larger (α = 0.05) when the model
makes a different prediction under negation than when the model makes the same prediction (Fig. 2(c)).

This demonstrates that our theory can be used to design sensible experiments and make predictions about
what to expect from them. Much more work in this direction is necessary to fully explore the potential of
this paradigm.
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(a)

negation
type

original perturbed

“not” A banjo is made of
[MASK].

A banjo is not
made of [MASK].

“does not” An airplane
requires [MASK].

An airplane does
not require
[MASK].

(b)

negation pred N % same mean W1 p value

“not” same 2206 32% 80.31 1.09E-11
diff 4650 83.28 (reject H0)

“does
not”

same 402 28% 162.16 0.0346
diff 1038 163.32 (reject H0)

(c)
Figure 2: Results for “negation” experiment proposed in Section 5.3 of our paper using the ConceptNet
dataset from Tenney et al. (2019). (a) 1-norm distance of [MASK] token representations in (used for pre-
diction) vs input sentence W1 distance. (b) typical examples of both types of negation perturbation. (c)
experimental results collected; α = 0.05.

27


	Introduction
	Related Work
	Preliminaries
	Attention
	Markov Kernels

	Modelling Attention
	Basic Model of Attention
	Extension to the Transformer

	Regularity of Attention
	Lipschitz Contractions: Bounded Case
	Lipschitz Contractions: Unbounded Case

	Discussion
	Cross Attention is Continuous w.r.t. Keys
	Robustness and Perturbations
	Invertible & Infinite Depth Transformers

	Conclusion
	The Transformer
	Proofs From Section 5.1
	Proofs From Section 5.2
	Preliminary Experiments

