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ABSTRACT

Reinforcement learning in partially observed Markov decision processes
(POMDPs) faces two challenges. (i) It often takes the full history to predict the
future, which induces a sample complexity that scales exponentially with the hori-
zon. (ii) The observation and state spaces are often continuous, which induces a
sample complexity that scales exponentially with the extrinsic dimension. Ad-
dressing such challenges requires learning a minimal but sufficient representation
of the observation and state histories by exploiting the structure of the POMDP.
To this end, we propose a reinforcement learning algorithm named Represent to
Control (RTC), which learns the representation at two levels while optimizing the
policy. (i) For each step, RTC learns to represent the state with a low-dimensional
feature, which factorizes the transition kernel. (ii) Across multiple steps, RTC
learns to represent the full history with a low-dimensional embedding, which as-
sembles the per-step feature. We integrate (i) and (ii) in a unified framework that
allows a variety of estimators (including maximum likelihood estimators and gen-
erative adversarial networks). For a class of POMDPs with a low-rank structure in
the transition kernel, RTC attains an O(1/ϵ2) sample complexity that scales poly-
nomially with the horizon and the intrinsic dimension (that is, the rank). Here ϵ
is the optimality gap. To our best knowledge, RTC is the first sample-efficient al-
gorithm that bridges representation learning and policy optimization in POMDPs
with infinite observation and state spaces.

1 INTRODUCTION

Deep reinforcement learning demonstrates significant empirical successes in Markov decision pro-
cesses (MDPs) with large state spaces (Mnih et al., 2013; 2015; Silver et al., 2016; 2017). Such
empirical successes are attributed to the integration of representation learning into reinforcement
learning. In other words, mapping the state to a low-dimensional feature enables model/value learn-
ing and optimal control in a sample-efficient manner. Meanwhile, it becomes more theoretically
understood that the low-dimensional feature is the key to sample efficiency in the linear setting (Cai

∗Equal Contribution.

1



Published as a conference paper at ICLR 2023

et al., 2020; Jin et al., 2020b; Ayoub et al., 2020; Agarwal et al., 2020; Modi et al., 2021; Uehara
et al., 2021).

In contrast, partially observed Markov decision processes (POMDPs) with large observation and
state spaces remain significantly more challenging. Due to a lack of the Markov property, the low-
dimensional feature of the observation at each step is insufficient for the prediction and control of
the future (Sondik, 1971; Papadimitriou and Tsitsiklis, 1987; Coates et al., 2008; Azizzadenesheli
et al., 2016; Guo et al., 2016). Instead, it is necessary to obtain a low-dimensional embedding of
the history, which assembles the low-dimensional features across multiple steps (Hefny et al., 2015;
Sun et al., 2016). In practice, learning such features and embeddings requires various heuristics,
e.g., recurrent neural network architectures and auxiliary tasks (Hausknecht and Stone, 2015; Li
et al., 2015; Mirowski et al., 2016; Girin et al., 2020). In theory, the best results are restricted to the
tabular setting (Azizzadenesheli et al., 2016; Guo et al., 2016; Jin et al., 2020a; Liu et al., 2022),
which does not involve representation learning.

To this end, we identify a class of POMDPs with a low-rank structure on the state transition ker-
nel (but not on the observation emission kernel), which allows prediction and control in a sample-
efficient manner. More specifically, the transition admits a low-rank factorization into two unknown
features, whose dimension is the rank. On top of the low-rank transition, we define a Bellman oper-
ator, which performs a forward update for any finite-length trajectory. The Bellman operator allows
us to further factorize the history across multiple steps to obtain its embedding, which assembles the
per-step feature.

By integrating the two levels of representation learning, that is, (i) feature learning at each step
and (ii) embedding learning across multiple steps, we propose a sample-efficient algorithm, namely
Represent to Control (RTC), for POMDPs with infinite observation and state spaces. The key to RTC
is balancing exploitation and exploration along the representation learning process. To this end, we
construct a confidence set of embeddings upon identifying and estimating the Bellman operator,
which further allows efficient exploration via optimistic planning. It is worth mentioning that such
a unified framework allows a variety of estimators (including maximum likelihood estimators and
generative adversarial networks).

We analyze the sample efficiency of RTC under the future and past sufficiency assumptions. In par-
ticular, such assumptions ensure that the future and past observations are sufficient for identifying
the belief state, which captures the information-theoretic difficulty of POMDPs. We prove that RTC
attains an O(1/ϵ2) sample complexity that scales polynomially with the horizon and the dimension
of the feature (that is, the rank of the transition). Here ϵ is the optimality gap. The polynomial
dependency on the horizon is attributed to embedding learning across multiple steps, while polyno-
mial dependency on the dimension is attributed to feature learning at each step, which is the key to
bypassing the infinite sizes of the observation and state spaces.

Contributions. In summary, our contribution is threefold.

• We identify a class of POMDPs with the low-rank transition, which allows representation
learning and reinforcement learning in a sample-efficient manner.

• We propose RTC, a principled approach integrating embedding and control in the low-rank
POMDP.

• We establish the sample efficiency of RTC in the low-rank POMDP with infinite observa-
tion and state spaces.

Related Work. Our work follows the previous studies of POMDPs. In general, solving a POMDP is
intractable from both the computational and the statistical perspectives (Papadimitriou and Tsitsik-
lis, 1987; Vlassis et al., 2012; Azizzadenesheli et al., 2016; Guo et al., 2016; Jin et al., 2020a). Given
such computational and statistical barriers, previous works attempt to identify tractable POMDPs.
In particular, Azizzadenesheli et al. (2016); Guo et al. (2016); Jin et al. (2020a); Liu et al. (2022)
consider the tabular POMDPs with (left) invertible emission matrices. Efroni et al. (2022) considers
the POMDPs where the state is fully determined by the most recent observations of a fixed length.
Cayci et al. (2022) analyze POMDPs where a finite internal state can approximately determine the
state. In contrast, we analyze POMDPs with the low-rank transition and allow the state and observa-
tion spaces to be arbitrarily large. Meanwhile, our analysis hinges on the future and past sufficiency
assumptions, which only require that the density of the state is identified by that of the future and
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past observations, respectively. In recent work, Cai et al. (2022) also utilizes the low-rank property
in the transition. Nevertheless, Cai et al. (2022) assumes that the feature representation of state-
action pairs is known, thus relieving the agent from feature learning. In contrast, we aim to recover
the efficient state-action representation for planning. In terms of the necessity of exploration, Aziz-
zadenesheli et al. (2016); Guo et al. (2016) analyze POMDPs where an arbitrary policy can conduct
efficient exploration. Similarly, Cayci et al. (2022) consider POMDPs with a finite concentrability
coefficient (Munos, 2003; Chen and Jiang, 2019), where the visitation density of an arbitrary policy
is close to that of the optimal policy. In contrast, Jin et al. (2020a); Efroni et al. (2022); Cai et al.
(2022) consider POMDPs where strategic exploration is necessary. In our work, we follow Jin et al.
(2020a); Efroni et al. (2022); Cai et al. (2022) and design strategic exploration to attain sample ef-
ficiency in solving the POMDPs. Our work is also related to the previous study of MDP with rich
observations, where the authors propose to recover a possibly finite latent state of the observations
(Misra et al., 2020; Zhang et al., 2022). In contrast, we propose to recover the latent state based
on interaction history. In addition, our work conducts latent recovery under the more challenging
POMDP setup. See also §B for additional literature review on related study of latent state space
models and MDPs.

Notation We denote by Rd
+ the space of d-dimensional vectors with nonnegative entries. We denote

by Lp(X ) the Lp space of functions defined on X . We denote by ∆(d) the space of d-dimensional
probability density arrays, namely, the d-dimensional nonnegative arrays that sums up to one. We
denote by [H] = {1, . . . ,H} the index set of size H . For a linear operator M mapping from an Lp

space to an Lq space, we denote by ∥M∥p 7→q the operator norm of M . For a vector x ∈ Rd, we
denote by [x]i the i-th entry of x.

2 PARTIALLY OBSERVABLE MARKOV DECISION PROCESS

We define a partially observable Markov decision process (POMDP) by the following tuple,
M = (S,A,O, {Ph}h∈[H], {Oh}h∈[H], r,H, µ1),

where H is the length of an episode, µ1 is the initial distribution of state s1, and S, A, O are the
state, action, and observation spaces, respectively. Here Ph(· | ·, ·) is the transition kernel, Oh(· | ·) is
the emission kernel, and r(·) is the reward function. In each episode, the agent with the policy π =
{πh}h∈[H] interact with the environment as follows. The environment select an initial state s1 drawn
from the distribution µ1. In the h-th step, the agent receives the reward r(oh) and the observation oh
drawn from the observation density Oh(· | sh), and makes the decision ah = πh(τ

h
1 ) according to

the policy πh, where τh1 = {o1, a1, . . . , ah−1, oh} is the interaction history. The environment then
transits into the next state sh+1 drawn from the transition distribution Ph(· | sh, ah). The procedure
terminates until the environment transits into the termination state sH+1.

In the sequel, we assume that the action space A is finite with capacity |A| = A. Meanwhile, we
highlight that the observation and state spaces O and S are possibly infinite.

Value Functions and Learning Objective. For a given policy π = {πh}h∈[H], we define the
following value function that captures the expected cumulative rewards from interactions,

V π = Eπ

[ H∑
h=1

r(oh)

]
. (2.1)

Here we denote by Eπ the expectation taken with respect to the policy π, the transition dynamics,
and the emission. Our goal is to derive a policy that maximizes the cumulative rewards. In particular,
we aim to derive the ϵ-suboptimal policy π such that

V π∗
− V π ≤ ϵ,

based on minimal interactions with the environment, where π∗ = argmaxπ V
π is the optimal policy.

Notations of POMDP. In the sequel, we introduce notations of the POMDP to simplify the discus-
sion. We define

ah+k−1
h = {ah, ah+1, . . . , ah+k−1}, oh+k

h = {oh, oh+1, . . . , oh+k}
as the sequences of actions and observations, respectively. Correspondingly, we write r(oH1 ) =∑H

h=1 r(oh) as the cumulative rewards for the observation sequence oH1 . Meanwhile, we denote by
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τh+k
h the sequence of interactions from the h-th step to the (h+ k)-th step, namely,

τh+k
h = {oh, ah, . . . , oh+k−1, ah+k−1, oh+k} = {ah+k−1

h , oh+k
h }.

Similarly, we denote by τh+k
h the sequence of interactions from the h-th step to the (h+ k)-th step

that includes the latest action ah+k, namely,
τh+k
h = {oh, ah, . . . , oh+k, ah+k} = {ah+k

h , oh+k
h }.

In addition, with a slight abuse of notation, we define
Pπ(τh+k

h ) = Pπ(oh, . . . , oh+k | ah, . . . , ah+k−1) = Pπ(oh+k
h | ah+k−1

h ),

Pπ(τh+k
h | sh) = Pπ(oh, . . . , oh+k | sh, ah, . . . , ah+k−1) = Pπ(oh+k

h | sh, ah+k−1
h ).

Extended POMDP. To simplify the discussion and notations in our work, we introduce an extension
of the POMDP, which allows us to access steps h smaller than zero and larger than the length H of
an episode.

In particular, the interaction of an agent with the extended POMDP starts with a dummy initial
state s1−ℓ for some ℓ > 0. During the interactions, all the dummy action and observation se-
quences τ01−ℓ = {o1−ℓ, a1−ℓ, . . . , o0, a0} leads to the same initial state distribution µ1 that defines
the POMDP. Moreover, the agent is allowed to interact with the environment for k steps after ob-
serving the final observation oH of an episode. Nevertheless, the agent only collects the reward
r(oh) at steps h ∈ [H], which leads to the same learning objective as the POMDP. In addition, we
denote by [H]+ = {1 − ℓ, . . . ,H + k} the set of steps in the extended POMDP. In the sequel, we
do not distinguish between a POMDP and an extended POMDP for the simplicity of presentation.

3 A SUFFICIENT EMBEDDING FOR PREDICTION AND CONTROL

The key of solving a POMDP is the practice of inference, which recovers the density or linear func-
tionals of density (e.g., the value functions) of future observation given the interaction history. To
this end, previous approaches (Shani et al., 2013) typically maintain a belief, namely, a conditional
density P(sh = · | τh1 ) of the current state given the interaction history. The typical inference proce-
dure first conducts filtering, namely, calculating the belief at (h+ 1)-th step given the belief at h-th
step. Upon collecting the belief, the density of future observation is obtained via prediction, which
acquires the distribution of future observations based on the distribution of state sh+1.

In the case that maintaining a belief or conducting the prediction is intractable, previous approaches
establish a predictive state (Hefny et al., 2015; Sun et al., 2016), which is an embedding that is suf-
ficient for inferring the density of future observations given the interaction history. Such approaches
typically recover the filtering of predictive representations by solving moment equations. In partic-
ular, Hefny et al. (2015); Sun et al. (2016) establishes such moment equations based on structural
assumptions on the filtering of such predictive states. Similarly, Anandkumar et al. (2012); Jin et al.
(2020a) establishes a sequence of observation operators and recovers the trajectory density via such
observation operators.

Motivated by the previous work, we aim to construct a embedding that are both learn-able and
sufficient for control. A sufficient embedding for control is the density of the trajectory, namely,

Φ(τH1 ) = P(τH1 ). (3.1)
Such an embedding is sufficient as it allows us to estimate the cumulative rewards function V π

of an arbitrary given policy π. In the sequel, we aims to estimate such an embedding and further
conduct planning based on the estimated embedding. Nevertheless, estimating such an embedding
is challenging when the length H of an episode and the observation space O are large. To this end,
we exploit the low-rank structure in the state transition of POMDPs.

3.1 LOW-RANK POMDP

Assumption 3.1 (Low-Rank POMDP). We assume that the transition kernel Ph takes the following
low-rank form for all h ∈ [H]+,

Ph(sh+1 | sh, ah) = ψ∗
h(sh+1)

⊤ϕ∗h(sh, ah),

where
ψ∗
h : S 7→ Rd

+, ϕ∗h : S ×A 7→ ∆(d)
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are unknown features.

Here recall that we denote by [H]+ = {1− ℓ, . . . ,H + k} the set of steps in the extended POMDP.
Note that our low-rank POMDP assumption does not specify the form of emission kernels. In con-
trast, we only require the transition kernels of states to be linear in unknown features.

Function Approximation. We highlight that the features in Assumption 3.1 are unknown to us.
Correspondingly, we assume that we have access to a parameter space Θ that allows us to fit such
features as follows.

Definition 3.2 (Function Approximation). We define the following function approximation space
FΘ = {FΘ

h }h∈[H] corresponding to the parameter space Θ,

FΘ
h =

{
(ψθ

h, ϕ
θ
h,Oθ

h) : θ ∈ Θ
}
, ∀h ∈ [H]+.

Here, Oθ
h : S × O 7→ R+ is an emission kernel and ψθ

h : S 7→ Rd
+, ϕθh : S 7→ ∆(d) are features

for all h ∈ [H]+ and θ ∈ Θ. In addition, it holds that ψθ(·)⊤ϕθ(sh, ah) defines a probability over
sh+1 ∈ S for all h ∈ [H]+ and (sh, ah) ∈ S ×A.

Here we denote by ψθ
h, ϕ

θ
h,Oθ

h a parameterization of features and emission kernels. In practice, one
typically utilizes linear or neural network parameterization for the features and emission kernels. In
the sequel, we write Pθ and Pθ,π as the probability densities corresponding to the transition dynamics
defined by {ψθ

h, ϕ
θ
h,Oθ

h}h∈[H] and policy π, respectively. We impose the following realizability
assumption to ensure that the true model belongs to the parameterized function space FΘ.

Assumption 3.3 (Realizable Parameterization). We assume that there exists a parameter θ∗ ∈ Θ,
such that ψθ∗

h = ψ∗
h, ϕθ

∗

h = ϕ∗h, and Oθ∗

h = Oh for all h ∈ [H].

We define the following forward emission operator as a generalization of the emission kernel.

Definition 3.4 (Forward Emission Operator). We define the following forward emission operator
Uθ

h : L1(S) 7→ L1(Ak ×Ok+1) for all h ∈ [H],

(Uθ
hf)(τ

h+k
h ) =

∫
S
Pθ(τh+k

h | sh) · f(sh)dsh, ∀f ∈ L1(S), ∀τh+k
h ∈ Ak ×Ok+1. (3.2)

Here recall that we denote by τh+k
h = {ah+k−1

h , oh+k
h } ∈ Ak ×Ok+1 the trajectory of interactions.

In addition, recall that we define Pθ(τkh | sh) = Pθ(oh+k
h | sh, ah+k−1

h ) for notational simplicity. We
remark that here we omit the dependency of Uθ

h on the length k of trajectory to simplify the notation.

We remark that when applying to a belief or a density over state sh, the forward emission operator
returns the density of trajectory τh+k

h of k steps ahead of the h-th step.

Bottleneck Factor Interpretation of Low-Rank Transition. Recall that in Assumption 3.1, the
feature ϕ∗h maps from the state-action pair (sh, ah) ∈ S × A to a d-dimensional simplex in ∆(d).
Equivalently, one can consider the low-rank transition as a latent variable model, where the next
state sh+1 is generated by first generating a bottleneck factor qh ∼ ϕ∗(sh, ah) and then generating
the next state sh+1 by [ψ∗(·)]qh . In other words, the probability array ϕ∗(sh, ah) ∈ ∆(d) induces a
transition dynamics from the state-action pair (sh, ah) to the bottleneck factor qh ∈ [d] as follows,

Ph(qh | sh, ah) =
[
ϕ∗h(sh, ah)

]
qh
, ∀qh ∈ [d].

Correspondingly, we write Ph(sh+1 | qh) = [ψ∗
h(sh+1)]qh the transition probability from the bottle-

neck factor qh ∈ [d] to the state sh+1 ∈ S. See Figure 1 for an illustration of the data generating
process with the bottleneck factors.

Understanding Bottleneck Factor. Utilizing the low-rank structure of the state transition requires
us to understand the bottleneck factors {qh}h∈[H] defined by the low-rank transition. We high-
light that the bottleneck factor qh is a compressed and sufficient factor for inference. In partic-
ular, the bottleneck factor qh determines the distribution of next state sh+1 through the feature
ψ∗
h(sh+1 = ·) = P(sh+1 = · | qh = ·). Such a property motivate us to obtain our desired embedding

via decomposing the density of trajectory based on the feature set {ψ∗
h}h∈[H]+ . To achieve such

a decomposition, we first introduce the following sufficiency condition for all the parameterized
features ψθ

h with θ ∈ Θ.
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Assumption 3.5 (Future Sufficiency). We define the mapping gθh : Ak × Ok+1 7→ Rd for all
parameter θ ∈ Θ and h ∈ [H] as follows,

gθh =
[
Uθ

h

[
ψθ
h−1

]
1
, . . . ,Uθ

h

[
ψθ
h−1

]
d

]⊤
,

where we denote by [ψθ
h−1

]
i

the i-th entry of the mapping ψθ
h−1 for all i ∈ [d]. We assume for some

k > 0 that the matrix

Mθ
h =

∫
Ak×Ok+1

gθh(τ
h+k
h )gθh(τ

h+k
h )⊤dτh+k

h ∈ Rd×d

is invertible. We denote by Mθ,†
h the inverse of Mθ

h for all parameter θ ∈ Θ and h ∈ [H].

· · ·

· · ·

· · ·

sh

qh

sh+1

ah

oh rh oh+1

· · ·

· · ·

· · ·

Figure 1: Directed acyclic graph (DAG) of
a POMDP with low-rank transition. Here
{sh, sh+1}, {oh, oh+1}, ah, rh are the
states, observations, action, and reward,
respectively. In addition, we denote by
qh the bottleneck factor induced by the
low-rank transition, which depends on the
state and action pair (sh, ah) and deter-
mines the density of next state sh+1. In
the DAG, we represent observable and un-
observable variables by the shaded and un-
shaded nodes, respectively. In addition, we
use the dashed node and arrows for the la-
tent factor qh and its corresponding transi-
tions, respectively.

Intuitively, the future sufficiency condition in Assump-
tion 3.5 guarantees that the density of trajectory τh+k

h
in the future captures the information of the bottleneck
variable qh−1, which further captures the belief at the
h-th step. To see such a fact, we have the following
lemma.

Lemma 3.6 (Pseudo-Inverse of Forward Emission).
We define linear operator Uθ,†

h : L1(Ak × Ok+1) 7→
L1(S) for all θ ∈ Θ and h ∈ [H] as follows,

(Uθ,†
h f)(sh) =

∫
Ak×Ok+1

ψθ
h−1(sh)

⊤Mθ,†
h gθh(τ

h+k
h )

· f(τh+k
h )dτh+k

h , (3.3)
where f ∈ L1(Ak×Ok+1) is the input of linear opera-
tor Uθ,†

h and gθh is the mapping defined in Assumption
3.5. Under Assumptions 3.1 and 3.5, it holds for all
h ∈ [H], θ ∈ Θ, and π ∈ Π that

Uθ,†
h Uθ

h(P
θ,π
h ) = Pθ,π

h .

Here Pθ,π
h ∈ L1(S) maps from all state sh ∈ S to

the probability Pθ,π
h (sh), which is the probability of

visiting the state sh in the h-th step when following
the policy π and the model defined by parameter θ.

Proof. See §D.1 for a detailed proof.

By Lemma 3.6, the forward emission operator Uθ
h defined in Definition 3.4 has a pseudo-inverse

Uθ,†
h under the future sufficiency condition in Assumption 3.5. Thus, one can identify the belief

state by inverting the conditional density of the trajectory τh+k
h given the interaction history τh1 .

More importantly, such invertibility further allows us to decompose the desired embedding Φ(τH1 )
in (3.1) across steps, which we introduce in the sequel.

3.2 MULTI-STEP EMBEDDING DECOMPOSITION VIA BELLMAN OPERATOR

To accomplish the multi-step decomposition of embedding, we first define the Bellman operator as
follows.

Definition 3.7 (Bellman Operator). We define the Bellman operators Bθ
h(ah, oh) : L1(Ak ×

Ok+1) 7→ L1(Ak ×Ok+1) for all (ah, oh) ∈ A×O and h ∈ [H] as follows,(
Bθ
h(ah, oh)f

)
(τh+k+1

h+1 ) =

∫
S
Pθ(τh+k+1

h | sh) · (Uθ,†
h f)(sh)dsh, ∀τh+k+1

h+1 ∈ Ak ×Ok+1.

Here recall that we denote by τh+k+1
h = {oh+k+1

h , ah+k
h } and Pθ(τh+k+1

h | sh) =

Pθ(oh+k+1
h | sh, ah+k+1

h ) for notational simplicity.

We call Bθ
h(ah, oh) in Definition 3.7 a Bellman operator as it performs a temporal transition from

the density of trajectory τh+k
h to the density of trajectory τh+k+1

h+1 and the observation oh, given that
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one take action ah at the h-th step. More specifically, Assumption 3.5 guarantees that the density of
trajectory τh+k

h identifies the density of sh in the h-th step. The Bellman operator then performs the
transition from the density of sh to the density of the trajectory τh+k+1

h+1 and observation oh given
the action ah. The following Lemma shows that our desired embedding Φ(τH1 ) can be decomposed
into products of the Bellman operators defined in Definition 3.7.

Lemma 3.8 (Embedding Decomposition). Under Assumptions 3.1 and 3.5, it holds for all the pa-
rameter θ ∈ Θ that

Pθ(τH1 ) =
1

Ak
·
∫
Ak×Ok+1

[
Bθ
H(oH , aH) . . .Bθ

1(o1, a1)b
θ
1

]
(τH+k+1

H+1 )dτH+k+1
H+1 .

Here recall that we denote by τH+k+1
H+1 = {aH+k

H+1 , o
H+k+1
H+1 } the dummy future trajectory. Mean-

while, we define the following initial trajectory density,
bθ1(τ

k
1 ) = Uθ

1µ1 = Pθ(τk1 ), ∀τk1 ∈ Ak ×Ok+1.

Proof. See §D.3 for a detailed proof.

By Lemma 3.8, we can obtain the desired representation Φ(τH1 ) = P(τH1 ) based on the product of
the Bellman operators. It now remains to estimate the Bellman operators across each step. In the
sequel, we introduce an identity that allows us to recover the Bellman operators based on observa-
tions.

Estimating Bellman Operator. In the sequel, we introduce the following notation to simplify our
discussion,

zh = τh+k
h = {oh, ah, . . . , ah+k−1, oh+k} ∈ Ak ×Ok+1, (3.4)

wh−1 = τh−1
h−ℓ = {oh−ℓ, ah−ℓ, . . . , oh−1, ah−1} ∈ Aℓ ×Oℓ. (3.5)

We first define two density mappings that induce the identity of the Bellman Operator. We define
the density mapping Xθ,π

h : Aℓ ×Oℓ 7→ L1(Ak ×Ok+1) as follows,

Xθ,π
h (wh−1) = Pθ,π(wh−1, zh = ·), ∀wh−1 ∈ Aℓ ×Oℓ. (3.6)

Intuitively, the density mapping Xθ,π
h maps from an input trajectory wh−1 to the density of zh,

which represents the density of k-steps interactions following the input trajectory wh−1. Similarly,
we define the density mapping Yθ,π

h : Aℓ+1 ×Oℓ+1 7→ L1(Ak ×Ok+1) as follows,

Yθ,π
h (wh−1, ah, oh) = Pθ,π(wh−1, ah, oh, zh+1 = ·), ∀(wh−1, ah, oh) ∈ Aℓ+1 ×Oℓ+1 (3.7)

Based on the two density mappings defined in (3.6) and (3.7), respectively, we have the following
identity for all h ∈ [H] and θ ∈ Θ,

Bθ
h(ah, oh)X

θ,π
h (wh−1) = Yθ,π

h (wh−1, ah, oh), ∀wh−1 ∈ Aℓ+1 ×Oℓ+1. (3.8)
See §D.2 for the proof of (3.8). We highlight that the identity in (3.8) allows us to estimate the
Bellman operator Bθ∗

h (ah, oh) under the true parameter θ∗ ∈ Θ. In particular, both Xθ∗,π
h and

Yθ∗,π
h are density mappings involving the observations and actions, and can be estimated based on

observable variables from the POMDP. Upon fitting such density mappings, we can recover the
Bellman operator Bθ∗

h (ah, oh) by solving the identity in (3.8).

An Overview of Embedding Learning. We now summarize the learning procedure of the embed-
ding. First, we estimate the density mappings defined in (3.6) and (3.7) under the true parameter θ∗

based on interaction history. Second, we estimate the Bellman operators {Bθ∗

h (ah, oh)}h∈[H] based
on the identity in (3.8) and the estimated density mappings in the first step. Finally, we recover the
embedding Φ(τH1 ) by assembling the Bellman operators according to Lemma 3.8.

4 ALGORITHM

In what follows, we present Represent to Control (RTC), an online learning algorithm that iteratively
learns the embedding and conduct control based on the embedding learned. In particular, RTC
iteratively fits the density mappings defined in (3.6) and (3.7) with respect to the sampling policy,
and fit the Bellman operators by the identity in (3.8). Finally, RTC conducts optimistic planning by
the confidence set identified in embedding learning. See §C for the detailed procedure and Algorithm
1 for a summarization of RTC.
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4.1 DENSITY ESTIMATION

In the embedding learning, we need and estimator to recover the density mappings defined in (3.6)
and (3.7). In practice, various approaches are available in fitting the density by observations. In
what follows, we unify such density estimation approaches by a density estimation oracle.

Assumption 4.1 (Density Estimation Oracle). We assume that we have access to a density estima-
tion oracle E(·). Moreover, for all δ > 0 and dataset D drawn from the density p of size n following
a martingale process, we assume that

∥E(D)− p∥1 ≤ C ·
√
wE · log(1/δ)/n

with probability at least 1 − δ. Here C > 0 is an absolute constant and wE is a parameter that
depends on the density estimation oracle E(·).

We highlight that such convergence property can be achieved by various density estimations. In
particular, when the function approximation space P of E(·) is finite, Assumption 4.1 holds for the
maximum likelihood estimation (MLE) and the generative adversial approach with wE = log |P|
(Geer et al., 2000; Zhang, 2006; Agarwal et al., 2020). Meanwhile, wE scales with the entropy
integral of P endowed with the Hellinger distance if P is infinite (Geer et al., 2000; Zhang, 2006). In
addition, Assumption 4.1 holds for the reproducing kernel Hilbert space (RKHS) density estimation
(Gretton et al., 2005; Smola et al., 2007; Cai et al., 2022) with wE = poly(d), where d is rank of
the low-rank transition (Cai et al., 2022).

Upon fitting the density mappings X̂t
h and Ŷt

h in the t-th iterate, we estimate the Bellman operators
by minimizing the following objective,

Lt
h(θ) = sup

ah
h−ℓ∈Aℓ+1

∫
Oℓ+1

∥Bθ
h(ah, oh)X̂t

h(wh−1)− Ŷt
h(wh−1, ah, oh)∥1dohh−ℓ. (4.1)

Here recall that we define the shorthand wh−1 = {oh−ℓ, ah−ℓ, . . . , oh−1, ah−1} in (3.5).

4.2 OPTIMISTIC PLANNING

The learning of Bellman operators allows us to identify a confidence interval for the parameter and
the associated embedding. In particular, we define the following confidence set,

Ct =
{
θ ∈ Θ : max

{
∥bθ1 − b̂t1∥1, Lt

h(θ)
}
≤ βt ·

√
1/t, ∀h ∈ [H]

}
, (4.2)

where βt is the tuning parameter in the t-th iterate. To conduct optimistic planning, we seek for the
policy that maximizes the return among all parameters θ ∈ Ct and the corresponding features. The
update of policy takes the following form,

πt ← argmax
π∈Π

max
θ∈Ct

V π(θ).

Here V π(θ) is the cumulative rewards estimated based on the embedding induced by θ. See §C for
the details.
5 ANALYSIS

In what follows, we present the sample complexity analysis of RTC presented in Algorithm 1. Our
analysis hinges on the following assumptions.

Assumption 5.1 (Bounded Pseudo-Inverse). We assume that ∥Uθ,†
h ∥17→1 ≤ ν for all θ ∈ Θ and

h ∈ [H], where ν > 0 is an absolute constant.

We remark that the upper bound of the pseudo-inverse in Assumption 5.1 quantifies the fundamental
difficulty of solving the POMDP. In particular, the pseudo-inverse of forward emission recovers
the state density at the h-th step based on the trajectory τh+k

h from the h-th step to the (h + k)-th
step. Thus, the upper bound ν on such pseudo-inverse operator characterizes how ill-conditioned
the belief recovery task is based on the trajectory τh+k

h . In what follows, we impose a similar past
sufficiency assumption.
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Algorithm 1 Represent to Control
Require: Number of iterates T . A set of tuning parameters {βt}t∈[T ].

1: Initialization: Set π0 as a deterministic policy. Set the dataset D0
h(a

h+k
h−ℓ ) as an empty set for

all (h, ah+k
h−ℓ ) ∈ [H]×Ak+ℓ+1.

2: for t ∈ [T ] do
3: for (h, ah+k

h−ℓ ) ∈ [H]×Ak+ℓ+1 do
4: Start a new episode from the (1− ℓ)-th step.
5: Execute policy πt−1 until the (h− ℓ)-th step and receive the observations oh−ℓ

1−ℓ .
6: Execute the action sequence ah+k

h−ℓ regardless of the observations and receive the observa-
tions oh+k+1

h−ℓ+1 .
7: Update the dataset Dt

h(a
h+k
h−ℓ )← D

t−1
h (ah+k

h−ℓ ) ∪
{
oh+k+1
h−ℓ

}
.

8: end for
9: Estimate the density of trajectory P̂t

h(· | a
h+k
h−ℓ )← E

(
Dt(ah+k

h−ℓ )
)

for all h ∈ [H].
10: Update the density mappings X̂t

h and Ŷt
h as follows,

X̂t
h(wh−1) = P̂t

h(wh−1, zh = ·), Ŷt
h(wh−1, ah, oh) = P̂t

h(wh−1, ah, oh, zh+1 = ·).
11: Update the initial density estimation b̂t1(τ

H
1 )← P̂t(τH1 ).

12: Update the confidence set Ct by (4.2).
13: Update the policy πt ← argmaxπ∈Π maxθ∈Ct V π(θ).
14: end for
15: Output: policy set {πt}t∈[T ].

Assumption 5.2 (Past Sufficiency). We define for all h ∈ [H] the following reverse emission oper-
ator Fθ,π

h : Rd 7→ L1(Oℓ ×Aℓ) for all h ∈ [H], π ∈ Π, and θ ∈ Θ,

(Fθ,π
h v)(τh−1

h−ℓ) =
∑

qh−1∈[d]

[v]qh−1
· Pθ,π(oh−1

h−ℓ | qh−1, a
h−1
h−ℓ), ∀v ∈ Rd,

where (τh−1
h−ℓ) ∈ Aℓ ×Oℓ. We assume for some ℓ > 0 that the operator Fθ,π

h is left invertible for all
h ∈ [H], π ∈ Π, and θ ∈ Θ. We denote by Fθ,π,†

h the left inverse of Fθ,π
h . We assume further that

∥Fθ,π,†
h ∥17→1 ≤ γ for all h ∈ [H], π ∈ Π, and θ ∈ Θ, where γ > 0 is an absolute constant.

We remark that the left inverse Fθ,π,†
h of reverse emission operator Fθ,π

h recovers the density of the
bottleneck factor qh−1 based on the density of trajectory τh−1

h−ℓ from the (h−ℓ)-th step to the (h−1)-
th step. Intuitively, the past sufficiency assumption in Assumption 5.2 guarantees that the density of
trajectory τh−1

h−ℓ from the past captures sufficient information of the bottleneck factor qh−1, which
further determines the state distribution at the h-th step. Thus, similar to the upper bound ν in
Assumption 5.1, the upper bound γ in Assumption 5.2 characterizes how ill-conditioned the belief
recovery task is based on the trajectory τh−1

h−ℓ generated by the policy π.

In what follows, we analyze the mixture policy πT of the policy set {πt}t∈[T ] returned by RTC in
Algorithmn 1. In particular, the mixture policy πT is executed by first sampling a policy π uniformly
from the policy set {πt}t∈[T ] in the beginning of an episode, and then executing π throughout the
episode.

Theorem 5.3. Let πT be the mixture policy of the policy set {πt}t∈[T ] returned by Algorithm 1.
Let βt = (ν + 1) ·A2k ·

√
wE · (k + ℓ) · log(H ·A · T ) for all t ∈ [T ] and

T = O
(
γ2 · ν4 · d2 · w2

E ·H2 ·A2(2k+ℓ) · (k + ℓ) · log(H ·A/ϵ)/ϵ2
)
.

Under Assumptions 3.1, 3.5, 4.1, 5.1, and 5.2, it holds with probability at least 1 − δ that πT is
ϵ-suboptimal.

Proof. See §E.3 for a detailed proof.

In Theorem 5.3, we fix the lengths of future and past trajectories k and ℓ, respectively, such that
Assumptions 3.5 and 5.2 holds. Theorem 5.3 shows that the mixture policy πT of the policy set
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{πt}t∈[T ] returned by RTC is ϵ-suboptimal if the number of iterations T scales with O(1/ϵ2). We
remark that such a dependency regarding ϵ is information-therotically optimal for reinforcement
learning in MDPs (Ayoub et al., 2020; Agarwal et al., 2020; Modi et al., 2021; Uehara et al., 2021),
which is a special case of POMDPs. In addition, the sample complexity T depends polynomially
on the length of horizon H , number of actions A, the dimension d of the low-rank transition in As-
sumption 3.1, and the upper bounds ν and γ in Assumptions 5.1 and 5.2, respectively. We highlight
that the sample complexity depends on the observation and state spaces only through the dimension
d of the low-rank transition, extending the previous sample efficiency analysis of tabular POMDPs
(Azizzadenesheli et al., 2016; Jin et al., 2020a). In addition, the sample complexity depends on
the upper bounds of the operator norms ν and γ in Assumptions 5.1 and 5.2, respectively, which
quantify the fundamental difficulty of solving the POMDP. See §G for the analysis under the tabular
POMDP setting.
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