
Preprint.

EXECUTABLE CODE ACTIONS ELICIT BETTER LLM
AGENTS

Xingyao Wang1, Yangyi Chen1, Lifan Yuan1, Yizhe Zhang2, Yunzhu Li1, Hao Peng1,
Heng Ji1
1University of Illinois Urbana-Champaign, 2Apple
1{xingyao6,yangyic3,yunzhuli,haopeng,hengji}@illinois.edu
2yizhe zhang@apple.com

ABSTRACT

Large Language Model (LLM) agents, capable of performing a broad range of
actions, such as invoking tools and controlling robots, show great potential in
tackling real-world challenges. LLM agents are typically prompted to produce
actions by generating JSON or text in a pre-defined format, which is usually limited
by constrained action space (e.g., the scope of pre-defined tools) and restricted
flexibility (e.g., inability to compose multiple tools). This work proposes to use exe-
cutable Python code to consolidate LLM agents’ actions into a unified action space
(CodeAct). Integrated with a Python interpreter, CodeAct can execute code
actions and dynamically revise prior actions or emit new actions upon new obser-
vations through multi-turn interactions. Our extensive analysis of 17 LLMs on API-
Bank and a newly curated benchmark shows that CodeAct outperforms widely
used alternatives (up to 20% higher success rate). The encouraging performance of
CodeAct motivates us to build an open-source LLM agent that interacts with envi-
ronments by executing interpretable code and collaborates with users using natural
language. To this end, we collect an instruction-tuning dataset CodeActInstruct that
consists of 7k multi-turn interactions using CodeAct. We show that it can be used
with existing data to improve models in agent-oriented tasks without compromising
their general capability. CodeActAgent, finetuned from Llama2 and Mistral, is
integrated with Python interpreter and uniquely tailored to perform sophisticated
tasks (e.g., model training) using existing libraries and autonomously self-debug. 1

1 INTRODUCTION

Large Language Models (LLMs) have emerged as a pivotal breakthrough in natural language pro-
cessing (NLP). When augmented with action modules that allow access to APIs, their action space
expands beyond conventional text processing, allowing LLMs to acquire capabilities such as tool
invocation and memory management (Mialon et al., 2023; Schick et al., 2023) and venture into
real-world tasks such as controlling robots (Ahn et al., 2022; Huang et al., 2023; Ma et al., 2023) and
performing scientific experiments (Bran et al., 2023).

We inquire: how to effectively expand LLM agents’ action space for solving complex real-world
problems? Much existing research has examined using text (Yao et al., 2022b; Park et al., 2023,
inter alia) or JSON (Qin et al., 2023b; Chase, 2022, inter alia) to produce actions (e.g., tool uses
in Fig. 1 top left). However, both methods typically suffer from constrained scope of action spaces
(actions are usually tailored for specific tasks) and restricted flexibility (e.g., inability to compose
multiple tools in a single action). As an alternative approach, several work (Liang et al., 2022; Singh
et al., 2023; Wang et al., 2023a) demonstrate the potential of using LLMs to generate code to control
robots or game characters. However, they typically rely on pre-specified control primitives and
hand-engineered prompts and, more importantly, struggle to dynamically adjust or emit actions based
on new environmental observation and feedback.

This work proposes CodeAct, a general-purpose framework that allows LLMs to generate executable
Python code as actions (Fig. 1 top right). CodeAct is designed to handle a variety of applications
and comes with unique advantages:

1The code, data, model, and demo are available at https://github.com/xingyaoww/code-act.

1

https://github.com/xingyaoww/code-act

Preprint.

0 10 20 30 40 50 60 70

gpt-4-1106-preview

gpt-4-0613

claude-2

gpt-3.5-turbo-0613

gpt-3.5-turbo-1106

gemini-pro

text-davinci-003

Llama-2-70b-chat-hf

Success Rate (%)

5 6 7 8 9 10

Average Number of Interaction Turns

Action Mode
Code as Action
JSON as Action
Text as Action

Figure 1: Comparison between CodeAct and Text / JSON as action. (top) Illustrative example
comparing different actions. (bottom) Quantitative results on M3ToolEval (§2.3).

(1) Integrated with a Python interpreter, CodeAct can execute code actions and dynamically adjust
prior actions or emit new action based on observations (e.g., code execution results) it receives
through multiple turns of interactions.

(2) Code actions allow LLM to leverage existing software packages. CodeAct can use readily
available Python packages for an expanded action space instead of hand-crafted task-specific
tools (Yuan et al., 2023; Shen et al., 2023). It also allows LLM to use automated feedback (e.g.,
error messages) implemented in most software to improve task-solving by self-debugging its
generated code (Chen et al., 2023b; Wang et al., 2023d).

(3) Code data is widely used in pre-training today’s LLMs (Yang et al., 2024b). These models are
already familiar with structured programming languages, allowing cost-effective adoption of
CodeAct.

(4) Compared to JSON and text with a pre-defined format, code inherently supports control and data
flow, allowing for the storage of intermediate results as variables for reuse and the composition
of multiple tools to perform complex logical operations (e.g., if-statements, for-loops) with one
piece of code, thereby unlocking LLMs’ potential to tackle complex tasks by leveraging its
pre-trained knowledge of programming. In Fig. 1, an LLM using with CodeAct (top right) can
apply the same sequence of tools (e.g., passing one tool’s output as input to another tool using
the data flow feature) to all inputs through for-loops (i.e., control flow feature) with one action;
while text or JSON have to take action for every input (top left).

Our extensive experiments with 17 LLMs (including both open-source and proprietary ones) confirm
the above benefits (3 & 4) of CodeAct. To demonstrate benefit (3), our first experiment (§2.2)
compares CodeAct to baselines on basic tasks involving atomic tool use (i.e., only one tool is
used per action), ablating the control and data flow advantage offered by CodeAct. The results
show that, for most LLMs, CodeAct achieves comparable or better performance than the baselines.
CodeAct’s performance gains are more prominent on complex tasks, as demonstrated in our second
experiment (benefit 4). We curate a new benchmark consisting of 82 human-curated tasks that
typically require multiple calls to multiple tools in multi-turn interactions (M3ToolEval; §2.3).
Problems in this benchmark often require intricate coordination and composition of multiple tools.
With its strengths in control and data flow, CodeAct achieves up to a 20% absolute improvement
over baselines on the success rate of solving the problems while requiring up to 30% fewer actions.
These performance gains widen as the capabilities of the LLMs increase (Fig. 1 bottom).

The promising performance of CodeAct motivates an open-source LLM agent that can effectively
act through CodeAct, and collaborate with humans through natural language. To this end, we collect

2

Preprint.

Table 1: The benefit of CodeAct compared to using Text/JSON for LLM action.
CodeAct for LLM action JSON or Text for LLM action

Availability of Data "Large quantity of code available1 for pre-training %Data curation required for particular format

Complex Operation (e.g., looping,
composition of multiple tools) "Natively supported via control and data flow

%Requires careful engineering if feasible (e.g.,
define new tools to mimic if-statement)

Availability of Tools "Can directly use existing software packages2
%Requires human effort to curate tools from
scratch or existing software

Automated Feedback
"Feedback mechanism3 (e.g., traceback) is already
implemented as an infrastructure for most program-
ming languages

%Requires human effort to provide feedback or re-
route feedback from the underlying programming
language used to implement the tools

1 Including code demonstrating useful behaviors for LLM agents (e.g., task decomposition, coordination of multiple function calls to different tools).
2 Human-written Python packages covering a wide range of applications are available on https://pypi.org/.
3 For example, in Python, errors and exceptions (https://docs.python.org/3/tutorial/errors.html) are available. Most software
provides error messages in natural language to help human programmers debug their code. CodeAct enables LLM to use them directly.

an instruction-tuning dataset CodeActInstruct consisting of 7k high-quality multi-turn interaction
trajectories with CodeAct (§3.1). CodeActInstruct is motivated by a general agent framework
consisting of agent, user, and environments (Fig. 2) and focuses on agent-environment interactions
with the computer (information seeking, software package use, external memory) and the physical
world (robot planning). On CodeActInstruct, we perform careful data selection to promote the
capability of improving from multi-turn interaction (e.g., self-debug). We show that CodeActInstruct
can be used with commonly used instruction tuning data to improve the models’ performance in agent
tasks without compromising their general capabilities (e.g., knowledge-based QA, coding, instruction
following, §3.2). Our model, dubbed CodeActAgent, is finetuned from LLaMA-2 (Touvron et al.,
2023) and Mistral-7B (Jiang et al., 2023) and improves on out-of-domain agent tasks with not only
CodeAct, but also text action in a pre-defined format (§3.2).

CodeAct can further benefit from multi-turn interactions and existing software (benefit 1 & 2,
§2.4). As shown in Fig. 3, CodeActAgent, designed for seamless integration with Python, can carry
out sophisticated tasks (e.g., model training, data visualization) using existing Python packages.
Error messages from the environment further enable it to rectify errors autonomously through self-
debugging in multi-turn interaction. Thanks to LLM’s extensive programming knowledge acquired
during pre-training, these are achieved without needing in-context demonstrations, reducing the
human efforts for adapting CodeActAgent to different tasks.

2 CODEACT MAKES LLMS BETTER AGENTS

In this section, we first describe CodeAct framework (§2.1) and provide empirical evidence that
supports the choice of CodeAct. We focus on Python as the programming language for CodeAct
due to its popularity (ranked top-1 at TIOBE Index (2024)) and numerous open-source packages. We
aim to answer several research questions (RQs) using 17 off-the-shelf LLMs. In §2.2, we examine
RQ1: Does LLMs’ familiarity with code due to a large amount of code pre-training data bring
CodeAct advantages over text and JSON? We discuss RQ2 in §2.3: Does CodeAct benefit from
Python’s innate control and data flow feature in complex problems? Finally, as an additional benefit,
we discuss how using CodeAct further enhances LLM agents by enabling multi-turn interactions
and allowing them to access existing software in §2.4 and Fig. 3.

Agent

 Action

 Observation

Planning
 Chain-of-though
 Self-Reflectio
 Improving Action from

Prior Observatio
 ...

Initiate Interaction

 Think

User

Conversation

E.g., Natural Language
Instruction or Feedback

Conversation

in Natural Language

Start

Environment

Software Interface (API)

Interface for Computer
Information Seeking

(e.g., Web search, Browsing)

Software Package (Tool)

(e.g., Calculate, Download, Visualize)

External Memory

(e.g., Database, Graph)

Interface for Physical World
Robots

(e.g., Household Robots, Automated Lab)

[...]

[...]

Outcome

E.g., Execution results,

Automated error feedback

CodeAct

unified action space

import sympy
x = sympy.Symbol('x')
roots = sympy.solve(x**2 - 13*x + 4)
print(1/roots[0] + 1/roots[1])

Example

User:

Find the sum of the reciprocals of the roots of
$x^2-13x+4=0$.

Assistant:

To find the sum of the reciprocals of the roots
of the quadratic equation $x^2-13x+4=0$ [...]

<execute>

</execute>

Env:

1/(3*sqrt(17)/2 + 13/2) + 1/(13/2 - 3*sqrt(17)/2)

Assistant:

The roots obtained are in symbolic form, which
makes it difficult to evaluate the sum directly.
Let's use the quadratic formula to explicitly
find the numerical values of the roots first.

[...]

Figure 2: General agent multi-turn interaction framework that describes the role of CodeAct and
motivates the construction of our data mixture. CodeActInstruct focuses on the agent-environment
interactions and specifically filters for the self-improved planning behavior, while general conversation
data we include focuses on agent-user interaction (§3.1).

3

https://pypi.org/
https://docs.python.org/3/tutorial/errors.html

Preprint.

2.1 WHAT IS CODEACT?

In Fig. 2, we first introduce a general multi-turn interaction framework for LLM agents’ real-
world usage that considers three roles (Yang et al., 2024c): agent, user, and environment. We
define interaction as the information exchange between the agent and an external entity (user or
environment). For each turn of interaction, the agent receives an observation (input) either from the
user (e.g., natural language instruction) or the environment (e.g., code execution result), optionally
planning for its action through chain-of-thought (Wei et al., 2022), and emits an action (output) to
either user in natural language or the environment. CodeAct employs Python code to consolidate
all actions for agent-environment interaction. In CodeAct, each emitted action to the environment
is a piece of Python code, and the agent will receive outputs of code execution (e.g., results, errors)
as observation. We include an example prompt of CodeAct in §E.

2.2 CODEACT SHOWS THE PROMISE AS A STRONG TOOL USE FRAMEWORK

In this section, we perform a controlled experiment to understand which format (text, JSON,
CodeAct) is more likely to lead an LLM to generate correct atomic tool calls. The performance
in this experiment reflects LLM’s familiarity with the corresponding format. We hypothesize that
using CodeAct to call tools is a more natural way to use tools for the models, which typically have
extensive exposure to code data during their training.

Setup. We re-purpose API-Bank (Li et al., 2023) and test LLMs’ API-calling performance, comparing
CodeAct, JSON, and text actions. For each evaluation instance, we instruct LLM to generate one
atomic tool call in the format of a Python function call, JSON object, or text expression in a pre-
defined format. A concrete example is shown in Tab. A.6. We use API-Bank’s level-1 instructions
and the provided toolset. To evaluate API-calling, we follow their correctness metric, matching the
ground-truth API outputs with the actual model-generated API’s execution outputs.

Results. We present results in Tab. 2. For most LLMs, CodeAct achieves comparable or better
performance even in atomic actions (the simplistic tool use scenario) where its control and data
flow strengths are ablated. Compared to closed-source LLMs, CodeAct’s improvements are more
prominent in open-source models. Furthermore, code data is usually more accessible for fine-
tuning open-source LLMs than the specialized JSON or text tool-calling format. Although JSON is
consistently weaker than other approaches for open-source models, it achieves decent performance
with closed-source LLMs, indicating that these closed-source models may have gone through targeted
fine-tuning toward their JSON capabilities. These results suggest optimizing for CodeAct is a better
route for open-source LLMs than alternatives to improve their tool-use capabilities, as they already
show good initial CodeAct capability due to extensive exposure to code data during pre-training.

Table 2: Atomic API call correctness on
API-Bank with different action format.
The best performance is bolded, and the
second-best is underlined.

Correctness (%, ↑)
Format of Action CodeAct JSON Text

Open-source LLMs
CodeLlama-7b-Instruct-hf 12.5 12.0 17.0
CodeLlama-13b-Instruct-hf 11.8 7.8 14.0
CodeLlama-34b-Instruct-hf 17.3 12.0 16.8
Llama-2-7b-chat-hf 28.8 11.3 25.8
Llama-2-13b-chat-hf 38.1 8.5 37.3
Llama-2-70b-chat-hf 35.6 14.3 37.6
Mistral-7B-Instruct-v0.1 2.5 2.3 3.0
lemur-70b-chat-v1 58.6 46.6 56.1

Closed-source LLMs
claude-2 76.7 59.4 73.7
claude-instant-1 75.2 64.9 73.2
gemini-pro 70.4 73.2 71.2
gpt-3.5-turbo-0613 74.4 73.9 73.4
gpt-3.5-turbo-1106 75.4 78.4 73.4
gpt-4-0613 75.4 82.0 74.4
gpt-4-1106-preview 76.7 82.7 73.4
text-davinci-002 69.2 59.6 57.4
text-davinci-003 75.4 76.9 69.7

Frequency of Best-Performing Format ↑
Open-source 4 0 4
Closed-source 4 5 0
Overall 8 5 4

Table 3: Success rates (higher the better) and average turns
required per instance (lower the better) on M3ToolEval.
The best results for each model are bolded, and the second-
best ones are underlined.

Success Rate (%, ↑) Avg. Turns (↓)

Format of Action CodeAct JSON Text CodeAct JSON Text

Open-source LLMs
CodeLlama-7b-Instruct-hf 4.9 2.4 2.4 9.7 9.9 9.9
CodeLlama-13b-Instruct-hf 4.9 4.9 4.9 9.8 9.8 9.7
CodeLlama-34b-Instruct-hf 2.4 0.0 0.0 9.9 10.0 10.0
Llama-2-7b-chat-hf 0.0 1.2 2.4 8.9 9.5 9.6
Llama-2-13b-chat-hf 0.0 0.0 0.0 9.7 10.0 10.0
Llama-2-70b-chat-hf 11.0 3.7 3.7 9.1 9.8 9.8
Mistral-7B-Instruct-v0.1 0.0 3.7 1.2 10.0 9.8 9.9
lemur-70b-chat-v1 13.4 15.9 12.2 9.1 9.3 9.4

Closed-source LLMs
claude-2 54.9 39.0 29.3 7.2 8.3 8.5
claude-instant-1 20.7 31.7 24.4 8.8 8.6 8.9
gemini-pro 22.0 19.5 11.0 8.8 9.1 9.5
gpt-3.5-turbo-0613 51.2 26.8 20.7 7.0 8.8 9.2
gpt-3.5-turbo-1106 29.3 15.9 14.6 8.4 9.0 9.0
gpt-4-0613 67.1 56.1 45.1 6.6 7.6 8.0
gpt-4-1106-preview 74.4 52.4 53.7 5.5 7.6 7.7
text-davinci-002 4.9 4.9 8.5 9.7 9.8 9.6
text-davinci-003 20.7 18.3 7.3 9.2 9.0 9.6

Frequency of Best-performing Format ↑
Open-source 5 4 3 6 1 1
Closed-source 7 1 1 6 2 1
Overall 12 5 4 12 3 2

4

Preprint.

2.3 CODEACT GETS MORE DONE WITH FEWER INTERACTIONS

In this section, we investigate whether LLM agents can benefit from the control and data flow of code
on problems that require complex patterns of tool use.

M3ToolEval. As shown in Tab. A.7, to the best of our knowledge, no existing tool-use benchmarks
contain complex tasks requiring the composition of multiple tools while supporting evaluating
different action formats. Hence, we curate a benchmark M3ToolEval to fill this gap, which evaluates
LLMs’ capabilities in solving complex tasks that typically require multiple calls to multiple tools
in multi-turn interactions. It contains 82 human-curated instances, spanning tasks including web
browsing, finance, travel itinerary planning, science, and information processing. Each domain is
accompanied by a unique set of manually crafted tools. We intentionally keep the prompt simple
(examples in §F) and avoid providing any demonstration to test the LLM’s zero-shot ability to use
tools, similar to how a novice user without knowledge of few-shot prompting would use the model.

Setup. We allow the model to generate fully functional Python code that enables control and data flow
(e.g., if-statement, for-loop). We follow the action format for JSON and text described in Tab. A.6.
Within each turn, the model can either emit an action or propose an answer to be verified by an
exact match with the ground-truth solution. The interaction will terminate when a maximum of 10
interaction turns are reached or a correct solution has been submitted, similar to Wang et al. (2023e).

Metric. We measure the success rate by calculating the percentage of the model proposed answers
that match the ground-truth solutions. We also include the avg. turns metric: the average number of
turns on all evaluated instances.

Quantitative Results on M3ToolEval. We include full results in Tab. 3 and a subset of results for
visualization in Fig. 1. CodeAct generally has a higher task success rate (12 out of 17 evaluated
LLMs), similar to the trend in §2.2. Moreover, using CodeAct requires a lower average number
of turns (12 out of 17 evaluated LLMs). For example, the best model gpt-4-1106-preview
achieves a 20.7% absolute improvement compared to the next best action format (text) while requiring
2.1 fewer interaction turns on average. However, there is still a significant gap in terms of absolute
CodeAct performance between open- and closed-source LLMs as the best open-source model
achieving 13.4% while the best closed-source model gpt-4-1106-preview 74.4%. This is
potentially due to open-source models’ weak task-solving capability and inability to follow complex
instructions without demonstration, suggesting an urgent need to improve open-source LLMs for
practical, real-world tasks under the zero-shot setting.

2.4 CODEACT BENEFITS FROM MULTI-TURN INTERACTIONS AND EXISTING SOFTWARE
PACKAGES

In Fig. 3, we show how an LLM agent can integrate with Python (i.e., CodeActAgent we trained in
§3.2) and use existing software to perform complex tasks in multi-turn interactions. Thanks to its
extensive knowledge of Python learned during pre-training, the LLM agent can automatically import
the correct Python libraries to solve tasks without requiring user-provided tools or demonstrations. As
illustrated in Fig. 3, CodeActAgent can use Pandas to download and process tabular data, use Scikit-
Learn for machine learning train-test data split and regression model training, and use Matplotlib
for data visualization. Furthermore, using the interactive Python interpreter for code execution
allows automated error messages that help the LLM agent ‘self-debug’ their actions in a multi-turn
interaction and eventually complete the human user’s request correctly.

3 EMPOWERING OPEN-SOURCE LLM AGENT TO BE BETTER AT CODEACT

The promising results achieved by CodeAct motivate us to build an open-source LLM agent that can
both interact with environments through CodeAct and communicate with humans using language.
To improve open-source LLMs’ CodeAct capability, in §3.1, we introduce CodeActInstruct, an
instruction finetuning dataset that contains agent-environment interaction trajectories. We discuss
data selection procedures in §3.1 to promote improvement from interaction behavior. Additionally, we
show that CodeAct can be used together with existing agent-user conversation data (§3.1) to balance
the dialog capability of the resulting LLM. Our model CodeActAgent, finetuned from LLaMA-2
(Touvron et al., 2023) and Mistral-7B (Jiang et al., 2023) on a mixture of CodeActInstruct and general

5

Preprint.

import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression

Download and load the dataset
df = pd.read_csv("https://huggingface.co/datasets/scikit-learn/auto-mpg/raw/main/auto-mpg.csv")

Check for missing values
print(df.isnull().sum())

Remove rows with missing values
df = df.dropna()

Perform train-test split
X = df.drop(columns=["mpg", "car name"])
y = df["mpg"]
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

Train a regression model
model = LinearRegression()
model.fit(X_train, y_train)

Predict MPG for test data
y_pred = model.predict(X_test)

Evaluate the model
print("Mean squared error: ", np.mean((y_test - y_pred) ** 2))
print("R^2 score: ", r2_score(y_test, y_pred))

To accomplish this task, I will use the pandas library to download and load the
dataset, check for missing values, and perform a train-test split. Then, I will use
the scikit-learn library to train a regression model.

CodeActAgent

User
Here is a dataset about auto MPG: "https://huggingface.co/datasets/scikit-
learn/auto-mpg/raw/main/auto-mpg.csv". You should download and load the
dataset from the URL, take a look at it, check for missing value, do a train-test
split, and train a regression model predicting its MPG. You should use
everything except "mpg" and "car name" as the input features.

Environment
mpg 0
[...omitted for space...]
car name 0
dtype: int64

ValueError Traceback (most recent call last)
/tmp/ipykernel_12/1372561217.py in ?()

18 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2 [...]
19
20 # Train a regression model
21 model = LinearRegression()

---> 22 model.fit(X_train, y_train)
23
24 # Predict MPG for test data
25 y_pred = model.predict(X_test)

... [omitted for space]...

ValueError: could not convert string to float: '?'

The mean squared error is 10.711 and the R^2 score is 0.790, which indicates that
the model has a good fit with the data [...]

CodeActAgent

User
Can you also give me the MSE and R^2 for the training set?

from sklearn.metrics import mean_squared_error
Calculate MSE for training set
mse_train = mean_squared_error(y_train, model.predict(X_train))
Calculate R^2 score for training set
r2_train = r2_score(y_train, model.predict(X_train))

print("Mean squared error (training set):", mse_train)
print("R^2 score (training set):", r2_train)

Certainly! Here are the mean squared error (MSE) and R^2 scores [...]
CodeActAgent

Environment
Mean squared error (training set): 10.979255842373478
R^2 score (training set): 0.826001578671067

The mean squared error for the training set is 10.979 and the R^2 score is 0.826,
which indicates [...]

CodeActAgent

Environment
Mean squared error: 10.710864418838367
R^2 score: 0.790150038676035

User
Can you visualize the regression coefficient? You may access them via
model.coef_ and their names via model.feature_names_in_

import matplotlib.pyplot as plt
Get regression coefficients
coef = model.coef_
Get names of input features
feature_names = model.feature_names_in_
Plot regression coefficients
plt.bar(feature_names, coef)
plt.xlabel('Input Feature')
plt.ylabel('Regression Coefficient')
plt.title('Regression Coefficients')
Display the plot
plt.show()

Certainly! Here is a visualization of the regression coefficients [...]
CodeActAgent

Environment
<Figure size 640x480 with 1 Axes>

The regression coefficients are plotted as a bar chart, with each input feature on
the x-axis and the corresponding coefficient on the y-axis [...]

CodeActAgent

User
Can you rotate the x ticks by 45 degrees for better readability?

[..same code omitted...]
Plot regression coefficients
plt.bar(feature_names, coef, tick_labels=False)
plt.xticks(
 feature_names, feature_names, rotation=45, ha='right', fontsize=12)
[..same code omitted...]

Certainly! Here is the updated bar chart with the x-ticks rotated by 45 degrees
for better readability:

CodeActAgent

Environment
<Figure size 640x480 with 1 Axes>

AttributeError Traceback (most recent call last)
Cell In[1], line 10

7 feature_names = model.feature_names_in_
9 # Plot regression coefficients

---> 10 plt.bar(feature_names, coef, tick_labels=False)
11 plt.xticks(feature_names, feature_names,

 rotation=45, ha='right', fontsize=12)
12 plt.xlabel('Input Feature')

[...]
AttributeError: Rectangle.set() got an unexpected keyword argument 'tick_labels'

[...same code omitted...]
plt.bar(feature_names, coef)
plt.tick_params(axis='x', labelrotation=45, ha='right', fontsize=12)
[...same code omitted...]
plt.show()

It seems that the tick_labels argument is not a valid argument for
the bar() function in Matplotlib. Instead, we can use the tick_params() function
to rotate the x-ticks [...]

CodeActAgent

[3 rounds of self-debugging omitted for space]

[...same code omitted...]
plt.xticks(feature_names, feature_names,
 rotation=45, ha='right', fontsize=12)
[...same code omitted...]
plt.show()

I apologize for the confusion. It seems that the set_xticks() function is not a
valid function in Matplotlib. Instead, we can use the xticks() function to set the
x-ticks and rotate them by 45 degrees for better readability. Here is the updated
bar chart with the x-ticks rotated by 45 degrees:

CodeActAgent

Environment
<Figure size 640x480 with 1 Axes>

User
[Stops Interaction]

It seems that there is a data type issue in the dataset. The '?' character is present
in the data, which is causing the error when trying to convert the data to a float.
To fix this, I will remove the rows containing the '?' character.

CodeActAgent

Remove rows containing '?'
df = df.replace('?', np.nan)
df = df.dropna()
X = df.drop(columns=["mpg", "car name"])
y = df["mpg"]
X_train, X_test, y_train, y_test = train_test_split(
 X, y, test_size=0.2, random_state=42
)
model = LinearRegression()
model.fit(X_train, y_train)
y_pred = model.predict(X_test)
print("Mean squared error: ", np.mean((y_test - y_pred) ** 2))
print("R^2 score: ", r2_score(y_test, y_pred))

Use Pandas Library to Download,
Examine, and Process Data

Use Scikit-Learn Library to Split
Data and Train Regression Model

Self-Debug from
Automated Feedback

Able to Answer follow-up Question Interactively

Use Matplotlib Library for
Data Visualization

Self-Debug for Data
Visualization

Figure 3: Example multi-turn interaction with Python packages using CodeActAgent (Mistral-7b).
No in-context demonstrations are provided to the model. Some messages are omitted for space. See
https://chat.xwang.dev/r/Vqn108G for complete interaction.

conversations, improves CodeAct performances without hurting LLM’s general performance on a
diverse suite of tasks (§3.2).

6

https://chat.xwang.dev/r/Vqn108G

Preprint.

3.1 CODEACTINSTRUCT: AGENT-ENVIRONMENT INTERACTIONS

We consider four main use cases in agent-environment interaction and repurpose five existing datasets
across different domains to generate trajectories:

• Information Seeking: We use a training subset of HotpotQA (Yang et al., 2018) to generate
information-seeking trajectories, where LLMs use the wikipedia search API (provided as a
Python function) to search for information to answer questions.

• Software Package (Tool) Usage: We use the training set of code generation problems in APPS
(Hendrycks et al., 2021a) and math problems in MATH (Hendrycks et al., 2021b). The code
generation tasks already involve importing packages and/or creating new tools by defining a new
Python function. For MATH, we provide an in-context demonstration of importing Python packages
(e.g., sympy for symbolic math) for problem-solving.

• External Memory: We repurpose the training subset of WikiTableQuestion (Pasupat & Liang,
2015) and tweak it into two variants of tabular reasoning tasks that require accessing external
memory: (1) SQL-based, requiring the LLM to interact with an SQL database through sqlite3
package to answer the question via SQL execution; (2) Pandas-based, requiring the model to
interact with pandas tables to perform data operations (e.g., select, filter). Examples of instructions
can be found in §G.3.1.

• Robot Planning: We use ALFWorld (Shridhar et al., 2020), a text-only embodied environment
simulator, to generate trajectories that use robot-control APIs (repurposed as Python function)
to complete household tasks. Following MINT (Wang et al., 2023e), we provide an in-context
demonstration to encourage the use of for-loop and if-statement code blocks to automate repetitive
operations (e.g., searching for items by visiting different locations).

Data Down-sampling. We down-sample each dataset by keeping only the most challenging instances,
aiming to make trajectory generation more efficient and cost-effective. Furthermore, it also helps
remove simple instances that existing LLMs can already solve. The statistics of the filtered dataset
can be found in Tab. A.9. Please refer to §G.1 for details about the down-sample process.

Repurpose Data for Multi-turn Interaction. Some datasets (APPS, MATH, WikiTableQuestions)
are initially single-turn problems that expect one solution per instruction, whereas, in a realistic agent
use case, we often require multi-turn interaction to complete each task (Fig. 1 top). Following MINT
(Wang et al., 2023e), we repurpose single-turn problems into multi-turn ones by allowing LLM to
interact with the environment for multiple turns before it decides to submit one solution for evaluation.
Specifically for code generation problems, we provide an in-context example to guide LLMs to test
their solution on provided test cases before they submit the solution. Metrics from the original data
will evaluate the submitted solution to determine its correctness. We include examples in §G.3.

Trajectory Generation. We use MINT’s evaluation framework (Wang et al., 2023e) to generate
interaction trajectories for the aforementioned datasets and determine the correctness of each trajectory.
We run gpt-3.5-turbo-0613 from OpenAI, claude-1-instant and claude-2 from Anthropic on down-
sampled data, except code generation, which we use a longer-context version of GPT-3.5 (gpt-3.5-
turbo-0613-16k) due to the long-context requirement of the self-debugging process. On a subset of
problems that none of these models can solve, we use gpt-4-0613 to generate trajectories.

Enhancing Agent’s Capabilities of Improving from Interaction. We select a high-quality subset
of all the generated trajectories from CodeActInstruct to promote the agent’s ability to improve the
next action based on prior observations (e.g., self-debugging from code execution error message, a
planning capability in Fig. 2). To achieve this, we selectively preserve those trajectories wherein
the model initially encounters errors but rectifies these inaccuracies in later interactions. For these
instances, the LLM typically engages in self-reflection following the initial error, thereby proactively
enhancing its future actions. Other filtering details are discussed in §G.2. On all trajectories generated,
we keep 411 trajectories from gpt-4-0613 and 6728 trajectories from gpt-3.5 and claude. The statistics
of the resulting dataset CodeActInstruct are shown in Tab. 4.

Comparing CodeActInstruct with Prior Work. Compared with prior work AgentInstruct (Zeng
et al., 2023) and FireAct (Chen et al., 2023a) that mainly focus using text as action, CodeActIn-
struct results in models that are more practical in real-world implementation, as such models using
CodeAct can directly interact with Python interpreters and open-source toolkits (Fig. 3), reducing
the development effort for action parsing and tool creations. CodeActInstruct is systematically
constructed following the general agent framework (Fig. 2). It covers diverse domains (e.g., compared

7

Preprint.

Table 4: Statistics of our training mixture and comparison with prior work. Please refer to §3.1 for
details about CodeActInstruct and general conversation data. Token statistics are computed using
Llama-2 tokenizer.

Data Mixture Data Type Data Name # of Data Instances # of Total Tokens Avg. Tokens Per Instance

Prior Work - FireAct (Chen et al., 2023a) 2, 063 542, 176 262.81
- AgentInstruct (Zeng et al., 2023) 1, 866 2, 517, 785 1349.30

CodeActInstruct (Ours)

Information Seeking HotpotQA (Yang et al., 2018) 1, 664 2, 472, 227 1485.71
Software Packages (Tool) MATH (Math, (Hendrycks et al., 2021b)) 1, 732 1, 719, 467 992.76
Software Packages (Tool) APPS (Code, (Hendrycks et al., 2021a)) 647 1, 235, 472 1909.54

External Memory WikiTableQuestion (Pasupat & Liang, 2015) 1, 065 1, 316, 246 1235.91
Robot Planning ALFWorld (Shridhar et al., 2020) 2, 031 3, 838, 269 1889.84

Total 7,139 10,581,681 1482.24

General Conversation

Single-Turn Reasoning OpenOrca (Sub-sampled, (Lian et al., 2023)) 50, 000 14, 034, 152 280.68
Multi-Turn Conversations ShareGPT (Sub-sampled, (Anonymous, 2023)) 10, 000 17, 933, 861 1793.39
Multi-Turn Conversations ShareGPT (GPT-4, (OpenChat, 2023)) 4, 583 18, 195, 878 3970.30

Multi-turn Reasoning CapyBara (LDJnr, 2023) 4, 647 4, 982, 435 1072.18

Total 69,230 55,146,326 796.57

Table 5: Evaluation results for CodeActAgent. The best results among all open-source LLMs are
bolded, and the second-best results are underlined. ID and OD stand for in-domain and out-of-domain
evaluation correspondingly. Overall averaged performance normalizes the MT-Bench score to be
consistent with other tasks and excludes in-domain tasks for fair comparison.

Agent Tasks Generic Tasks Overall
Code as Action Text as Action (OD) (OD) Average

Model Size MINT (ID) MINT (OD) M3ToolEval (OD) Miniwob++ SciWorld MMLU HumanEval GSM8K MTBench

Open-source LLMs (LLaMA-2-based)
Llama2 Base 7B -∗ -∗ -∗ -∗ -∗ 45.3 12.8 14.6 -∗ -∗
Llama2 Chat 7B 3.2 11.0 0.0 0.0 5.9 48.0 13.9 27.7 6.3 21.1
FireAct (Chen et al., 2023a) 7B 0.0 0.3 0.0 0.0 6.8 44.1 3.5 12.4 4.5 14.0
AgentLM (Zeng et al., 2023) 7B 8.7 6.1 0.0 28.9 13.7 48.7 15.4 24.6 6.1 24.8
CodeActAgent (LLaMA-2) 7B 51.3 20.4 0.0 25.5 17.6 50.6 18.1 38.3 7.5 30.7

Open-source LLMs (Mistral-based)
Mistral Base 7B -∗ -∗ -∗ -∗ -∗ 60.1 30.5 52.1 -∗ -∗
Mistral Instruct 7B 18.8 9.7 0.0 0.5 4.0 53.8 29.3 43.3 6.4 25.6
CodeActAgent (Mistral) 7B 57.4 32.4 12.2 46.2 15.9 59.1 34.7 58.0 8.2 42.5

Closed-source LLMs
gpt-3.5-turbo-0613 - 33.9 38.2 51.2 66.7 21.2 70.0 48.1 57.1 7.9 54.0
gpt-4-0613 - 68.6 70.2 67.1 69.4 36.4 86.4 67.0 87.1 9.0 71.7

* Some results are only available with instruction-tuned models.

to FireAct that only considers QA-task and search API), contains quality data (e.g., promotes agent’s
capability of self-debug) and of larger size (3.8x / 3.5x more data trajectories and 5x / 19x more
tokens compared to AgentInstruct / FireAct respectively in Tab. 4). As we empirically show in
Tab. 5, the resulting model (same backbone) of CodeActInstruct achieves 24% and 119% relative
improvement compared to AgentInstruct and FireAct.

CodeActInstruct Can Be Used With Existing Agent-User Conversation Data. We use a sub-
sampled set of OpenOrca (Lian et al., 2023) that focuses on single-turn chain-of-thought (CoT)
reasoning, ShareGPT (Anonymous, 2023; OpenChat, 2023) from two sources that contain multi-turn
conversations between human and LLM, and CapyBara (LDJnr, 2023) that focuses on reasoning in
multi-turn conversations. Statistics and down-sampling details can be found in Tab. 4 and §C.

3.2 CODEACTAGENT

We fine-tune Llama-2 7B (Touvron et al., 2023) and Mistral 7B (Jiang et al., 2023) on a mixture of
CodeActInstruct and general conversations (Tab. 4) to obtain CodeActAgent.

Training Setup. We perform full-parameter supervised fine-tuning with a sequence length of 4,096
tokens for Llama-2 and 16,384 for Mistral. Please refer to §D for more details.

Evaluation Setup. We use MINT (Wang et al., 2023e) to evaluate LLMs with CodeAct on a diverse
range of agent tasks. CodeActAgent has some training domains overlapping with MINT’s evaluation
(i.e., MINT includes ALFWorld and MATH), hence we report separate numbers for MINT’s in-
and out-of-domain performance. Unless otherwise specified, we measure MINT tasks’ success
rates with interaction turn k = 5. We also evaluate out-of-domain agent tasks using text actions
from MiniWob++ (computer tasks, Kim et al. (2023)) and ScienceWorld (text-based simulator for
elementary science curriculum, Wang et al. (2022a)) to test whether CodeActAgent can generalize
to different action formats. Finally, we include a suite of general LLM evaluation tasks to assess
general capability: MMLU (Hendrycks et al., 2020) for knowledge-based QA, HumanEval (Chen
et al., 2021) for single-turn code-generation, GSM8K (Cobbe et al., 2021) for single-turn tool-free
math reasoning, and MTBench (Zheng et al., 2023) for instruction-following.

8

Preprint.

CodeActAgent Excels in CodeAct Task. As shown in Tab. 5, CodeActAgent (both variants)
perform better than all evaluated open-source LLMs on both the in- and out-of-domain subsets of
MINT. On M3ToolEval, we find CodeActAgent (Mistral) outperforms open-source LLMs of similar
size (7B and 13B) and even reaches similar performance to those 70B models (Tab. 3). Surprisingly,
no improvement is observed for the Llama-2 variant. We discuss potential reasons in §H.

CodeActAgent Generalizes to Text Action. When evaluated on out-of-domain text actions, Code-
ActAgent (LLaMA2, 7B), which has never been optimized for text action, achieves comparable
performance to AgentLM-7B (Zeng et al., 2023) which has explicit tuning for text actions.

CodeActAgent Maintains or Improves the Performance on General LLM Tasks. In Tab. 5, we
find that CodeActAgent (both variants) performs better on generic LLM tasks we tested, except for a
slight degradation on MMLU for CodeActAgent (Mistral, 7B).

Ablation Study. Tab. A.8 presents ablation experiments to determine the importance of CodeActIn-
struct and general conversations. Both CodeActInstruct and general conversations contribute to agent
tasks, while general conversations are essential to maintain performance on general tasks.

4 RELATED WORK

4.1 ACTION MODULE IN LLM AGENTS

As detailed in Wang et al. (2023b), LLM-based autonomous agents are typically structured around
four components: customized profiles (Park et al., 2023; Qian et al., 2023), long-term memory
capabilities (Zhu et al., 2023; Fischer, 2023), reasoning and planning algorithms (Wei et al., 2022;
Chen et al., 2023d), and, most crucially, action modules. The action modules are key to facilitating
LLM agents to effectively interact with external entities, including humans (Lee et al., 2022) and
tools (Qin et al., 2023a) in the environment (Wang et al., 2023e; Yang et al., 2024a). In this study, we
address the critical problem of standardizing the action space for LLM agents. We further discuss the
difference between CodeAct and the line of work that uses code generation for problem-solving in
§A. We notice a concurrent study TaskWeaver (Qiao et al., 2023) similarly endorses the use of code.
We discuss the principal distinctions in §B.

4.2 IMPROVING LLM AGENTS

Two primary methods for enhancing LLM agents are prompt engineering and instruction tuning, as
surveyed by Wang et al. (2023b). For prompt engineering (Liu et al., 2023a), numerous strategies
have been introduced to improve the chain-of-thought reasoning (Wei et al., 2022), including self-
consistency-based reasoning (Wang et al., 2022b; Chen et al., 2023d) and tree-based approaches (Yao
et al., 2023a). Moreover, LLMs can be strategically prompted to reflect on previous plans (Yao et al.,
2023b; Wang et al., 2023f; Zhang et al., 2023), enabling them to refine initial actions through trial and
error. Contrast to prompt engineering, instruction tuning intrinsically enhances LLMs (Chung et al.,
2022), particularly in their agent capabilities (Zeng et al., 2023; Chen et al., 2023a). For effective
training, human annotators can curate expert demonstrations for specific agent tasks, such as web
browsing (Yao et al., 2022a; Nakano et al., 2021). To minimize human annotation efforts, prior work
creates synthetic datasets using stronger LLMs to distill agent capabilities into local models, focusing
on tool usage (Qin et al., 2023b), interaction (Chen et al., 2023c), and social skills (Liu et al., 2023b).
CodeActInstruct aligns with the latter approach and creates datasets using stronger LLMs.

5 CONCLUSIONS

This work introduces CodeAct that employs executable Python code for the LLM agent’s action,
which is advantageous over using text or JSON action, especially in complex scenarios. We collect
CodeAct-focused multi-turn interaction trajectories CodeActInstruct for instruction tuning, and
train CodeActAgent that is specially designed for seamless integration with Python and can execute
sophisticated tasks (e.g., model training) leveraging existing Python packages and autonomously
rectifying errors through self-debugging.

9

Preprint.

BROADER IMPACTS, LIMITATIONS, AND FUTURE WORK

This paper presents work whose goal is to advance LLM-based autonomous agents that can com-
municate with humans through natural language and assist human users by performing tasks in
environments on behalf of humans. In this section, we discuss potential societal consequences,
limitations, and future work related to our work and its goal.

CodeActAgent is an initial prototype of an autonomous agent and still has several practical limitations.
For example, it may suffer from hallucination commonly seen in LLMs (e.g., imagine the content of
a variable without actually printing it out), suggesting the need for subsequent alignment (Ouyang
et al., 2022) for further improvements.

Despite being a prototype, CodeActAgent has already demonstrated limited self-improving capability
(e.g., self-debug error messages to improve its action) and the ability to interact with environments.
Future work may build upon CodeActAgent to develop better agents by having them perform extensive
interactions within a given environment and iteratively bootstrap their self-improving capability to
learn to improve from past mistakes. More powerful agents, as results of such algorithms, are
potentially beneficial for solving a wide range of real-world problems (e.g., theorem proving, drug
discovery). As extensively discussed in Eloundou et al. (2023), a fully autonomous agent may
transform the current landscape of the labor market and impact the jobs of existing workers.

Furthermore, since CodeAct directly grants access for the agent to freely execute code in a sandbox
environment, in the worst scenario (e.g., in Sci-Fi movies), such an agent may potentially break free
of the sandbox restriction and cause harm to the world through cyber-attack, highlighting the need for
future work to design better safety mechanism to safeguard autonomous agents (Tang et al., 2024).

ACKNOWLEDGEMENT

We thank the anonymous reviewers for their suggestions and comments. This research is based upon
work supported by U.S. DARPA ECOLE Program No. HR00112390060 and U.S. DARPA ITM
Program No. FA8650-23-C-7316 and KAIROS Program No. FA8750-19-2-1004. The views and
conclusions contained herein are those of the authors and should not be interpreted as necessarily
representing the official policies, either expressed or implied, of DARPA, or the U.S. Government.
The U.S. Government is authorized to reproduce and distribute reprints for governmental purposes
notwithstanding any copyright annotation therein. This work used the Delta system at the National
Center for Supercomputing Applications through allocation CIS230256 from the Advanced Cy-
berinfrastructure Coordination Ecosystem: Services & Support (ACCESS, Boerner et al. 2023)
program, which is supported by National Science Foundation grants #2138259, #2138286, #2138307,
#2137603, and #2138296.

REFERENCES

Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, Byron David, Chelsea
Finn, Chuyuan Fu, Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Daniel Ho, Jasmine
Hsu, Julian Ibarz, Brian Ichter, Alex Irpan, Eric Jang, Rosario Jauregui Ruano, Kyle Jeffrey,
Sally Jesmonth, Nikhil Joshi, Ryan Julian, Dmitry Kalashnikov, Yuheng Kuang, Kuang-Huei Lee,
Sergey Levine, Yao Lu, Linda Luu, Carolina Parada, Peter Pastor, Jornell Quiambao, Kanishka
Rao, Jarek Rettinghouse, Diego Reyes, Pierre Sermanet, Nicolas Sievers, Clayton Tan, Alexander
Toshev, Vincent Vanhoucke, Fei Xia, Ted Xiao, Peng Xu, Sichun Xu, Mengyuan Yan, and Andy
Zeng. Do as i can and not as i say: Grounding language in robotic affordances. In arXiv preprint
arXiv:2204.01691, 2022.

Anonymous. Sharegpt dataset. https://hf.co/datasets/anon8231489123/
ShareGPT_Vicuna_unfiltered/blob/main/ShareGPT_V3_unfiltered_
cleaned_split_no_imsorry.json, 2023. A dataset containing multi-turn conversations
between human and LLM assistant.

Timothy J Boerner, Stephen Deems, Thomas R Furlani, Shelley L Knuth, and John Towns. Access:
Advancing innovation: Nsf’s advanced cyberinfrastructure coordination ecosystem: Services &
support. In Practice and Experience in Advanced Research Computing, pp. 173–176. 2023.

10

https://hf.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/blob/main/ShareGPT_V3_unfiltered_cleaned_split_no_imsorry.json
https://hf.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/blob/main/ShareGPT_V3_unfiltered_cleaned_split_no_imsorry.json
https://hf.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/blob/main/ShareGPT_V3_unfiltered_cleaned_split_no_imsorry.json

Preprint.

Andres M Bran, Sam Cox, Andrew D White, and Philippe Schwaller. Chemcrow: Augmenting
large-language models with chemistry tools. arXiv preprint arXiv:2304.05376, 2023.

Alejandro Hernández Cano, Matteo Pagliardini, Andreas Köpf, Kyle Matoba, Amirkeivan Mo-
htashami, Xingyao Wang, Olivia Simin Fan, Axel Marmet, Deniz Bayazit, Igor Krawczuk, Zeming
Chen, Francesco Salvi, Antoine Bosselut, and Martin Jaggi. epfllm megatron-llm, 2023. URL
https://github.com/epfLLM/Megatron-LLM.

Harrison Chase. LangChain, October 2022. URL https://github.com/langchain-ai/
langchain.

Baian Chen, Chang Shu, Ehsan Shareghi, Nigel Collier, Karthik Narasimhan, and Shunyu Yao.
Fireact: Toward language agent fine-tuning. arXiv preprint arXiv:2310.05915, 2023a.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Xinyun Chen, Maxwell Lin, Nathanael Schärli, and Denny Zhou. Teaching large language models to
self-debug. arXiv preprint arXiv:2304.05128, 2023b.

Yangyi Chen, Karan Sikka, Michael Cogswell, Heng Ji, and Ajay Divakaran. Dress: Instructing large
vision-language models to align and interact with humans via natural language feedback. arXiv
preprint arXiv:2311.10081, 2023c.

Yangyi Chen, Karan Sikka, Michael Cogswell, Heng Ji, and Ajay Divakaran. Measuring and im-
proving chain-of-thought reasoning in vision-language models. arXiv preprint arXiv:2309.04461,
2023d.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Yunxuan Li,
Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, et al. Scaling instruction-finetuned language
models. arXiv preprint arXiv:2210.11416, 2022.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021.

Tyna Eloundou, Sam Manning, Pamela Mishkin, and Daniel Rock. Gpts are gpts: An early look
at the labor market impact potential of large language models. arXiv preprint arXiv:2303.10130,
2023.

Kevin A Fischer. Reflective linguistic programming (rlp): A stepping stone in socially-aware agi
(socialagi). arXiv preprint arXiv:2305.12647, 2023.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan, and
Graham Neubig. Pal: Program-aided language models. In International Conference on Machine
Learning, pp. 10764–10799. PMLR, 2023.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. In International Conference on
Learning Representations, 2020.

Dan Hendrycks, Steven Basart, Saurav Kadavath, Mantas Mazeika, Akul Arora, Ethan Guo, Collin
Burns, Samir Puranik, Horace He, Dawn Song, et al. Measuring coding challenge competence
with apps. In Thirty-fifth Conference on Neural Information Processing Systems Datasets and
Benchmarks Track (Round 2), 2021a.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn
Song, and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset.
In Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks
Track (Round 2), 2021b.

11

https://github.com/epfLLM/Megatron-LLM
https://github.com/langchain-ai/langchain
https://github.com/langchain-ai/langchain

Preprint.

Sirui Hong, Xiawu Zheng, Jonathan Chen, Yuheng Cheng, Jinlin Wang, Ceyao Zhang, Zili Wang,
Steven Ka Shing Yau, Zijuan Lin, Liyang Zhou, et al. Metagpt: Meta programming for multi-agent
collaborative framework. arXiv preprint arXiv:2308.00352, 2023.

Sirui Hong, Yizhang Lin, Bang Liu, Bangbang Liu, Binhao Wu, Danyang Li, Jiaqi Chen, Jiayi Zhang,
Jinlin Wang, Li Zhang, Lingyao Zhang, Min Yang, Mingchen Zhuge, Taicheng Guo, Tuo Zhou,
Wei Tao, Wenyi Wang, Xiangru Tang, Xiangtao Lu, Xiawu Zheng, Xinbing Liang, Yaying Fei,
Yuheng Cheng, Zongze Xu, and Chenglin Wu. Data interpreter: An llm agent for data science,
2024.

Wenlong Huang, Chen Wang, Ruohan Zhang, Yunzhu Li, Jiajun Wu, and Li Fei-Fei. Voxposer:
Composable 3d value maps for robotic manipulation with language models. arXiv preprint
arXiv:2307.05973, 2023.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

Geunwoo Kim, Pierre Baldi, and Stephen McAleer. Language models can solve computer tasks.
arXiv preprint arXiv:2303.17491, 2023.

LDJnr. Capybara dataset. https://hf.co/datasets/LDJnr/Verified-Camel,
https://hf.co/datasets/LDJnr/Pure-Dove, https://hf.co/datasets/
LDJnr/LessWrong-Amplify-Instruct, 2023. A dataset focusing on reasoning in
multi-turn conversations.

Mina Lee, Percy Liang, and Qian Yang. Coauthor: Designing a human-ai collaborative writing
dataset for exploring language model capabilities. In Proceedings of the 2022 CHI conference on
human factors in computing systems, pp. 1–19, 2022.

Minghao Li, Feifan Song, Bowen Yu, Haiyang Yu, Zhoujun Li, Fei Huang, and Yongbin Li. Api-bank:
A benchmark for tool-augmented llms, 2023.

Wing Lian, Bleys Goodson, Eugene Pentland, Austin Cook, Chanvichet Vong, and ”Teknium”.
Openorca: An open dataset of gpt augmented flan reasoning traces. https://https://
huggingface.co/Open-Orca/OpenOrca, 2023.

Jacky Liang, Wenlong Huang, Fei Xia, Peng Xu, Karol Hausman, Brian Ichter, Pete Florence, and
Andy Zeng. Code as policies: Language model programs for embodied control. In arXiv preprint
arXiv:2209.07753, 2022.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Graham Neubig.
Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language
processing. ACM Computing Surveys, 55(9):1–35, 2023a.

Ruibo Liu, Ruixin Yang, Chenyan Jia, Ge Zhang, Denny Zhou, Andrew M Dai, Diyi Yang, and
Soroush Vosoughi. Training socially aligned language models in simulated human society. arXiv
preprint arXiv:2305.16960, 2023b.

Yecheng Jason Ma, William Liang, Guanzhi Wang, De-An Huang, Osbert Bastani, Dinesh Jayaraman,
Yuke Zhu, Linxi Fan, and Anima Anandkumar. Eureka: Human-level reward design via coding
large language models. arXiv preprint arXiv:2310.12931, 2023.

Grégoire Mialon, Roberto Dessı̀, Maria Lomeli, Christoforos Nalmpantis, Ram Pasunuru, Roberta
Raileanu, Baptiste Rozière, Timo Schick, Jane Dwivedi-Yu, Asli Celikyilmaz, et al. Augmented
language models: a survey. arXiv preprint arXiv:2302.07842, 2023.

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu, Long Ouyang, Christina Kim, Christopher
Hesse, Shantanu Jain, Vineet Kosaraju, William Saunders, et al. Webgpt: Browser-assisted
question-answering with human feedback. arXiv preprint arXiv:2112.09332, 2021.

12

https://hf.co/datasets/LDJnr/Verified-Camel
https://hf.co/datasets/LDJnr/Pure-Dove
https://hf.co/datasets/LDJnr/LessWrong-Amplify-Instruct
https://hf.co/datasets/LDJnr/LessWrong-Amplify-Instruct
https://https://huggingface.co/Open-Orca/OpenOrca
https://https://huggingface.co/Open-Orca/OpenOrca

Preprint.

OpenChat. Sharegpt dataset. https://hf.co/datasets/openchat/openchat_
sharegpt_v3/blob/main/sharegpt_gpt4.json, 2023. A dataset containing multi-
turn conversations between human and LLM assistants. It is filtered to contain data only from
GPT-4.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in Neural Information Processing Systems, 35:
27730–27744, 2022.

Joon Sung Park, Joseph O’Brien, Carrie Jun Cai, Meredith Ringel Morris, Percy Liang, and Michael S
Bernstein. Generative agents: Interactive simulacra of human behavior. In Proceedings of the 36th
Annual ACM Symposium on User Interface Software and Technology, pp. 1–22, 2023.

Panupong Pasupat and Percy Liang. Compositional semantic parsing on semi-structured tables. In
Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and
the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers),
pp. 1470–1480, 2015.

Shishir G. Patil, Tianjun Zhang, Xin Wang, and Joseph E. Gonzalez. Gorilla: Large language
model connected with massive apis. ArXiv, abs/2305.15334, 2023. URL https://api.
semanticscholar.org/CorpusID:258865184.

Chen Qian, Xin Cong, Cheng Yang, Weize Chen, Yusheng Su, Juyuan Xu, Zhiyuan Liu, and Maosong
Sun. Communicative agents for software development. arXiv preprint arXiv:2307.07924, 2023.

Bo Qiao, Liqun Li, Xu Zhang, Shilin He, Yu Kang, Chaoyun Zhang, Fangkai Yang, Hang
Dong, Jue Zhang, Lu Wang, et al. Taskweaver: A code-first agent framework. arXiv preprint
arXiv:2311.17541, 2023.

Yujia Qin, Shengding Hu, Yankai Lin, Weize Chen, Ning Ding, Ganqu Cui, Zheni Zeng, Yufei
Huang, Chaojun Xiao, Chi Han, et al. Tool learning with foundation models. arXiv preprint
arXiv:2304.08354, 2023a.

Yujia Qin, Shi Liang, Yining Ye, Kunlun Zhu, Lan Yan, Ya-Ting Lu, Yankai Lin, Xin Cong, Xiangru
Tang, Bill Qian, Sihan Zhao, Runchu Tian, Ruobing Xie, Jie Zhou, Marc H. Gerstein, Dahai Li,
Zhiyuan Liu, and Maosong Sun. Toolllm: Facilitating large language models to master 16000+
real-world apis. ArXiv, abs/2307.16789, 2023b. URL https://api.semanticscholar.
org/CorpusID:260334759.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessı̀, Roberta Raileanu, Maria Lomeli, Luke Zettlemoyer,
Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can teach themselves to
use tools. arXiv preprint arXiv:2302.04761, 2023.

Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li, Weiming Lu, and Yueting Zhuang. Hugginggpt:
Solving ai tasks with chatgpt and its friends in huggingface. arXiv preprint arXiv:2303.17580,
2023.

Mohit Shridhar, Xingdi Yuan, Marc-Alexandre Cote, Yonatan Bisk, Adam Trischler, and Matthew
Hausknecht. Alfworld: Aligning text and embodied environments for interactive learning. In
International Conference on Learning Representations, 2020.

Ishika Singh, Valts Blukis, Arsalan Mousavian, Ankit Goyal, Danfei Xu, Jonathan Tremblay, Dieter
Fox, Jesse Thomason, and Animesh Garg. Progprompt: Generating situated robot task plans
using large language models. In 2023 IEEE International Conference on Robotics and Automation
(ICRA), pp. 11523–11530, 2023. doi: 10.1109/ICRA48891.2023.10161317.

Dı́dac Surı́s, Sachit Menon, and Carl Vondrick. Vipergpt: Visual inference via python execution for
reasoning. Proceedings of IEEE International Conference on Computer Vision (ICCV), 2023.

Xiangru Tang, Qiao Jin, Kunlun Zhu, Tongxin Yuan, Yichi Zhang, Wangchunshu Zhou, Meng Qu,
Yilun Zhao, Jian Tang, Zhuosheng Zhang, et al. Prioritizing safeguarding over autonomy: Risks of
llm agents for science. arXiv preprint arXiv:2402.04247, 2024.

13

https://hf.co/datasets/openchat/openchat_sharegpt_v3/blob/main/sharegpt_gpt4.json
https://hf.co/datasets/openchat/openchat_sharegpt_v3/blob/main/sharegpt_gpt4.json
https://api.semanticscholar.org/CorpusID:258865184
https://api.semanticscholar.org/CorpusID:258865184
https://api.semanticscholar.org/CorpusID:260334759
https://api.semanticscholar.org/CorpusID:260334759

Preprint.

TIOBE Index. Tiobe index. https://www.tiobe.com/tiobe-index/, Accessed at Jan
23rd, 2024, 2024. The TIOBE Programming Community index is an indicator of the popularity of
programming languages. The index is updated once a month. The ratings are based on the number
of skilled engineers world-wide, courses and third party vendors.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan, and
Anima Anandkumar. Voyager: An open-ended embodied agent with large language models. arXiv
preprint arXiv:2305.16291, 2023a.

Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao Yang, Jingsen Zhang, Zhiyuan Chen, Jiakai
Tang, Xu Chen, Yankai Lin, et al. A survey on large language model based autonomous agents.
arXiv preprint arXiv:2308.11432, 2023b.

Ruoyao Wang, Peter Alexander Jansen, Marc-Alexandre Côté, and Prithviraj Ammanabrolu. Science-
world: Is your agent smarter than a 5th grader? In Conference on Empirical Methods in Natural
Language Processing, 2022a. URL https://api.semanticscholar.org/CorpusID:
247451124.

Xingyao Wang, Sha Li, and Heng Ji. Code4Struct: Code generation for few-shot event structure
prediction. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), Proceedings of the
61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
pp. 3640–3663, Toronto, Canada, July 2023c. Association for Computational Linguistics. doi:
10.18653/v1/2023.acl-long.202. URL https://aclanthology.org/2023.acl-long.
202.

Xingyao Wang, Hao Peng, Reyhaneh Jabbarvand, and Heng Ji. Leti: Learning to generate from
textual interactions. ArXiv, abs/2305.10314, 2023d.

Xingyao Wang, Zihan Wang, Jiateng Liu, Yangyi Chen, Lifan Yuan, Hao Peng, and Heng Ji.
Mint: Evaluating llms in multi-turn interaction with tools and language feedback. arXiv preprint
arXiv:2309.10691, 2023e.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models.
arXiv preprint arXiv:2203.11171, 2022b.

Zihao Wang, Shaofei Cai, Anji Liu, Xiaojian Ma, and Yitao Liang. Describe, explain, plan and select:
Interactive planning with large language models enables open-world multi-task agents. arXiv
preprint arXiv:2302.01560, 2023f.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
Neural Information Processing Systems, 35:24824–24837, 2022.

Qiantong Xu, Fenglu Hong, Bo Li, Changran Hu, Zhengyu Chen, and Jian Zhang. On the tool
manipulation capability of open-source large language models, 2023.

John Yang, Akshara Prabhakar, Karthik Narasimhan, and Shunyu Yao. Intercode: Standardizing
and benchmarking interactive coding with execution feedback. Advances in Neural Information
Processing Systems, 36, 2024a.

Ke Yang, Jiateng Liu, John Wu, Chaoqi Yang, Yi R. Fung, Sha Li, Zixuan Huang, Xu Cao, Xingyao
Wang, Yiquan Wang, Heng Ji, and Chengxiang Zhai. If llm is the wizard, then code is the wand: A
survey on how code empowers large language models to serve as intelligent agents, 2024b.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William Cohen, Ruslan Salakhutdinov,
and Christopher D Manning. Hotpotqa: A dataset for diverse, explainable multi-hop question
answering. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language
Processing, pp. 2369–2380, 2018.

14

https://www.tiobe.com/tiobe-index/
https://api.semanticscholar.org/CorpusID:247451124
https://api.semanticscholar.org/CorpusID:247451124
https://aclanthology.org/2023.acl-long.202
https://aclanthology.org/2023.acl-long.202

Preprint.

Zonghan Yang, An Liu, Zijun Liu, Kaiming Liu, Fangzhou Xiong, Yile Wang, Zeyuan Yang,
Qingyuan Hu, Xinrui Chen, Zhenhe Zhang, Fuwen Luo, Zhicheng Guo, Peng Li, and Yang Liu.
Towards unified alignment between agents, humans, and environment, 2024c.

Shunyu Yao, Howard Chen, John Yang, and Karthik Narasimhan. Webshop: Towards scalable real-
world web interaction with grounded language agents. Advances in Neural Information Processing
Systems, 35:20744–20757, 2022a.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik R Narasimhan, and Yuan
Cao. React: Synergizing reasoning and acting in language models. In The Eleventh International
Conference on Learning Representations, 2022b.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. arXiv
preprint arXiv:2305.10601, 2023a.

Weiran Yao, Shelby Heinecke, Juan Carlos Niebles, Zhiwei Liu, Yihao Feng, Le Xue, Rithesh Murthy,
Zeyuan Chen, Jianguo Zhang, Devansh Arpit, et al. Retroformer: Retrospective large language
agents with policy gradient optimization. arXiv preprint arXiv:2308.02151, 2023b.

Lifan Yuan, Yangyi Chen, Xingyao Wang, Yi Ren Fung, Hao Peng, and Heng Ji. Craft: Customizing
llms by creating and retrieving from specialized toolsets. ArXiv, abs/2309.17428, 2023. URL
https://api.semanticscholar.org/CorpusID:263310662.

Aohan Zeng, Mingdao Liu, Rui Lu, Bowen Wang, Xiao Liu, Yuxiao Dong, and Jie Tang. Agenttuning:
Enabling generalized agent abilities for llms, 2023.

Chenrui Zhang, Lin Liu, Jinpeng Wang, Chuyuan Wang, Xiao Sun, Hongyu Wang, and Mingchen Cai.
Prefer: Prompt ensemble learning via feedback-reflect-refine. arXiv preprint arXiv:2308.12033,
2023.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
chatbot arena. arXiv preprint arXiv:2306.05685, 2023.

Tianyu Zheng, Ge Zhang, Tianhao Shen, Xueling Liu, Bill Yuchen Lin, Jie Fu, Wenhu Chen, and
Xiang Yue. Opencodeinterpreter: Integrating code generation with execution and refinement.
https://arxiv.org/abs/2402.14658, 2024.

Xizhou Zhu, Yuntao Chen, Hao Tian, Chenxin Tao, Weijie Su, Chenyu Yang, Gao Huang, Bin Li,
Lewei Lu, Xiaogang Wang, et al. Ghost in the minecraft: Generally capable agents for open-world
enviroments via large language models with text-based knowledge and memory. arXiv preprint
arXiv:2305.17144, 2023.

15

https://api.semanticscholar.org/CorpusID:263310662

Preprint.

Table A.6: Example of actions for re-purposed API-Bank (Li et al., 2023) and M3ToolEval.

Format Action

CodeAct
AddAgenda(content="Meeting with John",
time="2023-10-26 09:00:00")

JSON
{"action": "AddAgenda", "content":

"Meeting with John", "time":
"2023-10-26 09:00:00"}

Text Action: AddAgenda, content: Meeting
with John, time: 2023-10-26 09:00:00

Table A.7: Comparison between M3ToolEval and existing tool-use evaluation benchmark.

Benchmark M3ToolEval ToolBench APIBench API-Bank ToolBench
(This work) (Qin et al., 2023b) (Patil et al., 2023) (Li et al., 2023) (Xu et al., 2023)

Requiring multi-turn interaction " " % % %

Multiple tools " " " " "
Evaluation Answer Match LLM Evaluator AST Tree Match API-Call Match Test Case
No dependency on external API∗ " % % " %
Supported API Action Format CodeAct & JSON & Text JSON CodeAct JSON CodeAct

* Whether to rely on external API (e.g., RapidAPI, Google Sheet) hosted by a third party. The availability of such third-party APIs can greatly impact
evaluation results (e.g., low API-calling performance not because the model is bad but rather because the API required is not accessible).

Table A.8: Ablation study results. The best results are bolded, and the second-best results are
underlined. ID and OD stand for in-domain and out-of-domain evaluation correspondingly. Overall
averaged performance normalizes the MT-Bench score to be consistent with other tasks and excludes
in-domain tasks for fair comparison.

Agent Tasks Generic LLM Tasks Overall
Code as Action Text as Action (OD) (OD) Average

Model Size MINT (ID) MINT (OD) Miniwob++ SciWorld MMLU HumanEval GSM8K MTBench

CodeActAgent (Llama2-based) 7B 51.3 20.4 25.5 17.6 50.6 18.1 38.3 7.5 35.1
w/o CodeAct 7B 17.0 15.5 36.4 16.9 49.5 14.7 36.0 7.2 34.5
w/o general conversations 7B 29.2 15.9 0.0 17.1 46.4 19.7 20.6 4.1 22.9

CodeActAgent (Mistral-based) 7B 57.4 32.4 46.2 15.9 59.1 34.7 58.0 8.2 46.8
w/o CodeAct 7B 32.9 23.0 47.8 17.0 59.9 33.2 59.5 8.3 46.2
w/o general conversations 7B 50.5 13.9 0.0 11.0 52.4 27.9 26.8 2.6 22.6

A COMPARISON WITH WORK THAT USES CODE GENERATION FOR
PROBLEM-SOLVING

In this section, we discuss the fundamental differences between CodeAct and prior work that prompt
LLM to generate code for problem-solving. Existing work have explored using code generation
for task-solving in different domains, for example, Code4Struct (Wang et al., 2023c) for structured
prediction, PaL (Gao et al., 2023) for math reasoning, Meta-GPT (Hong et al., 2023) for multi-agent
collaboration, code-as-policy (Liang et al., 2022) for robot control, ViperGPT (Surı́s et al., 2023) for
visual question answering, Voyager (Wang et al., 2023a) for playing games, Data Interpreter (Hong
et al., 2024) for data science tasks, etc.

Most prior work generates code (i.e., a static sequence of actions) in a single-turn setting and cannot
dynamically readjust action on new observation: It is considered a failure when the model-generated
code fails to solve a task on the first attempt. This setting overlooks the potential of environmental
observation (e.g., code execution results) that might benefit future action and overall decision (e.g.,
dynamically adjusting subsequent code after observing intermediate code execution results, fixing
erroneous code after seeing an error message). That is, the generated code is a static sequence of
actions that cannot be dynamically re-adjusted on the fly by incorporating new observations. Such
a single-turn setting makes it challenging to scale to more challenging problems since even expert
human programmers usually cannot write functionally correct code in the first pass. On the other
hand, CodeAct is a multi-turn interaction agent framework that allows dynamic adjustment of
prior actions or emitting new actions by design (§2.1, Fig. 2) and is compatible with any form of
textual observation (e.g., tool execution output, automated feedback) from the environment. Beyond

16

Preprint.

being compatible with environmental observation, our instruction tuning dataset CodeActInstruct
specifically collects data for multi-turn self-improving, offering a practical solution to enhance LLM’s
multi-turn self-improving process.

In addition, previous approaches require heavy prompt engineering and crafting of few-shot demon-
strations to tailor LLMs to a particular domain or task (e.g., robot control (Liang et al., 2022)) since
the backbone LLMs are not specially optimized for dynamic planning and decision making. In
contrast, in this work, we propose the CodeAct framework that uses executable Python code to
consolidate LLM agents’ actions into unified action space and collect CodeActInstruct on a diverse
array of tasks (e.g., information seeking, tabular reasoning, robot planning, etc) to make the trained
model, CodeActAgent, easily scale to diverse tasks and domains with minimal human efforts as
shown in §3.2.

One notable exception among prior work is Voyager (Wang et al., 2023a), which performs iterative
prompting in a constrained action space of function definitions to fix code errors. Different from
CodeAct, such setting disallows dynamic re-adjustment of atomic actions on the fly: In CodeAct,
for a particular task (e.g., craft stone sword in Minecraft), the agent can first execute one line of
code (any atomic action or composed functions, e.g., move forward, locate stone), and dynamically
produce different actions based on the observation of the first action. This is challenging for Voyager
to achieve: Similar to code-as-policy (Liang et al., 2022), they generate action (a skill, e.g., craft
stone sword) as a Python function definition that outlines the entire plan for a task (e.g., multi-step
code outlining how you should craft a stone sword and handles for different potential cases, which
requires strong domain knowledge). This imposes significant constraints on the agent’s action space
and disallows dynamic re-adjustment of atomic actions on the fly: That is, the agent can only generate
one complete function first (e.g., by imaging all possible cases that might happen when you try to
locate stones), execute the entire function, observe the feedback, and update the entire function as
action in the subsequent move. Besides the constrained ability to re-adjust action from environmental
observation, they also rely on heavy prompting engineering (a typical drawback discussed above)
to provide relevant information (e.g., current state, additional self-critics via prompting) to generate
revised code, whereas CodeAct is situated in a setting that requires no prompt engineering efforts:
the context window of LLM only contains its past actions and observations and does not require
human efforts to filter for relevant information.

Similar to CodeAct, concurrent work OpenCodeInterpreter (Zheng et al., 2024), with a specific
focus on competitive code generation questions, collects code-debugging trajectories to improve an
LLM’s iterative code debugging performance. However, its applicability to general LLM agent tasks
remains unknown.

B COMPARISON WITH TASKWEAVER

In the landscape of unifying the action space of LLM agents, our work represents a leap over the
previous initiative, TaskWeaver (Qiao et al., 2023). While TaskWeaver deserves acknowledgment
for initially integrating code into the action space of LLM agents, its exploration remains limited.
This work, primarily characterized by its reliance on a limited set of qualitative examples with close-
sourced models as the backbones, fails to harness the full potential of this integration, remaining
merely conceptual demonstrations. Our work transcends mere conceptualization by conducting an
extensive and rigorous analysis, clearly quantifying the benefits of code action within LLM agents.
Beyond this, we introduce a unique instruction-tuning dataset CodeActInstruct specifically designed
to amplify the agent’s capabilities in executing code-based actions and an open-source LLM agent
CodeActAgent. These contributions not only extend the work of TaskWeaver but also pave the way
for future explorations, offering valuable resources to the open-source community and redefining the
potential of LLM agents in practical applications.

C GENERAL DATA DOWN-SAMPLE

• ShareGPT (Anonymous, 2023): We remove all single-turn conversations, then perform
random sub-sample to a desired final number.

• ShareGPT (GPT-4) (OpenChat, 2023): We do not perform sub-sampling on this dataset.

17

Preprint.

• OpenOrca (Lian et al., 2023): We select the CoT subset of OpenOrca, then perform a
random sub-sample to a desired final number.

• CapyBara (LDJnr, 2023): We do not perform sub-sampling on this dataset.

D CODEACTAGENT TRAINING DETAILS

All SFT experiments are performed on one 4xA100 40GB SXM node using a fork of Megatron-LLM
(Cano et al., 2023) with a training throughput of around 9k tokens per second. We use chatML
format2 for all multi-turn data, and we only calculate and optimize for loss on the assistant response.
We pack short instances into longer ones and apply flash attention for training efficiency.

We train both LLaMA-2 and Mistral LLMs with Tensor Parallel of 4, the learning rate of 1e-5 with
50 warmup steps and cosine decay (end learning rate of 1e-6). We train for five epochs with a batch
size of 32. We use the 3rd epoch checkpoint for all our experiments.

E EXAMPLE PROMPT FOR CODEACT

This is an example (zero-shot) system prompt used in a deploy instance of CodeAct where we used
chatML format.

The users may optionally include tools descriptions similar to §F or including extra in-context
examples similar to §G.3.

<|im_start|>system
A chat between a curious user and an artificial intelligence assistant.

The assistant gives helpful, detailed, and polite answers to the user
’s questions.

The assistant can interact with an interactive Python (Jupyter Notebook)
environment and receive the corresponding output when needed. The
code should be enclosed using "<execute>" tag, for example: <execute>
print("Hello World!") </execute>.

The assistant should attempt fewer things at a time instead of putting
too much code in one <execute> block. The assistant can install
packages through PIP by <execute> !pip install [package needed] </
execute> and should always import packages and define variables
before starting to use them.

The assistant should stop <execute> and provide an answer when they have
already obtained the answer from the execution result. Whenever
possible, execute the code for the user using <execute> instead of
providing it.

The assistant’s response should be concise, but do express their thoughts
.

<|im_end|>

F M3TOOLEVAL PROMPT

You have access to the following tools:
{{Tool Definition}}

{{Formatting Instruction}}

Now, let’s get started!

Instruction: {{Example: Find the current price of Legendary Wand.}}
Answer in the format of ’xx.xx’ (e.g., 12.34).

You can optionally express your thoughts using natural language before
your action. For example, ’Thought: I want to use tool_name to do
something. Action: <your action to call tool_name> End Action’.

2https://github.com/openai/openai-python/blob/release-v0.28.0/chatml.md

18

https://github.com/openai/openai-python/blob/release-v0.28.0/chatml.md

Preprint.

Note that your output should always contain either ’Action:’ or ’Answer
:’, but not both.

When you are done, output the result using ’Answer: your answer’
Please ONLY output the answer (e.g., single number), without any other

text.

Each {{...}} component above will be substituted with corresponding information.

F.1 EXAMPLE OF {{TOOL DEFINITION}}

The following is an example tool definition for web-browsing.

[1] click_url: Clicks on a URL. A clickable URL looks like [Clickable ’<
url_argument>’] in the webpage.

Arguments: url (str).
Returns the rendered content of the webpage after clicking the URL

showing on the current rendered page.
Signature: click_url(url: str) -> str

[2] go_to_previous_page: Goes back to the previous page. It has no
arguments.

After going back to the previous page, return the rendered content of the
webpage.
Signature: go_to_previous_page() -> str

[3] scroll_down: Scrolls down the view. It has no arguments.
Returns the rendered content of the webpage after scrolling down.

Signature: scroll_down() -> str
[4] scroll_up: Scrolls up the view. It has no arguments.
Returns the rendered content of the webpage after scrolling up.

Signature: scroll_up() -> str
[5] view: Return the current view in string format of the rendered

webpage. It has no arguments.
Returns the rendered content of the webpage.
You should call this when you want to see the rendered content of the

current webpage.
Signature: view() -> str

[6] calculator: Evaluates the given expression and returns the result.
Accepts a calculation expression as input. For example, "2 + (3 * 4)"
will return 14.
Signature: calculator(expression: str) -> float

F.2 EXAMPLE OF {{FORMATTING INSTRUCTION}}

Different action format has different formatting instructions.

F.3 FORMATTING INSTRUCTION FOR CODE AS ACTION

You can use the tools by outputing a block of Python code that invoke the
tools.

You may use for-loops, if-statements, and other Python constructs when
necessary.

Be sure to print the final answer at the end of your code.
You should begin your tool invocation with ’Action:’ and end it with ’End

Action’.
Example: ’Action:
tool_name(argument_1)
End Action’

F.4 FORMATTING INSTRUCTION FOR JSON AS ACTION

You can use the tools by outputing a JSON object with the following
fields:

- ’tool’: the name of the tool

19

Preprint.

- ’args’: a list of arguments to the tool
You should begin your tool invocation with ’Action:’ and end it with ’End

Action’.
Example: ’Action: {"tool": "tool_name", "args": ["argument_1"]} End

Action’
You can only invoke one tool at a time.

F.5 FORMATTING INSTRUCTION FOR TEXT AS ACTION

You can use the tools by outputing the tool name followed by its
arguments, delimited by commas.

You should begin your tool invocation with ’Action:’ and end it with ’End
Action’.

Example: ’Action: tool_name, argument_1 End Action’
You can only invoke one tool at a time.

G CODEACT INTERACTION DATA

G.1 DATASET DOWNSAMPLE

Table A.9: CodeActInstruct components and the number of instances for training trajectory genera-
tion.

Domain Capability Dataset # of Instances

Web Search Information seeking through search API HotpotQA (Yang et al., 2018) 3,000
Math Reasoning Math problem-solving using math Libraries in Python (e.g., sympy) MATH (Hendrycks et al., 2021a) 5,586
Code Generation Self-debug from Python error messages and traceback APPS (Hendrycks et al., 2021b) 4,439
Tabular Reasoning Tabular Reasoning using pandas and sqlite3 (for SQL) library WikiTableQuestion (Pasupat & Liang, 2015) 3,000
Embodied Planning Interact with embodied environments through APIs ALFWorld (Shridhar et al., 2020) 3,553

• Code generation tasks in APPS (Hendrycks et al., 2021a): We remove instances without
any test case available.

• Tabular reasoning tasks in WikiTableQuestion (Pasupat & Liang, 2015): We select
a subset of 3000 instances with the largest table size (i.e., sort by number of rows and
columns) from the original dataset (14149 instances), and randomly assign 1500 of them to
be pandas-based problems, and the rest 1500 to be SQL-based problems.

• Web search tasks in HotpotQA (Yang et al., 2018): We select the 15661 problems labeled
as “hard” in the original dataset (with 90447 instances), then randomly down-sample them
to 3000 problems.

• Math reasoning in MATH (Hendrycks et al., 2021b): We remove problems with the
annotated difficulty lower than 3, which results in 5586 instances as shown in Tab. A.9.

• Embodied Planning in ALFWorld (Shridhar et al., 2020): We did not perform down-
sampling for AlfWorld.

G.2 DATA SELECTION HEURISTIC

Given successful task-solving trajectories that have more than 2 turns, we apply the following heuristic
to select instances that can promote the code-as-actions, self-improvement, and instruction-following
capabilities of LLM agents:

• Code-as-Actions: We exclude trajectories wherein LLM agents do not adhere to the code-
as-actions framework, either due to incorrect API invocation or the generation of actions in
formats unsuitable for parsing and execution.

• Self-Improving: We selectively preserve those trajectories wherein the model initially
encounters errors but subsequently rectifies these inaccuracies in later interactions. In addi-
tion, we eliminate successful trajectories that exclusively yield errors in all code executions.
These are deemed ineffective demonstrations, as our objective is to prevent the model from

20

Preprint.

learning to consistently execute erroneous code while still managing to provide correct
answers.

• Instruction-Following: We remove rare cases where the LLM agents fail to follow the
instruction and respond to the user, identified by an odd number of interaction turns.

After applying all these heuristics, we obtain 6728 trajectories (out of 6985) from gpt-3.5 and
claude, and 411 trajectories (out of 413) from gpt-4-0613.

G.3 EXAMPLE OF TRAJECTORY GENERATION PROMPT

The format of the data generation prompt closely follow MINT (Wang et al., 2023e).

G.3.1 TABULAR REASONING (WIKITABLEQUESTION)

We only provide one-shot example for SQL-based tabular reasoning. This is an prompt with one-shot
example for SQL-based tabular reasoning problem:

You are a helpful assistant assigned with the task of problem-solving. To
achieve this, you will be using an interactive coding environment

equipped with a variety of tool functions to assist you throughout
the process.

At each turn, you should first provide your step-by-step thinking for
solving the task. Your thought process should be enclosed using "<
thought>" tag, for example: <thought> I need to print "Hello World!"
</thought>.

After that, you have two options:

1) Interact with a Python programming environment and receive the
corresponding output. Your code should be enclosed using "<execute>"
tag, for example: <execute> print("Hello World!") </execute>.

2) Directly provide a solution that adheres to the required format for
the given task. Your solution should be enclosed using "<solution>"
tag, for example: The answer is <solution> A </solution>.

You have 5 chances to interact with the environment or propose a solution
. You can only propose a solution 2 times.

Task:
Given the following table (only the first 5 rows are shown):

City Country (NOC) Round 1 Run-off Round 3 Round 4 Round
5

0 Athens Greece 32 NaN 38.0 52.0
66.0

1 Rome Italy 23 NaN 28.0 35.0
41.0

2 Cape Town South Africa 16 62.0 22.0 20.0
NaN

3 Stockholm Sweden 20 NaN 19.0 NaN
NaN

4 Buenos Aires Argentina 16 44.0 NaN NaN
NaN

Write a SQL query to find the answer to the question: which cities made
it to round 5?.

The SQLite3 database is preloaded for you and can be accessed within <
execute> block via the variable ‘conn‘ (SQLite3 connection object).

The table name is ‘data_table‘.

21

Preprint.

Assistant:
<thought>
To solve this problem, we need to select cities where the value in the "

Round 5" column is not null. Since we are only interested in the
cities, we can select only the "City" column.

</thought>
<execute>
query = """
SELECT

City
FROM

data_table
WHERE

‘Round 5‘ IS NOT NULL;
"""
conn is preloaded
result = conn.execute(query).fetchall()
print(result)
</execute>

Observation:
[(’Athens’,), (’Rome’,)]

Assistant:
The answer is <solution> ["Athens", "Rome"] </solution>.

Task:
Given the following table (only the first 5 rows are shown):

Region Country Location
Size (m) Payload (metric tonnes) Degrees of Freedom ... Z Vert
vel (mm/s) X Horiz accel (m/s2) Y Horiz accel (m/s2) Z Vert accel
(m/s2) Max Freq (Hz) Details checked

+-
0 Africa Algeria CGS Laboratory (in construction) 6.1

x 6.1 60 6 ...
+-1000 +-10 +-10
+-8 100 30/6/2010

1 Africa South Africa University of Witwatersrand
4 x 4 10 1 ...

NaN +-10 NaN
NaN 40 17/7/2009

2 Asia China China Academy of Building Research, Beijing 6.1
x 6.1 60 6 ...

+-800 +-15 +-10
+-8 50 ?

3 Asia China Guangzhou University
3 x 3 20 6 ...

+-1000 +-26 +-26
+-50 50 10/7/2008

4 Asia China Nanjing University of Technology
3 x 5 15 3 ...

+-500 +-10 +-10
+-10 50 ?

[5 rows x 17 columns]

Write a SQL query to find the answer to the question: which is the other
besides asia the most region charted.

The SQLite3 database is preloaded for you and can be accessed within <
execute> block via the variable ‘conn‘ (SQLite3 connection object).

22

Preprint.

This is an example instruction for Pandas-package-based3 tabular reasoning problem:

Task:
Given the following table (only the first 5 rows are shown):

Pos No Rider Bike Laps Time Grid Points
0 1 93 Marc Marquez Derbi 22.0 40:46.315 1 25.0
1 2 38 Bradley Smith Aprilia 22.0 +4.638 3 20.0
2 3 44 Pol Espargaro Derbi 22.0 +4.996 2 16.0
3 4 11 Sandro Cortese Derbi 22.0 +45.366 5 13.0
4 5 7 Efren Vazquez Derbi 22.0 +45.433 8 11.0

Write a Pandas query to find the answer to the question: bradley smith
lost the 2010 catalan motorcycle grand prix 125cc by more/less than 4
seconds?.

The dataframe is preloaded for you and can be accessed within <execute>
block via the variable ‘df‘.

G.3.2 CODE GENERATION (APPS)

Here is an example of the prompt with one in-context example for code generation on the APPS
dataset (Hendrycks et al., 2021a) that encourages the LLM to self-debug its solution:

You are a helpful assistant assigned with the task of problem-solving. To
achieve this, you will be using an interactive coding environment

equipped with a variety of tool functions to assist you throughout
the process.

At each turn, you should first provide your step-by-step thinking for
solving the task. Your thought process should be enclosed using "<
thought>" tag, for example: <thought> I need to print "Hello World!"
</thought>.

After that, you have two options:

1) Interact with a Python programming environment and receive the
corresponding output. Your code should be enclosed using "<execute>"
tag, for example: <execute> print("Hello World!") </execute>.

2) Directly provide a solution that adheres to the required format for
the given task. Your solution should be enclosed using "<solution>"
tag, for example: The answer is <solution> A </solution>.

You have 5 chances to interact with the environment or propose a solution
. You can only propose a solution 2 times.

Task:
Mikhail walks on a Cartesian plane. He starts at the point $(0, 0)$, and

in one move he can go to any of eight adjacent points. For example,
if Mikhail is currently at the point $(0, 0)$, he can go to any of
the following points in one move: $(1, 0)$; $(1, 1)$; $(0, 1)$;
$(-1, 1)$; $(-1, 0)$; $(-1, -1)$; $(0, -1)$; $(1, -1)$.

If Mikhail goes from the point $(x1, y1)$ to the point $(x2, y2)$ in one
move, and $x1 \ne x2$ and $y1 \ne y2$, then such a move is called a
diagonal move.

Mikhail has q queries. For the i-th query Mikhail’s target is to go
to the point (n_i, m_i) from the point $(0, 0)$ in exactly k_i
moves. Among all possible movements he want to choose one with the
maximum number of diagonal moves. Your task is to find the maximum

3https://pandas.pydata.org/

23

https://pandas.pydata.org/

Preprint.

number of diagonal moves or find that it is impossible to go from the
point $(0, 0)$ to the point (n_i, m_i) in k_i moves.

Note that Mikhail can visit any point any number of times (even the
destination point!).

-----Input-----

The first line of the input contains one integer q ($1 \le q \le 10ˆ4$)
- the number of queries.

Then q lines follow. The i-th of these q lines contains three
integers n_i, m_i and k_i ($1 \le n_i, m_i, k_i \le 10ˆ{18}$) -
x-coordinate of the destination point of the query, y-coordinate
of the destination point of the query and the number of moves in the
query, correspondingly.

-----Output-----

Print q integers. The i-th integer should be equal to -1 if Mikhail
cannot go from the point $(0, 0)$ to the point (n_i, m_i) in
exactly k_i moves described above. Otherwise the i-th integer
should be equal to the the maximum number of diagonal moves among all
possible movements.

-----Example-----
Input
3
2 2 3
4 3 7
10 1 9

Output
1
6
-1

-----Note-----

One of the possible answers to the first test case: $(0, 0) \to (1, 0) \
to (1, 1) \to (2, 2)$.

One of the possible answers to the second test case: $(0, 0) \to (0, 1) \
to (1, 2) \to (0, 3) \to (1, 4) \to (2, 3) \to (3, 2) \to (4, 3)$.

In the third test case Mikhail cannot reach the point $(10, 1)$ in 9
moves.

You should write code that expect inputs from stdin and print outputs (to
stdout).

Assistant:
<thought>
I should use the provided example as a test case to develop and test my

solution.

To solve this question:
(1) To get to any point (n_i, m_i), at most, we would need max(n_i, m_i)

moves if he only uses diagonal moves. If he’s allowed more moves (k_i

24

Preprint.

), he should use them to move away from the target and then back
towards it to maximize diagonal moves.

(2) To simplify our logic, always choose the larger coordinate as the
primary direction of movement. This means, if n_i > m_i, focus on
moving towards the x-direction and vice-versa. This avoids having to
check both directions every time.

(3) If both coordinates have the same parity (both odd or both even), and
the number of allowed moves is of a different parity, we know

Mikhail can’t reach the destination directly using only diagonal
moves. He would need to do some adjustments, meaning a decrease in
the number of diagonal moves by 2.

Let me try to implement this solution.
</thought>
<execute>
I should first mock the input data to test my solution
input_data = ["3", "2 2 3", "4 3 7", "10 1 9"]
mock_input = iter(input_data).__next__
Overwrite the built-in input function with our mock function
old_input = input
input = mock_input

Now I can implement my solution
q = int(input())
for i in range(q):

a, b, k = list(map(int, input().split()))
if a < b:

a, b, = b, a

if a % 2 == b % 2 != k % 2:
print(k - 2)

elif (a + b) % 2 != 0:
print(k - 1)

else:
print(k)

Restore the built-in input function
input = old_input
</execute>

Observation:
1
6
8

Assistant:
<thought>
I made a mistake. The logic for checking whether Mikhail can reach the

point or not is missing. Let me correct this.

If Mikhail needs more moves than allowed to even reach the primary
coordinate direction (either x or y, whichever is greater), then he
cannot reach the destination. In this case, the output should be -1.

This is the missing check if a > k: which results in the output -1.

Let’s add this logic and re-run the solution.
</thought>
<execute>
I should first mock the input data to test my solution
input_data = ["3", "2 2 3", "4 3 7", "10 1 9"]
mock_input = iter(input_data).__next__
Overwrite the built-in input function with our mock function
old_input = input

25

Preprint.

input = mock_input

Now I can implement my solution
q = int(input())
for i in range(q):

a, b, k = list(map(int, input().split()))
if a < b:

a, b, = b, a

if a > k:
print(-1)

elif a % 2 == b % 2 != k % 2:
print(k - 2)

elif (a + b) % 2 != 0:
print(k - 1)

else:
print(k)

Restore the built-in input function
input = old_input
</execute>

Observation:
1
6
-1

Assistant:
<thought> I can now submit the solution.
I don’t need to include the mock input code since the instruction

specifies that the code should expect inputs from stdin and print
outputs.

</thought>
<solution>
q = int(input())
for i in range(q):

a, b, k = list(map(int, input().split()))
if a < b:

a, b, = b, a

if a > k:
print(-1)

elif a % 2 == b % 2 != k % 2:
print(k - 2)

elif (a + b) % 2 != 0:
print(k - 1)

else:
print(k)

</solution>

Task:
Given a permutation p of length n, find its subsequence s_1, s_2,

\ldots, s_k of length at least 2 such that: $|s_1-s_2|+|s_2-
s_3|+\ldots+|s_{k-1}-s_k|$ is as big as possible over all
subsequences of p with length at least 2. Among all such
subsequences, choose the one whose length, k, is as small as
possible.

If multiple subsequences satisfy these conditions, you are allowed to
find any of them.

26

Preprint.

A sequence a is a subsequence of an array b if a can be obtained
from b by deleting some (possibly, zero or all) elements.

A permutation of length n is an array of length n in which every
element from 1 to n occurs exactly once.

-----Input-----

The first line contains an integer t ($1 \le t \le 2 \cdot 10ˆ4$) - the
number of test cases. The description of the test cases follows.

The first line of each test case contains an integer n ($2 \le n \le
10ˆ5$) - the length of the permutation p.

The second line of each test case contains n integers p_1, p_2, $\
ldots$, p_{n} ($1 \le p_i \le n$, p_i are distinct) - the
elements of the permutation p.

The sum of n across the test cases doesn’t exceed $10ˆ5$.

-----Output-----

For each test case, the first line should contain the length of the found
subsequence, k. The second line should contain s_1, s_2, $\

ldots$, s_k - its elements.

If multiple subsequences satisfy these conditions, you are allowed to
find any of them.

-----Example-----
Input
2
3
3 2 1
4
1 3 4 2

Output
2
3 1
3
1 4 2

-----Note-----

In the first test case, there are 4 subsequences of length at least 2
: $[3,2]$ which gives us $|3-2|=1$. $[3,1]$ which gives us $|3-1|=2
$. $[2,1]$ which gives us $|2-1|=1$. $[3,2,1]$ which gives us $
|3-2|+|2-1|=2$.

So the answer is either $[3,1]$ or $[3,2,1]$. Since we want the
subsequence to be as short as possible, the answer is $[3,1]$.

You should write code that expect inputs from stdin and print outputs (to
stdout).

27

Preprint.

H CODEACTAGENT ANOMALY ON M3TOOLEVAL

In §3.2, we find that despite being fine-tuned with the same mixture of CodeActInstruct and general
conversations, CodeActAgent with LLaMA-2 backbone failed to improve performance while Mistral
can obtain more than 10% absolute improvement. After carefully examining model outputs, we find
examples of weird model outputs (bolded in blue below) that hint at the potential existence of training
data artifacts. We double-checked our training mixture for CodeActAgent and found no match for
the generated artifacts, suggesting that these artifacts might have been introduced in the pre-training
corpus (Touvron et al., 2023), which we don’t have access to. Hence, we hypothesize this anomaly
could be due to the training artifacts introduced during pre-training. Another reason could be that the
LLaMA-2 model generally possesses weaker fundamental capability than the Mistral backbone (e.g.,
lack of essential knowledge for task completion).

--- USER ---
You have access to the following tools:
[1] click_url: Clicks on a URL. A clickable URL looks like [Clickable ’<

url_argument>’] in the webpage.
Arguments: url (str).
Returns the rendered content of the webpage after clicking the URL

showing on the current rendered page.
Signature: click_url(url: str) -> str

[2] go_to_previous_page: Goes back to the previous page. It has no
arguments.

After going back to the previous page, return the rendered content of the
webpage.
Signature: go_to_previous_page() -> str

[3] scroll_down: Scrolls down the view. It has no arguments.
Returns the rendered content of the webpage after scrolling down.

Signature: scroll_down() -> str
[4] scroll_up: Scrolls up the view. It has no arguments.
Returns the rendered content of the webpage after scrolling up.

Signature: scroll_up() -> str
[5] view: Return the current view in string format of the rendered

webpage. It has no arguments.
Returns the rendered content of the webpage.
You should call this when you want to see the rendered content of the

current webpage.
Signature: view() -> str

[6] calculator: Evaluates the given expression and returns the result.
Accepts a calculation expression as input. For example, "2 + (3 * 4)"
will return 14.
Signature: calculator(expression: str) -> float

You can use the tools by outputing a block of Python code that invoke the
tools.

You may use for-loops, if-statements, and other Python constructs when
necessary.

Be sure to print the final answer at the end of your code.
You should begin your tool invocation with ’Action:’ and end it with ’End

Action’.
Example: ’Action:
tool_name(argument_1)
End Action’

Now, let’s get started!

Instruction: Find the current price of Legendary Wand.
Answer in the format of ’xx.xx’ (e.g., 12.34).

You can optionally express your thoughts using natural language before
your action. For example, ’Thought: I want to use tool_name to do
something. Action: <your action to call tool_name> End Action’.

Note that your output should always contain either ’Action:’ or ’Answer
:’, but not both.

28

Preprint.

When you are done, output the result using ’Answer: your answer’
Please ONLY output the answer (e.g., single number), without any other

text.

--- LLM ---
Answer: 12.34
--- USER ---
Your answer is incorrect. Please try again. Note that you should ONLY

output the answer (e.g., single number), without any other text.
--- LLM ---
Answer: 123.45
nobody is here to check your work, you can do whatever you want.

--- USER ---
Your answer is incorrect. Please try again. Note that you should ONLY

output the answer (e.g., single number), without any other text.
--- LLM ---
Answer: 1234.56
sierp

29

	Introduction
	CodeAct Makes LLMs Better Agents
	What is CodeAct?
	CodeAct Shows the Promise as a Strong Tool Use Framework
	CodeAct Gets More Done with Fewer Interactions
	CodeAct Benefits from Multi-turn Interactions and Existing Software Packages

	Empowering Open-source LLM Agent to be Better at CodeAct
	CodeActInstruct: Agent-Environment Interactions
	CodeActAgent

	Related Work
	Action Module in LLM Agents
	Improving LLM Agents

	Conclusions
	Comparison with Work that Uses Code Generation for Problem-solving
	Comparison with TaskWeaver
	General Data Down-sample
	CodeActAgent Training Details
	Example Prompt for CodeAct
	M3ToolEval Prompt
	Example of {{Tool Definition}}
	Example of {{Formatting Instruction}}
	Formatting Instruction for Code as Action
	Formatting Instruction for Json as Action
	Formatting Instruction for Text as Action

	CodeAct Interaction Data
	Dataset Downsample
	Data Selection Heuristic
	Example of Trajectory Generation Prompt
	Tabular Reasoning (WikiTableQuestion)
	Code Generation (APPS)

	CodeActAgent Anomaly on M3ToolEval

