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Abstract
Large language models often require alignment
with explicit human preferences, which can be
sparse and costly. We propose a framework to
leverage eye-tracking data as an implicit feedback
signal to tune LLMs for controlled sentiment gen-
eration using Direct Preference Optimization. Our
study demonstrates that eye-tracking feedback
can be a valuable signal for tuning LLMs. This
motivates future research to investigate the impact
of eye-tracking feedback on various tasks, high-
lighting the potential of integrating eye-tracking
data with LLMs to improve their performance and
alignment with human preferences.

1. Introduction
Recent advancements in large language models (LLMs)
have significantly transformed natural language processing
(NLP). While LLMs offer impressive capabilities in NLP,
they often require fine-tuning and alignment techniques,
such as Reinforcement Learning from Human Feedback
(RLHF; Christiano et al., 2017; Ouyang et al., 2022), to
optimize their performance for specific tasks and to better
align their outputs with human preferences. By incorporat-
ing human feedback into the training process, RLHF has
significantly improved the ability of LLMs to follow hu-
man instructions while decreasing the generation of toxic or
harmful content (Stiennon et al., 2020; Ouyang et al., 2022).

However, RLHF, particularly when done using Proximal
Policy Optimization (PPO; Schulman et al., 2017), is overly
sensitive to hyperparameters and can be unstable (Casper
et al., 2023; Rafailov et al., 2023; Ahmadian et al., 2024).
Moreover, RLHF typically requires fitting a reward model,
which increases the complexity of the procedure (Rafailov
et al., 2023).
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Figure 1. Framework for using cognitive data such as eye-tracking
data for tuning LLMs. We sample responses from a model and ob-
tain cognitive data for them. Each pair of responses is ranked using
various criteria, such as minimizing fixation durations resulting in
a preference dataset for DPO. See §3 for details.

To address this, Rafailov et al. (2023) introduced Direct
Preference Optimization (DPO), which directly optimizes a
language model to human preferences without needing an
external reward model. While optimization with DPO can
lead to higher stability than PPO, it still relies on explicit hu-
man feedback to construct a preference dataset. This human
feedback typically consists of individuals rating or ranking
language model responses, which presents challenges due
to its sparsity and high cost (Casper et al., 2023). Moreover,
this type of human judgment occurs after reading a model’s
response, which may not capture the real-time cognitive
processes involved in language understanding.

Other types of responses, such as eye-tracking signals, can
be captured directly while reading and offer a real-time
measure of cognitive processing during reading. A growing
body of research demonstrates the potential of eye-tracking
data to shed light on cognitive processes during reading,
such as attention allocation, information integration, and
text comprehension (Just and Carpenter, 1980; Rayner et al.,
1989; Reichle et al., 1998).

This paper explores to what extent cognitive data, such as
eye-tracking data, can be used to align LLMs. We propose a
framework that uses eye-tracking data as a feedback signal
to optimize large language models for controlled sentiment
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generation. We compare the difference between explicit
(offline) judgments via ratings and implicit (online) judg-
ments via eye-tracking to construct preference datasets and
tune language models using DPO. Our study shows that
eye-tracking feedback can be a valuable signal for tuning
LLMs on these tasks.

2. Background & Related Work
We seek to tune language models with DPO using eye-
tracking data as a feedback signal.

2.1. Direct Preference Optimization (DPO)

Unlike traditional methods for RLHF (Christiano et al.,
2017; Stiennon et al., 2020; Ouyang et al., 2022), which
involve training a reward model from a dataset of human
ratings, DPO (Rafailov et al., 2023) offers an alternative
approach for optimizing language models based on human
feedback. Rather than relying on a separate reward model,
DPO uses direct preference comparisons between pairs of
model-generated responses. This method removes the de-
pendency on the explicit reward model and instead trains an
implicit reward model.

2.2. Eye-Tracking in NLP

Recent research has demonstrated the benefit of integrating
eye-tracking data with NLP models to enhance performance
on downstream tasks such as part-of-speech tagging (Barrett
et al., 2016), text simplification (Klerke et al., 2016; Higasa
et al., 2024), relation classification (Hollenstein et al., 2019;
McGuire and Tomuro, 2021), text readability (González-
Garduño and Søgaard, 2017; Hollenstein et al., 2022) and
sarcasm detection and understanding (Mishra et al., 2016a;b;
2017).

Yang and Hollenstein (2023) enhance sentiment classifica-
tion using human scanpaths, which are index sequences of
fixated words. Building on these results, Deng et al. (2023a)
achieve comparable improvements with synthetically gen-
erated scanpaths. Khurana et al. (2023) further validate
synthetic scanpaths across various GLUE tasks (Wang et al.,
2018). These studies highlight the potential of eye-tracking
data, both human-generated and synthetic, as a valuable
resource for improving NLP models across various tasks.
However, there is a lack of research on integrating eye-
tracking for tuning large language models, e.g., via DPO.

3. Real-Time Feedback for tuning LLMs
We present a framework for fine-tuning language models
using cognitive data, such as eye-tracking data. The frame-
work consists of several key components: a language model
pLM (defined as a distribution over Σ∗, where Σ is an al-

phabet), a set of prompts P = {p1, p2, . . . , pn} (where
pi = x1, . . . , xm and xj ∈ Σ), responses ri sampled from
the language model (ri ∼ pLM (· | pi)), a cognitive data
collection function Φ, and a ranking criterion Ψ.

The cognitive data collection function Φ takes a response
ri as input and returns the corresponding cognitive data ϕi,
such as eye-tracking data:

Φ : R → C, Φ(r) = ϕ

where R is the space of possible responses and C is the
space of cognitive data. The ranking criterion Ψ takes two
response-cognitive data pairs (ri, ϕi) and (rj , ϕj) as input
and returns a ranking, where ri ≻ rj (response i is preferred
over response j), ri ≺ rj (response j is preferred over
response i), or ri ≃ rj (responses are equally preferred):

Ψ : (R× C)× (R× C) → {≻,≺,≃}

Applying the framework consists of the following steps,
see Figure 1 for an overview. For each prompt pi ∈ P
the language model pLM generates a set of responses Ri =
{ri1, ri2, . . . , riK}, where K is the number of responses
sampled for prompt pi. The cognitive data collection func-
tion Φ is then applied to each response in Ri to obtain
the corresponding cognitive data Ci = {ϕi1, ϕi2, . . . , ϕiK},
where ϕij = Φ(rij) for j = 1, 2, . . . ,K. The ranking cri-
terion Ψ is applied to all pairs of response-cognitive data
pairs in (Ri, Ci) to create preference data

PDi = {(pi,Ψ((rij , ϕij), (ril, ϕil))) | 1 ≤ j < l ≤ K}

The complete preference dataset PD is obtained by ag-
gregating the preference data from all prompts: PD =⋃N

i=1 PDi and the language model pLM is optimized using
the preference data PD, e.g., using DPO.

4. Approach
Building on previous research highlighting the benefits
of eye-tracking data for sentiment detection, we choose
controlled sentiment generation to test our framework.
We condition the language model on sentiment tags t ∈
{[positive], [negative]} to generate completions for prefixes
x, where x represents the first three words of a movie re-
view, guiding the sentiment of the generated text based on
the tags.

4.1. Data

Due to the lack of an existing dataset that includes hu-
man judgments and eye-tracking data for language model-
generated responses, we directly apply DPO to the ETSA-
II dataset introduced by Mishra et al. (2016a). Figure 2
presents an overview of the complete pipeline. The ETSA-
II dataset contains 994 sentences from websites with sar-
castic quotes, Tweets, and movie reviews (Pang and Lee,
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2004), each labeled for sentiment (positive or negative) and
sarcasm presence. 38.5% of the sentences have a positive
sentiment, while 61.5% have a negative sentiment. 35.2%
of the sentences are labeled as sarcastic, with 93.7% of
these also having negative sentiments. The dataset includes
eye-tracking data from 7 participants reading the sentences,
along with their subjective sentiment judgments, making it
suitable for studying explicit (offline) and implicit (online)
judgments. The participants are graduate students who are
non-native English speakers with ToEFL-iBT scores of 100
or higher.

Classify Completion
Agreement with tag

ETSA-II
994

Samples

Sentiment Train
497 Samples

HF Train
497 Samples

4970 Preference
Pairs

Sentiment
Classifier

DPO
Model

SST-5 Prefixes
Conditioned on
Random Tag 

Completions
External

Sentiment
Classifier

Ranking Module Evaluation

Figure 2. We randomly split the ETSA-II data into two subsets
with 497 instances each. We train sentiment classifiers on the
Sentiment Train split and create preference datasets from the HF
Train split by classifying sentences and sampling ten sentences
from the opposite class. After DPO, we sample tags and generate
completions, then classify if the completion matches the tag’s
sentiment.

4.2. Ranking Criteria

To construct preference datasets (PD) for DPO, we apply
various ranking criteria (Ψ) based on the dataset’s anno-
tations and classifiers that utilize textual features and eye-
tracking data (see Table 1 for an overview). As an additional
baseline, we randomly pair sentences from the ETSA-II
dataset. We conduct experiments using the ground truth
annotation and individual participant annotations.

We test several eye-tracking criteria using the word-level
fixation durations and scanpaths. Motivated by Mishra et al.
(2016b), who found that sarcastic sentences, often carrying
a negative sentiment, are typically associated with more
complex scanpaths and longer fixation durations, we adopt
the following approach: Responses exhibiting higher values
in mean fixation duration, mean number of refixations, total
fixation duration, or total number of refixations are classified
as expressing a negative sentiment.

For classifiers trained on the Sentiment Train split (BERT,
PLM-AS, SYNSP) of the ETSA-II dataset, we adapt the im-

plementations from Deng et al. (2023a)1 to our custom data
split. BERT denotes the pre-trained, cased English model
from Huggingface2. PLM-AS is a re-implementation of
the architecture presented by Yang and Hollenstein (2023),
which augments BERT with a scanpath encoder. The
scanpath encoder re-orders the textual embeddings from
BERT according to the fixation sequence of the human
reader. This output is then fed into a Gated Recurrent Unit
(GRU; Cho et al., 2014) for the final sentiment classifica-
tion. The SYNSP model is a modification presented by
Deng et al. (2023a), which replaces human scanpaths with
synthetic ones generated by the Eyettention model (Deng
et al., 2023b). We use the default parameters to generate
7 synthetic scanpaths. Both PLM-AS and SYNSP models
exclusively use text and scanpaths for predicting sentiment
labels.

Table 1. Ranking criteria to construct preference datasets. All
features (text, eye-tracking, and annotations) are from the ETSA-II
dataset. For the BERT, PLM-AS, and SYSNP models, we adapt
the implementations from Deng et al. (2023a) to our data split.

Criterion Ψ Pre-training Type of Data

Random - -
Ground Truth - Annotation
Subj. Judgement - Annotation

Mean Fix Dur - Human Reading Time
Mean Refixations - Human Scanpath
Total Fix Dur - Human Reading Time
Total Refixations - Human Scanpath

BERT ETSA-IISentiment Text
PLM-AS ETSA-IISentiment Text + Human Scanpath
PLM-AS Subj. ETSA-IISentiment Text + Human Scanpath
SYNSP Model ETSA-IISentiment Text + Synth. Scanpath

DistilBERT IMDB Text

4.3. Training

We use the DPO implementation from the Transformer Rein-
forcement Learning (TRL) library (von Werra et al., 2020) to
tune language models for generating sentences with positive
or negative sentiments. We select GPT2-small 3, which has
been fine-tuned on the IMDB movie review dataset (Maas
et al., 2011), as our base model. We fine-tune the model on
the ETSA-II dataset’s texts to address the distribution shift.
In this step, we exclude tags used for controlled sentiment
generation (see App. D for details).

We randomly divide the 994 instances into two equally sized

1https://github.com/aeye-lab/EMNLP-
SyntheticScanpaths-NLU-PretrainedLM

2https://huggingface.co/google-bert/bert-
base-cased

3https://huggingface.co/lvwerra/gpt2-imdb
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datasets, as illustrated in Figure 2. The Sentiment Train split
is exclusively used for training Sentiment classifiers (see
Figure 2). In contrast, the HF Train split is used to construct
preference datasets for DPO (see App. A for the parameters).
We train three models for each criterion using three random
seeds and report means and standard errors.

4.4. Evaluation

We sample sentence prefixes from the SST-5 dataset (Socher
et al., 2013) for evaluation. We randomly select 500 pre-
fixes x from the test split, each consisting of the first three
words of a sentence. We randomly sample a sentiment
tag t for each prefix and construct prompts in the format
p = t EOS x, where EOS represents the end-of-sentence
token. We then generate completions of 50 tokens using
beam search. See App. A for the complete generation set-
tings. To assess the sentiment of the generated text, we
utilize two sentiment classifiers: a DistilBERT (Sanh et al.,
2019) classifier4 pre-trained on the IMDB movie review
dataset, and GPT-4o (OpenAI, 2024). We compare the
predicted sentiment of the generated completions with the
assigned tag t.

5. Results
Figure 3 shows the performance of both classifiers on the
ETSA-II dataset, evaluated against the ground truth annota-
tions. The results indicate that both classifiers perform well
in instances without sarcasm. However, sarcastic sentences
prove challenging, especially for the DistilBERT classifier.

DistilBERT (No Sarcasm)

GPT-4o (No Sarcasm)

DistilBERT (Sarcasm)

GPT-4o (Sarcasm)0

25

50

75

Scores
F1 (Weighted) F1 (Macro) Accuracy

Figure 3. Accuracies and F1 scores for sentiment classifiers on the
ETSA-II dataset indicating strong performance on non-sarcastic
instances but difficulties with sarcastic ones. DistilBERT, in par-
ticular, shows a notable performance drop on sarcastic instances
compared to non-sarcastic ones.

4lvwerra/distilbert-imdb

5.1. Comparing Ranking Criteria

The results in Table 2 detail the performance of various rank-
ing criteria on the ETSA-II dataset. The random baseline
does not lead to any improvements in either model’s per-
formance. Similarly, we observed no significant effects for
eye-tracking metrics based on fixation duration or refixation
count. This suggests that while sarcasm may be associated
with reading times or scanpath complexity, these effects
may not generalize to all negatively-valenced texts or are
too subtle to be useful for fine-tuning language models for
sentiment generation.

In contrast, the ground truth ranking criterion significantly
outperforms the fine-tuned baseline (FT BL). The results
for criteria pre-trained on the sentiment split of ETSA-II
indicate that incorporating eye-tracking data can enhance
performance. Notably, PLM-AS and SYSNP outperform
the BERT classifier, underscoring the value of eye-tracking
information. While the DistilBERT-based ranking crite-
rion acts as an upper bound when employed for training
and evaluation, PLM-AS and SYNSP exhibit comparable
performance when evaluated using GPT-4o. Due to the
challenges presented by sarcastic instances, we also conduct
experiments excluding them from the dataset (see App. C).

Table 2. Mean accuracy, F1 scores, and standard errors for differ-
ent ranking criteria on the ETSA-II dataset. The random ranking
shows no improvements, but all criteria pre-trained on the sen-
timent split significantly outperform the baseline. Eye-tracking-
based metrics (PLM-AS, SYNSP) result in higher performance
than the text-only BERT classifier. Significant improvements over
the fine-tuned baseline (FT BL) are marked with * (p < 0.01).

Model F1Distilbert F1GPT-4o AccDistilbert AccGPT-4o

FT BL 53.12 52.48 53.11 53.31

Random 52.261.78 50.840.82 52.341.75 51.400.91
Ground Truth 86.43∗0.55 78.45∗0.31 86.52∗0.54 79.37∗0.24

Mean Fix Dur 52.591.65 51.731.12 52.671.65 52.271.13
Mean Refixations 52.731.65 51.891.38 52.811.65 52.471.40
Total Fix Dur 50.971.54 51.521.56 51.051.45 52.051.65
Total Refixations 51.381.53 51.521.65 51.451.45 52.151.75

BERT 82.45∗0.13 73.96∗0.33 82.78∗0.11 75.50∗0.26
PLM-AS 84.69∗1.35 78.89∗1.34 84.85∗1.33 79.77∗1.25
SYNSP 85.70∗0.73 78.53∗1.45 85.78∗0.71 79.44∗1.32

DistilBERT 85.90∗1.15 77.83∗2.00 85.98∗1.13 78.84∗1.78

5.2. Individual Differences

We evaluate the effect of using each individual’s judgments
to rank sentences and compare the results with specific
PLM-AS classifiers, where each classifier is trained only on
those individuals’ scanpaths and the respective text. The
results in Figure 4 show that using the custom classifiers

4
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leads to similar or superior performance compared to the in-
dividual’s judgments in every case (See App. B for detailed
results). These findings suggest that personalized classifiers
leveraging implicit (online) eye-tracking feedback can be
beneficial for improving performance compared to relying
solely on explicit (offline) judgments.

P1 P2 P3 P4 P5 P6 P7
Participants

60

70

80

90
F1 Score GPT-4o

PLM-AS Participant Prediction Participant Judgement

Figure 4. Comparison of F1 scores between participants’ ratings
and classifiers trained on eye-tracking data and text. For each
participant, the classifier trained on their eye-tracking data and the
text leads to comparable or improved performance in relation to
the participants’ own ratings.

5.3. Ranking Model Generated Responses

In a final set of experiments, we use our pre-trained model
to generate completions for IMDB movie reviews. We rank
responses generated by the baseline model using criteria
that do not rely on actual eye-tracking data. The results in
Table 3 demonstrate that both the DistilBERT and SYNSP
criteria lead to significant improvements. These findings
provide additional motivation for collecting eye-tracking on
model-generated responses to investigate its potential for
tuning language models.

Table 3. Mean accuracy, F1 scores, and standard errors for ranking
model-generated responses by different criteria. SYNSP notably
improves performance, motivating the collection of eye-tracking
data for tuning language models. Significant improvements over
the fine-tuned baseline (FT BL) are marked with * (p < 0.01).

Model F1Distilbert F1GPT-4o AccDistilbert AccGPT-4o

FT BL 53.12 52.48 53.11 53.31

Random 52.691.30 51.690.65 52.741.31 52.140.67
SYNSP 90.97∗0.36 94.59∗0.58 90.99∗0.35 94.59∗0.57
DistilBERT 93.38∗0.51 93.85∗0.30 93.39∗0.51 93.86∗0.29

6. Conclusion
We introduced a framework for utilizing direct feedback via
eye-tracking data to optimize LLMs for controlled sentiment
generation. Our study suggests that this type of feedback
can improve model adaptability and performance, encourag-
ing further research into using cognitive data to tune large
language models and promoting more human-centric and
cognitively informed NLP systems.

Limitations
Our study presents several limitations. First, we focus on
tuning models for controlled sentiment generation. Future
studies could investigate using eye-tracking data for tuning
models on other tasks or explore the general impact of tun-
ing large language models on eye-tracking data. Second,
our study is limited to one specific dataset, and it would be
beneficial to investigate the effectiveness of our approach on
other datasets. Third, we focused on a particular method of
incorporating eye-tracking data into the training process by
defining a ranking criterion and creating different preference
datasets for Direct Preference Optimization. Future research
could explore alternative ways to use this information for
model improvement. Finally, future studies could directly
collect eye-tracking data for model-generated responses to
gain deeper insights into how humans perceive and process
the output of language models.

Impact Statement
Our research introduces a framework to align LLMs with
human preferences using eye-tracking data and has many
potential societal consequences. Whenever direct feedback
via eye-tracking is available, it could serve as an alternative
or complementary feedback signal, improving the accuracy
and nuance of language models. However, it is important
to be aware of any potential privacy issues associated with
collecting or processing eye-tracking data (Jäger et al., 2020;
Makowski et al., 2021). In our study, all personally identifi-
able information was anonymized in the datasets before our
access. Additionally, it is important to consider and mitigate
potential biases in both the eye-tracking data (Prasse et al.,
2022) and language models.
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A. Training & Evaluation Settings
To train the models using DPO, we classify the text from the ETSA-II dataset as either positive or negative based on the
ranking criterion Ψ and choose tags t ∈ {[positive], [negative]}. We format prompts by concatenating the tag with the EOS
token and selecting the respective text as the chosen string. For the rejected string, we sample 10 texts from the opposite
sentiment as classified by Ψ. We create a validation split using 10% of the training data and select the final checkpoint based
on the minimum loss on the validation split. All models are trained with DPO for 10 epochs using the parameters in Table 4.
We experiment with different values for β and find that models perform better with higher values of 0.5 compared to lower
values of 0.2.

For evaluation, we condition the models on randomly sampled tags t ∈ {[positive], [negative]} and generate completions
for prefixes (consisting of three words) from the SST-5 dataset. Our settings for generating responses to evaluate the models
are shown in Table 5. To avoid potential bias, we exclude any prefixes that overlap with the movie review samples in the
ETSA-II dataset.

Parameter Setting

β 0.5
Learning Rate 5.0e-7
LR Scheduler Cosine
Max Length 100
Max Prompt Length 256
Train Epochs 10
Optimizer AdamW
Batch Size 2
Warmup Ratio 0.1
Seed values 42, 8, 64

Table 4. DPO training parameters used for all runs.

Parameter Setting

Max Length 50
Beams 4
Sample False
Return Sequences 1
Dataset SST-5
Sentences 500
Prefix Words 3
Repetition Penalty 1.2
No Repeat N-gram Size 3

Table 5. Evaluation parameters used for all runs.

To evaluate the generations, we classify the sentiment of the generated completions using a DistilBERT classifier 5 and
compare the predictions with the sentiment tags, the model was conditioned on. For evaluating models with GPT-4o, we use
a temperature of 0.5 and prompt the model using the following messages:

{” r o l e ” : ” sys tem ” , ” c o n t e n t ” : ”You a r e a s e n t i m e n t c l a s s i f i c a t i o n a s s i s t a n t . ” }

{” r o l e ” : ” u s e r ” , ” c o n t e n t ” : f ” D e t e c t whe the r t h e f o l l o w i n g t e x t has a p o s i t i v e o r
n e g a t i v e s e n t i m e n t . Reply wi th ’ p o s i t i v e ’ i f t h e s e n t i m e n t i s p o s i t i v e , and

’ n e g a t i v e ’ i f i t i s n e g a t i v e . \ n\ nText : { t e x t }”}

To test for significance, we use the paired permutation test from SciPy 6 for pairings with 1000 resamples.

B. Detailed Results
Table 6 presents a detailed overview of all experimental results, including additional metrics such as text readability
measured using the Flesch Reading Ease score (Flesch, 1948) via textstat7 and lexical diversity, which is the ratio of
unique words to total words. We observe that all ranking criteria, which increase the alignment of sampled tags with the
sentiment of generated text lead to a small drop in text readability while lexical diversity remains unchanged. Random
ranking and pure eye-tracking criteria do not lead to improvements in controlled sentiment generation compared to the
baseline (FT BL). However, all other criteria significantly improve accuracy and F1 scores for both DistilBERT and GPT-4o
classifiers.

5lvwerra/distilbert-imdb
6https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.permutation_test.html
7https://github.com/textstat/textstat
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Model F1Distilbert F1GPT-4o AccuracyDistilbert AccuracyGPT-4o Readability Diversity

FT BL 53.12 52.48 53.11 53.31 87.83 81.06

Random 52.261.78 50.840.82 52.341.75 51.400.91 88.440.41 81.060.11
Ground Truth 86.43∗0.55 78.45∗0.31 86.52∗0.54 79.37∗0.24 80.461.37 81.090.21
DistilBERT (trained on IMDB) 85.90∗1.15 77.83∗2.00 85.98∗1.13 78.84∗1.78 82.391.18 81.800.23

Pure Eye-Tracking Criteria

Mean Fixation Duration 52.591.65 51.731.12 52.671.65 52.271.13 88.690.34 81.010.14
Mean Number Refixations 52.731.65 51.891.38 52.811.65 52.471.40 88.600.28 81.060.13
Total Fixation Duration 50.971.54 51.521.56 51.051.45 52.051.65 88.620.49 81.220.05
Total Number Refixations 51.381.53 51.521.65 51.451.45 52.151.75 88.560.47 81.200.04

Classifier Trained on the Sentiment Split of ETSA-II (see Figure 2)

BERT 82.45∗0.13 73.96∗0.33 82.78∗0.11 75.50∗0.26 82.671.00 81.020.37
PLM-AS 84.69∗1.35 78.89∗1.34 84.85∗1.33 79.77∗1.25 79.421.33 80.730.43
SYNSP 85.70∗0.73 78.53∗1.45 85.78∗0.71 79.44∗1.32 82.081.12 80.350.25

Comparison of Participant Judgments vs. PLM-AS Trained on Individual Data

PLM-AS P1 85.72∗0.97 78.09∗0.66 85.85∗0.92 79.04∗0.62 79.431.05 80.600.42
P1 Judgement 82.47∗1.84 78.55∗2.47 82.51∗1.82 79.17∗2.35 78.982.86 80.550.36

PLM-AS P2 87.65∗0.07 83.05∗1.39 87.72∗0.07 83.51∗1.33 81.171.13 80.330.13
P2 Judgement 83.67∗0.45 77.12∗1.07 83.78∗0.45 78.17∗1.00 81.641.12 81.110.47

PLM-AS P3 84.46∗0.79 79.02∗0.04 84.65∗0.80 79.91∗0.05 81.850.94 80.750.08
P3 Judgement 82.89∗0.66 76.92∗1.31 83.04∗0.66 77.97∗1.04 83.451.11 80.580.15

PLM-AS P4 88.68∗0.85 84.13∗1.69 88.72∗0.85 84.51∗1.61 82.681.60 80.600.14
P4 Judgement 86.71∗1.64 81.94∗1.89 86.78∗1.60 82.51∗1.77 82.830.67 80.980.29

PLM-AS P5 87.43∗1.24 84.16∗1.73 87.45∗1.24 84.51∗1.68 80.981.65 80.150.04
P5 Judgement 84.80∗0.60 79.64∗0.66 84.98∗0.59 80.44∗0.62 83.380.96 81.660.07

PLM-AS P6 86.46∗0.95 79.58∗1.44 86.58∗0.92 80.38∗1.32 83.411.77 80.560.21
P6 Judgement 80.77∗1.26 70.77∗2.03 81.18∗1.22 72.96∗1.72 82.762.46 80.510.08

PLM-AS P7 86.16∗0.55 79.66∗0.68 86.25∗0.54 80.44∗0.64 78.950.21 80.590.24
P7 Judgement 84.88∗0.33 78.00∗0.99 84.91∗0.35 78.84∗0.93 80.361.51 81.140.01

Ranking Model-Generated Responses on the IMDB Dataset

Random 52.691.30 51.690.65 52.741.31 52.140.67 88.300.43 81.020.06

SYNSP 90.97∗0.36 94.59∗0.58 90.99∗0.35 94.59∗0.57 79.380.76 80.070.27
DistilBERT 93.38∗0.51 93.85∗0.30 93.39∗0.51 93.86∗0.29 82.090.38 80.730.21

Table 6. Detailed results for all models, including accuracies and F1 scores for evaluation using DistilBERT and GPT-4o, as well as
automated readability and diversity metrics. All results are the mean and standard error over three seeds. Significant improvements over
the fine-tuned baseline (FT BL) are marked with * (p < 0.01).

C. On the Role of Sarcasm
As shown in Figure 3, sarcasm presents a major challenge, particularly to the DistilBERT classifier. To further investigate
the role of sarcasm, we repeat the experiments from §5.1 and exclude sentences labeled as containing sarcasm from the
dataset. This reduces the number of training instances from 497 to 329. The results in Table 7 show that excluding
sarcastic instances improves the performance of models for controlled sentiment generation, particularly for all criteria using
sentiment classifiers (DistilBERT, BERT, PLM-AS, SYSNP). The impact on criteria using the ground truth or participant
annotations is less clear, indicating that the classifiers, in particular, struggle with sarcastic instances.
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Model F1Distilbert F1GPT-4o AccuracyDistilbert AccuracyGPT-4o Readability Diversity

FT BL 53.12 52.48 53.11 53.31 87.83 81.06

Random 52.391.79 50.821.27 52.471.78 51.271.36 88.450.28 80.950.14
Ground Truth 86.770.22 82.561.35 86.780.22 82.981.29 81.362.14 81.020.14
DistilBERT (trained on IMDB) 88.381.13 83.890.92 88.381.14 84.250.86 80.991.30 81.460.17

Pure Eye-Tracking Criteria

Mean Fixation Duration 54.372.05 52.420.81 54.482.06 53.271.23 89.220.35 81.210.16
Mean Number Refixations 53.591.48 51.890.51 53.741.50 52.800.74 89.160.27 81.040.07
Total Fixation Duration 53.261.51 51.540.99 53.411.48 51.870.90 89.140.35 81.290.17
Total Number Refixations 52.541.47 50.920.47 52.601.46 51.270.46 88.750.34 81.180.15

Classifier Trained on the Sentiment Split of ETSA-II (see Figure 2)

BERT 85.720.83 80.420.06 85.780.83 81.110.05 82.640.42 80.210.27
PLM-AS 87.001.19 80.381.89 87.051.18 81.111.75 79.521.79 80.320.16
SYNSP 87.301.21 81.840.98 87.321.21 82.310.92 79.422.43 80.420.28

Comparison of Participant Judgments vs. PLM-AS Trained on Individual Data

PLM-AS P1 88.290.67 83.371.69 88.320.67 83.781.62 80.500.67 80.560.21
P1 Judgement 83.341.27 77.290.53 83.381.28 78.040.62 82.011.76 81.190.21

PLM-AS P2 87.310.37 83.910.75 87.320.36 84.250.72 80.471.37 80.080.32
P2 Judgement 85.080.98 80.801.47 85.110.97 81.381.40 82.591.11 80.330.21

PLM-AS P3 89.500.35 85.190.91 89.520.35 85.450.89 83.431.96 80.510.28
P3 Judgement 81.180.56 75.310.72 81.310.58 76.570.62 84.450.32 80.530.11

PLM-AS P4 88.630.22 83.430.40 88.650.23 83.840.34 80.412.13 80.450.04
P4 Judgement 87.921.03 83.111.32 87.921.03 83.451.31 82.980.64 80.640.14

PLM-AS P5 86.820.99 80.662.33 86.850.99 81.242.17 80.830.93 80.460.41
P5 Judgement 83.140.64 79.450.39 83.240.59 80.110.33 83.261.10 81.550.13

PLM-AS P6 88.960.20 84.080.44 88.990.20 84.450.43 83.521.06 80.490.14
P6 Judgement 85.021.36 77.302.37 85.111.33 78.372.15 83.261.44 81.010.10

PLM-AS P7 87.420.47 81.701.53 87.450.46 82.241.42 79.822.17 80.350.18
P7 Judgement 86.640.29 82.751.42 86.650.28 83.111.37 80.461.46 81.120.17

Table 7. Accuracies, F1 score, text readability, and diversity metrics for models after excluding sarcastic sentences. The accuracies and F1
scores are obtained by comparing the tags against the scores on the model’s generations produced by the evaluation model. The table
shows the mean and standard errors over three different random seeds.

D. Fine-Tuning
We fine-tune the base model for 5 epochs on sentences from the ETSA-II HF split using a learning rate of 5e−5 and a batch
size of 2. As shown in Table 8 and Table 9, fine-tuning leads to a lower baseline performance (BL vs. FT BL) but increased
performance after optimizing the model with DPO. Both tables show results when excluding sarcastic instances from the
training data.

Model F1Distilbert AccDistilbert Readability Diversity

BL 55.18 55.20 85.85 72.89

GT 79.360.98 79.730.96 84.481.03 72.130.34
PLM-AS 78.721.13 79.001.11 84.630.99 71.420.40
DistilBERT 81.001.36 81.401.29 84.350.62 72.360.36

Table 8. Results for models using the base model.

Model F1Distilbert AccDistilbert Readability Diversity

FT BL 53.12 53.11 87.83 81.06

GT 86.770.22 86.780.22 81.362.14 81.020.14
PLM-AS 87.001.19 87.051.18 79.521.79 80.320.16
DistilBERT 88.381.13 88.381.14 80.991.30 81.460.17

Table 9. Results for models using the fine-tuned model.
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