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Incorporating data heterogeneity for improved regression models: application to stroke
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Synopsis

Symbolic data regression provides a systematic way to bring together heterogenous data from imaging and non-imaging sources in the form of
histograms, intervals and scalar-valued observations. Classic multiple linear regression is adapted to mixed symbolic features and applied to data from
diffusion spectrum images and clinical measurements for stroke recovery prediction. By utilizing the implicit variability within observations and natural
grouping within features, the amount of information available to the modelling process is increased. This provides increased stability for model
parameters over traditional regression and is especially beneficial with low sample sizes.

Introduction

Knowledge discovery from medical data usually requires working with data heterogeneity. A single patient can generate data in the form of MRI images,
multiple clinical measurements, and demographic information. To handle this, information is generally simplified or discarded. For example, MRI image
analysis commonly involves simplifying large voxel neighborhoods from structures of interest to a single value, like the mean of the image intensities in a
region'. Clinical measurements acquired at multiple time points occasionally have missing data points, and can also be prone to errors. This creates
inconsistencies in the data table which are further compounded by the often limited sample size available in many clinical studies. Classic regression
methods discard samples with missing data points, further reducing the available sample size and amplifying the curse of dimensionality?.

To improve regression models in such cases, we propose a symbolic data analysis approach that allows combining different variable types in the same
regression model®, For example, histograms of MRI intensities from a region of interest, the interval range of a clinical score measured at multiple
timepoints, and classic scalar-valued data like age and weight can be combined efficiently.

Method

Stroke data from 7 subjects is compiled in two ways- classic scalar-valued samples and their symbolic data counterparts (3T scanner, diffusion spectrum
imaging, 203 directions, max b=4000, see Fig. 1 for two examples). All baseline measurements, including MRI, were acquired in the subacute phase
(within 2 weeks post-stroke). Follow-up Fugl Meyer measurements were acquired at 52+21 days post-stroke. Average ODI (Orientation dispersion index
from the NODDI model®) values from the posterior limb of the internal capsule (PLIC) are represented as ODI histograms. ODI from PLIC has shown to
be an effective biomarker for stroke recovery’. Clinical measurements collected weekly post-stroke are summarized as interval-valued variables (clinical
scores like mRS, NIHSS and systolic and diastolic blood pressure values). Patient’s age is included as a scalar value. Apart from the above predictor
variables, a 3-month Fugl Meyer score is used as a scalar response variable in the regression model.

We implement a symbolic multiple linear regression method which allows mixing different data types to estimate a linear regression fit with a closed-
form solution. The descriptive statistics (mean, variance and covariance) are extended to symbolic data by considering different partitions of the
inherent variability within each observation®>8 (Fig 2). These values are then used within the classic ordinary-least-squares framework. Standard errors
for the estimated regression coefficients are calculated via bootstrap resampling (1000 iterations) and compared with those from the classic regression
approach applied to averages of the same variables.

Results

We demonstrate three experimental models with various combinations of symbolic predictor features, including histograms, intervals and single-valued
numbers. Results are compared with their corresponding scalar-valued summaries employed in a classic regression setting (Fig. 3). Most regression
coefficients report a reduced standard error. This indicates that owing to the additional knowledge content retained and utilized by the symbolic
regression (given the same overall sample size of 7 subjects), the stability of the regression model estimates is improved. This is particularly true for a
low sample size because exposure to more inherent variability information within each measurement, prevents overfitting to the available sample’s
mean values. It therefore improves the ability to generalize to new, unseen subjects from the larger population.

Another benefit of the method is in incorporating a larger information content within the same number of features, effectively leading to dimensionality
reduction by tapping into the naturally present grouping or classes within the observed variables. For a limited sample size, this can free up essential
degrees of freedom allowing additional features. The flexibility of symbolic representations also naturally addresses missing data points that would
otherwise be discarded in the classic approach (for example, missing week 1,2 values for subject 2 in Fig. 1).

Conclusion

The proposed method provides a structured, intuitive way to condense large, complex data tables, including missing observations. By reducing multiple
features into a handful and capturing the implicit variations of these features in the process, more information is extracted from a limited sample size.
The method provides simple analytical solutions and uses the familiar framework of multiple linear regression as the foundation. This enhances the
potential utility and applicability of the method to incorporate heterogeneous data sources from MRI images and non-imaging data.
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Fig 1: Various available data features shown for two (out of 7) stroke patients. The classic sample observation for each subject contains scalar-valued
measurements. The corresponding symbolic sample observation combines features based on natural grouping and represents them as histograms,
intervals or scalar values. Missing data is marked as NA.
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Fig 2: Total variation between different symbolic observations represented as a sum of three variation components. 1) '‘Between': Based on observations’
overall mid-points 2) 'Within-1': each observation's midpoint and bins' mid-points 3) 'Within-2": Variation within each bin of each observation. This basic

principle is applied across all symbolic data types (histograms, intervals, scalars) to calculate the mean, variance and covariance across multiple variables
(mathematical details in>8).
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Fig 3: Symbolic multiple regression model examples that combine histograms, intervals and scalar-valued ‘symbolic’ features (imaging and non-imaging
sources) from the first 2 weeks post-stroke. We predict a scalar follow-up clinical score (Fugl-Meyer at 3 months). Note that the response variable Y can
be symbolic as well. Comparison with classic multiple regression shown via standard errors of the estimated regression coefficients.
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