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ABSTRACT

This paper investigates the application of program analysis techniques to planning
problems in dynamic environments with discontinuities in long-horizon settings.
Traditional approaches rely on specialized representations, which are often tai-
lored to specific problems and domains. In contrast, we propose describing the
combined planning and control problem directly as a desired property of the exe-
cution of simulator source code. This representation is expressive, naturally pro-
viding a means to describe desired properties of even very dynamic and discon-
tinuous environments. We show that, despite this generality, it is still possible to
leverage domain knowledge by relating it to the simulator source code. We mea-
sure the effectiveness of this approach in several case studies in simulated robotic
environments. Our results show that in these environments, our framework can
improve the efficiency in solving the control and planning problem, relative to
standard numerical search and reinforcement learning methods.

1 INTRODUCTION

This work is motivated by the challenges present in decision-making in dynamic and highly discon-
tinuous environments over prolonged periods of time. These challenges include discontinuities and
non-convexity, rendering the naive application of black-box optimization techniques like gradient
descent unsuitable for planning in long-horizon settings.

A standard approach to tackling these challenges is to factorize the problem into discrete task
planning through symbolic reasoning and continuous motion planning (Kaelbling & Lozano-Perez,
2011; Fainekos et al., 2009; Plaku & Karaman, 2016; Pinneri et al., 2021; Kim et al., 2017; Dan-
tam et al., 2016; He et al., 2015), allowing domain experts to encode the structured nature of the
search space into a symbolic planning domain. This, however, requires the relationship between
symbolic plans and low-level dynamics into which the plans can be grounded to be made explicit
through an ad-hoc coordination layer. Recent work (Toussaint, 2015; Takano et al., 2021; Leung
et al., 2021; Li et al., 2021a; Xiong et al., 2022) leverages logical specifications –which have a long
history with software and robotics (Fainekos et al., 2009; Kloetzer & Belta, 2007; Kress-Gazit et al.,
2009; Plaku & Karaman, 2016; Maler et al., 2006; Li et al.; Brafman et al., 2018; Giacomo et al.,
2019)– to address some of these limitations by directly relating logic semantics to low-level dynam-
ics. This removes the need for an ad-hoc layer between the symbolic and low-level planners, and
allows scalable numerical optimization techniques to be applied. These approaches, however, de-
liberately ignore the structure in the simulator –e.g., syntactic features like control flow statements–
when describing specifications, instead treating the simulator as a differentiable black-box.

Model structure has been established as a powerful source of information to tackle the challenges
present in non-convex and discontinuous settings. One approach to leverage structure is to smooth
discontinuities (Chaudhuri & Solar-Lezama, 2011; Pang et al., 2023; Duchi et al., 2012; Posa et al.,
2014; Howell et al., 2022), which can mitigate some problems in applying gradient-based search to
discontinuous systems. Smoothing, however, fundamentally relies on hiding discontinuities, even
though they may be useful in deriving a solution (Bangaru et al., 2021).

In contrast, we approach the challenges present in dynamic environments by explicitly relating do-
main knowledge to runtime information of the simulator, as well as to its syntactic structure. Our
proposed methodology applies insights from techniques in the field of dynamic program analysis,
such as concolic testing, as well as from planning approaches involving symbolic search and logical
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Figure 1: Overview of the proposed framework. The user provides simulator source code, a goal,
and “meaningful events” –high-level properties useful for solving the task, expressed as properties of
execution of the source code–. The framework then generates a planner that constructs a search tree
to guide the search for parameters that satisfy the goal. Numerical search is used to find parameters
that satisfy predicates in the search tree. The planner exits upon finding control parameters that
satisfy the goal.

specifications. The key observation is that many of the properties traditionally encoded into ad-hoc
planning domains can instead be directly related to simulator source code. This removes the need
to create a separate ad-hoc planning domain from scratch because –unlike existing logic-based ap-
proaches to robotics– it allows plan descriptions to explicitly leverage and reuse the structure and
logic already present in the source code (e.g., “make the condition of this if statement true”).

Our contribution is thus a framework where the combined planning and control problem is described
as a property of the execution of the simulator itself. In our framework, domain knowledge is related
to the structure of the simulator source code and used to generate a tree-based planner. This is
akin to existing hierarchical planning approaches, except that the control problems in the search
tree leverage the structure present in the simulator source code. The control problems can then be
solved with scalable numerical search techniques like gradient descent. Figure 1 shows an overview
of our approach, discussed in detail in Section 3. We instantiate our framework in a Python-based
implementation, and perform case studies on different tasks and simulators, comparing our approach
with numerical search and reinforcement learning techniques.

2 MOTIVATING EXAMPLE

Figure 2: The task consists of ap-
plying thrusts to the marble (pur-
ple) to reach the target location
(yellow), navigating a maze con-
taining obstacles (blue).

Consider a two-dimensional continuous dynamical system
where the goal is to control a circular body (“marble”) from a
fixed initial state, s0, to a fixed target position (“goal”), as dis-
played in Figure 2. At each timestep t, a force is applied to the
marble. Each force is a two-dimensional vector with entries
between -1 and 1, and these numbers correspond to our con-
trol parameters θ[t]. The bounds are small enough to make the
system under-actuated: i.e. at the speed it must travel to reach
the goal, there is not enough force for the marble to make tight
turns, and instead it must use the walls to bounce its way to
the destination. The marble is affected by drag and by the ob-
stacles (walls) in the maze which the marble can collide with.
Thus, each task consists of finding a sequence of thrusts that
will take the marble from an initial position to a goal position.
A programmatic description of this system is shown in List-
ing 1.

A naive approach to solving this problem through numerical optimization is to define a differentiable
cost of any particular candidate solution and perform gradient descent. For example, we could use
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the distance to the goal after simulating the system as the cost function, and use program smoothing
to account for discontinuities. However, as is often the case in discontinuous environments, the
resulting optimization problem is non-convex, making gradient-based search inadequate. Similarly,
it is challenging to scale symbolic approaches (such as Satisfiability Modulo Theory-based solvers)
to highly discontinuous rigid body simulations such as the one under consideration.

Listing 1: Marble simulation code.
d e f s i m u l a t i o n ( t h e t a : Tensor ) −> S t a t e :

s t a t e = s0 # i n i t i a l s t a t e
f o r t i n r a n g e ( l e n ( t h e t a ) ) :
# Update s t a t e assuming no c o l l i s i o n s
a c t i o n = t h e t a [ t ] . c l i p ( −1 , 1 )
n e w s t a t e = s t e p n o c o l l ( s t a t e , a c t i o n )

# Check f o r c o l l i s i o n s
f o r i i n r a n g e ( l e n ( s t a t e . o b s t a c l e s ) ) :

v = g e t d i s t a n c e ( n e w s t a t e , o b s i )
i f v < 0 : # ID: collision check

# I f c o l l i d e d , a d j u s t n e x t s t a t e
n e w s t a t e = s t e p c o l l ( n e w s t a t e , i )

# Update s t a t e
s t a t e = n e w s t a t e

r e t u r n s t a t e

Note that, in this case, discontinuities in the dynam-
ics are described by if statements. If we constrain the
search space to control parameters that induce some
particular execution path, then the optimization prob-
lem is continuous, and numerical search techniques
like gradient descent are likely to find a locally opti-
mal solution. Thus, under mild assumptions, we can
(in principle) perform a local search on every execu-
tion path until we find a path that leads to a solution to
the control problem. In this way, the combined plan-
ning and control problem becomes a problem of path-
finding inside the simulator. However, naively search-
ing every execution path is unfeasible1.

Instead, our system avoids the exhaustive search over
execution paths by leveraging domain knowledge. For

example, a domain expert would know that solutions to the tasks likely induce sequences of “mean-
ingful events” that have a specific structure: “bounce off some unknown sequence of obstacles and
then reach the goal”. Even though the expert does not indicate a specific sequence of obstacles,
constraining the search to executions that induce sequences of meaningful events with that structure
aggressively prunes the execution paths that have to be considered. The expert provides this domain
knowledge by describing how to construct sequences of meaningful events. The system then incre-
mentally searches over sequences of meaningful events, finding inputs that induce execution paths
that match candidate sequences, until a solution to a given task is found.

Meaningful events along a sequence are predicates over the execution of the simulator source code.
For example, the meaningful event “collide with obstacle 3 between timesteps 0 and 60” is a predi-
cate that is true only for execution traces in which the condition in the control-flow statement labeled
with # ID: collision check was satisfied when the corresponding variables have appropriate values.
Note that this reuse of the simulator code allows the expert to include (e.g.,) collisions in sequences
of meaningful events without re-implementing the corresponding logic from scratch.

In the following section, we describe the notation used to describe meaningful events. Importantly,
we expect expert users to provide a simulator and describe the meaningful events. Therefore, the no-
tation must be appropriate for use by programmers. We also describe the algorithm used to perform
the search over sequences of meaningful events.

3 METHODS

We now ground intuitions from the previous section into a planning framework that relates domain
knowledge to simulator source code.

Problem statement We deal with continuous sequential decision making problems over a finite
horizon of length T where the goal is to find a sequence of time-indexed actions θ[t] ∈ RT×n that,
from a fixed initial state, achieve a goal represented as a predicate, say ψ(θ), where n is the dimen-
sionality of the actions. Crucially, we also assume we are provided with a simulator of the environ-
ment that takes a sequence of actions as input, and that the task has an underlying discrete structure
(e.g., low-level discontinuities in the dynamics, or high-level task structure) in which domain experts
can identify meaningful events and relate them to the simulator source code, as described below.

1In this program the number of execution paths is O(2TN ), where T and N are the number of timesteps
and obstacles. Even for small values, say T = 200 and N = 8, exhaustive search is unfeasible.
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Name Type Meaning

input T Constant that holds the complete execution trace.
¬ B → B Standard unary boolean operator.
∧, ∨ B ×B → B Standard binary boolean operators.
if or T → B True iff there is a true IfNode in T .
filter T × F → T Filter a trace with a filter predicate.
<, > R× R→ B Standard inequality predicates.
+, −, ∗, / R× R→ R Standard arithmetic operators
µ T → R User-defined functions which map an execution trace to a real value.
F T × N→ B User-defined filter predicates which determine if the i-th node of a

trace belongs to a subset.
c R Real-valued numbers.

Table 1: Trace predicate grammar: any expression whose type is B is said to be a trace predicate.
Here, T is the type of execution traces, and B is the set of boolean values.

Meaningful events Often, domain experts know of specific high-level properties of candidate so-
lutions that might be useful for solving a task, and can describe these properties as precise statements
about the execution of the simulator over a finite horizon. We refer to these insights as “meaningful
events”. Note that analogous concepts exist in other planning frameworks (e.g., Toussaint (2015);
Shah & Srivastava (2022); Garrett et al. (2020); Hoffmann et al. (2011)). In our motivating exam-
ple, collisions of the marble with obstacles correspond to meaningful events described as statements
about the execution of a specific control-flow condition.

Our method’s key assumption is that a successful plan will involve a sequence of meaningful events.
This allows the problem of solving for parameters that reach the goal to be decomposed into a series
of sub-problems that seek to match the next meaningful event given parameters that successfully
matched the previous ones. For example, instead of planning directly for the marble to reach the
goal, the system may plan to hit obstacle 1 then, if successful, search for parameters to hit obstacle
2 given the plan to hit obstacle 1, and finally for the parameters which will reach the goal from
obstacle 2. Note that the exact meaningful events and the ordering (e.g., which obstacles to collide
with and in which order) that will lead to a solution is unknown. Section 3.1 describes the search
for a satisfying sequence of meaningful events. We detail the numerical search for parameters that
match a given meaningful event in Section 3.2.

Execution traces. Our system instruments programs so that whenever a control flow instruction
is executed, a record is created. Records are data structures which contain the program state at
recording time and the ID with which a control flow structure was labeled, as in Listing 1. We
define a trace to be a list of such records from a particular execution (see Appendix A). The tracing
system is as a function tr(S, θ) which returns the execution trace of a program S on input θ. The
system automatically instruments the input source code for tracing (see Appendix C).

Trace predicates. Meaningful events are described in the form of “trace predicates”. Trace predi-
cates describe a set of execution paths of interest as a predicate over execution traces of the simulator.
The language to describe trace predicates consists of standard boolean logic with arithmetic oper-
ators and three constructs specific to the program traces: (1) if or is a disjunction over the truth
values of all if statement records in a trace, (2) µ are real-valued functions provided by the user
which extract run-time values from a given execution trace (e.g., “distance to goal at the end of the
trace”), (3) filter describes and filters a subset of a trace, as often only a subset of the trace will
be relevant for an event (e.g., “only the collision control-flow condition when i = 3”). The result
is Table 1. Note that predicates in this language can leverage both the syntactic structure and run-
time information of the source code, which is a key property that allows source code to be reused
when describing meaningful event sequences. See Listing 2 for an example trace predicate in this
language.

Note that, even though one might consider other formalisms to describe trace predicates –e.g., ex-
tending this language with temporal operators–, in our experiments we found this language both
flexible and easy to use.
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3.1 SEARCHING FOR SEQUENCES OF MEANINGFUL EVENTS

Listing 2: Trace predicate for colliding when
i = 3 and 0 ≤ t ≤ 60 (see Listing 1).
I f O r ( F i l t e r (

i n p u t ,
lambda ( t r a c e , i ) : (

t r a c e [ i ] . i d == ” c o l l i s i o n c h e c k ”
and 0 <= t r a c e [ i ] . p r o g s t a t e [ ” t ” ] <= 60
and t r a c e [ i ] . p r o g s t a t e [ ” i ” ] == 3

) ) )

The system searches for a sequence of meaningful
events that solves a given task. The assumption is
that there are sequences of meaningful events that
solve a task with the additional property that, given
the parameters that satisfy a prefix of the sequence
as a starting point, local search can find the parame-
ters that match the next meaningful event in the se-
quence. Since the exact sequence that satisfies the
goal is unknown, the system performs a tree search –
a standard approach in many planning frameworks–,

where paths in the tree correspond to sequences of meaningful events.

Each node in the tree describes a search problem corresponding to finding control parameters that
match a meaningful event given some control parameters so far, with the meaningful event described
as a trace predicate.

The routine SOLVE solves instances of such search problems (see subsection 3.2). The user provides
routines for choosing a node and for growing a node with children in case the problem in the node
is solved, denoted with CHOOSE and GROW respectively. These routines are used by the system to
grow the search tree (see Algorithm 1).

Algorithm 1 Planning with execution traces

procedure TRACEPLANNER(S,CHOOSE,GROW, θ)
D ← [] ▷ Init. empty dataset
T ← (⊤, θ) ▷ Init. search tree
while ¬ ISSOLUTION(θ) do

n← CHOOSE(T , D) ▷ Choose node from tree
θ ← SOLVE(n.φ, S, n.θ)
if ρ(φ, tr(S, θ)) > 0 then ▷ If solver succeeded

record (n, θ) as successful in D
for c = (φ′, θ) ∈ GROW(n, T, θ) do

add child c to node n in T
else

record n as failed in D
return θ

3.2 FINDING INPUTS THAT MATCH MEANINGFUL EVENTS

Finding input parameters to a program that match a given meaningful event described as a trace
predicate corresponds to solving a satisfiability problem. In the context of Signal Temporal Logic,
previous work (Takano et al., 2021; Leung et al., 2021; Li et al., 2021a; Xiong et al., 2022) has
shown that quantitative semantics can be used to leverage numerical search algorithms to solve the
satisfiability problem for formulas in continuous systems. Quantitative semantics describe the de-
gree to which a formula is satisfied by defining a robustness value, which is a real-valued relaxation
of traditional boolean semantics, with positive robustness values indicating satisfaction. We adapt
quantitative semantics to trace predicates and denote the robustness value of a predicate φ given
execution trace τ as ρ(φ, τ). Please refer to Appendix B for a precise description of the quantitative
semantics for trace predicates. Our implementation automatically relaxes compatible arithmetic in-
equalities in conditional control flow into their equivalent quantitative semantic expressions before
tracing (see Appendix C for details).

The satisfiability problem for a trace predicate φ and program S is thus the following search prob-
lem: find θ s.t. ρ(φ, tr(S, θ)) > 0, which is then formulated as an optimization problem:

argmax
θ

ρ(φ, tr(S, θ)).
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If the satisfiability problem has a solution, then it can be found by solving the aforementioned op-
timization problem. As an example, consider Algorithm 2, which shows how to leverage gradient-
based search (Cauchy, 1847) to solve the satisfiability problem2. While the optimization problem
might still be non-convex or discontinuous, the assumption behind our approach is that local search
is sufficient to find solutions to sequences of meaningful events, provided they are solved incremen-
tally, thus avoiding a global search. Thus, users are subject to the limitations of the chosen numerical
search algorithm when defining meaningful events.

Algorithm 2 Solve φ on program S with initial params. θ

procedure SOLVE(φ, S, θ)
while ρ(φ, tr(S, θ)) ≤ 0 and not converged do

τ ← tr(S, θ) ▷ Trace program execution
θ ← θ + λ∇ρ(φ, τ) ▷ Gradient ascent robustness

if ρ(φ, tr(S, θ)) ≤ 0 then
raise solver failed

return θ

Summary To make use of our framework, users provide simulator source code, a goal predicate,
and routines that characterize a search over meaningful events. These generate a tree-based planner,
which finds a sequence of meaningful events that solve a given task. Meaningful events are repre-
sented with trace predicates, which are statements about the execution of the source code, and can
reference labeled control-flow structures in the source code. The simulator source code is automat-
ically instrumented so that the satisfiability problems induced by meaningful events in the tree can
be solved with off-the-shelf numerical search techniques.

4 EXPERIMENTAL EVALUATION

We conduct case studies involving systems with discontinuous dynamics and non-convex tasks. The
goal is to measure whether leveraging source code with our framework leads to higher planning
performance, compared to other forms of encoding domain knowledge. As described in each sub-
section, each case study consists of calling Algorithm 1 with experiment-specific CHOOSE, and
GROW routines. We highlight the source code structures that were reused to describe sequences of
meaningful events. For the SOLVE routine, if the simulator is differentiable, we use gradient descent
(see Algorithm 2), and otherwise we use CMA-ES (Hansen & Ostermeier, 1996) as implemented
by pycma (Hansen et al., 2019). We implement the framework as an open-source Python package
we named Pylic. We use Python’s introspection capabilities to implement the tracing system, which
made it straight-forward to leverage off-the-shelf optimization algorithms in SOLVE routines.

Additionally, in each case study, we compare our framework with two baseline approaches, which
are given substantial domain knowledge. One of the approaches consists of a Model Predictive
Controller (MPC) using the Cross Entropy Method (CEM), a standard trajectory optimization ap-
proach (Pinneri et al., 2021); we chose the other approach according to the task under consideration.
All approaches are given equal computational resources.

We use two metrics to measure performance: “progress” and “success rate”. Progress refers to the
fraction of a task that has been solved by an algorithm at a particular planning time, with 0% at the
initial state and 100% indicating a successfully completed task. Success rate is the fraction of tasks
that an algorithm has successfully completed at a particular time.

4.1 MARBLE MAZE

The first case study is the marble maze task described in Section 2, which consists of navigating a
ball through a maze by applying bounded thrust at each timestep. We analyze the success rate of the
algorithms across 25 randomly generated mazes.

2The choice of numerical search algorithm is ultimately domain-specific.
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Pylic We follow the insights described in Section 2. The CHOOSE routine simply finds the first
unsolved node in the tree in depth-first order. The GROW routine takes a solved node, checks which
obstacles the marble collided with by tracing the simulator, and returns trace predicates correspond-
ing to satisfying the collision control-flow condition for all further obstacles that have not been col-
lided with (see Listing 2 for an example predicate) and reaching the target position. In the SOLVE
routine, we use Pytorch (Paszke et al., 2019) to compute gradients.

Baselines We first compare our framework against the Soft Actor-Critic algorithm
(SAC) (Haarnoja et al., 2018) as implemented in Stable Baselines3 (Raffin et al., 2021).
SAC is a state-of-the-art off-policy RL algorithm. We leverage our domain knowledge to frame the
task as a navigation task across a path that leads to the target position, rewarding the agent to move
through a sequence of waypoints, which are given. The relative position of the next waypoint is
included in the observations. We follow the reward structure of Sartoretti et al. (2019), providing
positive reward upon reaching a waypoint. In this task, we are interested in comparing the efficiency
of each algorithm in solving a given task, and thus one RL policy is trained from scratch for each
task. For the second approach, we use an MPC using the CEM, with the cost of a candidate
trajectory defined as the negative cumulative reward.

4.2 PASSWORD LOCOMOTION

Figure 3: Password locomotion task
solved with our framework. In this
case, the password is (2, 0).

This case study is a locomotion task in a three-dimensional
simulation using the Mujoco physics engine (Todorov
et al., 2012). In this task, there is a robot consisting of rigid
bodies connected through joints, a target position, and but-
tons on the ground which are activated when the robot
stands on top of them (see Figure 3). The target position
is initially surrounded by walls, so directly navigating to it
is impossible. To remove the obstacles, the buttons have
to be activated in a particular order (“password”), which
is not given to our framework, but is provided to the base-
lines. The actions consist of torque applied to the robot
joints. We test on all passwords up to three buttons.

Pylic In contrast to the previous case study where we used Pylic to leverage low-level dynamics,
here we treat the call to the physics engine as a black box, and instead focus on the high-level code
structure that checks whether a button is activated, thereby showing that we do not need to reason
about simulation code in its entirety to leverage its structure. The CHOOSE routine finds the first
unsolved node in the tree in depth-first order. We use CMA-ES for the SOLVE routine. The GROW
routine takes a solved node, checks which buttons have been pressed by running the simulator on
the node’s control parameters and returns a list with trace predicates corresponding to satisfying
the button-press control-flow statement for each button that has not been pressed yet, as well as a
predicate that encodes reaching the target position.

Baselines We again first compare our framework with the SAC algorithm. We encode the task as
navigating through a sequence of waypoints, such that going one after the other solves the goal. A
single policy is trained in a multitask fashion across randomly sampled passwords, providing pos-
itive reward as the robot moves towards and traverses the waypoints. The observations include the
angle positions and velocities of the robot, as well as the relative position of the next checkpoint. We
measure whether the policy at a particular training time can solve the tasks given the corresponding
sequence of waypoints. Note that a lot of domain knowledge is provided to the baseline, as the
waypoints to all tasks are provided (thus, the baseline is always provided the correct password, in-
cluding at test time). In contrast, our method does not get access to the password, and has to find the
password through trial-and-error during the tree search. As before, the second baseline is an MPC
using the CEM, with the cost of candidate trajectories being the negative cumulative reward.

4.3 MARBLE RUN
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In this case study, actions consist of placing platforms over which a marble can slide, with the goal
of making the marble collide with all “boxes” in the environment. The marble is dropped from a
fixed position above and to the left of the box in the top-left. See Figure 4. Actions consist of
four numbers denoting the two-dimensional endpoints that describe a platform. An action can be
performed whenever the marble collides with a box. We simulate the low-level dynamics with the
Pymunk 2D library (http://www.pymunk.org/), and test across seven manually crafted tasks.

Figure 4: Marble run task solved
with our framework.

Pylic We treat the low-level calls to the physics engine as a
black box and focus on the high-level structure that controls the
interaction between box collisions and platform placing. The
GROW routine traces the simulator to find the first row with at
least one box that the marble did not collide with, and returns a
predicate corresponding to satisfying the collision control flow
condition for each box in that row that the marble did collide
with. We use CMA-ES for the SOLVE routine. For the CHOOSE
routine, notice that it is possible to place a platform that causes
the marble to collide with the target box, but which makes it
impossible to collide with other boxes, so it can be necessary to

find multiple solutions for a particular node. Therefore, CHOOSE considers all nodes in the tree and
assigns to each a score equal to the number of collisions in that node so far divided by the number
of times that the node has been selected before, selecting the node with the highest score.

Baselines We first compare with CMA-ES applied to the global problem of maximizing the num-
ber of boxes that the marble collided with, optimizing the actions for the entire trajectory at once.
This case study thus allows us to compare the benefits of our framework with the corresponding
standalone version of the numerical search algorithm in a problem with relatively small dimension-
ality, a setting in which pure CMA-ES is adequate. Note that CMA-ES is an algorithm noted for
its good performance on non-convex and discontinuous optimization problems. If pure CMA-ES
converged prematurely without solving a task, we restart the optimization process until the timeout.
In our experiment. As in the other case studies, the second baseline is an MPC using the CEM with
the same cost function.

4.4 RESULTS

Our experimental evaluation shows the effectiveness of the approach, as it results overall in greater
success rates than the baselines, which include state-of-the-art RL algorithms and standard numer-
ical search methods (see Figure 5). While the baselines generally make steady progress, they are
unable to fully solve many tasks, resulting in relatively low success rates. This demonstrates the
difficulty of using numerical search methods –such as CMA-ES, CEM or RL– which can get stuck
in local optima, to solve discontinuous, non-convex problems. By decomposing the problem using
the discontinuities in the source code, Pylic is able to leverage numerical search routines locally to
solve the global problem.

The presence of source code allowed us to easily describe meaningful events to the system. For
example, in the Marble Maze experiment, to describe the meaningful event of colliding with some
specific obstacle we simply provide the system with a predicate that states that the corresponding
control-flow statement condition must be true. Without the use of source code, writing a planner
would require reimplementation of the non-trivial logic used by the control-flow statement.

5 RELATED WORK

Alongside work discussed in the introduction, program structure has been studied in SMT-based
approaches, which exploit the structure of the model to perform global search (Inala et al., 2018;
Kong et al., 2018; Gao et al., 2013; Shoukry et al., 2017); however, these approaches do not readily
leverage domain knowledge. Another approach to exploiting structure is to sample control-flow
paths to construct “safety losses” to optimize policy parameters in programs with neural networks
and human written code (Yang & Chaudhuri, 2022). Our approach shares similarities with fuzz
testing, which has been used to test robotics software (Delgado et al., 2021).
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(a) Marble Maze Success Rate (b) Password Success Rate (c) Marble Run Success Rate

(d) Marble Maze Progress (e) Password Progress (f) Marble Run Progress

Figure 5: Success rates are and progress for all environments. Success rate is the cumulative count
of tasks solved. Progress is the median across tasks, with 95% confidence intervals shaded. Note
that the success rate is simply the (cumulative) count of instances solved within some time budget.

Previous work has used Linear Temporal Logic formulas on Markov Decision Processes to construct
Büchi automata (Cai et al., 2021). Logical specifications have also been studied in compositional
RL (Jothimurugan et al., 2021), and to encode domain knowledge (Xie et al., 2021; Li et al., 2021b)
and describe constraints in differentiable circuits and neural networks (Ahmed et al., 2022).

Relevant work on Hierarchical Planning includes the abstraction of states to condense irrelevant
details in MDPs (Botvinick, 2012; Li et al., 2006; Nashed et al., 2021), or more generally to discover
state abstractions (Curtis et al., 2022; Chitnis et al., 2022; Silver et al., 2021), including the use of
search trees (Larsson et al., 2020), and multi-scale perception (Hauer et al., 2015). There has also
been work that considers planning over parametric primitives with a neural planner and control using
a neural trajectory generator (Zhu et al., 2021).

Non-convexity and the presence of discontinuities is a core challenge in robotics (Posa et al., 2014;
Wu et al., 2020; Cheng et al., 2022; Marcucci et al., 2017; Aceituno-Cabezas & Rodriguez, 2020;
Hogan & Rodriguez, 2020). Recent work has studied the framing of the motion planning problem
around obstacles with Convex Optimization (Marcucci et al., 2022). The use of contact modes to
guide the search in a sampling-based planning framework has been proposed as an alternative to mo-
tion primitives (Cheng et al., 2021), as well as for contact-aware Model Predictive Control (Cleac’h
et al., 2021), and tree search with trajectory optimization (Chen et al., 2021). Exploiting discontinu-
ities, such as those found in environments with collisions, has also been studied for collision-resilient
multi-copter motion planning (Zha & Mueller, 2021).

6 CONCLUSION

We described a framework where the combined planning and control problem is stated directly as
a property of the execution of simulator source code. We showed that, despite this generality, it is
possible to leverage domain knowledge by relating it to the simulator source code. This allows a tree-
based planner to be generated for a given task. Our approach resulted overall in a greater success rate
than the numerical search and RL baselines across all three simulated environments. Our method
relies on an expert user that can label source code and indicate how the program structure will be
used during planning.
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T ::= N | NT
N ::= IfNode(id, prog state, truth value)

| ForIterStartNode(id, prog state, for var)
| ForIterEndNode(id, prog state, for var)
| ReturnNode(id, prog state)

id ::= node ID as a string
prog state ::= (var name, var value) prog state | ϵ
var name ::= variable name
var value ::= Python object
truth value ::= floating-point robustness value
for var ::= variable used to iterate

Grammar 1: Trace grammar.

A EXECUTION TRACES

We define a trace to be a sequence of records taken when the control-flow statements of a given
program are executed. We consider three types of records: if statements, for loops and return state-
ments. Records contain the program state at recording time and information used to identify the
node relative to the program structure. Every record includes (1) an ID: a unique identifier of the
corresponding control flow instruction, either given by the user or computed from its position in the
source code, and (2) prog state: the list of program variables in scope and their values when the
statement was executed. Additionally, records that represent a for loop contain the variable used to
perform the iteration, and records that represent an if statement contain the truth value of the control
condition. Thus, a trace is a sequence as described by Grammar 1.
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B SEMANTICS

We adapt STL quantitative semantics (Takano et al., 2021; Leung et al., 2021) to our predicate
grammar. Given a trace τ , we define the semantics for Table 1 as follows:

ρB(¬ϕ, τ) = −ρB(ϕ, τ)
ρB(ϕ ∧ ψ, τ) = min(ρB(ϕ, τ), ρB(ψ, τ))

ρB(ϕ ∨ ψ, τ) = max(ρB(ϕ, τ), ρB(ψ, τ))

ρB(x < y, τ) = ρR(y, τ)− ρR(x, τ)
ρB(x > y, τ) = ρR(x, τ)− ρR(y, τ)

ρB(if or(e), τ) = max([n.truth value | n ∈ ρT (e, τ) and n is IfNode])
ρT (filter(e, F ), τ) = [ni | ni ∈ ρT (e, τ) and F (ρT (e, τ), i)]

ρT (input, τ) = input
ρR(µ(e), τ) = µ(ρT (e, τ))

ρR(x+ y, τ) = ρR(x, τ) + ρR(y, τ)

ρR(x− y, τ) = ρR(x, τ)− ρR(y, τ)
ρR(x× y, τ) = ρR(x, τ)× ρR(y, τ)
ρR(x/y, τ) = ρR(x, τ)/ρR(y, τ)

ρR(c, τ) = c,

where c ∈ R. Note that, for conciseness, in the main text we write ρ instead of ρB .
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def f(args) { stmt }
FUNCDEF

def f(args, tape) { stmt }

for (var in obj) { stmt }
FORLOOP

record for end(var, . . . ) ; }
record for begin(var, . . . ) ; stmt ;

for (var in obj) {

if (b) { stmt }
IFTHEN

if (nb > 0) { stmt }
nb = RBST(b) ; record if(nb, . . . ) ;

return e RETURNv = e ; record return(v, . . . ) ; return v

(a) Transformation rules for tape manipulation.

a and b RBSTAND
min(a, b)

a or b RBSTOR
max(a, b)

not a RBSTNOT−a
a < b RBSTLTb− a

(b) Transformation rules for
boolean expressions.

Figure 6: Transformation rules for execution tracing. RBST (from “RoBuSTness value”) means to
apply the matching boolean transformation rule.

C PROGRAM TRANSFORMATION RULES

We now describe the operation of the tr function, which extracts the execution trace of a program
under a given input. Our approach is to mechanically instrument the input program by adding code
which records the trace into a “tape’, which can then be used to evaluate a given predicate.

The required instrumentation follows from these observations: (1) a new variable which points to the
tape must be introduced, (2) tracing code which records the program state needs to be added to every
control flow expression considered by our system and (3) the expression which computes the truth
value of if-statements must be replaced with an equivalent comparison which follows quantitative
semantics. These observations result in two groups of program transformations (see Figure 6). The
result is a new program with the same semantics which can be executed with an empty tape that gets
filled with records as the program is executed.

In our implementation, we use Python’s introspection capabilities to read the source code of the
input simulation, which is then transformed according to the transformation rules so that it can be
traced. This process is automated.

For an example transformation of an if-statement, compare Listing 3 with Listing 4.

Listing 3: Original code
def relu(x):

if x < 0: # ID: col
return 0

return x

Listing 4: Transformed code (simplified)
def relu_transformed(x, tape):

_rval = pylic.less_than(x, 0)
tape.append(IfNode(id=’col’, val=_rval))
if _rval > 0.0:

# more tracing code...
return 0

# more tracing code...
return x
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