
Under review as a conference paper at ICLR 2024

EXPLORING HIGH-ORDER MESSAGE-PASSING IN
GRAPH TRANSFORMERS

Anonymous authors
Paper under double-blind review

ABSTRACT

The Transformer architecture has demonstrated promising performance on graph
learning tasks. However, the existing attention mechanism used in Graph Trans-
formers (GT) cannot capture high-order correlations that exist in complex graphs,
thereby limiting their expressiveness. In this paper, we present a High-Order
message-passing strategy within the Transformer architecture (HOtrans) to learn
long-range, high-order relationships for graph representation. Recognizing that
some nodes share similar properties, we extract communities from the entire graph
and introduce a virtual node to connect all nodes in the community. Operating
on the community, we adopt a three-step message-passing approach: capture the
high-order information of the community into a virtual node; propagate long-
range dependent information between communities; aggregate community-level
representations back to graph nodes. This facilitates effective global information
passing. Virtual nodes capture the high-order community information and support
the long-range information passing as the bridge. We demonstrate that many ex-
isting GTs can be regarded as special cases of this framework. Our experimental
results illustrate that our proposed HOtrans consistently achieves highly competi-
tive results across several node classification tasks.

1 INTRODUCTION

Learning from graph-structured data, such as social networks, biological networks, and brain net-
works, is critical for real-world applications. Graph Neural Networks (GNNs) (Kipf & Welling
(2017); Veličković et al. (2018); Gasteiger et al. (2019); Hamilton et al. (2017)) have shown promis-
ing results on graph representation learning based on a local Message-Passing (MP) scheme, where
the information is propagated and aggregated between nodes that are connected in the graph. How-
ever, this neighbourhood-dependent information passing strategy limits GNN’s capability in achiev-
ing long-range dependencies (Zhang et al. (2022)).

Transformer architecture (Vaswani et al. (2017)) which adopts a global attention mechanism has
attracted a lot of attention to solve this problem. In contrast to traditional graph neural networks,
Graph Transformers (GT) (Kreuzer et al. (2021); Mialon et al. (2021); Ying et al. (2021)) enable
information to pass between any two nodes, regardless of the original graph connections. However,
these models not only suffer from computational complexity but also face challenges to capture
useful topological information (e.g., local high-order correlations of several people in the same club
in a social network) of the graph. This is critical for effective graph representation learning. Hence,
it is still challenging to effectively achieve long-range dependency while capturing the complex
structural relationship in the graph.

In graph learning, hyperedges are introduced to encode complicated correlations by connecting more
than two nodes. To this end, the information of multiple nodes can be propagated and aggregated
along hyperedges to achieve high-order representation. Inspired by the successful use of patches
in the vision domain, some researchers (Gao et al. (2022); Zhao et al. (2023)) have incorporated
patch/substructure representations into Graph Transformer. While reducing the computation cost, it
showed that introducing high-level representations can benefit graph classification tasks.

In this work, we study a powerful architecture which can effectively propagate information includ-
ing local-neighbour information, high-order/high-level information, and long-range information. To
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address this challenge, we propose a High-Order message-passing scheme within Transformer ar-
chitecture, which we call to HOtrans. To better capture the intricate relationships within a graph,
we employ a strategy where we group graph nodes into multiple communities. In each community,
all nodes share similar properties (semantic or information). When encoding closer graph nodes
into the same community, the challenge is how to capture the local high-order information in the
community and propagate it globally for effective and comprehensive representation learning. Con-
sequently, we introduce a virtual node for each community, serving a role akin to hyperedges in
hypergraphs, allowing the graph node information to propagate and aggregate along virtual nodes to
establish global connections among all nodes.

Based on community-structured data, we adopt a three-step (high-order) message-passing strategy:
Graph Node-to-Virtual Node (G2V-MP); Virtual Node-to-Virtual Node (V2V-ATTN); and Virtual
Node-to-Graph node (V2G-MP). In the first order, within each community, the information of each
node is propagated and aggregated to its corresponding virtual node to capture local high-order
information. Then, based on the community-level representations of virtual nodes, we consider a
self-attention mechanism between them to allow each virtual node to capture long-range information
from another community. Finally, we update the representations of graph nodes by aggregating
information from their respective communities. We can see that the virtual nodes effectively connect
nearly all nodes in the graph.

Our proposed HOtrans is a general framework and several other existing GT models can be viewed
as special cases. If we view the whole graph as a community, our model simplifies to GT models
(Wu et al. (2021)) that introduced a special token to connect with all other nodes to achieve global
information, which is the lower bound of HOtrans. If we view each node as a community, our model
essentially becomes the general Transformer, representing the upper bound of HOtrans. In com-
parison to these existing GT models, a key advantage of our proposed method is the capability of
capturing the higher-order information while saving computation costs (the number of communities
is significantly smaller than the number of graph nodes). We evaluate HOtrans on node classifi-
cation tasks in which GT models have a performance gap. We find significant improvements in
accuracy on all datasets including heterophilic datasets and large-scale datasets. In summary, our
main contributions are as follows:

• We propose a three-step message-passing framework in Graph Transformer which captures
local information, high-order information, and global information to achieve a powerful
expressiveness for graph learning.

• We unify the message-passing and Graph Transformer by constructing communities and
introducing virtual nodes. We demonstrate that our model is a powerful graph model,
i.e., can approximate any other message-passing. We theoretically analyzed the introduced
virtual node for each community that enhances the global attention as general Transformers
do.

• We conduct extensive experiments on different datasets to demonstrate the effectiveness of
the proposed method for node classification. The experimental results provide support the
effectivenews of the high-order representation.

2 RELATED WORK

2.1 GRAPH TRANSFORMERS

Recently, Transformer architecture has been successfully applied to graph domain, showing com-
petitive or even superior performance on many tasks when compared to GNNs. Dwivedi & Bresson
(2021) first extended the standard Transformer to graphs with four special designs including position
encoding for nodes in a graph. Subsequently, Kreuzer et al. (2021) enabled the position encoding by
making it learnable, and further divided the fully connected edges into true edges and virtual edges.
There are many other existing GTs (Rong et al. (2020); Zhang et al. (2020); Chen et al. (2021b); Wu
et al. (2021); Hussain et al. (2022); Chen et al. (2022a); Nguyen et al. (2022)) and the applications of
GTs (Xu et al. (2019); Zhu et al. (2021; 2022); Cai et al. (2022)). A more detailed introduction can
also be found in the recent reviews of GTs (Rampášek et al. (2022); Min et al. (2022)). However,
the above methods are mostly designed for graph-level tasks due to the time and memory constraints
imposed by the self-attention layer. Therefore, several works (Zhao et al. (2021); Choromanski et al.
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Figure 1: The HOtrans framework. First, adopting community sampling method to obtain multiple commu-
nities. Then, propagating and aggregating information in three-step operation: G2V-MP: Aggregating the
high-order information of a community into the virtual node; V2G-MP: Propagating community-level infor-
mation in a self-attention mechanism; V2G-MP: Gathering the updated community-level information for node
representation. The upper part of the figure shows the whole pipeline.

(2022); Guo et al. (2022); Park et al. (2022)) have been proposed to make graph transformers more
scalable and efficient, but they still suffer from some issues such as missing long-range, high-order
information or noise aggregation.

2.2 HIGH-ORDER REPRESENTATION LEARNING

In the field of computer vision, it is a common approach to divide the whole image into multiple
local patches. Visual Transformers (Dosovitskiy et al. (2020)) then generate the image represen-
tation by aggregating high-level representations from these patches rather than individual pixels.
Following, Han et al. (2021) introduced a Transformer in Transformer architecture, which further
subdivides each local patch into smaller patches. This innovative approach enables the model to
capture more detailed representations, thus enhancing feature representations. The high-order, or
high-level representations derived from local patches, which often share similar content, play a crit-
ical role in learning visual representations. In the graph domain, some works Feng et al. (2019);
Wang et al. (2022) also consider encoding high-order correlations for graph representation learning.
Typically, the hypergraph structure with a series of hyperedges is introduced to model the complex
high-order relationship. Beyond the pairwise connections, hyperedges connect multiple nodes to
express their similarities. Within the context of Graph Transformers, Gao et al. (2022); Zhao et al.
(2023) have attempted to extract substructures, treating them as patches, and utilizing the substruc-
tural representations for graph classification tasks. As graphs continue to grow rapidly in size, the
relationships among nodes become increasingly complex. Therefore, exploring and exploiting the
high-order representation is significant for graph representation learning.

2.3 VIRTUAL NODE IN MESSAGE-PASSING

The introduction of a virtual node expands the graph by adding an extra node that facilitates infor-
mation exchange among all pairs of nodes. Empirically, its effectiveness in improving performance
has been observed in various tasks (Hu et al. (2021b)). Recently, there has been a significant fo-
cus on studying its theoretical properties. Hwang et al. (2022) conducted an analysis of the virtual
node’s role in the context of link prediction. They explored the expressiveness of the learned link
representation and its potential impact on under-reaching and over-smoothing. Cai et al. (2023)
demonstrated the power of message-passing with a virtual node, showing that it can approximate an
arbitrarily self-attention layer within the Graph Transformer architecture.
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3 METHODOLOGY

In this section, we present our proposed HOtrans framework in Figure 1 to effectively propagate
information for comprehensive graph representation. By separating the whole graph into several
communities and introducing the virtual node for each community, we achieve the high-order rep-
resentation of each community and adopt the community-level attention to effectively propagate the
high-order long-range dependent information. In the following, we provide the detailed implemen-
tation of each component of the architecture. The complexity analysis of HOtrans can be found in
the Appendix A.1.

Notation. Given an graph G = (V, E) with node set V and edge set E . Suppose there are N nodes
in V , the set of edges E ⊆ V × V define the connections among the N nodes, (vi, vj) ∈ E denotes
the edge between node vi and node vj . The graph topology is presented by the adjacency matrix A,
where Aij = 1 if there exists an edge (vi, vj), Aij = 0 otherwise. We denote X ∈ RN×d the node
features, where each node i has x ∈ Rd. Let yi denote the label of node i, in this work, we focus on
the node classification task which aims to predict the labels of the unknown nodes in the graph.

Transformer architecture. The Transformer architecture consists of a composition of Transformer
layers. Each Transformer layer has a self-attention module and a position-wise feed-forward net-
work (FFN). The self-attention mechanism calculates attention scores by taking the inner product of
query vectors (Q) and key vectors (K). It then uses these scores to aggregate value vectors (V) in a
weighted manner, resulting in contextualized representations, that is,

Q = HWQ,K = HWK ,V = HWV ; (1)

A =
QK⊤
√
d′

, Attn(H) = softmax(A)V (2)

where WQ ∈ Rd×d′
,WK ∈ Rd×d′

, and WV ∈ Rd×d′
are projection matrices, H =[

h⊤
1 , . . . ,h

⊤
n

]
∈ Rn×d denotes the input matrix of node embeddings, and d′ is the output hid-

den dimension. Generally, it is the global attention mechanism that allows everything to connect
to everything. Instead of performing a single attention function, it is standard to adopt multi-head
attention (MHA).

3.1 COMMUNITY SAMPLING

Effectively utilising the structural information of the graph is the key challenge for graph represen-
tation learning. We note that data correlations in practice are usually beyond pairwise and could
be more complex. Typically, a community of friends share their common interest in basketball in
a social network. To encode these high-order correlations, we consider extracting meaningful com-
munities from the whole graph. Here, a community is introduced to collect multiple vertices sharing
similar properties (semantic or information), similar to how a hyperedge connects multiple objects
in graph learning. Considering the real-world applications, we apply two approaches: random walk
(Zeng et al. (2019)) and spectral clustering (Chiang et al. (2019)). The details of two sampling
methods can be found in A.2.

3.2 MODEL DESIGN

Operating on communities, our proposed method involves three steps to obtain high-order long-
range information: Graph Node-to-Virtual Node: gathering high-order information of a community
into the virtual node; Virtual Node-to-Virtual Node: propagating the high-order information glob-
ally; and Virtual Node-to-Graph Node: achieving high-order long-range dependent information for
node representation.

Graph Node-to-Virtual Node (G2V-MP). To capture the high-order information in the community,
we introduce a virtual node (VN) for each community, and connect it with other nodes in the com-
munity. The virtual node trick, the use of an additional node that connects to all input graph nodes,
has been observed to improve GNNs (Gilmer et al. (2017); Hu et al. (2021a); Wu et al. (2021))
and has been demonstrated theoretically (Cai et al. (2023)). Instead of acting like the READOUT
aggregating whole information in the graph, we introduce the virtual node for each community,
expecting to capture the high-order structural information of a graph for effective Transformer.
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Assume there are m communities
{
Ṽ1, . . . , Ṽm

}
, thus, we have virtual nodes V = {v1, . . . , vm}.

We initialize the virtual node feature xi with d-dimensional zero vector. Note that the number
of virtual nodes is significantly smaller than the number of graph nodes. For each community
Ṽi, the community representation can be obtained by the virtual node acting as the query qi with
qi = WQxi:

hc
i = softmax

(
αqT

i K̃Vi

)
ṼT

Vi
, (3)

where α is a constant scalar (α = 1√
d′ ), K̃Vi

and ṼVi
are the key and value matrices of vi’s

community. To this end, the virtual node aggregate the community-level information.

Virtual Node-to-Virtual Node (V2V-ATTN). To maintain the benefit of global attention in Trans-
former architecture, we enable information propagation between any two communities. Viewing
each virtual node as a token, we adopt self-attention to refine the community-level representations:

Attn(Hc) = softmax(
QcKc⊤
√
d′

)Vc, (4)

where Qc = HcWQ, Kc = HcWK , Vc = HcWV , with Hc =
[
hc
1
⊤, . . . ,hc

n
⊤
]
. By prop-

agating information between communities, we obtain the updated community representation Hc′ .
The information passing from community to community helps to: (1) Enhance the relationship of
communities; and (2) Capture the long-range dependency at community-level.

Virtual Node-to-Graph Node (V2G-MP). To finally obtain the representation of each node, we
aggregate the community representation to update node features.

We define the query vector of graph node vi as qi, while the key and value matrices from introduced
virtual nodes are Kc′ ∈ Rm×d′

and Vc′ ∈ Rm×d′
, respectively.

For graph node vi, its representation can be enhanced with community-level representations as:

hi = softmax
(
αqT

i K
c′

V (i)

)
Vc′

V (i)

T
, (5)

where Kc′

V (i) and Vc′

V (i) are the key and value matrices of vi’s communities.

Considering the importance of neighbours, it is also necessary to maintain local message-passing
(Zhao et al. (2021)) for the local-dependency graph data. Thus, the representation of graph node vi
can be updated as follows:

hi = softmax
(
αqT

i KV (i)

)
VT

V (i), (6)

where KV (i) is the combination of Kc′

V (i) and KN (i) , and VV (i) is the combination of Vc′

V (i) and
VN (i)], where KN (i), VN (i) are the key and value matrices of neighboring nodes of vi, respectively.

Implementation Details in HOtrans. We have presented a single attention mechanism in line with
general Transformers. In practice, a multi-head attention following with feed-forward blocks with
layer normalization (LN(·)) is adopted in our proposed framework as:

h′(l) = LN
(
MHA

(
h(l−1)

))
+ h(l−1);h(l) = LN

(
FNN

(
h′(l)

))
+ h′(l). (7)

The positional encoding is an important component in Transformer, in the graph domain, researchers
integrated the positional information into Graph Transformers by random walk positional encoding
(Dwivedi & Bresson (2021)), or Laplacian positional encoding (Dwivedi et al. (2021)). In our
method, we also consider these positional encodings, and test their performance in Appendix A.6.

4 THEORETICAL ANALYSIS

In this section, We analyze several cases of HOtrans: the lower bound of HOtrans, the upper bound
of HOtrans, and the general Hotrans, and demonstrate that HOtrans is a powerful model which
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can approximate GT model to achieve global attention, i.e., unifying MP and GT with community
and virtual nodes. We further analyzed the role of virtual nodes in capturing the high-order rep-
resentation in HOtrans versus the function of hyperedges in hypergraph convolutional networks in
Appendix A.3.

View the whole graph as a community. Consider the whole graph as a community, the GT can be
simplified by Message-Passing Neural Networks (MPNN) with a virtual node that connects to all
graph nodes, we refer this to the lower bound of HOtrans. It has been demonstrated in (Cai et al.
(2023)), MPNN with a virtual node can approximate a self-attention layer arbitrarily well.

View each node as a community. By viewing each node as a community, the proposed HOtrans
is actually the standard Transformer. Specifically, the three-step message-passing in HOtrans is
reduced to one step: Virtual Node-to-Virtual Node. When the community just contains one node,
the virtual node is itself. To this end, HOtrans propagates information between any two nodes.

Multiple communities with multiple nodes. In the general case there are multiple communities
with each one containing multiple nodes. Here, we demonstrate the powerful of HOtrans in the gen-
eral case by showing the information passing with virtual nodes can approximate a global-attention
arbitrarily well.

Definition 4.1. A full self-attention layer is defined as the following form:

x
(l+1)
i =

n∑
j=1

ϕ (qi)
T
ϕ (kj)∑n

k=1 ϕ (qi)
T
ϕ (kk)

· vj

=

(
ϕ (qi)

T ∑n
j=1 ϕ (kj)⊗ vj

)T
ϕ (qi)

T ∑n
k=1 ϕ (kk)

,

(8)

where ϕ(·) is a low-dimensional feature map with random transformation, qi, ki, vi are the query,
key, and value vector, respectively.

Proposition 4.1. The
∑n

k=1 ϕ (kk) and
∑n

j=1 ϕ (kj)⊗vj can be approximated by the virtual node,
and shared for all graph nodes, using only O(1) layers of MPNNs.

Theorem 4.1. Message-Passing with virtual node for the community, following with a self-attention
between virtual node and another Message-Passing with virtual node for graph node can approxi-
mate self-attention arbitrarily well.

5 EXPERIMENTS

In this section, we evaluate the effectiveness of HOtrans for graph node classification, where GT
models have yet to demonstrate state of the art performance. We compare HOtrans with a series
of baseline models including standard GCN-based models, hypergraph-based models, heterophilic-
graph-oriented models, and Transformer-based models. Then, we ablate the important design el-
ements of the proposed HOtrans including the number of community, the necessarity of message-
passing between communities, the local connections in graph, and positional encoding. The detailed
experiment seeting can be found in Appendix A.5.

Datasets. We conducted experiments on a wide range of graph benchmarks: 1) homophilic graph
datasets (Cora, Citeseer, Pubmed, DBLP, CoraFull, and ogbn-arxiv) and 2) heterophilic graph
datasets (Cornell, Texas, Wisconsin, and Actor), involving diverse domains and sizes (ogbn-arxiv is
a large-scale dataset). The details of the datasets are provided in Appendix 4.

5.1 COMPARISON TO THE STATE-OF-THE-ART

Performance on Homophilic Graphs. The homophilic datasets are the graphs with high Homo.
(indicating the proportion of edges connecting nodes with the same label (Zhu et al. (2020))). Focus
on prediction accuracies of node classification, we report the results in Table 1. From the table, we
can observe that the proposed HOtrans, regardless of the sampling methods, achieves the state-of-
the-art, or competitive performance on all datasets.
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Compared with GCN-based methods, HOtrans performs better on graphs with more nodes (e.g.,
Pubmed), specifically, HOtrans improves upon the state-of-that art GNN method-APPNP and
HGNN by a margin of 2.7% and 1.3% on Pubmed and Cora, respectively. This is likely because,
based on local message-passing, GCN methods have the disadvantage of capturing long-range de-
pendencies. In contrast, our HOtrans enables the learning of more informative node representations,
including community-level and global-level information, which represents a significant advantage,
especially for larger graphs that are more complex.

We can find that in comparison to Graph Transformer-based methods, we can see the obvious ad-
vantage of HOtrans on the small-scale datasets (e.g., Cora and Citeseer) with higher Homo., i.e.,
local-neighbourhood information is more important. Thus, the vanilla global attention on the whole
graph adopted in existing GTs (such as Graphormer) leads to massive unrelated information aggrega-
tion. By introducing the concept of community and virtual node, our proposed method incorporates
local high-order information from the community and global information from community-attention
can better encode the correlations in complicated graphs.

Our proposed method can be generalized to large-scale graphs, ogbn-arxiv, while some other GT
methods cannot be applied to such graphs due to their poor scalability. We have noticed that Graph-
former and LiteGT encounter out-of-memory errors, even when processing small graphs. This high-
lights the need for a Graph Transformer that can scale effectively to handle large-scale graphs.

Performance on Heterophilic Graphs. We further evaluate the effectiveness of the proposed
method on heterophilic graphs. These heterophilic datasets are usually small-scale but low Homo.,
thus, can be viewed as long-range dependency datasets. From the results in Table 2, we can ob-
serve that the heterophily-based methods that are specially designed for these datasets can generally
achieve better performance than other GCN-based methods. Except for Gapformer, most of the
existing Transformer-based models also show poor performance, which implies that GTs fail to
propagate and aggregate useful information. Instead, our proposed method can be extended to het-
erophilic graph datasets and achieves improved performance. Note that in Gapformer, the global
information is aggregated by the pooling method, which can be viewed as our HOtrans in the case
that considers the whole graph as a community.

Evaluation on community sampling methods. Focusing on sampling methods, we can observe
that HOtrans(randomwalk) with random walk sampling slightly outperforms HOtrans(clustering)
with spectral clustering method. Note the differences of random walk sampling with spectral clus-
tering: 1) with a small number communities, the obtained communities using random walk cannot
contain all graph nodes while spectral clustering method put everynode into a community. 2) the
random walk sampling constraint the nodes in a community in k-hop walk length, thus, it contain
more local structural information while spectral clustering seperate the graph from a global view.
Thus, random walk sampling capture more local information than spectral clustering methods.

The improved performance of HOtrans in various datasets validates the significance of comprehen-
sively considering the complicated correlations in the graph and exploring and exploiting a high-
order message-passing approach to effectively propagate information in graph-structured data.

5.2 ABLATION STUDIES

We perform ablation studies to verify how different configurations of our model can affect its per-
formance. The effect of positional encodings can be found in Appendix A.6.

5.2.1 EFFECT OF THE NUMBER OF COMMUNITY.

Community extraction is an important component in our proposed HOtrans. As discussed earlier,
according to the number of community, the lower bound of HOtrans considers the entire graph as a
single community. In this way, HOtrans can be simplified to the MPNNs which introduces a virtual
node to encode global information. If constructing a community for each node, we get the upper
bound of HOtrans, similar to a vanilla Transformers that connect any two nodes.

We analyze the effect of the number of communities with two sampling methods for HOtrans. From
the results in Figure 2, we can find that increasing the number of community in the early stage can
enhance the performance of HOtrans on Cora. This is because that HOtrans encode more local
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Table 1: Experimental results for the node classification task on different datasets (mean accuracy (%) and
standard deviation over 10 different runs). Red: the best performance per dataset. Blue: the second best
performance per dataset. OOM denotes out-of-memory.

Cora Citeseer Pubmed DBLP CoraFull ogbn-arxiv

GCN-based methods

GCN Kipf & Welling (2017) 86.92±1.33 76.13±1.51 87.01±0.62 85.13±0.44 24.49±0.47 70.40±0.10

APPNP Gasteiger et al. (2019) 87.75±1.30 76.53±1.61 86.52±0.61 85.22±0.56 20.61±0.78 70.20±0.16

GCNII Chen et al. (2020) 86.08±2.18 74.75±1.76 85.98±0.61 83.26±0.49 9.10±0.62 69.78±0.16

GAT Veličković et al. (2018) 87.34±1.14 75.75±1.86 85.37±0.56 83.86±0.44 25.32±1.43 67.56±0.12

GATv2 Brody et al. (2022) 87.25±0.89 75.72±1.30 85.75±0.55 84.96±0.47 31.62±0.71 68.84±0.13

HGNN Feng et al. (2019) 86.88±1.22 75.87±1.47 - - - OOM

Graph Transformer-based methods

SAN Kreuzer et al. (2021) 81.91±3.42 69.63±3.76 81.79±0.98 – 45.61±5.25 69.17±0.15

Graphormer Ying et al. (2021) 67.71±0.78 73.30±1.21 OOM OOM OOM OOM
LiteGT Chen et al. (2021a) 80.62±2.69 69.09±2.03 85.45±0.69 – 56.86±0.69 OOM
UniMP Shi et al. (2020) 84.18±1.39 75.00±1.59 88.56±0.32 84.25±0.42 67.93±0.56 73.19±0.18

ANS-GT Zhang et al. (2022) 86.71±1.45 74.57±1.51 89.76±0.46 85.19±0.47 61.66±1.85 –
Gapformer 87.37±0.76 76.21±1.47 88.98±0.46 85.50±0.43 68.22±0.70 71.90±0.19

HOtrans (randomwalk) 88.11±1.05 76.74±1.47 89.20±1.34 85.58±0.24 68.95±0.65 70.67±0.14

HOtrans (clustering) 88.09±1.34 76.35±1.47 88.96±0.49 85.26±0.36 66.76±0.46 69.89±0.16

Figure 2: The ablation study on the number of communities. We set the number of communities to 1 (the whole
graph as a community) and 1%, 10%, 20%, 50% of the number of graph nodes.

high-order information with more communities extracted by random walk method. As the number
of communities increases, we can observe a decrease trend followed by an increase for HOtrans
with spectral clustering method on Cora. This shows that there exists some important substructures
in the graph. We can see the stable performance of HOtrans on Wisconsin with different numbers
of communities for both methods. While Wisconsin is a small-scale dataset, the global information
can be well encoded by introducing a virtual node.

5.2.2 ABLATION OF TRANSFORMER COMPONENTS

We perform a series of ablation studies to test the importance of some designs in our proposed
HOtrans. We report the results in Table 5.

Effect of message-passing between communities. As we analyzed in A.3, dropping out the sec-
ond step (V2V-ATTN), our HOtrans is similar to popular hypergraph-based neural networks from
the perspective of message-passing. We can observe that when not taking into account the relation-
ships between communities, HOtrans (V2V-ATTN)) exhibits a significant performance degradation
compared to HOtrans. Without V2V-ATTN, the node representation is still limited in the local
neighbourhood, i.e., community. Propagating information between communities can help the node
finally capture the high-order long-range dependency in the whole graph.

Effect of local information for different datasets. While the one major advantage of Transformer
is capturing the long-range dependency in objects, we examine the importance of local information
for some datasets. We can observe that it can improve the performance if we consider the local
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Table 2: Experimental results for the node classification task on four heterophilic datasets (mean accuracy (%)
and standard deviation over 10 different runs). Red: the best performance per dataset. Blue: the second best
performance per dataset.

Cornell Texas Wisconsin Actor

GCN-based methods

GCN Kipf & Welling (2017) 45.67±7.96 60.81±8.03 52.55±4.27 28.73±1.17

APPNP Gasteiger et al. (2019) 41.35±7.15 61.62±5.37 55.29±3.90 29.42±0.81

GAT Veličković et al. (2018) 47.02±7.66 62.16±4.52 57.45±3.51 28.33±1.13

GATv2 Brody et al. (2022) 50.27±8.97 60.54±4.55 52.74±3.96 28.79±1.47

Heterophily-based methods

MLP LeCun et al. (2015) 71.62±5.57 77.83±5.24 82.15±6.93 33.26±0.91

MixHop Abu-El-Haija et al. (2019) 76.48±2.97 83.24±4.48 85.48±3.06 34.92±0.91

H2GCN Zhu et al. (2020) 75.40±4.09 79.73±3.25 77.57±4.11 36.18±0.45

FAGCN Bo et al. (2021) 67.56±5.26 75.67±4.68 75.29±3.06 32.13±1.33

GPRGNN Chien et al. (2021) 76.76±2.16 81.08±4.35 82.66±5.62 35.30±0.80

Graph Transformer-based methods

SAN Kreuzer et al. (2021) 50.85±8.54 60.17±6.66 51.37±3.08 27.12±2.59

UniMP Shi et al. (2020) 66.48±12.5 73.51±8.44 79.60±5.41 35.15±0.84

NAGphormer Chen et al. (2022b) 56.22±8.08 63.51±6.53 62.55±6.22 34.33±0.94

Gapformer 77.57±3.43 80.27±4.01 83.53±3.42 36.90±0.82

HOtrans (randomwalk) 79.46±2.16 83.44±1.87 87.25±2.67 38.11±0.87

HOtrans (clustering) 78.65±2.82 82.63±4.97 86.47±2.97 37.44±0.68

Table 3: Abalation study on different datasets.

Community Sampling Model Cora Citeseer Cornell Texas Wisconsin

Random Walk
HOtrans(w/o V2V-ATTN)) 83.14±1.48 74.94±1.64 77.57±3.21 80.54±3.59 85.89±2.60

HOtrans 88.11±1.05 76.74±1.47 76.49±2.72 80.00±4.22 87.25±2.67

Random Walk
HOtrans(w/o local) 83.04±1.48 74.47±2.10 76.49±2.72 82.70±4.86 83.44±1.87
HOtrans(w local) 88.11±1.05 76.74±1.47 70.27±2.34 74.90±2.78 78.19±2.67

neighbours in the third step (G2V-MP) for Cora and Citeseer as they are small-scale datasets with
high Homo. In contrast, it is more beneficial to disregard the original graph connections for Cornell,
Texas, and Wisconsin.

6 CONCLUSION

In this paper, we introduce a high-order message-passing strategy within the Transformer archi-
tecture to learn long-range, high-order relationships for graph representation. Initially, we extract
communities from the entire graph and introduce a virtual node for each community. Subsequently,
leveraging community-structured data, we adopt a three-step message-passing scheme to aggregate
information from graph node to virtual node, propagate information between virtual nodes which
represent the high-order information of communities, and send the community-level information in
virtual nodes back to graph nodes. The introduced virtual nodes act like hyperedge in hypergraph
to effectively propagate information to other graph nodes. We theoretically demonstrate the pow-
erful expressiveness of HOtrans and empirically show the effectiveness of HOtrans across diverse
datasets on node classification. In this paper, we just evaluate HOtrans on node classification, we
will test the proposed method on more other graph tasks in the future.
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with personalized pagerank for classification on graphs. In International Conference on Learning
Representations, 2019.

Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl. Neural
message passing for quantum chemistry. In Doina Precup and Yee Whye Teh (eds.), Proceedings
of the 34th International Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia,
6-11 August 2017, volume 70 of Proceedings of Machine Learning Research, pp. 1263–1272.
PMLR, 2017.

Lingbing Guo, Qian Zhang, and Huajun Chen. Unleashing the power of transformer for graphs.
ArXiv, abs/2202.10581, 2022.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett
(eds.), Advances Neural Inf. Process. Syst., volume 30, 2017.

Kai Han, An Xiao, Enhua Wu, Jianyuan Guo, Chunjing Xu, and Yunhe Wang. Transformer in
transformer. Advances in Neural Information Processing Systems, 34:15908–15919, 2021.

Xiaoxin He, Bryan Hooi, Thomas Laurent, Adam Perold, Yann LeCun, and Xavier Bresson. A
generalization of vit/mlp-mixer to graphs. In Andreas Krause, Emma Brunskill, Kyunghyun
Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), International Conference
on Machine Learning, ICML 2023, 23-29 July 2023, Honolulu, Hawaii, USA, volume 202 of
Proceedings of Machine Learning Research, pp. 12724–12745. PMLR, 2023.

Weihua Hu, Matthias Fey, Hongyu Ren, Maho Nakata, Yuxiao Dong, and Jure Leskovec. OGB-
LSC: A large-scale challenge for machine learning on graphs. In Joaquin Vanschoren and Sai-Kit
Yeung (eds.), Proceedings of the Neural Information Processing Systems Track on Datasets and
Benchmarks 1, NeurIPS Datasets and Benchmarks 2021, December 2021, virtual, 2021a.

Weihua Hu, Matthias Fey, Hongyu Ren, Maho Nakata, Yuxiao Dong, and Jure Leskovec. Ogb-lsc:
A large-scale challenge for machine learning on graphs. arXiv preprint arXiv:2103.09430, 2021b.

Md Shamim Hussain, Mohammed J. Zaki, and Dharmashankar Subramanian. Global self-attention
as a replacement for graph convolution. In Proceedings of the 28th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, pp. 655–665, 2022. doi: 10.1145/3534678.3539296.

EunJeong Hwang, Veronika Thost, Shib Sankar Dasgupta, and Tengfei Ma. An analysis of virtual
nodes in graph neural networks for link prediction. In The First Learning on Graphs Conference,
2022.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv:1412.6980,
2014.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. In Proc. 5th Int. Conf. Learn. Representations, 2017.

Devin Kreuzer, Dominique Beaini, William L. Hamilton, Vincent Létourneau, and Prudencio
Tossou. Rethinking graph transformers with spectral attention. In A. Beygelzimer, Y. Dauphin,
P. Liang, and J. Wortman Vaughan (eds.), Advances in Neural Information Processing Systems,
2021.

11



Under review as a conference paper at ICLR 2024

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):436–444,
2015.

Chuang Liu, Yibing Zhan, Xueqi Ma, Liang Ding, Dapeng Tao, Jia Wu, and Wenbin Hu. Gapformer:
Graph transformer with graph pooling for node classification. In Proceedings of the Thirty-Second
International Joint Conference on Artificial Intelligence, IJCAI 2023, 19th-25th August 2023,
Macao, SAR, China, pp. 2196–2205. ijcai.org, 2023.
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Ladislav Rampášek, Mikhail Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and Do-
minique Beaini. Recipe for a General, Powerful, Scalable Graph Transformer. arXiv:2205.12454,
2022.

Yu Rong, Yatao Bian, Tingyang Xu, Weiyang Xie, Ying WEI, Wenbing Huang, and Junzhou Huang.
Self-supervised graph transformer on large-scale molecular data. In Advances in Neural Informa-
tion Processing Systems, volume 33, pp. 12559–12571, 2020.

Yunsheng Shi, Zhengjie Huang, Shikun Feng, Hui Zhong, Wenjin Wang, and Yu Sun. Masked label
prediction: Unified message passing model for semi-supervised classification. arXiv preprint
arXiv:2009.03509, 2020.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Advances in Neural
Information Processing Systems, volume 30. Curran Associates, Inc., 2017.
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A APPENDIX

A.1 COMPLEXISTY ANALYSIS OF HOTRANS

We analyze the complexity of HOtrans. The computational complexity of the first step Graph Node-
to-Virtual Node isO (mN). Since m is the number of community and usually much smaller than the
number of graph nodes N , the computational complexity can be simplified asO(N). Moreover, the
computational complexity of the second step Virtual Node-to-Virtual Node is O

(
m2
)
, it is a self-

attention. The final step Virtual Node-to-Virtual Node isO (mN). Therefore, the overall complexity
of Gapformer is O(m2 +N).

A.2 THE COMMUNITY SAMPLING METHODS

Random walk sampling. To preserve the graph structural information as well as local or long-
range connectivity, random walk sampling is a simple but effective approach. We consider a regular
random walk sampler with m root nodes selected uniformly at random and each walker goes k hops.
As such, we can obtain the communities

{
Ṽ1, . . . , Ṽm

}
. Each community Ṽi has k+1 nodes which

are k-hop neighbours.

Spectral clustering. Spectral clustering methods segment the graph by minimum cuts such that
the number of within-cluster links is much higher than between-cluster links in order to better cap-
ture good community structure. However, these spectral clustering methods can just obtain non-
overlapping clusters. As we aim to achieve more communication between communities, we extend
each cluster with its 1-hop neighbourhood He et al. (2023). Thus, we can obtain m communities{
Ṽ1, . . . , Ṽm

}
, where Ṽi ← Ṽi ∪

{
N1(j) | j ∈ Ṽi

}
.

A.3 CONNECTION BETWEEN VIRTUAL NODE AND HYPEREDGE

We analyze the role of virtual nodes in capturing the high-order representation in HOtrans versus
the function of hyperedges in hypergraph convolutional networks.

Encode complex relationship. To encode the high-order correlations in the complicated graph,
in hypergraph convolutional networks (HGCN), the hyperedges are introduced to connect multiple
nodes. In this work, we introduce a virtual node for each community which contains multiple nodes
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sharing similar properties (semantic or information). Like the hyperedge, the virtual node connects
with every node in its community.

High-Order Message-Passing. Following the message-passing scheme, HGCN first propagates and
aggregates information along hyperedge eh to obtain the hyperedge presentation aeh , then updates
the node representation by aggregating the hyperedge representations. Formally, the layer-wise
message-passing is defined as:

a
(k)

eh
= Aggregate(k)

({
z(k−1)
u : u ∈ eh

})
, z(k)

v = Update(k)
({

a
(k)

eh
: v ∈ e

})
, (9)

where z
(k)
v is the feature vector of node v at the kth layer. The hypergraph-based convomutional

networks design Aggregate(k)(·) and Combine(k)(·) operations based on hypergraph structure.

For example, in a spectral-based hypergraph convolutional network, the convolutional operation is
defined as:

∆ = D−1/2
v SWD−1

e S⊤D−1/2
v ,h(k) = σ

(
∆z(k−1)θ(k)

)
, (10)

where the diagonal matrices Dv and De denote the vertex and hyperedge degrees, respectively. W
indicate the relationship of hyperedges, the incidence matrix S denote the correlations of nodes and

hyperedges with S(v, e) =

{
1, if v ∈ e
0, if v /∈ e

, θk is the weights of kth layer. Based on the hyper-

edge operation, we can refine the message-passing in Eq. 10 into three steps: node-to-hyperedge,
hyperedge-to-hyperedge, hyperedge-to-node with the approximate presentation:

a
(k)

eh
= S⊤z(k−1),a

(k)

eh
= Wa

(k)

eh
, z(k) = Sa

(k)

eh
. (11)

We can see that the three-step message-passing in HGCN is equivalent to the three-step operation
in HOtrans. In HGCN, the relationship of hyperedges usually can be ignored, i.e., W = I. In
HOtrans, the framework can also be simplified to two steps without Virtual Node-to-Virtual Node.
From a high level, graph convolutional neural networks can be viewed as special cases of hypergraph
convolutional networks. In comparison, our proposed HOtrans framework can be simplified to other
existing GT models.

A.4 PROOF

Based on Proposition 4.1, in the process of Graph Node-to-Virtual Node (G2V-MP), the message-
passing with a virtual node in a community is powerful to update virtual node as:

τj∈[n]ϕ
(k)
G2V−MP (·, {xi}i) =

 n∑
j=1

ϕ (kj) , f

(
n∑

i=1

ϕ (kj)⊗ vj

)]
, (12)

where f(·) flattens a 2D matrix to a 1D vector in raster order.

Then, in the process of Virtual Node-to-Virtual Node (V2V-ATTN), a self-attention mechanism
(γV2V−ATTN) is adopted to propagate information between any two virtual nodes. The updated virtual
nodes can be represented as:

hi = γV2V−ATTN

 n∑
j=1

ϕ (kj) , f

(
n∑

i=1

ϕ (kj)⊗ vj

)] (13)

Finally, the updated virtual node sends its message back to all other nodes in Virtal Node-to-Graph
Node (V2G-MP). Each graph node vi applies the function:

gV2G−MP
(
xi,hi

)
=

(
ϕ (qi)

∑n
j=1 ϕ (kj)⊗ vj

)T
ϕ (qi)

T ∑n
k=1 ϕ (kk)

(14)

Therefore, the information of a graph node can be propagated to any other nodes by the virtual nodes
as the bridges.
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Table 4: Statistics of benchmark datasets.

Cora Citeseer Pubmed DBLP CoraFull ogbn-arxiv Cornell Texas Wisconsin Actor

# Nodes 2,708 3,327 19,717 17,716 19,793 169,343 183 183 251 7,600
# Edges 5,429 4,732 44,338 105,734 126,842 1,166,343 280 195 466 26,752
Homo. 0.83 0.72 0.79 0.70 0.57 0.63 0.30 0.11 0.21 0.22

Table 5: Abalation study of positional encoding on different datasets.

Community Sampling Model Cora Citeseer Cornell Texas Wisconsin

Spectral Clustering
HOtrans(lpe) 86.24±1.33 75.87±1.75 71.35±4.05 77.30±7.37 81.96±3.26

HOtrans(rwpe) 86.22±1.53 75.65±1.78 73.78±3.83 78.38±4.01 84.71±2.11
HOtrans(w/o pe) 86.32±1.33 76.06±1.68 78.65±2.82 80.54±4.80 86.08±2.97

A.5 EXPERIMENTAL PART

Settings. For Cora, Citeseer, and Pubmed datasets, we follow the same experimental procedure,
such as features and data splits in Pei et al. (2020). For heterophilic graph datasets, we adopt the
same dataset splits used by Zhu et al. (2020). For other datasets, we randomly split them into
60%/20%/20% as training/validation/test sets following Zhang et al. (2022); Liu et al. (2023). We
adopt two sampling methods-random walk Zeng et al. (2019) and spectral clustering Chiang et al.
(2019) to extract communities. We set the number of communities to 1 (the whole graph as a
community) and 1%, 10%, 20%, 50% of the number of nodes in the graph. The training utilizes
Adam optimizer Kingma & Ba (2014) for GNN methods, while Adamw is adopted for all Graph
Transformer-based models. Each method runs for 200 epochs on all datasets, with the test accuracy
reported based on the epoch that achieves the highest validation accuracy. We search model hyper-
parameters including walk length of random walk, hidden dimension, and dropout. The results of
HOtrans are averaged over 10 runs with random weight initializations.

A.6 MORE RESULTS.

Effect of position encoding. Based on Spectral Clustering, we test the role of positional encod-
ing for the proposed HOTtrans. We compare two popular positional encoding methods including
Laplacian-based (lpe) and random walk positional encoding (rwpe) to HOtrans without any po-
sitional encoding. From the table, the gap in performance is minor between the two positional
encoding methods over all datasets. While without positional encoding, HOtrans achieves better
performance on heterophilic datasets, such as, Cornell, Texas, and Wisconsin. This is because the
positional encoding methods (such as Laplacian PE) usually encode the original graph connections,
thus, integrating positional encoding will lead to a negative effect for these heterophilic datasets
which contain massive noisy information in graph structure.
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