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Abstract

We present a self-supervised learning framework for gestational age (GA) estima-1

tion from low-cost, one-dimensional Doppler ultrasound recordings. A segment2

encoder was pretrained on unlabeled Doppler data using a hybrid approach that com-3

bines Simple Siamese Networks (SimSiam) and Variance-Invariance-Covariance4

Regularization (VICReg), and subsequently fine-tuned on clinically accurate GA5

labels. The resulting model achieved a mean absolute error of 1.19 weeks in 5-fold6

cross-validation and 0.87 weeks on an external test set, an improvement of 11%7

over fully supervised approaches and 29% over transfer learning approaches. Our8

approach leverages abundant unlabeled Doppler data to learn generalizable fetal9

signal representations, enabling accurate GA estimation in low-resource settings10

and yielding transferable embeddings for future maternal–fetal health applications.11

1 Introduction12

Limited access to timely and accurate antenatal care contributes substantially to maternal and13

neonatal mortality in low- and middle-income countries and remains a persistent challenge in rural or14

underserved areas of high-income countries as well [1–3]. Reliable gestational age (GA) estimation15

is essential for delivery planning, fetal growth monitoring, and identifying adverse outcomes such as16

fetal growth restriction (FGR) [4, 5]. In many rural settings, GA is estimated from maternal recall17

of the last menstrual period (LMP), which is prone to errors from recall bias, irregular cycles, and18

coarse granularity, often rounded to months, leading to misclassification of term births as preterm19

and potentially compromising prenatal care quality [6]. Obstetric ultrasound, the standard alternative,20

is often unavailable due to cost, maintenance needs, and limited trained personnel [7, 8].21

Over the past decade, a low-cost (∼ $15), one-dimensional Doppler ultrasound (1D-DUS) system22

integrated with a smartphone-based mHealth platform has been deployed with traditional Indigenous23

midwives in rural Guatemala, contributing to a significant reduction in maternal and neonatal mortality24

in the region [9, 10]. These devices measure fetal cardiac activity via the Doppler frequency shift25

from moving cardiac structures. Large-scale community use has yielded thousands of real-world26

fetal recordings, enabling machine learning models for signal quality assessment [11], fetal heart27

rate estimation [12, 13], and hypertension screening [14], supporting prenatal decision-making in28

low-literacy, resource-limited environments.29

This approach can also support GA estimation, as fetal cardiac activity changes during pregnancy with30

maturation of the autonomic nervous system [5, 15, 9, 14, 16], altering Doppler-measured heart rate31

patterns and variability. Prior deep learning work using a hierarchical attention network (HAN), with32

a segment encoder and a sequence encoder, achieved a mean absolute error (MAE) of ∼0.79 months33

(≈3.4 weeks) [17], but was constrained by noisy LMP-based labels with month-level resolution.34
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To address this, we apply self-supervised learning (SSL), which leverages large unlabeled datasets35

to pretrain models before fine-tuning on smaller, accurately labeled cohorts. SSL has shown strong36

potential in biomedical time-series domains such as Electrocardiography (ECG) and Photoplethys-37

mography (PPG) [18–20]. Here, the HAN segment encoder is pretrained on community-collected38

DUS segments using a hybrid SimSiam+VICReg objective to learn physiologically meaningful39

embeddings without GA labels, then fine-tuned on clinically accurate labels from early ultrasound40

biometry. To our knowledge, this is the first application of SSL to 1D-DUS–based GA estimation,41

aiming to reduce reliance on noisy labels and improve generalization for earlier FGR detection,42

optimized delivery planning, and better triage of high-risk pregnancies in low-resource settings.43

2 Methods44

2.1 Data Description45

1D-DUS signals were recorded using the low-cost AngelSounds fetal Doppler probe, which detects46

fetal cardiac activity via the Doppler shift. The device was connected to a Google Pixel smartphone47

via an audio cable, and a custom Android application was developed for real-time acquisition, storage,48

and on-device analysis [8]. An illustration of the data collection setting is shown in Figure. 1(a).49

Three datasets were used, collected in community and clinical settings in Guatemala and the USA,50

each serving a distinct role in model development (Table 1). The Community-collected Guatemala51

dataset, acquired by traditional Indigenous midwives during routine antenatal visits, contains 5,14052

recordings (3,413 with sufficient good-quality recordings) with GA labels—when available—based on53

the mother’s recalled LMP reported in one-month increments for months 5–9. The Clinic-measured54

Guatemala dataset was collected in Tecpán, Guatemala, using the same device. GA labels were55

based on the first clinical ultrasound, and subsequent Doppler recordings were obtained during home56

visits by trained nurses. After excluding FGR cases, 677 of 825 recordings (15–36 weeks GA) from57

231 patients remained. The Clinic-measured Georgia dataset was collected at clinical research58

facilities at Emory University, Georgia, USA, also using the same device. GA labels were based on59

the first clinical ultrasound, with Doppler recordings acquired at later visits. After excluding FGR60

and abnormal growth cases, 24 of 67 recordings (16–32 weeks GA) from 25 pregnancies remained.61

All recordings were approximately 5 minutes in duration.62

Table 1: Summary of datasets. “Total” refers to all collected ∼5-min recordings; “Good-quality”
refers to the subset with sufficient good-quality 3.75 s segments for analysis.

Dataset Total Recordings Good-quality Recordings Usage
Guatemala Community 5,140 3,413 SSL pretraining
Guatemala Clinic 825 677 Supervised development
Georgia Clinic 67 24 External test

2.2 Model Architecture and Training Strategies63

Base Architecture. Gestational age estimation was performed using the hierarchical attention64

network (HAN) introduced by Katebi et al. [17], with the architecture illustrated in Fig. 1(b).65

Each Doppler recording was divided into non-overlapping good-quality 3.75 s segments, converted66

into scalograms, and processed by a segment encoder (2D CNN, GRU, attention) to produce 50-67

dimensional embeddings. A sequence encoder then aggregated embeddings from ten segments via68

GRU and attention layers, followed by a fully connected (FC) regression layer to output GA.69

Self-Supervised Pretraining. In the proposed approach (Approach 1), the segment encoder, archi-70

tecturally identical to the segment encoder of the HAN, was pretrained using self-supervised learning71

(SSL) on the Guatemala Community dataset. In total, 637,762 good-quality segments were available,72

identified using the signal quality assessment of Motie-Shirazi et al. [21]. Since all segments from73

the same recording correspond to the same GA, they are expected to share similar features in the74

embedding space. Therefore, positive pairs for SSL pretraining were generated by randomly selecting75

two segments from the same recording. We evaluated four self-supervised learning methods: Simple76

Siamese (SimSiam) [22], Bootstrap Your Own Latent (BYOL) [23], Variance–Invariance–Covariance77

Regularization (VICReg) [24], and a hybrid SimSiam+VICReg approach. After SSL pretraining78
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Figure 1: Overview of data collection and model architecture. (a) Illustration of 1D Doppler ultra-
sound (DUS) signal acquisition using a low-cost probe connected to a smartphone. (b) Hierarchical
Attention Network for gestational age (GA) estimation from ten 3.75 s DUS segments per recording.
(c) SimSiam framework used for self-supervised pretraining of the segment encoder, learning invari-
ant representations from pairs of segments within the same recording.

with these methods, the encoder was integrated into the HAN sequence encoder and fine-tuned in a79

supervised manner on the Guatemala Clinic dataset.80

The SimSiam framework, which yielded the best results when combined with VICReg (see Sec-81

tion 3.1), is shown in Figure. 1(c). It has two identical branches, each consisting of an encoder82

followed by a projection head implemented as a multi-layer perceptron (MLP). One branch also83

includes a predictor, also an MLP, and the loss is the negative cosine similarity between the predictor84

output and the projection from the other branch, with a stop-gradient applied to prevent collapse.85

Further details on SimSiam, VICReg, and their hybrid combination are provided in Section A.86

Comparison Baselines. We compared the SSL-based approach (Approach 1) with two base-87

lines: Approach 2: Transfer learning with a HAN pretrained on noisy LMP-based labels from the88

Guatemala Community dataset, with only the sequence encoder fine-tuned on the Guatemala Clinic89

dataset. Approach 3: HAN trained end-to-end from scratch on the Guatemala Clinic dataset.90

Training and Evaluation. All approaches were trained and validated using 5-fold cross-validation,91

with the Georgia Clinic dataset serving as a held-out external test set. For the supervised stage, the92

mean absolute error (MAE) in weeks was used as the loss function. To reduce variability in segment93

selection, each recording was represented by 50 bootstrap samples of ten segments each; the final GA94

estimate was the median of these estimations.95

3 Results96

3.1 Self-Supervised Learning Method Comparison97

Table 2 reports the 5-fold cross-validation MAE in weeks on the Guatemala Clinic dataset for98

models based on the segment encoders pretrained with each of the four SSL approaches. The hybrid99

SimSiam+VICReg achieved the best performance (1.19± 0.06 weeks), likely due to VICReg’s100

variance and covariance regularization complementing SimSiam’s invariance objective function.101

Table 2: SSL method comparison on the Guatemala Clinic dataset (5-fold CV).

SSL Method MAE (weeks)
BYOL 1.37± 0.05
VICReg 1.57± 0.08
SimSiam 1.29± 0.06
SimSiam+VICReg 1.19± 0.06
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Table 3: Performance comparison of SSL-pretrained and supervised models. MAE is reported as
mean ± SD (weeks) for Guatemala Clinic (CV) and as the MAE value for Georgia Clinic (Test).

Model Guatemala Clinic (CV) Georgia Clinic (Test)
Approach 1: SSL (SimSiam+VICReg) 1.19± 0.06 0.87
Approach 2: Noisy-label pretrain + fine-tune 1.66± 0.18 2.61
Approach 3: Fully supervised 1.34± 0.17 1.42

3.2 Comparison with Supervised Baselines102

Table 3 shows the 5-fold CV results on the Guatemala Clinic dataset and the external test performance103

on the Georgia Clinic dataset. The SSL-pretrained SimSiam+VICReg approach achieved the lowest104

MAE in cross-validation and retained its best performance on the external test set.105

Figure 2 shows estimated versus reference GA for this SSL-pretrained model on the Guatemala Clinic106

validation set (pooled CV folds) and the Georgia Clinic test set. Estimated values closely follow the107

identity line in both datasets, indicating strong agreement with the reference GA.108

Figure 2: Estimated vs. reference GA for the SSL-pretrained model on (a) Guatemala Clinic and (b)
Georgia Clinic datasets.

4 Discussion109

Accurate GA estimation is critical for prenatal care, guiding delivery planning and early detection of110

complications. In this work, GA was referenced to the first ultrasound biometry performed during111

pregnancy before 19 weeks of gestation, the clinical gold standard with an accuracy of ±5–10112

days [25]. The proposed SSL-pretrained model (SimSiam+VICReg) achieved an MAE of 1.19113

weeks (≈8.3 days) in cross-validation and 0.87 weeks (≈6.1 days) on the external test set, relying114

only on low-cost, one-dimensional Doppler signals. This performance is equivalent to the best115

estimates from accepted Doppler imaging approaches [25]. While an error of about a week can116

be clinically meaningful, it is low enough to be highly valuable in low-resource settings where no117

reliable GA estimate may otherwise be available, providing practical support for community-level118

care by traditional midwives and health workers.119

Self-supervised learning enables the extraction of general physiological representations from Doppler120

signals without direct reliance on GA labels, resulting in embeddings that are broadly transferable to121

other maternal–fetal health applications. Future work will focus on leveraging these SSL-derived122

embeddings for fetal FGR classification, thereby extending the clinical scope beyond GA estimation.123

5 Conclusion124

Self-supervised pretraining of Doppler ultrasound embeddings enables GA estimation within about125

one week of accuracy, approaching clinical ultrasound standards while relying only on low-cost126

hardware and minimal infrastructure. This approach extends reliable pregnancy dating to low-resource127

environments and provides reusable representations for a broad range of fetal monitoring applications.128
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A Self-Supervised Learning Framework Details222

A.1 SimSiam Framework223

The SimSiam architecture used in this work is illustrated in Fig. 1(c) and described here for reference.224

Each branch consists of:225

1. Segment Encoder: Adapted from the HAN segment encoder [17], taking 250× 40 (time ×226

frequency) scalograms as input. It contains three convolutional layers (32, 64, 128 channels),227

each followed by batch normalization, ReLU activation, max-pooling, and dropout. The228

output is reshaped and passed to a gated recurrent unit (GRU) and a hierarchical attention229

mechanism, yielding a 50-dimensional embedding.230

2. Projection Head: A two-layer multi-layer perceptron (MLP) maps the 50-dimensional231

embedding to a 64-dimensional latent vector.232

One branch additionally contains:233

3. Predictor: A two-layer MLP mapping the 64-dimensional projection through a 32-234

dimensional hidden layer back to 64 dimensions.235

Given two good-quality segments (x1, x2) from the same recording, the network outputs (p1, z1) and236

(p2, z2), where p denotes predictor outputs and z denotes projections. The SimSiam loss is:237

LSimSiam =
1

2

[
− cos(p1, sg(z2))− cos(p2, sg(z1))

]
where sg(·) is the stop-gradient operation to prevent collapse.238

A.2 VICReg Regularization239

VICReg (Variance–Invariance–Covariance Regularization) augments the SimSiam objective with240

additional variance and covariance regularization terms:241

• Invariance: The SimSiam loss encourages similar embeddings for positive pairs.242

• Variance: Applied to the projected embeddings z, this term ensures each embedding243

dimension has a batch standard deviation σj ≥ 1.0:244

Lvar =
1

d

d∑
j=1

max(0, 1− σj), σj =
√

Var(z·j) + ϵ.

• Covariance: Penalizes redundancy by minimizing squared off-diagonal elements of the245

covariance matrix of z across the batch:246

Lcov =
1

d

∑
i ̸=j

cov(zi, zj)2

A.3 Combined Loss247

The total SimSiam+VICReg loss is:248

L = λsimLSimSiam + λvarLvar + λcovLcov

where (λsim, λvar, λcov) = (1.0, 1.0, 0.01) in our experiments.249
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