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Abstract

We present a self-supervised learning framework for gestational age (GA) estima-
tion from low-cost, one-dimensional Doppler ultrasound recordings. A segment
encoder was pretrained on unlabeled Doppler data using a hybrid approach that com-
bines Simple Siamese Networks (SimSiam) and Variance-Invariance-Covariance
Regularization (VICReg), and subsequently fine-tuned on clinically accurate GA
labels. The resulting model achieved a mean absolute error of 1.19 weeks in 5-fold
cross-validation and 0.87 weeks on an external test set, an improvement of 11%
over fully supervised approaches and 29% over transfer learning approaches. Our
approach leverages abundant unlabeled Doppler data to learn generalizable fetal
signal representations, enabling accurate GA estimation in low-resource settings
and yielding transferable embeddings for future maternal—fetal health applications.

1 Introduction

Limited access to timely and accurate antenatal care contributes substantially to maternal and
neonatal mortality in low- and middle-income countries and remains a persistent challenge in rural or
underserved areas of high-income countries as well [1H3]]. Reliable gestational age (GA) estimation
is essential for delivery planning, fetal growth monitoring, and identifying adverse outcomes such as
fetal growth restriction (FGR) [4}15]. In many rural settings, GA is estimated from maternal recall
of the last menstrual period (LMP), which is prone to errors from recall bias, irregular cycles, and
coarse granularity, often rounded to months, leading to misclassification of term births as preterm
and potentially compromising prenatal care quality [6]. Obstetric ultrasound, the standard alternative,
is often unavailable due to cost, maintenance needs, and limited trained personnel [[7} [8]].

Over the past decade, a low-cost (~ $15), one-dimensional Doppler ultrasound (1D-DUS) system
integrated with a smartphone-based mHealth platform has been deployed with traditional Indigenous
midwives in rural Guatemala, contributing to a significant reduction in maternal and neonatal mortality
in the region [9, [10]. These devices measure fetal cardiac activity via the Doppler frequency shift
from moving cardiac structures. Large-scale community use has yielded thousands of real-world
fetal recordings, enabling machine learning models for signal quality assessment [11]], fetal heart
rate estimation [12} [13]], and hypertension screening [14], supporting prenatal decision-making in
low-literacy, resource-limited environments.

This approach can also support GA estimation, as fetal cardiac activity changes during pregnancy with
maturation of the autonomic nervous system [3 [15} (9} 114} [16], altering Doppler-measured heart rate
patterns and variability. Prior deep learning work using a hierarchical attention network (HAN), with
a segment encoder and a sequence encoder, achieved a mean absolute error (MAE) of ~0.79 months
(3.4 weeks) [17], but was constrained by noisy LMP-based labels with month-level resolution.
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To address this, we apply self-supervised learning (SSL), which leverages large unlabeled datasets
to pretrain models before fine-tuning on smaller, accurately labeled cohorts. SSL has shown strong
potential in biomedical time-series domains such as Electrocardiography (ECG) and Photoplethys-
mography (PPG) [18H20]]. Here, the HAN segment encoder is pretrained on community-collected
DUS segments using a hybrid SimSiam+VICReg objective to learn physiologically meaningful
embeddings without GA labels, then fine-tuned on clinically accurate labels from early ultrasound
biometry. To our knowledge, this is the first application of SSL to 1D-DUS-based GA estimation,
aiming to reduce reliance on noisy labels and improve generalization for earlier FGR detection,
optimized delivery planning, and better triage of high-risk pregnancies in low-resource settings.

2 Methods

2.1 Data Description

1D-DUS signals were recorded using the low-cost AngelSounds fetal Doppler probe, which detects
fetal cardiac activity via the Doppler shift. The device was connected to a Google Pixel smartphone
via an audio cable, and a custom Android application was developed for real-time acquisition, storage,
and on-device analysis [8]]. An illustration of the data collection setting is shown in Figure. [Ta).

Three datasets were used, collected in community and clinical settings in Guatemala and the USA,
each serving a distinct role in model development (Table[T)). The Community-collected Guatemala
dataset, acquired by traditional Indigenous midwives during routine antenatal visits, contains 5,140
recordings (3,413 with sufficient good-quality recordings) with GA labels—when available—based on
the mother’s recalled LMP reported in one-month increments for months 5-9. The Clinic-measured
Guatemala dataset was collected in Tecpan, Guatemala, using the same device. GA labels were
based on the first clinical ultrasound, and subsequent Doppler recordings were obtained during home
visits by trained nurses. After excluding FGR cases, 677 of 825 recordings (15-36 weeks GA) from
231 patients remained. The Clinic-measured Georgia dataset was collected at clinical research
facilities at Emory University, Georgia, USA, also using the same device. GA labels were based on
the first clinical ultrasound, with Doppler recordings acquired at later visits. After excluding FGR
and abnormal growth cases, 24 of 67 recordings (16-32 weeks GA) from 25 pregnancies remained.
All recordings were approximately 5 minutes in duration.

Table 1: Summary of datasets. “Total” refers to all collected ~5-min recordings; “Good-quality”
refers to the subset with sufficient good-quality 3.75 s segments for analysis.

Dataset Total Recordings Good-quality Recordings Usage
Guatemala Community 5,140 3,413 SSL pretraining
Guatemala Clinic 825 677 Supervised development
Georgia Clinic 67 24 External test

2.2 Model Architecture and Training Strategies

Base Architecture. Gestational age estimation was performed using the hierarchical attention
network (HAN) introduced by Katebi et al. [17]], with the architecture illustrated in Fig. [T[b).
Each Doppler recording was divided into non-overlapping good-quality 3.75 s segments, converted
into scalograms, and processed by a segment encoder (2D CNN, GRU, attention) to produce 50-
dimensional embeddings. A sequence encoder then aggregated embeddings from ten segments via
GRU and attention layers, followed by a fully connected (FC) regression layer to output GA.

Self-Supervised Pretraining. In the proposed approach (Approach 1), the segment encoder, archi-
tecturally identical to the segment encoder of the HAN, was pretrained using self-supervised learning
(SSL) on the Guatemala Community dataset. In total, 637,762 good-quality segments were available,
identified using the signal quality assessment of Motie-Shirazi et al. [21]. Since all segments from
the same recording correspond to the same GA, they are expected to share similar features in the
embedding space. Therefore, positive pairs for SSL pretraining were generated by randomly selecting
two segments from the same recording. We evaluated four self-supervised learning methods: Simple
Siamese (SimSiam) [22], Bootstrap Your Own Latent (BYOL) [23]], Variance—Invariance—-Covariance
Regularization (VICReg) [24], and a hybrid SimSiam+VICReg approach. After SSL pretraining



79
80

81
82
83
84
85
86

87
88
89
90

91
92
93
94
95

96

97

98
99
100
101

S

Sequence Encoder \ vy 3755 DUS
H Segments

Seg. 1 Seg. 2 Seg. 10 | /“Segment Encoder \ {
MW MWM }%».H”” ",' Scalogram WW”WM’M
! L 1| [SSERNAAN]
[ Encoder] [ En::ode:] [ Enf:odelr‘]
] 1 7

<,
|

3.75s DUS
Segments

1
Emb. 1 Emb. 2 Emb. 10 ”

!
GRU

P

Seg Seg 1t
[Encoder [ Encoder

)

I GRU

| !
| ] s \
Attention 1
Fc ) RN B [ e sy i
K &x j Gradient Stop Gradient

(@ (b) (c)

e

Figure 1: Overview of data collection and model architecture. (a) Illustration of 1D Doppler ultra-
sound (DUS) signal acquisition using a low-cost probe connected to a smartphone. (b) Hierarchical
Attention Network for gestational age (GA) estimation from ten 3.75 s DUS segments per recording.
(c) SimSiam framework used for self-supervised pretraining of the segment encoder, learning invari-
ant representations from pairs of segments within the same recording.

with these methods, the encoder was integrated into the HAN sequence encoder and fine-tuned in a
supervised manner on the Guatemala Clinic dataset.

The SimSiam framework, which yielded the best results when combined with VICReg (see Sec-
tion [31)), is shown in Figure. [T[c). It has two identical branches, each consisting of an encoder
followed by a projection head implemented as a multi-layer perceptron (MLP). One branch also
includes a predictor, also an MLP, and the loss is the negative cosine similarity between the predictor
output and the projection from the other branch, with a stop-gradient applied to prevent collapse.
Further details on SimSiam, VICReg, and their hybrid combination are provided in Section [A]

Comparison Baselines. We compared the SSL-based approach (Approach 1) with two base-
lines: Approach 2: Transfer learning with a HAN pretrained on noisy LMP-based labels from the
Guatemala Community dataset, with only the sequence encoder fine-tuned on the Guatemala Clinic
dataset. Approach 3: HAN trained end-to-end from scratch on the Guatemala Clinic dataset.

Training and Evaluation. All approaches were trained and validated using 5-fold cross-validation,
with the Georgia Clinic dataset serving as a held-out external test set. For the supervised stage, the
mean absolute error (MAE) in weeks was used as the loss function. To reduce variability in segment
selection, each recording was represented by 50 bootstrap samples of ten segments each; the final GA
estimate was the median of these estimations.

3 Results

3.1 Self-Supervised Learning Method Comparison

Table 2 reports the 5-fold cross-validation MAE in weeks on the Guatemala Clinic dataset for
models based on the segment encoders pretrained with each of the four SSL approaches. The hybrid
SimSiam+VICReg achieved the best performance (1.19 + 0.06 weeks), likely due to VICReg’s
variance and covariance regularization complementing SimSiam’s invariance objective function.

Table 2: SSL method comparison on the Guatemala Clinic dataset (5-fold CV).

SSL Method MAE (weeks)
BYOL 1.37 +£0.05
VICReg 1.57 £0.08
SimSiam 1.29 +0.06

SimSiam+VICReg 1.19 4+ 0.06
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Table 3: Performance comparison of SSL-pretrained and supervised models. MAE is reported as
mean + SD (weeks) for Guatemala Clinic (CV) and as the MAE value for Georgia Clinic (Test).

Model Guatemala Clinic (CV) Georgia Clinic (Test)
Approach 1: SSL (SimSiam+VICReg) 1.19 £0.06 0.87
Approach 2: Noisy-label pretrain + fine-tune 1.66 £ 0.18 2.61
Approach 3: Fully supervised 1.34 +£0.17 1.42

3.2 Comparison with Supervised Baselines

Table[3]shows the 5-fold CV results on the Guatemala Clinic dataset and the external test performance
on the Georgia Clinic dataset. The SSL-pretrained SimSiam+VICReg approach achieved the lowest
MAE in cross-validation and retained its best performance on the external test set.

Figure 2] shows estimated versus reference GA for this SSL-pretrained model on the Guatemala Clinic
validation set (pooled CV folds) and the Georgia Clinic test set. Estimated values closely follow the
identity line in both datasets, indicating strong agreement with the reference GA.
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Figure 2: Estimated vs. reference GA for the SSL-pretrained model on (a) Guatemala Clinic and (b)
Georgia Clinic datasets.

4 Discussion

Accurate GA estimation is critical for prenatal care, guiding delivery planning and early detection of
complications. In this work, GA was referenced to the first ultrasound biometry performed during
pregnancy before 19 weeks of gestation, the clinical gold standard with an accuracy of +5-10
days [25]. The proposed SSL-pretrained model (SimSiam+VICReg) achieved an MAE of 1.19
weeks (/8.3 days) in cross-validation and 0.87 weeks (/6.1 days) on the external test set, relying
only on low-cost, one-dimensional Doppler signals. This performance is equivalent to the best
estimates from accepted Doppler imaging approaches [25)]. While an error of about a week can
be clinically meaningful, it is low enough to be highly valuable in low-resource settings where no
reliable GA estimate may otherwise be available, providing practical support for community-level
care by traditional midwives and health workers.

Self-supervised learning enables the extraction of general physiological representations from Doppler
signals without direct reliance on GA labels, resulting in embeddings that are broadly transferable to
other maternal—fetal health applications. Future work will focus on leveraging these SSL-derived
embeddings for fetal FGR classification, thereby extending the clinical scope beyond GA estimation.

5 Conclusion

Self-supervised pretraining of Doppler ultrasound embeddings enables GA estimation within about
one week of accuracy, approaching clinical ultrasound standards while relying only on low-cost
hardware and minimal infrastructure. This approach extends reliable pregnancy dating to low-resource
environments and provides reusable representations for a broad range of fetal monitoring applications.
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A  Self-Supervised Learning Framework Details

A.1 SimSiam Framework

The SimSiam architecture used in this work is illustrated in Fig.[T(c) and described here for reference.
Each branch consists of:

1. Segment Encoder: Adapted from the HAN segment encoder [[17]], taking 250 x 40 (time x
frequency) scalograms as input. It contains three convolutional layers (32, 64, 128 channels),
each followed by batch normalization, ReLU activation, max-pooling, and dropout. The
output is reshaped and passed to a gated recurrent unit (GRU) and a hierarchical attention
mechanism, yielding a 50-dimensional embedding.

2. Projection Head: A two-layer multi-layer perceptron (MLP) maps the 50-dimensional
embedding to a 64-dimensional latent vector.

One branch additionally contains:

3. Predictor: A two-layer MLP mapping the 64-dimensional projection through a 32-
dimensional hidden layer back to 64 dimensions.

Given two good-quality segments (1, 23) from the same recording, the network outputs (p1, z1) and
(p2, 22), where p denotes predictor outputs and z denotes projections. The SimSiam loss is:

1
ESimSiam = 5 [ - COS(pl, Sg(ZQ)) - COS(p27 Sg(zl))}

where sg(-) is the stop-gradient operation to prevent collapse.

A.2 VICReg Regularization

VICReg (Variance—Invariance—Covariance Regularization) augments the SimSiam objective with
additional variance and covariance regularization terms:

* Invariance: The SimSiam loss encourages similar embeddings for positive pairs.

* Variance: Applied to the projected embeddings z, this term ensures each embedding
dimension has a batch standard deviation o; > 1.0:

d
1
Lyar = p ;max((),l —0j), oj=4/Var(z,;)+e

* Covariance: Penalizes redundancy by minimizing squared off-diagonal elements of the
covariance matrix of z across the batch:

1
»Ccov = g %: COV(Ziv Zj)2
7]

A.3 Combined Loss

The total SimSiam+VICReg loss is:
L= /\simESimSiam + Avarﬁvar + )\covccov

where (Asim, Avars Acov) = (1.0, 1.0,0.01) in our experiments.
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