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Abstract

Generative AI and large language models (LLMs) have attracted significant at-
tention from both industry and academia for their ability to generate high-quality
content across diverse tasks. However, these capabilities raise growing concerns
about misuse in sensitive domains such as news, education, software engineering,
and medicine. In particular, recent cases suggest that LLMs are being exploited
to fabricate radiology reports, potentially enabling insurance fraud. While prior
research on detecting machine-generated text has explored domains such as news
and scientific writing, there remains a lack of specialization for radiology, leaving
a critical gap in reliably identifying AI-generated medical reports. To address
this, we introduce text-to-text and image-to-text datasets specifically designed
for radiology report generation using multiple LLMs. In addition, we establish
a benchmark detection methodology based on disentangling style from content,
enabling more effective differentiation between authentic radiology reports and
AI-generated fabrications.

1 Introduction

The rapid advancement of generative artificial intelligence, particularly large language models
(LLMs), has significantly enhanced the ability to produce persuasive synthetic documents. While
these technologies offer tremendous potential for beneficial applications, they are increasingly being
misused to fabricate medical records, falsify health claims, and, in some cases, enable complex
insurance fraud schemes. Prior research highlights that the proliferation of generative AI and
deepfake technologies could amplify fraudulent practices, including the alteration of diagnostic scans
and the creation of counterfeit medical records to justify unjustified claims or treatments [30]. Such
systems can generate falsified medical documentation with striking accuracy, even replicating patient
and physician identities, as demonstrated by platforms such as “Only Fake” [10]. Alarmingly, these
methods have already been used to generate highly realistic examples, such as fabricated X-rays
illustrating false bone fractures [3].

This growing misuse underscores the urgent need for reliable detection mechanisms to safeguard
against the societal and economic risks posed by AI-driven medical forgeries. While prior work
has explored the use of LLMs to generate radiology reports [43, 47, 42], the detection of such
machine-generated reports remains an open challenge. Current detection methods for LLM-generated
text have shown strong performance in domains such as news and scientific writing [49, 24, 23], but
they are not optimized for the medical domain or radiology reports owing to the lack of datasets.

To this end, we construct a new dataset of synthetically generated radiology reports using large
language models (LLMs), with ground-truth references derived from the IU-Xray dataset [28].
The dataset is designed in two variants: (1) Text-to-Text (T2T), where ground-truth reports are
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Figure 1: Overview of our contributions. Firstly, we construct our dataset via two complementary
strategies: (i) prompting large language models (LLMs) with radiologist-written reports to generate
paraphrased versions, and (ii) generating the complete reports directly from radiographic images.
Subsequently, we utilize the resulting dataset, consisting of both synthetic and human-authored
reports, to train a classifier model discerning human-authored reports from synthetic ones.

paraphrased or reframed by LLMs, and (2) Image-to-Text (I2T), where reports are generated directly
from radiology images. For the T2T variant, we employ four general-purpose LLMs, whereas the
I2T variant is constructed using two medical-domain VLMs pre-trained on radiology data.

To benchmark this dataset, we introduce a novel detection pipeline that disentangles stylistic and
semantic attributes of text. Despite the increasing sophistication of modern Large Language Models
(LLMs) towards human-like writing, their outputs still exhibit latent stylistic fingerprints that can be
systematically detected [38]. These fingerprints, manifested through lexical preferences, syntactic
regularities, and punctuation or grammatical standardization, differ measurably from human-authored
writing. Our detection pipeline uses a BERT–Mamba [9, 8] backbone to learn separable style and
content representations from radiology reports. Unlike prior architectures using BiLSTM [2] or
transformers [39], Mamba incorporates sparse attention to handle longer sequences more efficiently.
With this integration, our authorship detection pipeline achieved very high MCC scores ranging from
92% to 100% in both text-to-text (T2T) and image-to-text (I2T) category.

In summary, the primary contributions of this work are as follows: (1) We introduce a novel synthetic
radiology report dataset that integrates both textual and imaging modalities as inputs. To the best
of our knowledge, this represents the first dataset of its kind in the domain, and (2) We establish a
benchmark for this dataset using a Mamba-based encoder that disentangles stylistic and semantic
(content) attributes of synthetic radiology texts, enabling more reliable detection of AI-generated
reports.

2 Related Work

LLMs for Radiology Report Generation. Recent works [14, 31, 48, 40, 27, 15, 4, 42] have
explored the use of large language models (LLMs) for generating structured and narrative chest
radiology reports. These approaches typically frame the problem either as a reasoning task over
X-ray findings or as a question–answering (Q/A) formulation where the model is prompted with
specific clinical queries. While such methods demonstrate the potential of LLMs in improving
interpretability and capturing domain-specific language, they lack the generation of a full report using
chest radiographs or radiologist-written reports. Beyond LLM-based approaches, unimodal methods
[5, 45, 20, 17] rely solely on visual features from chest X-rays and employ Transformer-based
architectures to produce textual reports. Although effective at aligning images with textual outputs,
these models disregard the role of LLMs for contextual reasoning and often generate reports that lack
the coherence, structure, and richness of human-authored narratives. More recently, prompt-driven
approaches and vision LLM [22, 46, 21, 37] have attempted to bridge this gap by conditioning
generation on partial report text or key clinical findings extracted from images. While these methods
can improve factual alignment, they primarily focus on isolated findings rather than holistic report
generation. As a result, they overlook additional clinical context and still struggle to match the fluency
and logical progression found in human-written reports. Additionally, these methods lack a dataset
of the type we introduce, which is developed in two ways: (1) by paraphrasing the original reports
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using Instruction- or Med-LLMs, and (2) by generating complete chest radiology reports directly
from radiographs.

Synthetic Radiology Reports Detection Parallel efforts have been made to identify AI-authored
or erroneous medical content. For instance, recent work has proposed fact-checking examiners that
differentiate real and fabricated sentences within radiology reports by aligning textual statements
with associated medical images [49, 29, 34]. While such approaches verify the clinical accuracy of
generated reports, they are limited to detecting local inconsistencies and do not address the broader
problem of entirely fabricated reports. In addition, LLM-based proofreading techniques [32, 41] have
focused on identifying specific types of errors, including negation, laterality, interval modification,
and transcribing inaccuracies within otherwise genuine reports.

Limitations of current approaches While the prior works in generating synthetic chest radiology
reports have gained enough progress in generating the chest radiology reports, there has been no
work on discerning synthetic and human-authored reports. To this end, we focus on developing a
dataset consisting of synthetic and human-authored radiology report quadruples across three LLMs.
We extend the dataset by also incorporating VLMs that take in radiology images as input to generate
synthetic and human-authored report triplets across two VLMs. Finally, we also provide a benchmark
model for the dataset.

3 Method

In this section, we present our contributions: a novel synthetic radiology report dataset consisting of
14k samples for discerning true reports from synthetic ones, and a benchmark model on the dataset.
Figure 1 presents the overall pipeline, integrating synthetic report generation with a style-content
disentanglement-based classifier module to enable robust attribution of human versus LLM-authored
radiology reports.

3.1 Synthetic Report Generation

Motivated by the absence of synthetic radiology report datasets tailored for authorship attribution, we
introduce a novel collection of reports generated by diverse large language models (LLMs). Although
AI-generated radiology reports can emerge from multiple sources, in this work we focus on two
primary categories: (1) paraphrased versions of ground-truth reports produced by instruction-tuned
LLMs, and (2) direct image-to-text generations from medical vision–language models (VLMs). To
ensure privacy and task relevance, we remove all extraneous and personally identifiable information
from the ground-truth corpus, retaining only the findings section. The findings encapsulate the
radiologist’s detailed analysis of chest X-ray images is rich in domain-specific terminology and
descriptive language, making it the most critical component for authorship attribution. We have
utilized the radiology reports from the IU-XRAY dataset [28] as ground-truth. We evaluate the quality
of generated reports through standard natural language metrics - BLEU-N [35], and ROUGE-L
[25]. It is important to note that, in each case, we do not evaluate the reliability and veracity of the
generated reports.

Paraphrasing with Instruction-Tuned LLMs. Utilizing the text in the findings section of each
sample, we prompt (As detailed in Table 1) various LLMs - GPT-4o [33], Medgemma-27B [11],
and Mixtral-8x7B [18] - to generate a paraphrased version of the ground-truth reports. For each
ground-truth sample, our dataset has a quadruple containing ground-truth and three LLM-generated
reports. The prompts have been designed to maintain the diagnostic content while introducing stylistic
variation, simulating adversarial paraphrasing that maintains semantic fidelity. As shown in Table
2, GPT-4o exhibits the strongest alignment with ground-truth reports with BLEU-4 and ROUGE-L
scores of 28.50 and 60.17, respectively.

Captioning with Vision–Language Models for Chest X-rays. Secondly, we generate reports
directly from chest radiographs using R2Gen [5] and Medgemma-4B [12], without any textual input.
Unlike paraphrasing, this setting requires models to infer diagnostic content solely from visual
input. Although the models have been pretrained to approximate radiologist reporting, VLMs often
display stylistic artifacts individualistic to each LLM and domain-specific regularities, producing
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a distribution of text distinct from human-authored and paraphrased reports. As shown in Table 2,
R2Gen [5] exhibits superiority with ROUGE-L scores of 30.92.

LLM Standardized Prompt

Text-to-Text (T2T)

GPT-4o [33] “You are a professional radiologist. Rephrase the following chest X-ray report in clinicalGPT-4o [33]
language and formal tone. Only return the rewritten report as plain text.”

Mixtral-8x7B [1]
“You are a professional radiologist. Rephrase the following chest X-ray report in a formal,
clinical tone. Only return the reworded report. Do not add labels, headers, or formatting.
Do not return JSON.”

Medgemma-27B [11] “You are a professional radiologist. Rephrase chest X-ray reports in a formal, clinical tone.Medgemma-27B [11]
Only return the paraphrased report without metadata, JSON, or special formatting.”

Image-to-Text (I2T)

R2Gen [5] — No prompt —

Medgemma-4B [12] “You are a board-certified radiologist. Write a clear, clinically sound chest X-ray report
based solely on the provided image(s). Use concise prose and no section headers.”

Table 1: Prompts. We provide a list of standardized prompts used for generating chest X-ray reports:
(i) paraphrasing radiologists’ reports with text-to-text LLMs, and (ii) directly generating reports from
chest X-ray images with medical VLMs. R2Gen [5], being a memory-driven transformer, does not
require explicit prompt instructions.

3.2 Benchmark Model

Given a text embedding x → Rd of a report, our objective is to classify it into either of the binary
classes - human-authored or AI-generated. Motivated by [38], we aim to decompose x into two
independent latent variables: a content embedding c, which encapsulates the semantics of the text, and
a style embedding s, which captures authorial cues such as phrasing, verbosity, and lexical preference
that may indicate authorship. Our framework is composed of five components: (1) a Mamba encoder,
which refines frozen BERT embeddings with a stack of Mamba [13] blocks to produce contextualized
representations; (2) a disentanglement module to obtain s and c; (3) an LSTM decoder, which
reconstructs the input sequence conditioned on both s and c to enforce semantic fidelity; (4) a
classifier to supervise the style embedding s for authorship attribution; and (5) an approximation
network, which attempts to predict s from c and thus provides an adversarial regularizer discouraging
style–content leakage.

Figure 2: Architecture.We present the complete pipeline of our style–content disentanglement
architecture. A BERT-Mamba encoder is first used to extract text embeddings from a radiology report.
These embeddings are then re-parameterized into separate style and content latent representations.
The two latent vectors are concatenated and passed through a decoder to reconstruct the report.
To guide the disentanglement process, we incorporate a style classifier that supervises the style
embeddings by predicting report authorship.

Mamba Encoder. The Mamba Encoder is constructed by stacking multiple Mamba blocks [13].
The core component of the Mamba block is a selective state space model. Unlike the self-attention
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mechanism in transformers [44], which scales quadratically with sequence length, Mamba [13]
parametrizes hidden state evolution as a linear recurrence in continuous time and augments it with
input-dependent gating. We begin by extracting word-level representations with a frozen BERT [9]
backbone. Subsequently, these embeddings are input into a stack of L Mamba blocks, where each
block corresponds to a selective state space model (SSM). Formally, a state zt evolves as

zt = Azt→1 +Bxt ht = Czt, (1)

where A,B,C are learnable transition matrices. The selective gating mechanism dynamically
modulates A and B as a function of the input xt, allowing the model to retain or forget information
in a content-aware manner. This hybrid design combines the efficiency of recurrent state updates with
the adaptability of attention-like gating. Further, each Mamba block is wrapped in normalization and
residual connections to stabilize optimization:

h(l+1) = h(l) +Dropout
(
Mamba

(
LayerNorm(h(l))

))
, l = 0, . . . , L↑ 1. (2)

This architecture allows the Mamba encoder to capture both local linguistic patterns and longer-span
stylistic dependencies while maintaining linear computational complexity. Finally, mean pooling is
used to aggregate token-level representations into a report-level embedding h̄.

Disentanglement module. The pooled output h̄ from the Mamba Encoder is passed into two linear
layers, producing style embedding s and content embedding c. We utilize the latent parameterization
technique commonly used in VAEs [7, 19] to represent s and c as probability distributions rather
than deterministic vectors. Expressing them as probability distributions is important to allow the
model to capture uncertainty and to learn the representations as parameters of a multivariate Gaussian
distribution. Thus, enabling the model to learn disentangled distributions for s and c effectively.
Specifically, we learn:

qω(s | h̄) = N
(
s;µs(h̄), diag(ω

2
s(h̄))

)
qε(c | h̄) = N

(
c;µc(h̄), diag(ω

2
c (h̄))

)
(3)

Subsequently, we employ the reparameterization trick to sample from these distributions, allowing
gradient propagation during training.

s↑ = µs + ωs ↓ εs c↑ = µc + ωc ↓ εc ε ↔ N (0, I) (4)

This results in a pair of latent representations s↑ and c↑ → Rd that are concatenated y = [s↑; c↑] before
being input into the decoder.

Decoder. We implement an LSTM decoder module designed to reconstruct our text embedding
x conditioned on y, and trained using teacher-forcing. Teacher-forcing is widely used in training
sequence generation models to improve sampling efficiency and to stabilize training [26]. Unlike
pure autoregressive approaches, where the decoder feeds its own predicted token back as input for
the next step, in teacher-forcing, we feed the ground-truth token from the training data into the next
step. The output generated at each step is mapped to vocabulary logits through a linear projection,
followed by softmax over the vocabulary logits.

wt = LSTM(x<t; y) p(xt | x<t, y) = Softmax(Linear(wt)) (5)

3.3 Training Objectives

We train the model with three complementary objectives: (i) reconstruction, (ii) style classification,
and (iii) mutual information regularization. Together, these enforce disentangled yet informative
representations of style and content.

Style classification. To ensure that the style embedding s↑ encodes authorial attributes, we train a
lightweight classifier gϑ on top of s↑. The classifier is optimized with standard cross-entropy:

Lcls = ↑Ey

[
log pϑ(y | s↑)

]
pϑ(y | s) = Softmax

(
gϑ(s

↑)
)
. (6)
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Mutual information regularization. To prevent the content embedding c↑ from leaking stylistic
cues, we introduce an approximation network fε that predicts s↑ from c↑. For a matched pair (s↑j , c↑j)
and a mismatched pair (s↑j , c↑k)↗k ↘= j, the log-likelihoods are:

log pε(sj | cj) ≃ ↑ 1
2 ⇐sj ↑ fε(cj)⇐2 log pε(sj | ck) ≃ ↑ 1

2 ⇐sj ↑ fε(ck)⇐2 (7)

Following the CLUB objective [39, 6], we upper bound the mutual information, and define the penalty
as a clipped bound in range [0, 1]:

LMI = clip
(
Îupper(s↑; c↑)

)
Îupper(s↑; c↑) = E

[
log pε(s

↑
j | c↑j)↑ log pε(s

↑
j | c↑k)

]
(8)

Reconstruction. Given latent codes (s↑, c↑), the decoder is trained to reconstruct the input sequence
under teacher forcing, where N the sequence length, x̂t denotes the predicted distribution, and xt is
the ground-truth token at step t. This loss enforces both embeddings to preserve sufficient information
for faithful reconstruction.

Lrec = ↑ 1
N

N∑

t=1

log p(x̂t | s, c, x<t) , (9)

Total objective. The overall training loss is as follows, where ϑ is an annealed coefficient controlling
the strength of the mutual information penalty:

L = Lrec + ϑ LMI + Lcls, (10)

4 Experiments

4.1 Dataset

We use the IU-Xray dataset [28] to obtain the chest radiology reports. IU-X-ray is a standard
benchmark for medical vision–language modeling. The dataset consists of 7,470 chest radiographs
paired with 3,955 radiology reports. Specifically, we utilize the subset of 2,955 preprocessed annotated
samples curated as per the R2Gen [5] benchmark, which includes chest radiographs paired with
corresponding radiology reports. These reports, originally collected by Indiana University, are linked
to one or more frontal or lateral chest X-ray views and contain structured descriptions of clinical
findings and impressions.

4.2 Experimental Setup

Implementation details. We implement our style-content disentanglement pipeline in PyTorch [36]
version 2.7.1 with cuda11.8. Input reports are tokenized with the bert-base-uncased tokenizer [9],
truncated or padded to a maximum length of 512 tokens. The encoder projects into a 32-dimensional
style embedding and a 512-dimensional content embedding; the decoder uses hidden dimension
512. We use the Mamba encoder of two mamba blocks. The benchmark model is trained for 40
epochs with a batch size of 32 using the Adam optimizer with a learning rate of 1⇒ 10→4. We save
checkpoints every 5 epochs. All experiments are run on NVIDIA A100 GPUs. The classifier MLP
probe is trained for 30 epochs

Evaluation metrics. Detection performance is evaluated using four complementary metrics: (i)
overall accuracy, (ii) macro-averaged F1 score, (iii) area under the ROC curve (AUROC), and (iv)
Matthews correlation coefficient (MCC). To probe robustness, we report results stratified along two
axes: (a) generator family GPT-4o [33], Mixtral-8x7B [1], MedGemma-27B [11], MedGemma-4B
[12] and R2Gen [5] used for capturing the style cues which are then leveraged by a style-content
disentanglement model, and (b) paraphrase intensity, defined by BLEU-N [35] and ROUGE-L [25]
between generated and reference reports. The subsequent analysis measures the extent to which
performance declines when paraphrases increasingly vary in wording.

Classifier model. For authorship attribution, we train a simple linear layer on the style embeddings
s↑ extracted from our disentanglement model. s↑ is extracted from the frozen encoder and into an
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Model BLEU-1 (%) BLEU-2 (%) BLEU-3 (%) BLEU-4 (%) ROUGE-L (%)

Text-to-Text (T2T)

GPT-4o [33] 60.08 ± 0.14 46.11 ± 0.13 36.21 ± 0.11 28.50 ± 0.11 60.17 ± 0.35
Mixtral-8x7B [1] 55.26 ± 0.06 40.47 ± 0.06 30.28 ± 0.05 22.80 ± 0.04 55.42 ± 0.08
MedGemma-27B-Text [11] 61.65 ± 0.03 46.11 ± 0.04 35.70 ± 0.05 27.83 ± 0.04 57.22 ± 0.01

Image-to-Text (I2T)

R2Gen [5] 44.47 ± 0.00 28.26 ± 0.00 20.39 ± 0.00 15.04 ± 0.00 30.92 ± 0.00
Medgemma-4B [12] 42.31 ± 0.00 25.98 ± 0.00 16.68 ± 0.00 10.95 ± 0.00 27.93 ± 0.00

Table 2: BLEU-N and ROUGE-L evaluation of generated reports. We evaluate the quality of our
generated dataset using BLEU-N and ROUGE-L scores across a range of instruction-tuned LLMs
and image-to-text models. The results show that GPT-4o [33] achieved the highest ROUGE-L score
(60.17) in the text-to-text category, indicating the strongest lexical similarity to human-written reports.
In comparison, R2Gen [5] obtained the highest ROUGE-L score (30.92) among image-to-text models.

MLP (512⇑256⇑128), each followed by BatchNorm, ReLU, and Dropout, and a final two-way
classification head. The linear layer is optimized with AdamW learning rate of 5⇒10→4 and weight
decay of 5⇒10→5 using cross-entropy loss. All classification models are trained on the 70% training
split and validated on 15% of data; final results are reported on the held-out 15% test set.

5 Results

In this section, we present our results quantifying both the quality of our proposed dataset and
classification pipeline, which are assessed using the metrics described in Sec. 4. Due to the proba-
bilistic nature of generative models and to ensure reproducibility, all results are averaged over five
independent runs and reported as mean ± standard deviation.

5.1 Text-to-Text (T2T)

We present the dataset and classification analysis of the synthetic reports produced by instruction-tuned
LLMs, GPT-4o [33], Mixtral-8x7B [1], and MedGemma-27B [11], when prompted to paraphrase the
ground-truth radiologist report.

Dataset Analysis. We evaluate generated outputs against reference radiologist reports using BLEU-
N and ROUGE-L to capture lexical fidelity and coherence, and benchmark paraphrasing behavior of
LLMs on radiology reports, while not directly measuring clinical correctness. Among the models
compared, GPT-4o [33] achieves the highest lexical fidelity, with BLEU-4 of 28.50 ± 0.11 and
ROUGE-L of 60.17 ± 0.35, followed by MedGemma-27B [11] and Mixtral-8x7B [1]. Overall,
we observe a strong overlap compared to the ground-truth across all models, with variations solely
reflecting medical terminology choices. Examples of generated samples have been shown in Table 6
(Appendix).

Classification Analysis. We evaluate authorship classification with our style–content disentan-
glement model. GPT-4o [33] generated reports can be classified with the highest MCC 99.64 ±
0.30, followed by Mixtral-8x7B [1] with 99.55 ± 0.16 and MedGemma-27B-Text [11] with 99.10 ±
0.00. These results suggest that the model captures stable stylistic cues and that writing style differs
between human-authored reports and LLM-generated ones.

5.2 Image-to-Text (I2T)

In this section, we evaluate models R2Gen [5] and MedGemma-4B [12] on the Image-to-Text (I2T)
setting, where the task is to generate radiology reports from chest radiograph images.
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(a) T2T Dataset evaluation
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(b) I2T Dataset evaluation
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(c) T2T Classification scores
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Figure 3: Bar plot results across categories. Plots (a) and (b) show BLEU-N and ROUGE-L
scores for the text-to-text and image-to-text categories, respectively, while plots (c) and (d) present
authorship classification metrics for the same categories. In the text-to-text setting, GPT-4o [33]
achieves the highest ROUGE-L score, indicating the strongest lexical similarity to radiologist-written
reports, and also obtains the highest MCC score for authorship classification. For the image-to-text
setting, R2Gen [5] attains the best ROUGE-L score, while MedGemma-4B achieves the highest MCC
score.

Dataset Analysis As shown in Table 2, R2Gen [5] attains a ROUGE-L of 30.92 ± 0.00, while
Medgemma-4B achieves 27.93 ± 0.00. Relative to paraphrase-based text-to-text generation, these
image-to-text models show lower lexical overlap with the references, indicating reduced coherence in
the vision-conditioned setting. It is important to note that the models have already been trained on
the IU-XRAY dataset [28], and our generation is zero-shot.

Classification Analysis We observe that Medgemma-4B [12] generated reports can be perfectly
classified with an MCC of 100.00 ± 0.00, while R2Gen [5] reaches 92.37 ± 0.00. The strong MCC
score for Medgemma-4B indicates complete separability of its style from human reports. The slightly
lower MCC for R2Gen suggests that its generation is more human-like. Overall, these results show
that the disentanglement features capture consistent stylistic signals and enable reliable authorship
identification for I2T-generated reports.
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5.3 Cross-LLM Detection Results

To further validate the robustness of our classifier model, we perform out-of-dataset (OOD) evalua-
tions. In OOD experiments, the classifier is trained on generated reports of one LLM and tested on
reports of another LLM. The goal is to understand the ability of the model to disentangle and capture
unseen styles from similar content. It is important to note that the generalizability and robustness of
the model is evaluated on the MCC scores (Table 3) since it includes all elements of the confusion
matrix.

In the T2T setting, training on the GPT-4o [33] or Mixtral-8x7B [1] generated dataset yields robust
models adept at disentangling style and content. Whereas in the I2T setting, training on Medgemma-
4B [12] generated reports provides us with a more generalizable classification model. We attribute
this to the Medgemma-4B reports, which exhibit greater stylistic variations, hence exposing the
model to difficult samples. The cross-LLM results support the robustness of the style–content disen-
tanglement approach as the encoders generalizes across generators and input modalities, capturing
the differentiable stylistic cues between human and LLMs generated reports.

Train Dataset Test Dataset Accuracy F1 AUC MCC

Text-to-Text (T2T)

GPT-4o [33] Mixtral-8x7B [1] 99.41 ± 0.12 99.38 ± 0.13 99.99 ± 0.00 98.83 ± 0.25
GPT-4o [33] Medgemma-27B [11] 98.31 ± 0.00 98.23 ± 0.00 99.91 ± 0.00 96.64 ± 0.00
Mixtral-8x7B [1] GPT-4o [33] 99.48 ± 0.15 99.45 ± 0.16 99.94 ± 0.03 98.96 ± 0.30
Mixtral-8x7B [1] Medgemma-27B [11] 98.42 ± 0.00 98.34 ± 0.00 99.79 ± 0.01 96.84 ± 0.00
Medgemma-27B [11] GPT-4o [33] 98.58 ± 0.13 98.50 ± 0.14 99.91 ± 0.05 97.15 ± 0.26
Medgemma-27B [11] Mixtral-8x7B [1] 98.67 ± 0.19 98.60 ± 0.20 99.93 ± 0.02 97.34 ± 0.37

Image-to-Text (I2T)

Medgemma-4B [12] R2Gen [5] 99.32 ± 0.00 99.29 ± 0.00 99.95 ± 0.00 98.65 ± 0.00
R2Gen [5] Medgemma-4B [12] 98.42 ± 0.00 98.35 ± 0.00 99.90 ± 0.00 96.86 ± 0.00

Table 3: Cross-LLM detection. We evaluate our style–content disentanglement pipeline by training
on reports generated by one LLM and testing on reports from a different, unseen LLM. In the text-
to-text category, the model trained on Mixtral-8x7B [1] and evaluated on GPT-4o [33] achieves the
highest detection performance. In the image-to-text category, the model trained on MedGemma-4B
[12] and evaluated on R2Gen [5] demonstrates the strongest detection performance.

6 Conclusion

In this paper, we present a new 14k samples dataset of synthetic chest radiology reports that is
created through two complementary generation pathways: instruction-tuned large language models
for text-to-text generation, and vision–language models for image-to-text generation. By building
this dataset, we aim to study the problem of discerning AI-generated medical reports from human-
authored medical reports. To this end, we develop a BERT-Mamba classifier model that disentangles
style and content from the input text. Extensive experiments across three LLM generated reports
and two VLM generated reports indicate that text-to-text models can achieve very high overlap
with ground-truth radiologist reports, while image-to-text models face a more difficult challenge
because they must link visual information with language. At the same time, our authorship attribution
experiments reveal that even when the lexical overlap is strong, stylistic signals remain detectable.
The ability to classify human versus AI-authored reports with very high MCC values demonstrates
that AI-generated text carries distinctive style markers, even in the medical domain. By releasing
this dataset and benchmarks, we provide a controlled testbed for future research on the reliability,
trustworthiness, and safe deployment of AI-generated clinical narratives.
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A Technical Appendices and Supplementary Material

A.1 Ablation Studies

We conduct three ablations of the style–content disentanglement model : (1) Depth of Mamba blocks:
we vary the number of Mamba [13] blocks to measure how model depth affects performance. (2)
Encoder Architecture: we replace Mamba blocks with alternative encoders of comparable parameter
count such as transformer encoder [44] or BiLSTM [2] to test the architecture specfic gains. (3)
Training Objectives: we compare the sum of all the training objectives with variants that remove
individual loss function to quantify each component’s contribution. All models are trained on the
same splits and we report Accuracy, F1, AUC, and MCC as mean ± std over five runs.

Effect of Mamba Layer Depth. In this ablation study, we investigate the effect of encoder depth
by comparing Mamba-based architectures with varying numbers of layers (one, two, four, six and
eight). The detailed results are presented in Table 4. Overall, our findings indicate that stacking
multiple Mamba layers consistently outperforms the single-layer variant. Specifically, the two-
layer architecture yields improvements of 1.71, 1.81, 0.21, and 3.44 points in Accuracy, F1, AUC
and MCC respectively relative to the single-layer baseline. Moreover, the two-layer configuration
also outperforms the four-layer model by 0.11, 0.12, and 0.23 points in Accuracy, F1, and MCC.
The six-layer model performs comparably to the two-layer model with a drop of 0.05 points in
MCC, suggesting diminishing returns beyond a certain depth. Finally, the eight-layer architecture
underperforms the two-layer variant, with reductions of 0.18 and 0.19 and 0.36 points in Accuracy,F-1
and MCC respectively.

Encoder No. of layers Accuracy (%) F1 (%) AUC (%) MCC (%)

Transformer encoder [44] 2 99.75 ± 0.09 99.74 ± 0.10 99.99 ± 0.00 99.50 ± 0.19
Bi-LSTM [2] 2 99.41 ± 0.15 99.38 ± 0.16 99.99 ± 0.00 98.83 ± 0.30
Mamba [13] 2 99.82 ± 0.15 99.81 ± 0.16 100.00 ± 0.00 99.64 ± 0.34

Mamba [13] 1 98.11 ± 0.22 98.00 ± 0.23 99.79 ± 0.03 96.20 ± 0.44
Mamba [13] 4 99.71 ± 0.01 99.69 ± 0.11 100.00 ± 0.00 99.41 ± 0.20
Mamba [13] 6 99.80 ± 0.09 99.79 ± 0.10 100.00 ± 0.00 99.59 ± 0.19
Mamba [13] 8 99.64 ± 0.09 99.62 ± 0.10 100.00 ± 0.00 99.28 ± 0.19

Table 4: Ablation study of encoder architectures. We assess different encoder designs for our
style–content disentanglement pipeline, comparing the original two-block Mamba [13] encoder with
a single Mamba block, a two-layer BiLSTM [2], a two-layer Transformer [44], and deeper Mamba
variants (four, six, and eight blocks). The two-block Mamba encoder achieves the best performance,
suggesting it offers the right balance between capacity and generalization.

Encoder Ablation To evaluate the specific contribution of the encoder, we replace the two-layer
Mamba stack with two alternatives of the same depth: (i) a two-layer BiLSTM [2] and (ii) a two-layer
Transformer [44] encoder, holding all other components and training settings fixed. Relative to
Mamba [13], the BiLSTM [2] variant reduces Accuracy, F1, AUC, and MCC by 0.41, 0.43, 0.01,
and 0.81 points, respectively. The Transformer variant shows similar declines of 0.07, 0.07, 0.01,
and 0.14 points on the same metrics. These results indicate that the two-layer Mamba encoder is the
strongest among the tested options, consistent with better modeling of long-range dependencies.

Effect of Training Objectives. We study the impact of the training objective on detection by
training the style–content model with different combinations of the losses defined in Section 3.3:
reconstruction (Lrec), classification (Lcls), and mutual-information regularization (Lmi). All other
settings (architecture, data splits, optimization) are held fixed, and results are reported as mean ± stan-
dard deviation over five runs (Table 5). The full objective L =,Lrec + Lcls + Lmi yields the strongest
performance across Accuracy, F1, AUC, and MCC. Training with Lmi alone gives the lowest MCC
83.28 ± 0.96, and the combination Lrec+Lmi remains weaker than any setting that includes Lcls, un-
derscoring the need for explicit supervision on stylistic labels. These results suggest complementary
roles for the three terms: Lcls aligns the style representation with the authorship label space, Lrec
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maintains content fidelity and stabilizes training, and Lmi limits leakage between style and content
representations. We therefore adopt the full objective in the main experiments.

Lrecon Lcls Lmi Acc. (%) F1 (%) AUC (%) MCC (%)

↭ ↓ ↓ 98.58 ± 0.39 98.50 ± 0.41 99.87 ± 0.03 97.15 ± 0.78
↓ ↭ ↓ 99.80 ± 0.15 99.79 ± 0.16 100.00 ± 0.00 99.59 ± 0.29
↓ ↓ ↭ 91.34 ± 0.52 91.35 ± 0.49 97.22 ± 0.17 83.28 ± 0.96
↭ ↭ ↓ 99.73 ± 0.10 99.71 ± 0.11 100.00 ± 0.00 99.46 ± 0.20
↭ ↓ ↭ 98.11 ± 0.22 97.99 ± 0.23 99.88 ± 0.05 96.20 ± 0.44
↓ ↭ ↭ 99.77 ± 0.14 99.76 ± 0.15 100.00 ± 0.00 99.55 ± 0.28
↭ ↭ ↭ 99.82 ± 0.15 99.81 ± 0.16 100.00 ± 0.00 99.64 ± 0.34

Table 5: Effect of training objectives. We perform an ablation study on different combinations
of training objectives for authorship detection. A ↭ indicates inclusion and a ⇒ exclusion of the
corresponding loss. Results show that omitting reconstruction and classification losses severely
degrades performance, while the full pipeline combining reconstruction, classification, and mutual
information losses achieves the best detection accuracy, highlighting the complementary role of these
objectives.

A.2 Latent space visualization using t-SNE plots

To illustrate the effect of disentangling style from content, we visualize the learned representations
with t-SNE (two-dimensional projection), as shown in Fig. 4. Each point corresponds to a report-level
embedding produced by the encoder. In the style space, human-generated embeddings (blue) and
LLM-generated embeddings (red) form well-separated groups, indicating that authorship-related cues
are concentrated in the style representation. We use t-SNE only as a qualitative visualization. The
observed separation in the style projection agrees with our quantitative authorship results, and serves
as a visual check that the model’s style encoder captures stable, source-specific patterns.

(a) T2T – GPT-4o (b) T2T – Mixtral-8x7B (c) T2T – MedGemma-27B (d) I2T – R2Gen (e) I2T - MedGemma-4B

Figure 4: Latent space visualization. We show t-SNE projections of the learned style and content
latent representations across models. In both the text-to-text (T2T) and image-to-text (I2T) settings,
human-authored reports (blue) and LLM-generated reports (red) form distinct clusters, indicating
that the framework successfully disentangles stylistic signals. The clear separation of human and
LLM clusters across all five models further demonstrates the strength of this disentanglement.

A.3 Dataset Samples

We present representative examples from our generated dataset for both text-to-text (T2T) and image-
to-text (I2T) categories in Table 6 and Figure 5. Colored spans (violet, magenta, teal) mark lexical and
semantic divergences relative to the reference, allowing a side-by-side view of how models rewrite or
summarize the same findings. In the text-to-text cases, models tend to follow stable report templates
and differ mainly in word choices and clause order, for example, preferring “cardiac silhouette” versus
“heart size,” inserting phrases such as “no evidence of,” or reordering statements about effusions and
pneumothorax. These substitutions are often clinically equivalent but reduce n-gram overlap and
slightly shift the perceived level of certainty.
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Reference
Report GPT-4o [33] Mixtral-8x7B [1] MedGemma-27B [11]

the heart size and pulmonary
vascularity appear within normal
limits. a large hiatal hernia is
noted. the lungs are free of focal
airspace disease. no
pneumothorax or pleural
effusion is seen. degenerative
changes are present in the spine.

the cardiac silhouette and
pulmonary vasculature are

within normal limits. there is a
large hiatal hernia observed. the
lung fields are clear of any focal

airspace disease. no
pneumothorax or pleural

effusion. degenerative changes
are noted in the spine.

the heart size and pulmonary
vascularity are within normal

ranges. a significant hiatal
hernia is detected. the lungs are
clear of any localized airspace
disease. no pneumothorax or
pleural effusion. degenerative
alterations are visible in the

spine.

the cardiac silhouette is within
normal limits. The chest
radiograph demonstrates

findings consistent with streaky
airspace disease. No

pneumothorax or pleural
effusion is identified.

left lower lobe calcified
granuloma.heart size normal. no
pleural effusion or
pneumothorax. mild medial
right atelectasis. mild
emphysema.

the chest x-ray reveals a
calcified granuloma in the left

lower lobe. the heart size
appears within normal limits. no

pleural effusion or
pneumothorax. mild atelectasis
in the right medial lung region,

with mild emphysematous
changes.

there is a calcified granuloma in
the left lower lobe. The cardiac

silhouette is within normal
limits. No pleural effusion or

pneumothorax. Mild atelectasis
in the medial aspect of the right
lung. Findings consistent with

mild emphysema.

the chest x-ray demonstrates a
calcified granuloma in the left

lower lobe, with a normal heart
size. no pleural effusion or

pneumothorax. mild atelectasis
in the medial right portion of the
lung, with mild emphysematous

changes.

cardiac and mediastinal contours
are within normal limits. the
lungs are clear. bony structures
are intact

the cardiac silhouette and
mediastinal contours appear

normal. the pulmonary fields are
clear, and the osseous structures

are intact.

the cardiac and mediastinal
borders are observed to be

within normal parameters. no
abnormalities are detected
within the lung fields. the

osseous structures are intact,
with no evidence of fracture or

other trauma.

the cardiac and mediastinal
borders are observed to be

within normal parameters. no
abnormalities are detected
within the lung fields. the

osseous structures are intact,
with no evidence of fracture or

other trauma.

the lungs are clear bilaterally.
specifically, no evidence of focal
consolidation, pneumothorax, or
pleural effusion. cardio
mediastinal silhouette is
unremarkable. visualized
osseous structures of the thorax
are without acute abnormality.

the bilateral lung fields are clear,
with no signs of focal

consolidation, pneumothorax, or
pleural effusion observed. the
cardiomediastinal silhouette
appears unremarkable. the

visualized bony structures of the
thorax do not demonstrate any

acute abnormalities.

the lungs show no signs of
abnormalities bilaterally, with

no focal consolidation,
pneumothorax, or pleural

effusion observed. the cardiac
and mediastinal shadow is
unremarkable. the thoracic

osseous structures are devoid of
any acute changes.

the lungs are clear bilaterally
without evidence of

consolidation, pneumothorax, or
pleural effusion. The

cardiomediastinal silhouette is
within normal limits. Visualized
thoracic osseous structures are

unremarkable.

well circumscribed 11 mm right
upper lobe nodule, unchanged
appearance from previous
examination 7 years ago. the
trachea is midline. negative for
pneumothorax, pleural effusion.
the heart size is normal.
redemonstrated syndesmophyte.

the chest x-ray reveals a
well-defined 11 mm nodule

located in the right upper lobe,
with no change in appearance
since the previous examination
conducted seven years ago. the

trachea is positioned at the
midline. there is no evidence of

pneumothorax or pleural
effusion. cardiac silhouette
appears normal in size. a

syndesmophyte is again noted.

the chest x-ray reveals a
well-defined 11 millimeter

nodule in the right upper lobe,
with no alteration in appearance

compared to the examination
conducted 7 years prior. the

trachea is centrally located. no
evidence of pneumothorax or

pleural effusion is detected. the
heart size is within normal

limits. a syndesmophyte is once
again visualized.

A well-circumscribed 11 mm
nodule is identified in the right

upper lobe, stable in appearance
compared to a prior examination
from 7 years ago. The trachea is
midline. No pneumothorax or

pleural effusion is present.
Cardiac silhouette is within

normal limits. A syndesmophyte
is again noted.

Table 6: Text-to-text (T2T) examples from our chest radiology dataset. We present five examples
from our generated dataset for different instruction-tuned LLMs. Colored words highlight lexical
and semantic differences from the reference reports in the IU-Xray dataset [28]. A homogeneous
reporting style is observed in the LLM-generated reports, mainly through paraphrasing. We use
violet for GPT-4o [33], magenta for Mixtral-8x7B [1], and teal for MedGemma-27B [11] to show the
lexical differences.

By contrast, image-to-text outputs show greater variation in phrasing and brevity, reflecting the added
difficulty of linking visual cues to text. Descriptions may generalize findings (“clear lungs” vs. “no
focal airspace disease”) or omit modifiers such as laterality and degree (“mild,” “streaky”), which
contributes to lower lexical overlap with the references. Overall, the qualitative patterns in Table 6
reflect the quantitative results.

A.4 Dataset Generation Hyperparameters

We construct our synthetic dataset using a diverse set of large language models (LLMs), including
GPT-4o [33], Mixtral-8x7B [1], and MedGemma-27B [11]. To ensure variability and control over text
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Figure 5: Dataset samples from Image-to-Text settings. We showcase three examples from our
generated dataset designed using vision-language model (VLM). Each example includes the input
image(s), the corresponding ground truth report, and a standardized prompt. Both the reference and
generated reports are provided. Words that appear in both reports are highlighted in green, words
unique to the reference report are shown in violet, and words unique to the generated report are
shown in orange. The prompt text is highlighted in blue.
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Model Top-p Temperature Max new tokens Min words / sample Max words / sample Avg words / sample

GPT-4o [32] 1.0 0.7 512 8 155 41.10
Mixtral-8x7B [1] 0.90 0.6 256 7 154 43.54
MedGemma-27B [11] 0.90 0.7 256 9 130 36.08
R2Gen [5] – – – 14 46 31.85
Medgemma-4B [12] – – 384 17 126 36.02

Table 7: Data generation hyperparameters. We report the hyperparameters used to generate
synthetic radiology reports across LLMs along with word-level statistics of the outputs. Decoding
was performed with temperatures of 0.6–0.7 and top-p values of 0.9-1.0, balancing diversity with
clinical consistency. Average word counts are also provided, highlighting differences in verbosity
and style across models.

generation, we employ several key hyperparameters, namely temperature, top_p, and max_new_tokens
[16].

The temperature parameter adjusts the sharpness of the probability distribution over the vocabulary,
thereby influencing the degree of randomness in token selection; lower values promote more de-
terministic outputs, whereas higher values encourage greater diversity. The top_p parameter, also
referred to as nucleus sampling, restricts token selection to the smallest subset of candidates whose
cumulative probability mass exceeds a specified threshold p, balancing quality and diversity in the
generated text. Finally, the max_new_tokens parameter sets an upper bound on the number of tokens
generated, thereby constraining the overall length of each synthetic report. We employ a temperature
range of 0.6 to 0.7, which calibrates the LLMs to avoid outputs that are either overly random or
excessively deterministic, thereby maintaining both variability and consistency across generations.
The values are listed in Table 7.

A.5 Discussion, Limitations, and Future Work

Our novel dataset for chest radiology report generation with large language models (LLMs) and image-
to-text models achieves strong lexical performance. The detection pipeline, leveraging style–content
disentanglement, yields consistently high MCC scores in the range 92%–100% across both same-and
cross-LLM evaluations. Ablation studies show that our proposed BERT–Mamba encoder with two
mamba blocks outperforms BiLSTM and Transformer baselines, while combining reconstruction,
classification, and mutual information losses achieves the best MCC, underscoring their importance
for effective disentanglement. While text-to-text (T2T) systems often match the wording and structure
of reference reports, image-to-text (I2T) systems lacks the similar lexical fidelity. The main difficulty
is linking visual cues in radiographs to precise language: small or low-contrast findings are easy to
miss, and models can struggle with laterality, negation, and uncertainty. As next steps, we plan to
fine-tune vision–language models with radiology-specific signals such as section labels and structured
findings. We also plan extend the dataset to other categories in radiology and include a broader set of
instruction-tuned and vision models.
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