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ABSTRACT

Learning from a limited number of samples is difficult as a small number of sam-
ples cannot cover all the information in their class. It is worth noting that classes
with scarce samples may be distributed in a way that is related to classes that
contain sufficient data. Therefore it is possible to calibrate the distribution of a
sample-poor class by using classes with a large amount of data. Existing methods
of distribution calibration usually use artificially set distances to calculate the as-
sociation between two classes, which may ignore deeper relations between them.
In this paper, we propose a distribution calibration method based on Bayesian
relation inference. For the input few-sample classes, it can automatically infer
their relation with the classes with sufficient data and adaptively generate a large
amount of fusion feature data that can represent the few-sample classes. The re-
sults show that a simple logistic regression classifier trained by using the large
amount of data generated by our method, exceeds state-of-the-art accuracy for
skin disease classification issue. Through visual analysis, we demonstrate that
the relation graphs generated by this Bayesian relation inference method have a
degree of interpretability.

1 INTRODUCTION

In recent years, deep learning methods have been extremely successful in a variety of fields, such
as image classification Lin et al. (2020); Yan et al. (2016), disease diagnosis Shen et al. (2019),
thanks to the vast amount of available training data. In practice, however, the use of deep learning
is greatly limited by the difficulty of obtaining a sufficient amount of training data for some tasks
due to the scarcity of individuals and ethical issues Wang et al. (2020). This is most common in
the medical field Zhu et al. (2020). In the case of dermatology, for example, classification of skin
diseases from images is one of the key steps to the diagnosis of skin diseases. However, due to
the diversity and complexity of diseases, it is difficult to obtain enough image data for many skin
diseases. Even with human experts, the diagnosis is often subjective and inaccurate when there is
insufficient data. Therefore, how to learn the right knowledge using a very small number of samples
is an important area of research in artificial intelligence. There has been much work attempting to
learn from a small number of samples of data, with early research typically using meta learning Finn
et al. (2017) and metric learning algorithms Vinyals et al. (2016); Snell et al. (2017), which suffer
from the difficulty of fully portraying class distributions with a small amount of data, resulting in
lower accuracy. More advanced algorithms nowadays often use data augmentation methods to give
the model better generalization abilities Zhou et al. (2021); Zhang et al. (2018). One of the most
widely used methods is the distribution calibration of a small sample of classes by a known base class
containing more data Yang et al. (2021b;a). However, most of the existing distribution calibration
methods use artificially set metrics, such as the Euclidean distance between distributions Yang et al.
(2021a), to perform similarity calculations between classes. While these methods yield relations
between classes to a certain extent, such relations are often one-sided and it is difficult to capture
potential relations between classes due to the complexity of the actual scenario (e.g. dermatological
classification). In addition, it is difficult to fully characterise the relation between a small sample
class and the base classes in a single relation strength judgement, as there is bound to be more or
less variability between the classes.

To address the above challenges, we propose a few-shot learning method based on Bayesian rela-
tional inference, which can automatically infer potential distributional relations between classes and
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generate a large number of Bayesian relation intensity graphs from multiple perspectives. Based on
the large number of relation intensity graphs from different views fusing the characteristics of the
base class distribution, the characteristics of the input target class are inscribed. Specifically, the
main contribution points of the proposed model are summarized as follows:

• For the challenge of insufficient sample size, the model uses base classes containing more
data to perform distribution calibration for a small sample class, generating a large num-
ber of feature embeddings that can represent small samples and alleviate the challenge of
insufficient sample size.

• For the challenge that the current distribution calibration methods cannot infer potential re-
lations between classes, we propose a Bayesian relation inference module to automatically
infer potential relations between the small sample classes and the base classes without
setting evaluation metrics manually. Besides, it and can make full use of the features of
different base classes.

• For the challenge of large uncertainty in the relation between classes, we propose a multi-
view Gaussian relation graph generation module to generate inferred graphs of the rela-
tionship between base classes and small sample classes from different angles, which can
comprehensively portray the relations between classes.

2 RELATED WORKS

How to learn the right knowledge with very few samples is the goal of few-shot learning, and there
has been many researches addressing this issue. According to the different methods used, few-shot
learning is mainly divided into model-based fine-tuning, transfer-based learning and data augmenta-
tion. Fine-tuning is the most traditional method for few-shot learning. Early work was usually pre-
trained on large datasets and later fine-tuned on few-shot datasets Howard & Ruder (2018); Naka-
mura & Harada (2019). Some researchers use meta-learning methods to improve the fast adaptation
of models Finn et al. (2017); Rusu et al. (2018); Nichol et al. (2018). Finn et al. use meta-learning
methods to optimise the gradient descent procedure so that the model can solve new learning tasks
with a small number of gradient descent steps and a small number of samples Finn et al. (2017).
Some other researchers have proposed algorithms based on metric learning Bertinetto et al. (2018);
Oreshkin et al. (2018), such as Matching Networks Vinyals et al. (2016) and Prototypical Networks
Snell et al. (2017).

Data augmentation techniques have been widely used in advanced few-shot learning methods Chen
et al. (2019); Yang et al. (2021a). Some researchers have introduced unlabelled data to improve
model accuracy Ren et al. (2018); Liu et al. (2018). Ren et al. added unlabelled data to the Prototyp-
ical Networks Snell et al. (2017) to improve model performance Ren et al. (2018). Some researchers
have used contrast learning methods for few-shot learning. For example, Yang et al. Yang et al.
(2022) used a combination of contrast learning and meta-learning for few-shot learning. These
methods achieved better results, however they did not focus on the relations between classes.

Some researchers have attempted data augmentation by analysing the relations between classes.
Yang et al. used the Euclidean distance between the mean and variance of the class distributions
to infer the relationships between classes Yang et al. (2021a). These methods obtain relations be-
tween classes, however, they are unable to infer the underlying relations between classes, leading to
limitations in the model.

To address these challenges, we propose a few-shot learning method based on Bayesian relational
inference method that automatically inferred various relations between classes, generating enhanced
fusion features that is more representative of the classes with insufficient data.

3 BAYESIAN DISTRIBUTION CALIBRATION

The overall framework of the proposed Bayesian distribution calibration method is shown in Figure
1. The data set is divided into four parts: base classes, training set, validation set and test set. The
base classes are representative classes containing a large amount of data. The training process is a
multi-classification task, which trains the Bayesian relation inference component to automatically
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learn potential relations between classes. In the validation and testing process, we design a multi-
view Gaussian graph generation component to generate a large number of relation graphs that can
represent the potential relations between the target class and base classes. The final classification
results are output by training a simple logistic regression classifier. Specifically, we put all the
images in the dataset into the pre-trained Resnet18 feature extractor and use the generated features
as feature embeddings for input to the Bayesian relational inference component. For the embeddings
of base nodes, we use the mean of all embeddings in each class as node embeddings for relation
inference. The node embeddings of base class nodes are calculated as shown below:

Nbi = mean(
∑

XY =yi

fRes18(XY=yi
)) (1)

where XY=yi represents the input images labeled yi, yi represents basenode classes, fRes18 repre-
sents the pretrained Resnet18 model, and Nb ∈ RKb×Kf represents the embeddings of base class
nodes. mean(·) stands for mean value calculation. Overall, The core ideas of our model are sum-
marized as follows:

• Due to the scarcity of samples in some of the classes, we generate a sufficient number of fu-
sion features by inferring the relations between the target class and base classes containing
sufficient data.

• Due to the complexity of the relations between classes and the existence of many potential
relations, we propose an automatic relation inference method based on the idea of VAE
Kingma & Welling (2013). The method does not use a manually designed distance calcu-
lation method, and can adaptively infer the relations between target class and base classes,
and generate inter-class relation intensity graphs.

• As the relations between classes are difficult to represent in a single relation graph, we pro-
pose a multi-view Gaussian graph generation method to generate multiple Gaussian relation
graphs from different perspectives and generate data that can represent the distribution of
the target class based on the Gaussian graphs from different views.

3.1 BAYESIAN RELATIONAL INFERENCE

How to make the model automatically learn potential relations between classes is challenging; there
is some variation between classes as well as many similarities. In the case of skin diseases, for
example, eczema and ringworm are divided into two classes due to their different etiologies, but
both can cause itchy erythematous papules with a degree of similarity in images. Some diseases,
although more different in image, may be very similar in terms of etiology, etc., and have a strong
underlying association. Our proposed Bayesian relation inference method can effectively capture all
types of relations between different classes, and its specific architecture is shown in Figure 2.

First, we generate edge embeddings from the input target class embedding and the node embeddings
of the base classes to facilitate subsequent relation inference. Specifically, we stitch the target em-
bedding to each base class embeddings separately and compute its edge embedding through a linear
neural network. The edge embeddings are computed as shown below:

Ee = fθ ([Nt,Nbi ]) (i ∈ [1, 2, . . . ,Kb]) (2)

where Kb represents the number of base class nodes, Nt ∈ RKf represents the target node em-
bedding, Nb ∈ RKb×Kf represents the base node embeddings, [Nt,Nbi ] ∈ R2Kf represents the
splicing of target node embedding and the ith base node embedding, fθ represents a linear neural
network, and Ee ∈ RKb×2Kf represents the generated edge embeddings.

Coupling is one of the key steps in relational inference, and its purpose is to generate a summary
graph of the relationship between the target class and the base class based on the edge embeddings.
The relations between the classes are uncertain and complex. Besides, recent work mentions that
humans engage in a myriad of unconscious perceptions when performing relation thinking which
can be viewed as a sampling of a binomial distribution with n → ∞ and λ → 0 Huang et al. (2020).
Hence we assume that the summary graph of the coupling is a sampling of a binomial distribution
B(n, λ ) with n → ∞ and λ → 0. However, due to the n → ∞ of this binomial distribution,
we cannot directly solve for the specific values of the edges of the summary graph. Based on De
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Figure 1: The overall architecture of the proposed Bayesian relation inference based distribution cal-
ibration for few-shot learning. With the Bayesian relation inference component, a summary graph of
the relations between the target class and base classes can be obtained. Depending on the randomly
generated Gaussian variables associated with the edges of the summary graph, a Gaussian graph
that further represents the relations between the classes can be obtained from different views. In the
training phase, we train a linear classification head, while in the validation and testing phases, we
train a simple logistic regression classifier for few-shot classification tasks.
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Figure 2: Detailed architecture of the Bayesian relation inference component. Inspired by VAE,
we adopt two neural networks to fit the mean and variance of the summary graph, it can be then
generated by these two figures. The summary graph can serve downstream tasks.

Moivre Laplace theorem and existing work Huang et al. (2020), we can convert this to a sampling
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of a Gaussian distribution by the following conversion (Please refer to the supplementary material
A.3.1 for the correctness of this conversion):

ni = ζ ( Lmean (Eei) ) + ϵ (3)
σi = ζ ( Lstd (Eei) ) (4)

mi =
1 + 2ni σ

2
i −

√
1 + 4n 2

i σ 4
i

2
(5)

where ζ(·) is softplus function, Ee ∈ RKb×2Kf is the edge embedding generated in Eq.(2), ϵ is
a very small constant, Lmean(·) and Lstd(·) are implemented by neural networks for estimating
the mean and standard deviation of the Gaussian distribution N

(
µi, σ

2
i

)
which can calculate the

approximation of the binomial distribution B(n, λi ) with n → ∞ and λi → 0, and M ∈ RKb is
the summary graph which each mi ∈ M is the sampling of the Gaussian distribution N

(
µi, σ

2
i

)
and can strengthen the representation of the target class in relation to the base classes.

3.2 MULTI-VIEW GAUSSIAN GRAPHS AND FUSION FEATURE GENERATION

The summary graph can represent the relationship between the target class and the base class to some
extent. However, in practice, the relations between classes are not invariant, and a single graph is a
one-sided representation of the relations. In addition, due to the complexity of the relations between
classes, the summary graph may be thickened by some unimportant relationships, which is not
conducive to the construction of fusion features. In order to fully explore the important connections
between classes and to generate enough sample data for downstream task, we propose a multi-
view Gaussian graph generation method, which can generate a large number of sparse graphs that
can represent the relations between classes from different views. Specifically, we introduce a large
number of Gaussian variables associated with the edge weights of the summary graph to update its
edge weights. For each view, the Gaussian graph is generated as follows:

α̃i =
√

(mi × (1.0−mi))× εi +mi (6)

si = mmean
i × α̃i + mstd

i ×
√

α̃i × ε′i (7)

ᾱi = si × α̃i (8)
αi = ζ (L (ᾱi) ) (9)

where mi ∈ M is the approximation of the edges of the summary graph obtained in Eq.(5), ε and ε′

are the standard Gaussian random variable of the same dimension as M ∈ RKb , mmean
i and mstd

i

represent the mean value and standard deviation of the Gaussian distribution N
(
µi, σ

2
i

)
which can

calculate the approximation of the binomial distribution mentioned in Section 3.1. By theorem 1
in supplementary material A.3.1, α̃i is a good approximation to this binomial distribution sampling.
Ã = {α̃1, α̃2, . . . , α̃nb

} is the Gaussian graph representation, S is the task-related Gaussian vari-
able, Ā = {ᾱ1, ᾱ2, . . . , ᾱnb

} is the Gaussian transformation graph, A = {α1, α2, . . . , αnb
} is the

Gaussian relation graph, ζ(·) is softplus function, and L(·) is linear function. For different views, ε′
are regenerated to form Gaussian graphs in diverse perspectives

Ǎ = {A1,A2,A3 . . . ,Ang} (10)

where ng represents the number of Gaussian graphs, Ǎ represents the multi-view Gaussian graphs.

To prevent the size of the generated Gaussian graph edges from unnecessarily affecting the generated
data, we used a normalisation method to change the size of all edges to between -1 and 1, where a
negative number represents a negative correlation between the base class and the target class, and
a positive number represents a positive correlation between the two classes. Finally we generate
fusion features by multiplying the edge size with the corresponding base class as the calibration
value of that base class for the target class. This is calculated as follows:

A′
i =

2×Ai −Amax −Amin

Amax −Amin
(11)
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Ǎ′ = {A′1,A′2,A′3 . . . ,A′ng} (12)

for each normalised Gaussian graph A′i, a fusion feature embedding of target class can be generated
as follow:

Ei
out =

Nb ⊗A′i∑
j

∣∣A′i
j

∣∣ (i ∈ [1, 2, . . . , ng]) (13)

where Nb represents the embeddings of base class nodes, Eout represents the fusion feature embed-
dings which can represents the distribution of the target class. In the training phase, we only gen-
erated a Gaussian relation graph and the corresponding fusion features in order to facilitate model
optimization:

Etrain
out =

Nb ⊗A′∑
j

∣∣A′
j

∣∣ (14)

3.3 LEARNING OF BAYESIAN RELATIONAL INFERENCE

In order to train the Bayesian relational inference component more effectively, inspired by VRNN
Chung et al. (2015), we used a graph variational inference method to train the model and use the
evidence lower bound (ELBO) for joint learning and inference. We use two random variables need
to be optimised to describe the same random process data. Specifically, we use a Gaussian graph
as the posterior graph q

(
Ã,S | Nt,N1:nb

)
, where the random variables Ã and S can describe the

same stochastic process, and the mean and variance of the prior graph p
(
Ã,S | Nt,N1:nb

)
we fit

using a linear neural network separately. Our goal is to maximize the following ELBO:

M∑
i=1

(
KL

(
q
(
Ãi,Si | Nt,N1:nb

)
∥p

(
Ãi,Si | Nt,N1:nb

)))
(15)

where M is the number of Gaussian relation graphs generated in one batch. q
(
Ãi,Si | Nt,N1:nb

)
is the prior graph, p

(
Ãi,Si | Nt,N1:nb

)
is the posterior graph, Ã is the Gaussian graph presenta-

tion, and S is the task-related Gaussian variable. Since each variable in S is affected by Ã in Eq.(6),
we have si | α̃i ∼ N

(
α̃i ∗ µi, α̃i ∗ σ2

i

)
. Besides, each element in Gaussian graph is conditioned on

the Binomial variable for the same edge of the summary graph. Hence The KL term can be further
written as:

Kb∑
i

{
KL

(
B(n, λi )∥B

(
n, λ

(0)
i

))

+Eα̃i

[
KL

(
N ( α̃i ∗ µi, α̃i ∗ σ2

i )∥N
(
α̃i ∗ µ(0)

i , α̃i ∗ σ(0) 2

i

))]} (16)

The calculation of this KL term does not depend on the random variable S. By this equation we
avoid the need to find the KL term for a large number of multi-view Gaussian graphs, which greatly
simplifies the calculation. In Eq.(16), obviously the second term can be calculated, while the first
term is tough to calculate because n→∞. According to recent researches Liu & Jia (2023); Huang
et al. (2020), we can convert it into an easy-to-solve value to approximate the calculation (Please
refer to the supplementary material A.3.2 for the calculation of this value).

4 EXPERIMENTS

4.1 DATASET

We use the Dermnet dataset1, which contains 23 broad classes of dermatology images and can be
manually divided into more detailed classes. The images in the dataset are in JPEG format, con-
sisting of 3 channels, i.e. RGB. The resolutions vary from image to image, and from class to class,

1https://dermnet.com
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but overall these are not extremely high resolution imagery.The classes include acne, melanoma,
Eczema, Seborrheic Keratoses, Tinea Ringworm, Bullous disease, Poison Ivy, Psoriasis, Vascular
Tumors, etc. To accommodate the few-shot classification task, we preprocess the dataset as de-
scribed in Supplementary Material A.2.

4.2 COMPARISON EXPERIMENTS

To validate the effectiveness of the proposed model, we compare it with different baseline methods
for few-shot learning. The baseline methods we compare are shown in Supplementary Material
A.1.1.

Table 1: Comparison of Bayesian distribution calibration(BDC) and baselines on Dermnet dataset

Method 5way1shot(%) 5way5shot(%)
MAML 44.05 60.17

PN 43.76 60.22
MN 44.23 61.13
DC 48.99 66.75
tSF 49.38 68.15

GAP 48.92 68.89
BDC(Ours) 50.59 70.03

For a fair and meaningful comparison, we use the same setting to conduct comparisons with state-
of-the-arts (SOTAs) on the Dermnet dataset. For all methods, we use Resnet18 pretrained model
as the feature backbone and the dataset is divided in the same way as our method is set up. The
experimental results show that our model achieves state-of-the-art performance at 5-way 1-shot and
5-way 5-shot experiment respectively. Traditional methods such as MAML, MN and PN have ad-
dressed the problem of few-shot learning tasks to a certain extent, but still suffer from problems
such as lack of accuracy. Distribution Calibration(DC), a more advanced base-classes-based data
augmentation method, uses the Euclidean distance between the mean and variance of features as a
criterion for evaluating relations between classes, and has achieved greater success in few-shot clas-
sification tasks. However, as the manually set Euclidean distance has the disadvantage of not being
able to evaluate the potential relations between classes, there is still some room for improvement in
the classification accuracy of this method. Our model uses Bayesian relation inference methods to
automatically infer relations between classes, allowing further improvements in classification accu-
racy. It can be seen that the classification accuracies obtained in 5-way 1-shot and 5-way 5-shot of
our model are 50.59%, and 70.03%, respectively. Recent methods attempts to improve the perfor-
mance of the model on few-shot classification tasks from different aspects, such as the introduction
of transformer-based semantic filters Lai et al. (2022) and the Geometry-Adaptive Preconditioner
Kang et al. (2023). These state-of-the-art methods substantially improve the performance of the
model. However, they ignore the potential relations between the new class and the base classes, and
our model outperforms them.

4.3 ABLATION EXPERIMENTS

In order to demonstrate the role of the individual components involved in the proposed Bayesian
distributional calibration approach, we conducted a number of ablation experiments to quantify
their enhancements to model performance. Specifically, we designed three variants of Bayesian
distributional calibration including:

• Self-distribution Calibration (SDC), which uses the self-attention method for distribution
calibration without base classes.The detailed architecture of this model is shown in Supple-
mentary Material A.5.

• DIstribution Calibration (DC), which introduces base classes to aid in distribution calibra-
tion.

• BDC using Summary Graph (BDC-S), which introduces Bayesian relation inference
method and taking summary graphs as relation intensity graphs.
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Table 2 shows the performance of variant models on the derm dataset for 5way-1shot and 5way-
5shot classification tasks. Among all the models, the performance of SDC is the worst, even lower
than that of the traditional few-shot learning methods. This is due to the fact that The feature dis-
tribution of a single sample itself is highly randomized. Even with extensive training, it is difficult
for a model to learn the real distribution of its class from a single image. The performance of DC
is greatly improved due to the introduction of base classes assistance for distribution calibration
of the input features. However, using the traditional Euclidean distance still cannot fully represent
the association between base classes and target class. BDC-S generates more robust relation inten-
sity graphs due to the introduction of the Bayesian relation inference method. The proposed model
(BDC) introduces the Gaussian graph transform method based on the summary graph generated by
BDC-S, and the obtained relation intensity graphs are more able to highlight the potential connec-
tions between classes, and the fusion features generated can better serve the downstream tasks, thus
obtaining the best performance.

Table 2: Comparison of Bayesian distribution calibration(BDC) and baselines on Dermnet dataset

Method 5way1shot(%) 5way5shot(%)
SDC 33.20 43.58
DC 48.99 66.75

BDC-S 49.76 67.96
BDC(Ours) 50.59 70.03

4.4 COMPARISON OF CONVENTIONAL ALGORITHMS AND FEW-SHOT LEARNING
ALGORITHMS

In few-shot learning algorithms, training a model using conventional algorithms can be difficult due
to the large number of categories and the fact that the data for most of the categories is scarce.
We divide the test set of the Dermnet dataset in a ratio of 8:2 into a new training and test set.
Then we generate a conventional algorithm model by replacing the few-shot classification part of
the Bayesian relational inference model with a linear classification head. We freeze the Bayesian
relation inference module and fine-tune the classification head on the new training set and test it
on the new test set. We compare the accuracy of this algorithm with that of the few-shot learning
algorithms on the 5-way 1-shot task. The experiment result is shown in Table 3.

Table 3: Comparison of few-shot algorithms and conventional algorithm on Dermnet dataset

Method Acc(%)
MAML 44.05

PN 43.76
MN 44.23
DC 48.99
tSF 49.38

GAP 48.92
BDC + Conventional Algorthms 43.50

BDC(Ours) 50.59

The result shows that the conventional algorithm’s accuracy is similar to that of the early few-shot
algorithms on the 5-way 1-shot task. It is worth noting that traing the conventional algorithm is
time-consuming and overall performs less well than the few-shot algorithms.

4.5 VISUALISATION ANALYSIS

To demonstrate the effectiveness of the relation inference graphs generated by our model, we visu-
alise the relation graphs for different images, as shown in Figure 3. Specifically, we randomly select
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images as target classes and take the average of the generated multi-view Gaussian graphs as the
output. We visualise the strength of the relation between the target class and base classes in the form
of a heat map, and select three base classes with strong positive correlations and three base classes
with strong negative correlations for visual comparison with the target class image respectively.

The target class picture 1 is Perioral Steroid, which belongs to the Acne and Rosacea Photos major
class in the Dermnet dataset. It can be seen that the onset of the disease in the image is mainly diffuse
inflammatory response, which is similar to the symptoms of the base classes with a strong positive
correlation, and it is noteworthy that the onset of the disease in target image 1 is on the lip, but the
lip is not regarded as a basis for strong correlation in our relation inference model, but rather a more
specialized onset symptoms as the main basis. In addition, it can be seen from the visualisation
results that the onset symptoms of the three diseases with the strongest negative correlation with the
target image 1 are clearly different from it. Meanwhile, the common onset sites of these three skin
diseases are also different, which can demonstrate that the relations learned by the proposed model
do not use the onset site as the main judgment indicator.

The target class picture 2 is tufted-folliculitis, which belongs to the Hair Loss Photos Alopecia and
other Hair Diseases major class. It is worth noting that the target class image and the base class with
which it has the strongest positive correlation are in the same major class in the Dermnet dataset, and
it is also clear from the specific images that both disease classes result in some degree of hair loss
and have a strong association. Correspondingly, the three base classes with the strongest negative
correlations with the target images also show the differences between the classes more visually in
the images.

Through visual analysis, we believe that the proposed model is interpretable and able to focus on
deeper relations between different disease classes, facilitating its use in medical scenarios.
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Figure 3: Visual analysis of the relationship graph generated by the proposed model. The heat map
represents the association between the target image and the 23 base classes, with lighter colours
representing positive correlations and darker colours representing negative correlations. The visual
analysis shows that the proposed model is able to automatically infer the relation between the target
disease and the base diseases based on the onset symptoms of the input images and adaptively
generate relation graphs for better distribution calibration of target images.

5 CONCLUSION

We present a novel distribution calibration method based on Bayesian relation inference to solve
the few-shot learning problem. To the best of our knowledge, this is the first attempt to combine
the Bayesian relational inference method with distribution calibration. Specifically, we select some
classes containing a large amount of data as the base classes, then infer the relation between the
few-shot data and the base classes by Bayesian relation inference, and generate multi-view Gaussian
relation graphs. The multi-view Gaussian relation graphs generated by the model are not only good
at inferring potential relations between classes, but also solves the problem of uncertainty in the
relations between them. With the multi-view relation graphs, we use the base classes to calibrate the
distribution of the few-shot classes. We conduct extensive experiments on the Dermnet dataset and
the experimental results show that our model achieves state-of-the-art results to date.
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