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Abstract
In this paper we consider the use of tiered background knowledge within constraint based causal
discovery. Our focus is on settings relaxing causal sufficiency, i.e. allowing for latent variables
which may arise because relevant information could not be measured at all, or not jointly, as in
the case of multiple overlapping datasets. We first present novel insights into the properties of
the ‘tiered FCI’ (tFCI) algorithm. Building on this, we introduce a new extension of the IOD
(integrating overlapping datasets) algorithm incorporating tiered background knowledge, the ‘tiered
IOD’ (tIOD) algorithm. We show that under full usage of the tiered background knowledge tFCI
and tIOD are sound, while simple versions of the tIOD and tFCI are sound and complete. We
further show that the tIOD algorithm can often be expected to be considerably more efficient and
informative than the IOD algorithm even beyond the obvious restriction of the Markov equivalence
classes. We provide a formal result on the conditions for this gain in efficiency and informativeness.
Our results are accompanied by a series of examples illustrating the exact role and usefulness of
tiered background knowledge.
Keywords: Causal inference, graphical models, multi-cohort studies, temporal structure

1. Introduction

This work aims at exploiting tiered background knowledge for constraint-based causal discovery.
The focus, here, is on relaxing causal sufficiency, i.e. allowing for latent variables which may arise,
for instance, because relevant information could not be measured jointly or not at all. The former
occurs in cases where datasets stem from e.g. different studies that have some but not all measured
variables in common. We then speak of multiple (partially) overlapping datasets.

In classical constraint-based causal discovery algorithms, such as the PC (Spirtes et al., 2000)
and FCI algorithms (Spirtes et al., 1999; Zhang, 2008), the entire joint independence structure of
the data is available, where the FCI algorithm allows for latent variables, i.e. unmeasured common
causes of measured variables. The Integrating Overlapping Datasets (IOD) algorithm (Tillman and
Spirtes, 2011) extends the FCI to multiple datasets, i.e. multiple independence structures that are
each marginal over those variables in the other datasets that they do not contain. Allowing for latent
variables clearly induces a lower degree of identifiability of causal relations. It is therefore important
to efficiently use any available background knowledge to improve identifiability. We focus on tiered
background knowledge which arises in temporal data, in particular in cohort studies where multiple
datasets occur for instance in multi-cohort designs (O’Connor et al., 2022).
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As the IOD algorithm builds on the FCI algorithm, we first consider incorporating tiered back-
ground knowledge into the FCI and build on this to propose an IOD algorithm exploiting tiered back-
ground knowledge; we refer to these as the ‘tiered’ FCI/IOD, or ‘tFCI/tIOD’ algorithms. While the
tFCI algorithm has been implemented (Scheines et al., 1998; Chen and Malinsky, 2023; Petersen,
2023) and applied (Lee et al., 2022) before, to our knowledge, only a few formal results have been
proven. Therefore, we provide a formal description of the tFCI algorithm and, as a step towards
showing correctness of the tIOD, we show correctness of the tFCI.

While algorithms like the FCI represent lack of identification in form of non-directed edges,
the output of the IOD algorithm is often more complex: Not only does it allow for different edges
within an equivalence class (represented as PAG), but it can also comprise of different equivalence
classes. Background knowledge is then useful in two regards: To restrict the equivalence classes and
to reduce the number of possible equivalence classes. The proposed tIOD algorithm outputs a set of
graphs that are all consistent with the information available in all datasets and with the known tiered
ordering. Moreover, we show that with tiered background knowledge we can reduce the number of
of possible equivalence classes even without orienting any additional edges.

The motivation for our work is to be able to use data from multiple cohort studies (multi-cohorts)
to learn causal structures across long time spans. Cohort studies are common in life sciences, such
as life course epidemiology (Kuh and Ben-Shlomo, 2004), but the results here are valid for any
type of data that has a tiered ordering. Tiered background knowledge is known to not only improve
the informativeness of the estimated graphs (Bang and Didelez, 2023), but also the accuracy of
discovery algorithms in finite samples (Bang et al., 2024). While these previous results are limited
to the case of causal sufficiency and a single dataset, the present work relaxes these assumptions.

1.1. Related work

A precursor of the IOD algorithm was the Integrating Overlapping Networks (ION) algorithm (Till-
man et al., 2008). Building on the IOD, Dhir and Lee (2020) propose orienting directed edges in
the IOD algorithm using a bivariate causal discovery algorithm, but assume causal sufficiency and a
particular data generating model. Huang et al. (2020) introduce two approaches that learn the entire
DAG over multiple overlapping datasets under assumptions of linearity and non-Gaussianity. Other
work on causal discovery for overlapping datasets first learns the individual models and then com-
bines them using a SAT solver (Triantafillou et al., 2010; Tsamardinos et al., 2012; Triantafillou and
Tsamardinos, 2015). We believe that constraint-based approaches are preferable, specifically with
cohort data, since the data is likely to have missing values and mixed variable types with non-linear
relations, and constraint-based methods can accommodate these issues flexibly (Witte et al., 2022).

1.2. Overview

In Section 2, we give an introduction to the type of data setting that motivates our work. Section
3 formally introduces (tiered) background knowledge and restricted equivalence classes, while an
overview and background on the general framework is provided in Appendix A. In Sections 4, 5
and 6 we describe the tFCI and tIOD algorithms, and investigate their properties. In Section 7 we
discuss the assumptions and limitations of the proposed approaches. We include pseudo-algorithms
in Appendix B and proofs in Appendix D.
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2. Overlapping cohort studies

Our work is motivated by the wish to combine different cohort studies, i.e. separate temporally
structured datasets, for causal discovery with the ultimate aim of learning causal pathways over
long time spans. It has been argued that multi-cohort designs can considerably advance life course
research (O’Connor et al., 2022). The hope is to obtain a better understanding of e.g. how modifiable
factors in early life and childhood affect health outcomes in adulthood and old age. An illustration
is given in in Figure 1. The datasets might overlap in different aspects: Some may have taken
measurements during the same period on the same and different variables, as the international and
national children cohort studies in Figure 1; or they contain measurements of the same concept (e.g.
‘healthy eating’) at different time points, as the children’s cohort studies and the adult health study
with common measurements in adolescence.

time point

variable measured

dementia
comorbidities

smoking
media consumption

BMI

well-being
healthy eating

physical activity
breastfeeding

mother’s age at birth
migrant status

parental education

context early life childhood adolescence adulthood old age

international children’s study
national children’s study

adult health study
dementia study

Figure 1: Toy example of how four different cohort studies can overlap in time and variables.

Thus, different cohort studies can overlap in variable sets and in time of measurements. We
define a variable as being the same in two different dataset if and only if it is measured at the same
time (or, here, life stage). This also means that two variables measuring the same concept, perhaps
in the same dataset, are considered different if they do not refer to the same time point or life stage.
For example, consider the variable ‘physical activity’ in Figure 1. This is measured in three different
datasets and at three different time points. Physical activity during childhood and adolescence in the
international children’s cohort study are considered two different variables, while physical activity
during adolescence in the international children’s cohort study, in the national cohort study, and in
the adult health study are all considered the same variable.

When variables are measured in some but not all datasets, this could in principle be viewed as a
missing data problem. However, a key difference is that some variables are never measured together
so that there is no information on their joint distribution. In the above example, breastfeeding, BMI
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and dementia status are not measured jointly in any study. As pointed out by Tillman et al. (2008), if
we wanted to, say, impute the values of unmeasured variables the correct imputation models cannot
be obtained from the measured data and would rely on correct prior knowledge of the (causal) data
generating mechanism. Clearly, this is not viable in the situation where determining the causal
model is the desired aim.

While the example in Figure 1 only refers to cohort studies, in practice we could have other data
structures. Although not required, our setup is most interesting in the case where all datasets to be
combined contain at least one variable that is also measured in at least one of the other datasets.

3. Background knowledge

The temporal structure of cohort studies induces tiered background knowledge and, in turn, re-
stricted equivalence classes which we formalise here. We refer to Appendix A for a general in-
troduction to the relevant graphical concepts. We consider maximal ancestral graphs (MAGs)
(Richardson and Spirtes, 2002), which allow for latent variables, and partial ancestral graphs (PAGs)
encoding the equivalence classes of MAGs (Zhang, 2006).

Remark 1 General MAGs allow for selection bias, but here, we assume that the data contains no
selection bias. Thus, we assume that there is an underlying true MAG and that this MAG does not
contain selection bias. This means that in the FCI algorithm, and consequently also in the IOD
algorithm, the orientation rules R5-R7 can be omitted (Zhang, 2008).

We define background knowledgeK = (R,F) relative to a node set V as a set of required edges
R and a set of forbidden edges F. A graph G = (V,E) encodes K if E contains all edges in R and
no edges in F. A PAG P is consistent with K if there is a MAGM ∈ [P] encoding K. We define
the addition of background knowledge to a consistent PAG by orienting edges as in Algorithm 1.
The output PK is a partial mixed graph (PMG) which may or may not be ancestral, and may or may
not represent a restricted equivalence class. Throughout we assume the background knowledge to
be consistent with some true underlying MAG, and in that sense correct.

Algorithm 1: Constructing PK
input : PAG P = (V,E) and consistent background knowledge K = (R,F).
output: PMG PK = (V,E′)

1 E′ = E
2 forall {Vi ◦−∗ Vj} ∈ E do
3 if {Vi → Vj} ∈ F then
4 replace {Vi ◦−∗ Vj} with {Vi ←∗Vj} in E′

5 else if {Vi → Vj} ∈ R then
6 replace {Vi ◦−∗ Vj} with {Vi → Vj} in E′

7 end

Tiered background knowledge arises from partitioning the variables through a tiered ordering,
such that variables in later tiers cannot cause variables in earlier tiers.

Definition 2 (Tiered ordering) Let V be a node set of size p, and let T ∈ N, T ≤ p. A tiered
ordering of the nodes in V is a map τ : V → {1, . . . , T} that assigns every node V ∈ V to a
unique tier t ∈ {1, . . . , T}.
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Definition 3 (Tiered background knowledge) Let τ be a tiered ordering of the node set V, the
corresponding tiered background knowledge Kτ = (Rτ ,Fτ ) is then defined by Rτ = ∅ and Fτ =
{Vi ← Vj | τ(Vi) < τ(Vj), Vi, Vj ∈ V}.

If tiered background knowledge is consistent with a graph, then we say that the corresponding
tiered ordering is consistent with the graph.

In Algorithm 1 (line 4), a tiered ordering τ with τ(A) < τ(B) means that an edge A ∗−◦ B is
oriented as A∗→ B by ruling out A← B. We have knowledge of this orientation because the edge
connects nodes from two different tiers, and we refer to this type of edges as cross-tier edges:

Definition 4 (Cross-tier edge) Let G = (V,E) be a graph and let τ be a tiered ordering of the
nodes in V. Then, if τ(A) < τ(B) the edge {A ∗−∗B} ∈ E is referred to as a cross-tier edge.

Importantly, tiered orderings not only inform us of possible edge directions in the form of a set
of forbidden edges, they also imply certain restrictions on the separations.

Definition 5 Let G = (V,E) be a graph and τ a tiered ordering of V. Then for some A ∈ V we
define the past of A in V relative to τ as pastτV(A) = {V ∈ V | τ(V ) ≤ τ(A)}. For some A ⊆ V,
where A = {A1, . . . , An}, we define the past of A in V relative to τ as pastτV(A) = {V ∈ V |
τ(V ) ≤ max(τ(A1), . . . , τ(An))}.

The next proposition follows from well-known results on the separation properties of DAGs and
MAGs, but we state it specifically for the context of tiered background knowledge.

Proposition 6 Let G = (V,E) be a DAG or MAG, τ a tiered ordering of V consistent with G, and
let A,B ∈ V be two distinct nodes. Then A and B are separated in G by some subset of V if and
only if they are separated by a set S ⊆ pastτV(A) or S′ ⊆ pastτV(B).

The proof of Proposition 6 can be found in Appendix D.
Proposition 6 implies that when checking for conditional independence, we can restrict the

potential separating sets to those belonging to the (joint) past. For node pairs in later tiers, this
may not have much impact, but for early node pairs, this may reduce the potential separating sets
substantially.

4. The tFCI algorithm

For a single dataset and allowing for latent variables, the FCI algorithm Spirtes et al. (1999) con-
structs a PAG based on conditional independencies. Note that here and in the following sections
we assume faithfulness (cf. Appendix A). In brief, the FCI starts with a complete undirected graph,
and removes edges between pairs of nodes whenever the corresponding random variables are found
to be (conditionally) independent. Afterwards, it orients v-structures using the conditional indepen-
dencies learned in the previous phase, and finally it applies orientation rules R1-R10 from Zhang
(2008) (see Figures 5 and 6 in Appendix A) to obtain a maximally informative PAG.

Tiered orderings are relevant to two aspects of the algorithm: For the conditional independence
tests and for edge orientations. When restricting the tests performed by exploiting information from
the tiered ordering via Proposition 6, we obtain the simple tFCI algorithm. Here, the objective is
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still to learn a PAG representing the given independence model without restriction by the back-
ground knowledge. However, we show (in Proposition 7 below) that the reduction of conditional
independence tests still results in an algorithm that is sound and complete, i.e. that the oracle version
outputs the same PAG as the original FCI. This algorithm plays a central role, since the following
algorithms build on it.

If we additionally orient arrowheads based on the tiered background knowledge (Algorithm 1
before applying rules R1-R4 and R8-R10), then we obtain the (full) tFCI algorithm. In principle, the
objective here is to recover the maximally informative graph that encodes the given independence
model and the tiered background knowledge. However, the full tFCI outputs a PMG that may or
may not be maximally informative (i.e. the algorithm is not complete). It does represent a superset
of the MAGs in the restricted equivalence class, i.e. the algorithm is sound (cf. Proposition 8 below).
We provide the tFCI as a pseudo-algorithm (Algorithm 2) in Appendix B, where the simple version
is given by omitting lines 30-34.

Versions of the tFCI algorithm have previously been implemented and applied (Scheines et al.,
1998; Chen and Malinsky, 2023; Lee et al., 2022; Petersen, 2023). In fact, it is closely related to the
SVAR-FCI by Malinsky and Spirtes (2018). While these authors probably took for granted that the
tFCI is sound, we are not aware of any formal proofs, so that we provide them here. This also leads
up to the corresponding properties for the tIOD algorithm below.

Proposition 7 The oracle version of the simple tFCI algorithm (Algorithm 2 without lines 30-34)
is sound and complete.

Proposition 8 The oracle version of the tFCI algorithm (Algorithm 2) is sound.

The proofs of Propositions 7 and 8 can be found in Appendix D. The proof strategies are analogous
to those in Spirtes et al. (1999) and Colombo et al. (2012) with additional use of Proposition 6 and
assuming correct tiered background knowledge.

While the simple tFCI carries out fewer conditional independence tests, in the oracle case its
output is identical to the one of the FCI and hence is a PAG (we comment on the sample version of
the simple tFCI in Section 6 and the discussion). However, it is important to note that, in contrast to
the simple tFCI, the full tFCI algorithm might not be complete, and the output might not be a maxi-
mally informative PAG. This is because with the addition of tiered background knowledge we might
need more orientation rules than R1-R4 and R8-R10. Completeness of the FCI under certain types
of background knowledge has been shown, e.g., local background knowledge (Wang et al., 2022),
context variables (Mooij et al., 2020), or a restricted kind of tiered background knowledge (Andrews
et al., 2020). But for the general case, it is still an open question whether all orientation rules needed
to ensure completeness under tiered background knowledge have been found (Venkateswaran and
Perković, 2024).

5. The tIOD algorithm

Let us first review the basic IOD algorithm (Tillman and Spirtes, 2011) without background knowl-
edge. It takes as input n datasets V1, . . . ,Vn of which any pair may share some variables1. The

1. The extreme cases are that all datasets share all variables (which can then be tackled with the FCI for a unique dataset)
or that the datasets have no variables in common, in which case the output set of PAGs will be very large.
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underlying assumption of the IOD algorithm is that there is a MAG M = (V,E) on the full set
of variables V = V1 ∪ . . . ∪ Vn of which the individual datasets represent the marginals corre-
sponding to their respective subset of variables. The IOD algorithm returns a set of PAGs for which
the marginalised independence models onto the nodes in V1, . . . ,Vn are equal to the independence
models learned from the individual datasets. Furthermore, this set is guaranteed (in the oracle case)
to contain the PAG ofM. The IOD algorithm consists of two parts: The first part learns the inde-
pendence models from the individual datasets, and uses these models to construct a graph G, which
contains a superset of the adjacencies ofM, and a subset of the v-structures ofM. An individual
independence model is necessarily marginal over those variables not included in this dataset and,
hence, must allow for latent variables. The second part of the IOD algorithm constructs a graph
for each possible combination of edge removals or v-structure orientations encoding an indepen-
dence model that can be marginalised into all of the n independence models learned from data. We
illustrate the basic IOD algorithm with the following example.

dataset 1 dataset 2

⇒

⇐ ⇒ ⇒

⇐ ⇒ ⇒

⇓

⇓

(a)

(d)

(g)

(b)

(e)

(h)

(c)

(e)

(j)

(f)

(k)

A

B

C

D A

B

C

D A

B

C

D

A

B

C

D A

B

C

D A

B

C

D

A

B

C

D A

B

C

D A

B

C

D

A

B

C

D

A

B

C

D

Figure 2: Examples of graphs visited by the IOD algorithm. Here, (e) is the PAG of (a), but more
graphs may encode the marginal independence models learned from dataset 1 and dataset
2. Given oracle knowledge of (a) as input, the algorithm considers all graphs where
combinations of the edges A◦−◦D, A◦−◦B, A◦−◦C, B ◦−◦D and C ◦−◦D are removed.
Here, we illustrate the removal of A ◦−◦D. In total, the IOD visits 73 graphs, including
graphs based on (b), (c),. . ., (k), and it outputs the eight graphs in Figure 3.

Example 1 (The IOD algorithm) Figure 2 (a) shows a MAG over the nodes {A,B,C,D}. Here,
XA, XB and XC have been measured in dataset 1, and XB , XC and XD in dataset 2. When
learning the causal structure of {A,B,C,D} given dataset 1 and dataset 2, the IOD algorithm
proceeds as follows: First it constructs a PMG over {A,B,C} and one over {B,C,D}, and while
doing so it also constructs a common graph G. At first, G is a complete undirected graph over
{A,B,C,D}. Then, for every pair of variables that are conditionally independent in dataset 1 or
dataset 2, the edge between the corresponding nodes in G is removed, and we obtain the graph
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in Figure 2 (b-i). At this stage of the IOD algorithm, nodes are adjacent if either they cannot be
separated in the marginal graph over {A,B,C} or {B,C,D}, or if they are never measured jointly
in the same dataset. Hence, G contains a superset of the edges of the true underlying graph. Next,
the algorithm considers all edges that might not be contained in the true graph, either because the
variables were never measured jointly, or because all variables necessary for obtaining conditional
independence were never measured jointly. In this example, all edges are candidates for this, and the
algorithm considers each combination of edge removals (32 candidate skeletons in total). Consider
the case of the removal of edge A ◦−◦D: The algorithm proceeds with two possible graphs, Figure
2 (b-i) and (c-i). Now, the IOD algorithm considers all possible v-structures. A v-structure might be
missing in Figure 2 (b-i) and (c-i) if for every dataset either the collider is not measured, or there
is no separating set measured in the dataset. The triple ⟨B,D,C⟩ might be a v-structure, since it
cannot be tested whether XB and XC are conditionally independent given XA and XD – all we
know is that they are conditionally independent given XA alone, but dependent give XD alone,
which at this stage is not sufficient to determine whether ⟨B,D,C⟩ is a v-structure. Moreover, if
A and D are not adjacent, then ⟨A,B,D⟩ or ⟨A,C,D⟩ might be v-structures as well: We cannot
test this since XA and XD are never measured jointly. Given the skeleton in Figure 2 (b-i), the
only possible additional v-structure is ⟨B,D,C⟩ (Figure 2 (b-ii)), but the skeleton in Figure 2 (c-i)
allows for all combinations of ⟨B,D,C⟩, ⟨A,B,D⟩ and ⟨A,C,D⟩ (Figure 2 (c-ii) to (c-iix)), so
the algorithm proceeds with all these possible graphs. The algorithm further proceeds by orienting
edges according to the orientation rules R1–R10, constructing additional graphs when multiple
discriminating paths are consistent with the information (see Tillman and Spirtes (2011) for details).
Finally, it verifies that from all constructed graphs, we can construct MAGs that are consistent with
the marginal independence models. It then outputs this set of PAGs. In the present example, the
IOD algorithm visits a total of 73 graphs and outputs 8 PAGs. See Table 1 in Appendix C for an
overview, and Figure 3 in Example 2 for a depiction of the graphical output.

We extend the IOD algorithm to incorporate tiered background knowledge in multiple ways.
First, we use it to restrict the conditional independence tests in the first part of the algorithm, anal-
ogously to the simple tFCI. Second, we use the tiered background knowledge for additional restric-
tions involving adjacencies and v-structures so as to exclude some PAGs that are inconsistent with
the background knowledge. With these two steps, the objective is to learn the set of all PAGs, and
only those PAGs, that are compatible with the marginal independence models and consistent with
the tiered background knowledge. As we will see, tiered background knowledge reduces the number
of potential edge removals, and the algorithm thus visits fewer potential skeletons. Moreover, it also
increases the number of identifiable v-structures compared to no background knowledge. We refer
to the combination of these two modifications as the simple tIOD algorithm (Algorithm 3 without
lines 67-72).

In addition, we may also orient cross-tier edges and further edges as consequences of the former
due to rules R1-R4 and R8-R10 (Figures 5 and 6). The algorithm using all three modifications is
referred to as the (full) tIOD algorithm (Algorithm 3). Here, the desired objective is to recover all
maximally informative graphs that are compatible with the marginal independence models and en-
code the tiered background knowledge. However, for the same reasons as the tFCI, the algorithm is
only sound, and not necessarily complete: The tIOD outputs a set of PMGs that might not represent
restricted equivalence classes. However, the algorithm is guaranteed to output at least one PMG that
represents a set of MAGs containing the true underlying MAG (Proposition 10).
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In summary, we have the following modifications and results.

Modifications defining the simple tIOD algorithm (Algorithm 3)

(i) When testing conditional independence in the first round, only consider separating sets that
belong to the past (lines 3-13).

(ii) Only condition on sets of nodes that belong to the past when testing for v-structures, and
orient cross-tier edges that constitute v-structures (lines 14-18 and 27-31).

(iii) Only consider possible separating sets that belong to the past when constructing the final
skeleton and v-structures (lines 19-26).

(iv) When considering removable edges, restrict possible separating sets to the past (lines 33-37).

(v) Orient v-structures consisting of cross-tier edges before considering possible v-structures
(lines 39-47).

(vi) Discard every PAG that is not consistent with the tiered background knowledge (line 65).

Additional modifications defining the full tIOD algorithm (Algorithm 3)

(vi) For each PAG in the final output, orient any remaining cross-tier edges and apply orientation
rules R1-R4 and R8-R10 (lines 67-72).

The simple and full tIOD algorithms have the following properties.

Proposition 9 The oracle version of the simple tIOD algorithm (Algorithm 3 without lines 67-72)
is sound and complete for the set of PAGs consistent with the tiered background knowledge.

Proposition 10 The oracle version of the full tIOD algorithm (Algorithm 3) is sound.

The proofs are given in Appendix D. The proof strategies are analogous to those in Tillman and
Spirtes (2011), but make use of Proposition 6, and exploit the tiered background knowledge which
is assumed to be correct.

6. Efficiency and informativeness

Tiered background knowledge leads to more informative outputs whenever the tiered ordering im-
plies the orientation of cross-tier edges that are not involved in v-structures; this may even imply
additional informativeness due to the orientation rules. Thus, the output contains more information
than could be obtained from the independence model. In particular, the tFCI and tIOD algorithms
then output a set of graphs that contain more information than the independence models alone. This
is certain for the oracle case and can be expected for the finite sample case.

Without the orientation of cross-tier edges, the advantages might not be as obvious. The simple
tFCI algorithm outputs the same PAG as the FCI algorithm under oracle knowledge. The benefit of
the simple tFCI is found, instead, in the sample case, where the output is prone to statistical errors.
By skipping unnecessary statistical tests, the output is more robust as was found for the tiered PC
algorithm, i.e. in the causally sufficient case (Bang et al., 2024). Analogously, we expect the simple
tiered algorithms to be more robust against statistical errors than the original FCI/IOD algorithms.
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However, the simple tIOD algorithm has an interesting additional benefit. Even the simple
modifications alone, without orienting cross-tier edges, outputs a set of PAGs that should often be
more informative than with the original IOD algorithm in the sense that the set contains fewer PAGs,
and, hence, represents fewer possible equivalence classes. This is illustrated in Examples 2 and 3.
The reason that the simple tIOD algorithm might output fewer PAGs than the IOD algorithm is that
it can usually reduce the set of possible edge removals and possible v-structure orientations based on
the tiered ordering. In this case, the simple tIOD algorithm is more efficient than the IOD algorithm
as it needs to visit fewer graphs, cf. Example 2. Here, by efficiency we refer to the algorithm visiting
fewer graphs. Below we provide a proposition that states under what conditions the simple tIOD
algorithm is more efficient than the IOD.

Proposition 11 considers sets pdsG(A,B) and pdsG(B,A) which are sets of nodes in G con-
taining a set that m-separates A and B if and only if any subset of the nodes in G m-separates A and
B (Spirtes et al., 1999; Colombo et al., 2012). These sets are used by the algorithms to determine
the independence models. See Appendix A for a formal definition.

Proposition 11 Consider the simple tIOD algorithm over V = V1 ∪ . . . ∪ Vn using τ , where
τ : V → {1, . . . , k} for k > 1. Let G be the graph obtained in line 32. Then the oracle version
of the simple tIOD algorithm visits fewer graphs than the oracle version of the IOD algorithm over
V = V1 ∪ . . . ∪Vn, if and only if one of the two following conditions holds:

(i) Consider a pair of nodes A,B such thatA ∈ adjG(B), and for all i ∈ {1, . . . , n} we have

{A} ∪ adjG(A) ∪ pdsG(A,B) ∪ pdsG(B,A) ̸⊂ Vi and

{B} ∪ adjG(B) ∪ pdsG(A,B) ∪ pdsG(B,A) ̸⊂ Vi.

For at least one such pair we require that ∃ i such that A,B ∈ Vi and(
pdsG(A,B) ∪ pdsG(B,A)

)
\Vi ⊆ V\pastτV(A,B) and

adjG(A)\Vi ⊆ V\pastτV(A) or adjG(B)\Vi ⊆ V\pastτV(B).

(ii) Consider a triple of nodes ⟨A,C,B⟩ such that (a) A,B ∈ adjG(C), (b) A /∈ adjG(B), and
(c) for all i ∈ {1, . . . n} either C /∈ Vi or sepset(Gi, {A,B}) is undefined. For at least one
such triple we require that τ(C) > max(τ(A), τ(B)).

The proof of Proposition 11 can be found in Appendix D. The proof is based on the fact that
the number of visited graphs depends on the number of potential edge removals and potential v-
structures. These numbers decrease in the case where tiered background knowledge renders either
the potential edge removals impossible, or the v-structures certain. This occurs when for some node
pairs all possible conditioning sets that have not been measured in the same dataset lie in the future
(condition (i)), or if some v-structures are implied by the tiered ordering (condition (ii)).

Remark 12 Let P be a set of PAGs over V obtained by the oracle version of the IOD algorithm,
and Pτ a set of PAGs obtained by the oracle version of the simple tIOD algorithm. It then follows
from Proposition 11 that Pτ is a subset of P only if at least one of the conditions holds.
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dataset 1 dataset 2

tier 1 tier 2

B

C

DA

Figure 3: Left: A MAGMwith tiered ordering τ , where the variables are measured in two datasets,
dataset 1 and dataset 2. Right: All graphs visited by the tIOD algorithm (Algorithm 3).
Black edges are obtained up to line 50, blue edges are obtained from orientation rules
R1-R4 and R8-R10. Crossed out graphs do not satisfy the criteria of line 65; all other
graphs are output by the tIOD algorithm. In this example, the IOD algorithm visits more
graphs but still outputs the same PAGs as the simple tIOD.

Note that the output of the tFCI always has the same skeleton and at most as many circle marks
as the output of the FCI. Hence, it is always at least as informative as the FCI. Moreover, the simple
tIOD also always outputs a (weak) subset of the output of IOD, thus it is at least as informative.

Remark 13 Since the simple and full tIOD are identical up until line 66, the full tIOD will consider
the same potential skeletons and v-structures as the simple tIOD.

Example 2 Consider the MAG M of Figure 3 (a), which is the same as in Example 1 but with
a tiered ordering, such that nodes A,B and C belong to tier 1, and D belongs to tier 2. Then
Proposition 6 implies that the only candidate separating set for A and B is C and the only candidate
separating set for A and C is B. Since all of the corresponding variables are measured in the same
dataset, we see that these are in fact not separating sets, and it is not necessary to consider skeletons
without A◦−◦B and A◦−◦C in the tIOD algorithm. The tIOD algorithm considers A◦−◦D, B◦−◦D,
and C ◦−◦D as removable edges and considers 8 different skeletons (see Table 2 in Appendix C),
which is considerably fewer than visited by the IOD algorithm in Example 1.

In dataset 1 we find that XB ⊥⊥ XC | XA. In dataset 2 we find no independencies, in particular
XB ̸⊥⊥ XC | XD, and in all graphs with both edges B ◦−◦ D and C ◦−◦ D present, ⟨B,D,C⟩
is considered a potential v-structure by the IOD algorithm in Example 1, while the tIOD algorithm
orients ⟨B,D,C⟩ as a v-structure because D is in a later tier than B and C. In total, the simple
tIOD algorithm visits 18 graphs (see Table 2 in Appendix C) and outputs 8 graphs.

Example 3 Example 2 is a case where the tIOD visits fewer graphs but outputs the same PAGs as
the IOD. A key reason for this is that both algorithms require the output to be consistent with the

11
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dataset 1

dataset 2

(a) (b) (c)tier 1 tier 2

A

B

C

D A

B

C

D A

B

C

D

Figure 4: (a) MAG with tiered ordering of the nodes, with measurements in dataset 1 and dataset
2. (b) The intermediate graph G obtained at line 32 of the tIOD algorithm (Algorithm 3)
with oracle knowledge of (a) as input. (c) An example graph output by the IOD algorithm,
with (a) as input), that would not have been output by the simple tIOD.

learned (marginal) independence models. The only independence found was XB ⊥⊥ XC | XA. This
implicitly requires the graph to have a path between B and C, that can be separated by A without
also conditioning on D and requires ⟨B,D,C⟩ to be a v-structure whenever it is an unshielded
triple, which much reduces the number of output graphs.

A different situation is illustrated in Figure 4, where nodes A,B,D are measured in dataset 1,
while A,C,D are measured in dataset 2, with the same true MAG as before. No independencies
are found in dataset 1 and dataset 2. This leaves a complete graph as the intermediate graph G,
Figure 4 (b). Hence, the IOD algorithm outputs, among others, Figure 4 (c). However, this graph
cannot be output by the tIOD algorithm since it orients ⟨B,D,C⟩ as a v-structure in every graph
where this is an unshielded triple. In this case, the tIOD algorithm is not just more efficient, it also
outputs fewer graphs and is thus more informative.

7. Discussion

We have introduced extensions of constraint-based causal discovery algorithms that exploit tiered
background knowledge while allowing for latent variables and multiple overlapping datasets. The
simple versions of tFCI and tIOD can be seen as estimating (sets of) equivalence classes whereas
the full versions make further use of the background knowledge at the expense of completeness. We
have shown that the simple versions of tFCI and tIOD are sound and complete, and we have shown
when exactly using the background knowledge reduces the number of graphs visited by the simple
tIOD. In consequence, the simple (not just the full) tIOD outputs a set of graphs that can often be
expected to be considerably more informative than without the tiered ordering.

The results in this paper apply to the oracle case. In practice, however, conditional independence
testing is subject to statistical errors. Here, the simple tFCI and tIOD are attractive as they omit
unnecessary conditional independence tests by exploiting Proposition 6. Indeed, for analogous
reasons, tiered background knowledge has been shown to improve the statistical properties of the
tiered PC algorithm (Bang et al., 2024) – similarly robust finite sample behavior can be expected
for the sample versions of the tFCI and tIOD algorithms. A further reason for exploiting tiered
background knowledge to detect v-structures, as done by the simple tFCI and simple tIOD, is to

12
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ensure that the estimated equivalence classes are consistent with that background knowledge which
is not otherwise guaranteed for finite samples.

We have explicitly assumed one single underlying joint MAG over all variables. This means that
the different datasets must inform us about comparable settings. Hence, the marginal equivalence
classes are consistent on the overlapping nodes under oracle knowledge, so that it makes sense to
combine them. However, in finite samples we may encounter the case that the independence models,
if estimated separately with the different datasets, are not consistent on the overlapping variables
even under this assumption. This can easily be fixed by combining the statistical tests and / or the
datasets on the overlapping variables before inputting the estimated independence models into the
algorithm; one such solution is given in (Tillman and Spirtes, 2011).

A number of further extensions could be interesting for future work. For instance, the principles
of the tFCI algorithm could be applied to other versions of the FCI algorithm such as the anytime
FCI (Spirtes, 2001), the RFCI (Colombo et al., 2012), the FCI+ (Claassen et al., 2013), the order
independent or conservative FCI (Colombo and Maathuis, 2014), etc. Future research might explore
how the ideas of these algorithms could also be utilised in the tIOD algorithm.

Often, tiered background knowledge is not the only kind of background knowledge available.
Typical epidemiological applications, in fact, often rely on fully specified expert causal graphs rather
than data driven graph construction (Petersen et al., 2023). More realistically, even experts may only
have partial knowledge of the causal structure (Didelez, 2024). It would be an interesting direction
for future research to explore how one could use the tIOD algorithm to combine or refine graphs
based on a mix of (possibly multiple) experts and (possibly multiple) data sources.

Our work is motivated by multi-cohort studies, which may or may not contain repeated mea-
sures, but always contain a tiered structure. Temporal structure is also available with time series
data. Extensions of the FCI algorithm to time series exist (Malinsky and Spirtes, 2018; Gerhardus
and Runge, 2020). These are based on similar principles, essentially exploiting corresponding ver-
sions of Proposition 6, i.e. not conditioning on the future. Additional common assumptions such
as stationarity and considerations of autocorrelation are crucial for time series which we did not
cover, here. While we are not aware that multiple overlapping datasets have been considered in the
literature on causal analysis of time series, it is conceivable that a subvector of the multivariate time
series is measured in one dataset while another subvector is measured in another dataset. It may be
promising to develop a version of the tIOD algorithm for such settings.
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Appendix A. Terminology

A.1. Ancestral graphs

Graphs, nodes and edges A graph G = (V,E) consists of a set of nodes V and edges E. We
allow edges to have three types of edge marks: ◦ (circle mark), − (tail) and > (arrowhead), and we
allow the following types of edges: ◦−◦ (non-directed), ◦→ (partially directed),→ (directed), and
↔ (bidirected). We use ∗−∗ (both edge marks can be of any type), ∗→ (left edge mark can be of
any type) and ∗−◦ (left edge mark can a circle mark or arrowhead) as placeholders. We say that an
edge (or tail) A→ B is out of A and an edge (or arrowhead) A∗→ B is into B. Let A,B ∈ V and
{A∗−∗B} ∈ E, then A and B are adjacent in G. If all pairs of nodes in a graph are adjacent, then the
graph is complete. By adjG(A) we denote all the nodes that are adjacent to A ∈ V in G. We allow
for at most one edge between any pair of nodes, and no node can be adjacent to itself. A graph that
only contains directed/bidirected/non-directed edges is a directed/bidirected/non-directed graph.

Graphs and subgraphs Let G = (V,E) and G′ = (V′,E′) be distinct graphs. If V′ ⊆ V and
E′ ⊆ E then G′ is a subgraph of G. The non-directed subgraph GU = (V,EU ) of G is obtained by
removing all edges in E that contain an arrowhead, such that EU ⊆ E. The induced subgraph of G
over V′ ⊆ V is defined as GV′ = (V′,EV′) where EV′ ⊆ E contains all edges between nodes in
V′. By GE′ = (V,E′) we denote the subgraph of G obtained by removing all edges not in E′ ⊆.
The skeleton of G is obtained by replacing every {A ∗−∗B} ∈ E with {A ◦−◦B}.
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Paths and cycles Let π = ⟨V1, . . . , Vn⟩ be a sequence of adjacent nodes. If each node only occurs
once in π, then this is as a path from V1 to Vn. If for any ⟨Vi−1, Vi, Vi+1⟩, 1 < i < n, Vi−1 and Vi+1

are not adjacent, then this is an unshielded triple, and if every triple on p is unshielded, then π is an
unshielded path. Let π = ⟨V1, . . . Vn⟩ be a path. If Vi−1∗→ Vi ←∗Vi+1 occurs on π, then Vi is a
collider on π and otherwise it is a non-collider on π. If in addition ⟨Vi−1, Vi, Vi+1⟩ is an unshielded
triple, then this is a v-structure. If on π Vi → Vi+1 for every 1 ≤ i < n, then π is a directed path
(from V1 to Vn). If on π Vi ◦−◦ Vi+1 for every 1 ≤ i < n, then π is a non-directed path (from V1 to
Vn). A path ⟨V1, . . . Vn⟩ is possibly directed from V1 to Vn if for every 1 ≤ i < n, the edge between
Vi and Vi+1 is not into Vi or out of Vi+1. When needed, we denote a possibly directed path from
V1 to Vn by V1 99K Vn. A (non-) directed path from V1 to Vn combined with a (non-) directed path
from Vn to V1 is a (non-) directed cycle. A directed path from V1 to Vn combined with V1 ↔ Vn

is an almost directed cycle. Let G′ = (V,E′) be a graph with same skeleton as G = (V,E) but
possibly E′ ̸= E, then for a path π in G the corresponding path in G′ is the path π′ that consists of
the same nodes as π. A path π = ⟨V1, . . . , Vn⟩ is an inducing path if every node Vi, 1 < i < n, is a
collider on π and an ancestor of V1 or Vn.

Parents, ancestors and descendants For G = (E,V) we define the parents, ancestors, possible
ancestors, descendants and possible descendants of a node A in G as follows

paG(A) = {V ∈ V | {V → A} ∈ E}
anG(A) = {V ∈ V | G contains a directed path from V to A}

possanG(A) = {V ∈ V | G contains a possibly directed path from V to A}
deG(A) = {V ∈ V | G contains a directed path from A to V }

possdeG(A) = {V ∈ V | G contains a possibly directed path from A to V }

For a set A we define anG(A) = {V ∈ V | G contains a directed path from V to some A ∈ A}.

Graph types A directed graph that does not contain any directed cycles is called a directed acyclic
graph (DAG). A mixed graph (MG) contains both directed and bidirected edges. A graph that
contains no directed cycles or almost directed cycles is ancestral. An ancestral mixed graph that
does not contain an inducing path between any pair of non-adjacent nodes is a maximal ancestral
graph (MAG). A partial mixed graph (PMG) contains directed, bidirected, non-directed and partially
directed edges.

A.2. Independence models and Markov equivalence

Definition 14 (m-connecting) Let G = (V,E) be a MAG, π = ⟨V1, . . . , Vn⟩ be a path in G, and
let S ⊆ V\{V1, Vn}. If

(i) for every collider V on π, either V or a descendant of V is in S, and

(ii) no non-collider on π is in S

then π is m-connecting given S.

For a MAG G = (V,E), if there exists a path from a A ∈ V to B ∈ V where B ̸= A that
is m-connecting given S, we say that A and B are m-connected given S. If no such path exists,
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we say that A and B are m-separated given S in G and denote this by A ⊥G B | S. We define an
independence model I(G) induced by G as the collection of all m-separations in G:

(A ⊥G B | S) ∈ I(G)⇔ A and B are m-separated by S in G

The same definitions are valid for DAGs, and here m-separation (m-connection) is equivalent to
d-separation (d-connection). Occasionally, we omit the “m” or “d” and simply refer to separation
in a graph.

Definition 15 (dsepG(A,B) (Spirtes et al., 1999)) Let G = (V,E) be a MAG and let A,B, V be
distinct nodes in V. Then V ∈ dsepG(A,B) if and only if there is a path ⟨A = V0, V1, . . . , Vn+1 =
V ⟩ for which

(i) Vi ∈ anG({A,B}) for every i ∈ {1, . . . n}, and

(ii) Vi ↔ Vi+1 for every i ∈ {1, . . . n− 1}.

Lemma 16 (Lemma 12 in Spirtes et al. (1999)) Let G = (V,E) be a MAG and X,Y ∈ V.
There exists a set V′ ⊆ V\{A,B} such that A and B are m-separated by V′ if and only if they are
m-separated by dsepG(A,B).

Two MAGs (or DAGs) G1 and G2 are Markov equivalent if they induce the same independence
model: I(G1) = I(G2). A (Markov) equivalence class is a set of Markov equivalent MAGs (or
DAGs). A partial ancestral graph (PAG) represents an equivalence class of MAGs. A PAG P
represents an equivalence class of MAGs [P] such that every arrowhead and every tail present in
P is also present in every M ∈ [P], and we assume that they are maximally informative in the
sense that for every circle mark, there is at least oneM1 ∈ [P] where this is an arrowhead, and one
M2 ∈ [P] where this is a tail.

In addition to Markov equivalence, a class of graphs might share more information, and consti-
tute a restricted equivalence class. In general, we can represent the additional background knowl-
edge using a PMG, which may not be ancestral and maximally informative. Given a sufficient set
of orientation rules we may represent a restricted equivalence class using a maximally informative
PAG. The orientation rules needed depends on the type of background knowledge.

A.3. The FCI algorithm

We assume that the nodes V in a graph G = (V,E) represent a set of random variables XV.
Throughout, we assume that the global Markov property and faithfulness hold, which allows us to
learn an equivalence class of causal graphs from data. Let D = (V,E) be a DAG and let P be
a probability distribution over XV. If P obeys the global Markov property and faithfulness with
respect to D then for any distinct nodes A,B ∈ V and set S ⊆ V\{A,B}

A ⊥D B | S⇔ XA ⊥⊥ XB | XS (1)

where ⊥⊥ denotes (conditional) independence between random variables.
We can still utilise the global Markov property and faithfulness without causal sufficiency,

since d-separation in a DAG corresponds to m-separation in a MAG that has been constructed by
marginalising over the latent variables (see Richardson and Spirtes (2002) for details).

The FCI algorithm searches for possible separating sets in the following set:
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Definition 17 (poss.dsepG(A,B) (Spirtes et al., 1999)) Let M = (V,E) be a PMG and A and
B distinct nodes in V. Then V ∈ V is in poss.dsepG(A,B) if and only if there is a path π = ⟨A =
V1, . . . , Vn = V ⟩ between V and A that in G such that π is not directed, and for every subpath
⟨Vj−1, Vj , Vj+1⟩, 2 ≤ j ≤ n− 1, of π, either

(a) Vj is a collider, or

(b) Vj is a definite non-collider and Vj−1 and Vj+1 are adjacent.

This set was refined by Colombo et al. (2012) in the following way:

pdsG(A,B) = {V ∈ poss.dsepG(A,B) | V is on a path between A and B in G}

Definition 18 (Discriminating path (Zhang, 2008)) Let M = (V,E) be a MAG, and let π =
⟨A, . . . , B,C,D⟩ be a path between A ∈ V and D ∈ V inM. Then π is a discriminating path for
C if

(i) π consists of at least three edges, and

(ii) C is adjacent to D in π and is a non-endpoint node on π, and

(iii) A /∈ adjM(D), and every node between A and C on π is a collider and a parent of D.
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Figure 5: Orientation rules for the FCI algorithm (Spirtes et al., 1999; Zhang, 2008). Here ■ is a
placeholder edge mark equivalent to ∗.
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⟨A, . . . , B⟩ and ⟨A, . . . ,D⟩ are unshielded,
V1 ∈ adj(A) (perhaps V1 = B) and
V2 ∈ adj(A) (perhaps V2 = D), and
V1 ̸= V2 and V1 /∈ adj(V2)

Figure 6: Orientation rules for the FCI algorithm (Zhang, 2008)
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Appendix B. Pseudo-algorithms

By P(·) we denote the power set. By X ⊥⊥ Y | Z we indicate conditional independence between
X and Y given Z. All independence facts are obtained through oracle knowledge.

Algorithm 2: The tiered FCI (tFCI) algorithm
input : Node set V, tiered ordering τ , and an independence oracle over XV

output: partial mixed graph G = (V,E)
1 Let G = (V,E) be a complete graph with non-directed edges.
2 k = 0
3 repeat
4 for each ordered pair of adjacent nodes Vi and Vj do
5 if there exists a S ⊆ adjG(Vi) ∩ pastτV(Vi)\{Vj} of size k with XVi ⊥⊥ XVj | XS then
6 remove {Vi ◦−◦ Vj} from E
7 add S to sepset(Vi, Vj)

8 end
9 end

10 k = k + 1

11 until there is no ordered pair of adjacent edges Vi and Vj with |adjG(Vi) ∩ pastτV(Vi)\{Vj}| ≥ k;
12 for each unshielded triple ⟨Vi, Vj , Vk⟩ do
13 if τ(Vj) > max(τ(Vi), τ(Vk)) or Vj /∈ sepset(Vi, Vk) then
14 orient Vi ∗−∗ Vj ∗−∗ Vk as Vi∗→ Vj ←∗Vk

15 end
16 end
17 for each ordered pair of adjacent nodes Vi and Vj do
18 if there exists a S ⊆ pdsG(Vi, Vj) ∩ pastτV({Vi, Vj})\{Vj} of size k with XVi ⊥⊥ XVj | XS

then
19 remove {Vi ◦−◦ Vj} from E
20 add S to sepset(Vi, Vj)

21 end
22 end
23 replace each edge {Vi ∗−∗ Vj} in E with {Vi ◦−◦ Vj}
24 for each unshielded triple ⟨Vi, Vj , Vk⟩ do
25 if τ(Vj) > max(τ(Vi), τ(Vk)) or Vj /∈ sepset(Vi, Vk) then
26 orient Vi ∗−∗ Vj ∗−∗ Vk as Vi∗→ Vj ←∗Vk

27 end
28 end
29 #omit lines 30-34 in the simple tFCI algorithm
30 for each ordered pair of adjacent nodes Vi, Vj do
31 if τ(Vi) < τ(Vj) then
32 orient Vi ∗−◦ Vj as Vi∗→ Vj

33 end
34 end
35 apply orientation rules R1-R4 (Figure 5) and R8-R10 (Figure 6) repeatedly to G until none applies
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Algorithm 3: The tiered IOD (tIOD) algorithm
input : Node sets V1, . . . ,Vn, tiered ordering τ , and independence oracles over XV1 , . . . ,XVn

output : set of partial mixed graphs G
1 Let G = (V,E) be a complete graph with non-directed edges.
2 for each l ∈ {1, . . . , n} do
3 Let Gl = (Vl,El) be a complete graph with non-directed edges.
4 k = 0
5 repeat
6 for each ordered pair of adjacent nodes Vi and Vj do
7 if there exists a set S ⊆ adjGl

(Vi) ∩ pastτVl
(Vi) of size k with XVi

⊥⊥ XVj
| XS then

8 remove {Vi ◦−◦ Vj} from El and from E
9 add S to sepset(Gl, {Vi, Vj})

10 end
11 end
12 k = k + 1

13 until there is no ordered pair of adjacent edges Vi and Vj with |adjGl
(Vi) ∩ pastτVl

(Vi)\{Vj}| ≥ k;
14 for each unshielded triple ⟨Vi, Vj , Vk⟩ do
15 if τ(Vj) > max(τ(Vi), τ(Vk)) or Vj /∈ sepset(Gl, {Vi, Vk}) then
16 orient Vi ∗−∗ Vj ∗−∗ Vk as Vi∗→ Vj ←∗Vk

17 end
18 end
19 for each ordered pair of adjacent nodes Vi and Vj do
20 if there exists a set S ⊆ pdsGl

(Vi, Vj) ∩ pastτVl
({Vi, Vj}) with XVi

⊥⊥ XVj
| XS then

21 remove {Vi ◦−◦ Vj} from El and from E
22 add S to sepset(Gl, {Vi, Vj})
23 else
24 add ⟨{Vi, Vk},Vl⟩ to InducingPaths
25 end
26 end
27 for each unshielded triple ⟨Vi, Vj , Vk⟩ in Gl do
28 if Vj ∈ adjG(Vi) ∪ adjG(Vk), and τ(Vj) > max(τ(Vi), τ(Vk)) or Vj /∈ sepset(Gl, {Vi, Vk}) then
29 orient any Vi ∗−∗ Vk as Vi∗→ Vk, and any Vk ∗−∗ Vj to Vk ←∗Vj , in G
30 end
31 end
32 end
33 for each pair of adjacent nodes Vi and Vj in G do
34 if for all l ∈ {1, . . . , n}

{Vi, Vj} ∪
(
adjG(Vi) ∩ pastτV(Vi)

)
∪
(
(pdsG(Vi, Vj) ∪ pdsG(Vj , Vi)) ∩ pastτV({Vi, Vj})

)
̸⊂ Vl and

{Vi, Vj}∪
(
adjG(Vj) ∩ pastτV(Vj)

)
∪
(
(pdsG(Vi, Vj) ∪ pdsG(Vj , Vi)) ∩ pastτV({Vi, Vj})

)
̸⊂ Vl then

35 add {Vi ∗−∗ Vj} to RemoveEdges
36 end
37 end
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Algorithm 3: The tiered IOD (tIOD) algorithm (continued)
input : Node sets V1, . . . ,Vn, tiered ordering τ , and independence oracles over XV1

, . . . ,XVn

output : set of partial mixed graphs G
38 for each E′ ∈P(RemoveEdge) do
39 for each Vj ∈ V and pair of nodes Vi, Vk ∈ adjGE\E′ (Vj) do
40 if the triple ⟨Vi, Vj , Vk⟩ can be oriented as a v-structure in GE\E′ and for every l ∈ {1, . . . , n} either

Vj /∈ Vl or sepset(Gl, {Vi, Vk} is undefined then
41 if τ(Vj) > max(τ(Vi), τ(Vj)) then
42 orient ⟨Vi, Vj , Vk⟩ as a v-structure
43 else
44 add ⟨Vi, Vj , Vk⟩ to OrientVstructure
45 end
46 end
47 end
48 for each V′ ∈P(OrientVstructure) do
49 GV′

E\E′ = GE\E′

50 orient every triple in V′ as a v-structure in GV′

E\E′

51 repeat
52 apply orientation rules R1-R4 and R8-R10
53 if a discriminating path is found in R4 then
54 construct two graphs from GV′

E\E′ with each direction of the discriminated collider and con-
tinue orienting edges in both graphs

55 end
56 until all graphs are closed under orientation rules R1-R4 and R8-R10;
57 add all graphs to PossibleG
58 for each G′ = (V,E′′) ∈ PossibleG do
59 M = G′
60 G′ = {G′}
61 for each {Vi◦→ Vj} ∈ E′′ do
62 orient Vi◦→ Vj as Vi → Vj inM
63 end
64 orientMU as a DAG with no new v-structures and replace every edge {Vi ◦−◦ Vj} inM with

the corresponding edge fromMU

65 if (i)M is a MAG, and (ii) each set in sepset corresponds to an independence in I(M), (iii) for
every l for each ⟨{Vi, Vj},Vl⟩ ∈ InducingPaths there is an inducing path between Vi and
Vj with respect to V\Vl inM, and (iv) if for every non-adjacent pair A and B inM there
exists a set S′ ⊆ pastτV(A,B) such that A and B are m-separated by S′ inM then

66 #omit lines 67-72 in the simple tIOD algorithm
67 for each ordered pair of adjacent nodes Vi, Vj in G′ do
68 if τ(Vi) < τ(Vj) then
69 orient Vi ∗−◦ Vj as Vi∗→ Vj

70 end
71 end
72 apply rules R1-R4 and R8-R10673 to G′ until none applies. If a discriminating path is found

then construct two graphs with each direction of the discriminated collider and continue
orienting edges in both graphs. Let G′ be the set of these graphs.

73 add every G′ ∈ G′ to G
74 end
75 end
76 end
77 end
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Remark 19 The tIOD algorithm may also be made more efficient by, e.g., not considering nodes in
adjG(A) and adjG(B) at lines 33-36 of Algorithm 3 when determining whether an edge A ∗−∗ B
is removable. However, we focus on the gain in efficiency by adding tiered background knowledge,
and we choose to otherwise follow what is done in the original IOD algorithm.

Appendix C. Number of graphs output in Example 1 and Example 2

E′ ∈P(RemoveEdges)
Possible
v-struct.

Graphs
considered

Graphs
output

∅ 1 2 1
{A ◦−◦D} 3 8 4
{A ◦−◦B} 2 4 0
{A ◦−◦ C} 2 4 0
{B ◦−◦D} 1 2 1
{C ◦−◦D} 1 2 1
{{A ◦−◦D}, {A ◦−◦B}} 2 4 0
{{A ◦−◦D}, {A ◦−◦ C}} 2 4 0
{{A ◦−◦D}, {B ◦−◦D}} 1 2 0
{{A ◦−◦D}, {C ◦−◦D}} 1 2 0
{{A ◦−◦B}, {A ◦−◦ C}} 3 5 0
{{A ◦−◦B}, {B ◦−◦D}} 0 1 0
{{A ◦−◦B}, {C ◦−◦D}} 2 4 0
{{A ◦−◦ C}, {B ◦−◦D}} 2 4 0
{{A ◦−◦ C}, {C ◦−◦D}} 0 1 0
{{B ◦−◦D}, {C ◦−◦D}} 2 4 1
{{A ◦−◦D}, {A ◦−◦B}, {A ◦−◦ C}} 1 2 0
{{A ◦−◦D}, {A ◦−◦B}, {B ◦−◦D}} 1 2 0
{{A ◦−◦D}, {A ◦−◦B}, {C ◦−◦D}} 0 1 0
{{A ◦−◦D}, {A ◦−◦ C}, {B ◦−◦D}} 0 1 0
{{A ◦−◦D}, {A ◦−◦ C}, {C ◦−◦D}} 1 2 0
{{A ◦−◦D}, {B ◦−◦D}, {C ◦−◦D}} 0 1 0
{{A ◦−◦B}, {A ◦−◦ C}, {B ◦−◦D}} 1 2 0
{{A ◦−◦B}, {A ◦−◦ C}, {C ◦−◦D}} 1 2 0
{{A ◦−◦B}, {B ◦−◦D}, {C ◦−◦D}} 1 2 0
{{A ◦−◦ C}, {B ◦−◦D}, {C ◦−◦D}} 1 2 0
{{A ◦−◦B}, {A ◦−◦ C}, {A ◦−◦D}, {B ◦−◦D}} 0 1 0
{{A ◦−◦ C}, {A ◦−◦D}, {B ◦−◦D}, {C ◦−◦D}} 0 1 0
{{A ◦−◦D}, {B ◦−◦D}, {C ◦−◦D}, {A ◦−◦B}} 0 1 0
{{B ◦−◦D}, {C ◦−◦D}, {A ◦−◦B}, {A ◦−◦ C}} 0 1 0
{{C ◦−◦D}, {A ◦−◦B}, {A ◦−◦ C}, {A ◦−◦B}} 0 1 0
E 0 1 0
Total 32 73 8

Table 1: Number of graphs output by the IOD algorithm in Example 1
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E′ ∈P(RemoveEdges)
Possible
v-struct.

Graphs
visited

Graphs
output

∅ 0 1 1
{A ◦−◦D} 2 4 4
{B ◦−◦D} 1 2 1
{C ◦−◦D} 1 2 1
{{A ◦−◦D}, {B ◦−◦D}} 1 2 0
{{A ◦−◦D}, {C ◦−◦D}} 1 2 0
{{B ◦−◦D}, {C ◦−◦D}} 2 4 1
{{A ◦−◦D}, {B ◦−◦D}, {C ◦−◦D}} 0 1 0
Total 8 18 8

Table 2: Number of graphs visited and output by the tIOD algorithm in Example 2

Appendix D. Proofs

Proof of Proposition 6 The “if” part is trivial, we show the “only if” part. Assume G is a DAG.
Then A and B can be d-separated in G by some S ⊂ V if and only if they can be d-separated
by paG(A) or paG(B) (Verma and Pearl, 1990; Spirtes and Glymour, 1991). Since paG(A) ⊆
pastτV(A) and paG(B) ⊆ pastτV(B) for any τ consistent with G, if A and B cannot be d-separated
by any S ⊆ pastτV(A) or S′ ⊆ pastτV(B), then they cannot be d-separated by paG(A) or paG(B),
and then no subset of V d-separates them. Assume instead that G is a MAG. Then A and B can
be m-separated in G by any S ⊂ V if and only if they can be m-separated by dsepG(A,B) or
dsepG(B,A) by Lemma 16. Recall that dsepG(A,B) ⊆ anG({A,B}) (Definition 15). Note that
anG(A) ⊆ pastτV(A) and anG(B) ⊆ pastτV(B) for any τ consistent with G, and it follows that
dsepG(A,B) ⊆ pastτV(A) ∪ pastτV(B). Assume without loss of generality that τ(A) ≤ τ(B),
then pastτV(A) ⊆ pastτV(B) and then dsepG(A,B) ⊆ pastτV(B): If there is no S′ ⊆ pastτV(B)
that m-separates A and B, then they are not m-separated by dsepG(A,B), and then no subset of V
m-separates them. The same holds for dsepG(B,A).

Lemma 20 Let M = (V,E) be a MAG and A and B distinct nodes in V. Let G be the graph
obtained at line 22 of the tFCI algorithm (Algorithm 2) when estimating the equivalence class of
M using oracle knowledge. Then A and B are adjacent inM if and only if they are adjacent in G.

Proof First, we could have obtained the same graph at line 11 if we had run the algorithm without
using background knowledge c.f. Proposition 6, since we have oracle knowledge of the conditional
independences and correct background knowledge. Second, note that given oracle knowledge, any
v-structure oriented at line 14 based on the tiered ordering would also have been oriented with-
out background knowledge. Since we obtain the same graph at line 16 as we would have without
background knowledge, by Lemma 13 in Spirtes et al. (1999) dsepM(A,B) ⊆ poss.dsepG(A,B),
and by Lemma 1.2 in Colombo et al. (2012), A and B can be m-separated by any set in M if
and only if they are m-separated by a set of nodes that all lie on a path between A and B in M,
i.e. dsepM(A,B) ⊆ pdsG(A,B). By Proposition 6, A and B can be m-separated in M if and
only if they are m-separated by a subset of pastτV({A,B}) for any τ consistent withM. Hence,
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dsepM(A,B) ⊆ pdsG(A,B) ∩ pastτV({A,B}) and every potential separating set is checked.
Hence, A and B are adjacent inM if and only if they are adjacent in G.

Proof of Proposition 7 LetM be a MAG and let P be the PAG representing the equivalence class
ofM. We show that if we use oracle knowledge of the conditional independencies implied byM
as input, then the simple tFCI algorithm outputs P . By Lemma 20, the skeleton obtained at line 22
is the skeleton ofM. Due to the background knowledge being correct, no v-structure, that could
not have been found from the conditional independencies, is oriented by background knowledge.
Since we have oracle knowledge of the conditional independencies, every v-structure that cannot
be oriented from background knowledge will be oriented by the conditional independencies. The
orientation rules R1-R4 and R8-R10 are sound and complete given the correct adjacencies and v-
structures (Spirtes et al., 1999; Zhang, 2008), hence the graph G output by the algorithm is the PAG
P representing the equivalence class ofM.

Proof of Proposition 8 LetM be a MAG. We show that if we use oracle knowledge of the con-
ditional independencies implied by M and correct background knowledge as input the full tFCI
algorithm outputs a PMG G that does not contain any arrowhead or tail that is not inM. By Propo-
sition 7, the graph obtained at line 28 has the same skeleton and v-structures asM. We only need
to argue that the additional arrowheads and tails obtained in the full tFCI algorithm are correct. The
arrowhead orientation in line 32 is sound due the background knowledge being correct. The orien-
tation rules R1-R4 and R8-R10 are sound in the sense that they prevent the encoded independence
model to change, any new cycles to occur, or any orientations that contradict the ancestral relations
encoded (Spirtes et al., 1999; Zhang, 2008). Hence, they do not introduce any new information
not already known from the conditional independencies and background knowledge, and the graph
output after applying these rules does not contain any arrowheads or tails not inM.

In order to prove Proposition 9, we need some extensions of the results in Tillman and Spirtes
(2011), and we follow their proof strategy of their Theorem 5.1 and 5.2 to a large extend. Here,
Corollary 21 (which follows from Proposition 7) is analogous to Theorem 7.2, Corollary 22 extends
Corollary 7.1, Lemma 23 extends Lemma 7.1, Lemma 25 extends Lemma 7.6, and Lemma 26
extends Lemma 7.7.

Corollary 21 Let sepset be constructed as in the simple tIOD algorithm (Algorithm 3), and for all
i ∈ {1, . . . , n} letMi = (Vi,Ei) be a MAG. For every i ∈ {1, . . . , n} if for all A,B ∈ Vi such
that sepset(Gi, {A,B}) is defined A ⊥Mi B | sepset(Gi, {A,B}), then for all A,B ∈ Vi and
S ⊆ Vi\{A,B}: XA ⊥⊥ XB | XS ⇒ A ⊥Mi B | S

From this we have the following result.

Corollary 22 Let sepset be constructed as in the simple tIOD algorithm (Algorithm 3), and let
M = (V,E) be a MAG. Then for all i ∈ {1, . . . , n} if for all A,B ∈ Vi such that sepset(Gi, {A,B})
is defined, A ⊥M B | sepset(Gi, {A,B}), then for all A,B ∈ Vi and S ⊆ Vi\{A,B}:
XA ⊥⊥ XB | XS ⇒ A ⊥M B | S

Proof This proof is identical to the proof of Corollary 7.1 in Tillman and Spirtes (2011).
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Lemma 23 Let G′ be a graph that is added to G at line 73 in the simple tIOD algorithm (Algorithm
3), and let M be the graph obtained at line 64. Then M is a MAG and for all i ∈ {1, . . . , n},
A,B ∈ Vi and S ⊆ Vi\{A,B} XA ⊥⊥ XB | XS ⇔ A ⊥M B | S.

Proof This proof directly follows from the proof of Lemma 7.1 in Tillman and Spirtes (2011). M
is a MAG by condition (i) at line 65. By condition (ii) at line 65 and Corollary 22, XA ⊥⊥ XB |
XS ⇒ A ⊥M B | S. Then, by condition (iii) at line 65 and Theorem 3.2 in Tillman and Spirtes
(2011) it follows that XA ⊥⊥ XB | XS ⇔ A ⊥M B | S.

Lemma 24 Let G1, . . . ,Gn, G and InducingPaths be the graphs and sets of dependent pairs
obtained at line 32 of the oracle version of the simple tIOD algorithm (Algorithm 3). Then these are
identical to the graphs G1, . . . ,Gn, G and and sets of dependent pairs InducingPaths obtained
after line 30 of Algorithm 2 in Tillman and Spirtes (2011) (the IOD algorithm).

Proof We refer to Algorithm 3 as the tIOD (algorithm) and Algorithm 2 in Tillman and Spirtes
(2011) as the IOD (algorithm).

Consider a fixed i ∈ {1, . . . , n}, let A,B ∈ Vi and let pdsGi
(A,B)τ and pdsGi

(B,A)τ be
sets of nodes considered at line 20 of the tIOD algorithm. Let Mi be the true MAG over Vi.
Then, A and B are m-separated in Mi if and only if they are m-separated by dsepMi

(A,B) or
dsepMi

(B,A) (Definition 15) by Lemma 16. Since dsepMi
(A,B) ⊆ pdsGi

(A,B)τ∩pastτV(A,B)
and dsepMi

(B,A) ⊆ pdsGi
(B,A)τ ∩ pastτV(A,B) (c.f. proof of Lemma 20), the correct skeleton

is obtained a line 26. Let pdsGi
(A,B) and pdsGi

(B,A) be sets of nodes considered at line 18
of the IOD algorithm. Then pdsGi

(A,B)τ ∩ pastτV(A,B) ⊆ pdsGi
(A,B) and pdsGi

(B,A)τ ∩
pastτV(A,B) ⊆ pdsGi

(B,A). Hence, the tIOD and IOD obtain the same skeleton of Gi, and the
same InducingPaths for Vi. Since this must be the case for every i, the two algorithms also
obtain the same InducingPaths and the same skeleton of G after line 26 of the tIOD algorithm
and line 24 of the IOD algorithm.

Next, the algorithms differ at lines 27-32 of the tIOD (line 25-29 in the IOD). In the tIOD, some
arrowheads are oriented based on the tiered ordering, and some are oriented based on the condi-
tional independencies. However, since the tiered background knowledge is assumed to be correct,
any orientation by background knowledge could have been oriented solely by oracle knowledge
of the conditional independencies. Here, the IOD orients arrowheads only based on conditional
independencies. However, under oracle knowledge, both algorithms use the same conditional in-
dependencies, and since every Gi has the same skeleton in both algorithms, they orient the same
arrowheads in G.

Lemma 25 LetM be a MAG over V = V1∪ . . .∪Vn such that for all i ∈ {1, . . . , n} A,B ∈ Vi

and S ⊆ Vi\{A,B} A ⊥M B | S ⇔ XA ⊥⊥ XB | XS, then some graph considered at line 38 of
Algorithm 3 has the same skeleton asM.

Proof Let G be the graph considered at line 33 of Algorithm 3. By Lemma 24 it follows from
Lemma 7.4 in Tillman and Spirtes (2011) that G contains a superset of the adjacencies inM. Let
A and B be a pair of nodes that are adjacent in G but not inM. Then, by maximality ofM, there
is some set S ⊆ V\{A,B} that m-separates A and B in M. It then follows from Corollary 22
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that for all i, no such S is a subset of Vi. One such S is in adjM(A) ∩ pastτV(A) ⊆ adjG(A) ∩
pastτV(A) or (pdsM(A,B) ∪ pdsM(B,A)) ∩ pastτV({A,B}) ⊆

(
pdsG(A,B) ∪ pdsG(B,A)

)
∩

pastτV({A,B}), or S is in adjM(B) ∩ pastτV(B) ⊆ adjG(B) ∩ pastτV(B) or
(pdsM(A,B) ∪ pdsM(B,A))∩pastτV({A,B}) ⊆

(
pdsG(A,B) ∪ pdsG(B,A)

)
∩pastτV({A,B}).

Hence, A and B are added to RemoveEdge. Since all combinations of edge removals are consid-
ered, one graph must have the same skeleton asM.

Lemma 26 Let M be a MAG over V such that for all i ∈ {1, . . . , n} A,B ∈ Vi and S ⊆
Vi\{A,B} A ⊥M B | S⇔ XA ⊥⊥ XB | XS, then some graph considered at line 49 of Algorithm
3 has the same v-structures asM.

Proof Let G be a graph constructed at line 38 of Algorithm 3 and assume that G has the same
skeleton as M (such a G exists by Lemma 25). By Lemma 24 it follows from Lemma 7.5 in
Tillman and Spirtes (2011) that G contains a subset of the v-structures inM. Let ⟨A,B,C⟩ be an
unshielded triple in G andM, and assume that this is a v-structure inM but not in G. If τ(B) >
max(τ(A), τ(C)), then every graph considered at line 49 must have ⟨A,B,C⟩ oriented as a v-
structure. If τ(B) ≤ max(τ(A), τ(C)) and there were an i where B ∈ Vi and sepset(Gi, {A,C})
were defined, then the v-structure would have been oriented in G (line 29 of Algorithm 3). Hence,
⟨A,B,C⟩ is added to OrientVstructure. Since all combinations of possible v-structures are
considered, one graph must have the same v-structures asM.

Lemma 27 Let G be a PAG. Then G is consistent with the tiered ordering τ if and only if some
M∈ [G] satisfies criterion (iv) at line 65 in Algorithm 3.

Proof G is consistent with τ if there exist an M ∈ [G] that encodes the background knowledge
implied by τ . LetM∈ [G].

“If ”: Let A and B non-adjacent inM. If for every path π between A and B inM that only
goes through nodes in V\pastτV({A,B}), π is not m-connecting given pastτV({A,B}), then the
orientation of cross-tier edges in G, which is the PAG ofM, will not construct any new v-structures.

“Only if ”: Let A and B be nodes in M and assume that (iv) at line 65 is not satisfied. Let
π be a path between A and B that goes through nodes in V\pastτV({A,B}). Assume that π is
m-connecting given every S ⊂ pastτV({A,B}). Then, π will have either a directed edge that is into
A, one that is into B, or both. However, τ implies that the edge between A and the next node on π
cannot be a directed edge into A (similar for B). I.e.M does then not encode the tiered background
knowledge implied by τ . Since such a path exists for any MAG that is Markov equivalent toM, G
is not consistent with τ .

Proof of Proposition 9 Let G ∈ G. First, it follows directly from Lemma 7.3 in Tillman and Spirtes
(2011) that G is a PAG. Second, G is only added to G if it satisfies criterion (iv) at line 65. Hence,
by Lemma 27 it follows that G is consistent with τ . We need to show the following:

Soundness: For all PAGs G ∈ G and for all i ∈ {1, . . . , n} A,B ∈ Vi and S ⊆ Vi\{A,B} for all
M∈ [G] A ⊥M B | S⇔ XA ⊥⊥ XB | XS.
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Completeness: LetM be a MAG over V such that the PAG ofM is consistent with τ and for all
i ∈ {1, . . . , n} A,B ∈ Vi and S ⊆ Vi\{A,B} A ⊥M B | S ⇔ XA ⊥⊥ XB | XS, then
M∈ [G] for some G ∈ G.

Soundness: Let M be the graph obtained at line 62. By Theorem 2 in Zhang (2008) M is a
MAG, and by Lemma 23 it holds that for all i ∈ {1, . . . , n}, A,B ∈ Vi and S ⊆ Vi\{A,B}:
XA ⊥⊥ XB | XS ⇔ A ⊥M B | S. Since M ∈ [G], for any other M′ ∈ [G] it also holds that
XA ⊥⊥ XB | XS ⇔ A ⊥M′ B | S.

Completeness: We follow the proof of Theorem 5.2 in Tillman and Spirtes (2011). By Lemma
26 there is a graph G′ considered at line 50 of Algorithm 3 that has the same skeleton and v-
structures as M. Assume that G′ also contains arrowheads or tails that are not in M: Then this
has been oriented at line 27. Following the proof of Theorem 5.2 in Tillman and Spirtes (2011),
this must be an arrowhead that is into the collider in a v-structure in some MAGMi = (Vi,Ei),
for some i ∈ {1, . . . , n}, such that M and Mi encode the same m-separations over Vi, and by
Corollary 7.2 in Tillman and Spirtes (2011), this arrowhead must then be contained in the PAG rep-
resenting the equivalence class ofM. Hence, this orientation must also be inM. By the soundness
and completeness of the orientation rules R1-R4 and R8-R10 (Zhang, 2008), the PAG G ofM is
contained in PossibleG. By Theorem 2 in Zhang (2008), given G, at line 62 we obtain a MAG
that is Markov equivalent toM. For this MAG, criteria (i) and (ii) at line 65 are satisfied, and by
Theorem 4.2 in Richardson and Spirtes (2002) criterion (iii) is also satisfied. Hence, the PAG ofM
is added to G.

Proof of Proposition 10 LetM be a MAG over V = V1 ∪ . . .∪Vn that encodes τ . Consider the
full tIOD algorithm using oracle knowledge of the marginal independence models over V1, . . . ,Vn

and the background knowledge implied by τ . Let G′ be the graph considered at line 59 and assume
that conditions (i), (ii), (iii) and (iv) at line 65 are satisfied. Assume that G′ is the PAG ofM (by
Proposition 9 some G′ will be the PAG ofM). We will argue that the additional arrowheads and
tails obtained in the full tIOD algorithm are correct: The arrowhead orientation at line 69 is sound
since we assumed the tiered background knowledge to be correct. The orientation rules R1-R4
and R8-R10 are sound in the sense that they prevent the encoded independence model to change,
any new cycles to occur, or any orientations that would contradict the ancestral relations encoded
(Spirtes et al., 1999; Zhang, 2008). Hence, they do not introduce any new information not already
known from the independence models and background knowledge. Moreover, for every possible
orientation implied by R4 we include both graphs. Hence, at least one graph output encodes the
independence model ofM and does not contain any arrowheads and tails not inM.

Proof of Proposition 11 We refer to Algorithm 3 as the tIOD (algorithm) and Algorithm 2 and 3
in Tillman and Spirtes (2011) as the IOD (algorithm).

In the first part of the algorithms (line 32 of the tIOD and line 30 of Algorithm 2 in Tillman
and Spirtes (2011)), the IOD algorithm and simple tIOD obtain the same graph G over V (Lemma
24). The only other part later in the simple tIOD algorithm where tiered background knowledge is
being used is when constructing RemoveEdge and OrientVstructure. Like the IOD, the
tIOD visits all graphs that can be constructed from G from all combinations of edge removals
in RemoveEdge and v-structured orientations in OrientVstructure. Let RemoveEdge
and OrientVstructure be obtained in the IOD algorithm (Algorithm 3 in Tillman and Spirtes
(2011)), and let RemoveEdgeτ and OrientVstructureτ be obtained in the tIOD algorithm.
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Then the tIOD algorithm visits fewer graphs than the IOD algorithm if and only if either
|RemoveEdge| > |RemoveEdgeτ |, |OrientVstructure| > |OrientVstructureτ |, or
both |RemoveEdge| > |RemoveEdgeτ | and |OrientVstructure| > |OrientVstructureτ |.
We show that this is equivalent to conditions (i) and (ii).

First, note that it must always be the case that |RemoveEdgeτ | ≤ |RemoveEdge| since for
any A,B

{A,B} ∪
(
adjG(A) ∩ pastτV(A)

)
∪
((
pdsG(A,B) ∪ pdsG(B,A)

)
∩ pastτV(A,B)

)
̸⊂ Vi ⇒

{A,B} ∪ adjG(A) ∪ pdsG(A,B) ∪ pdsG(B,A) ̸⊂ Vi

and

{A,B} ∪
(
adjG(B) ∩ pastτV(B)

)
∪
((
pdsG(A,B) ∪ pdsG(B,A)

)
∩ pastτV(A,B)

)
̸⊂ Vi ⇒

{A,B} ∪ adjG(B) ∪ pdsG(A,B) ∪ pdsG(B,A) ̸⊂ Vi

Moreover, it also always holds that |OrientVstructureτ | ≤ |OrientVstructure|: If a triple is
added to OrientVstructureτ it is also added to OrientVstructure since any unshielded triple
obtained from RemoveEdgeτ will also be obtained from RemoveEdge.

“If:” Condition (i):: Since A and B have been measured together in at least one dataset, XA

and XB are not marginally independent, so if the edge between A and B can be removed, it must
be because there exists an S ⊆ V that separates A and B. The IOD algorithm searches for such a
set in adjG(A) ∪ pdsG(A,B) ∪ pdsG(B,A) and adjG(B) ∪ pdsG(A,B) ∪ pdsG(B,A). If for all i

{A} ∪ adjG(A) ∪ pdsG(A,B) ∪ pdsG(B,A) ̸⊂ Vi and

{B} ∪ adjG(B) ∪ pdsG(A,B) ∪ pdsG(B,A) ̸⊂ Vi

then A ∗−∗B is added to RemoveEdge. If for some i A,B ∈ Vi and(
pdsG(A,B) ∪ pdsG(B,A)

)
\Vi ⊆ V\pastτV(A,B) and adjG(A)\Vi ⊆ V\pastτV(A)

then (
pdsG(A,B) ∪ pdsG(B,A)

)
∩ pastτV(A,B) ⊆ Vi and adjG(A) ∩ pastτV(A) ⊆ Vi

and it then follows that

{A,B} ∪
((
pdsG(A,B) ∪ pdsG(B,A)

)
∩ pastτV(A,B)

)
∪
(
adjG(A) ∩ pastτV(A)

)
⊆ Vi

and A ∗−∗ B is not added to RemoveEdgeτ and |RemoveEdge| > |RemoveEdgeτ |. The
same holds for adjG(B)\Vi ⊆ V\pastτV(B).

Condition (ii): Now, let ⟨A,C,B⟩ be an unshielded triple where for all i, either C /∈ Vi or
sepset(Gi, {A,B}) is undefined. Then ⟨A,C,B⟩ is added to OrientVstructure. However, if
τ(C) > max(τ(A), τ(B)), this is oriented as a v-structure in the tIOD algorithm (line 42 in Algo-
rithm 3), and not added to OrientVstructureτ and OrientVstructure| > |OrientVstructureτ |.

“Only if:” Assume that neither is satisfied. Condition (i): Assume that for all adjacent A and
B for which it holds that for all i

{A} ∪ adjG(A) ∪ pdsG(A,B) ∪ pdsG(B,A) ̸⊂ Vi and (2)
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{B} ∪ adjG(B) ∪ pdsG(A,B) ∪ pdsG(B,A) ̸⊂ Vi

it is either the case that i A and B are not in Vi, or(
pdsG(A,B) ∪ pdsG(B,A)

)
\Vi ̸⊂ V\pastτV(A,B) or

adjG(A)\Vi ̸⊂ V\pastτV(A) and adjG(B)\Vi ̸⊂ V\pastτV(B)

then it follows that

{A,B} ∪
(
adjG(A) ∩ pastτV(A)

)
∪
(
(pdsG(A,B) ∪ pdsG(B,A)) ∩ pastτV({A,B})

)
̸⊂ Vi

and

{A,B} ∪
(
adjG(B) ∩ pastτV(B)

)
∪
(
(pdsG(A,A) ∪ pdsG(B,A)) ∩ pastτV({A,B})

)
̸⊂ Vi

Hence, for all pairs A,B where (2) is satisfied A ∗−∗ B is then added to both RemoveEdge and
RemoveEdgeτ , and |RemoveEdge| = |RemoveEdgeτ |

Condition (ii): Assume that for all unshielded triples ⟨A,C,B⟩ where for all i, either C /∈ Vi

or sepset(Gi, {A,B}) is undefined we have that τ(C) ≤ max(τ(A), τ(B)), then all of these triples
are added to both OrientVstructure and OrientVstructureτ , and OrientVstructure| =
|OrientVstructureτ |.
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