
SPRING: Improving the Throughput of Sharding
Blockchain via Deep Reinforcement Learning Based

State Placement
Anonymous Authors

Abstract
Sharding provides an opportunity to overcome inherent scal-
ability challenges of the blockchain. In a sharding block-
chain, the state and computation are partitioned into smaller
groups, known as "shards," to facilitate parallel transaction
processing and improve throughput. However, since the
states are placed on different shards, cross-shard transactions
are inevitable, which is detrimental to the performance of the
sharding blockchain. Existing sharding solutions place states
based on heuristic algorithms or redistribute states via graph-
partitioning-based methods, which are either less effective
or costly. In this paper, we present Spring, the first deep-
reinforcement-learning(DRL)-based sharding framework for
state placement. Spring formulates the state placement as
a Markov Decision Process which takes into consideration
the cross-shard transaction ratio and workload balancing,
and employs DRL to learn the effective state placement pol-
icy. Experimental results based on real Ethereum transac-
tion data demonstrate the superiority of Spring compared
to other state placement solutions. In particular, it decreases
the cross-shard transaction ratio by up to 26.63% and boosts
throughput by up to 36.03%, all without unduly sacrificing
the workload balance among shards. Moreover, updating the
training model and making decisions takes only 0.1s and
0.002s, respectively, which shows the overhead introduced
by Spring is acceptable.

CCS Concepts: • Computer systems organization →
Peer-to-peer architectures.

Keywords: blockchain, sharding, scalability, deep reinforce-
ment learning

ACM Reference Format:
Anonymous Authors. 2023. SPRING: Improving the Throughput of
Sharding Blockchain via Deep Reinforcement Learning Based State

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
WWW, 2024, Singapore
© 2023 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

Placement. In Proceedings of (WWW). ACM, New York, NY, USA,
11 pages. https://doi.org/XXXXXXX.XXXXXXX

1 Introduction
Breaking the scalability trilemma [1] poses a significant chal-
lenge in blockchain technology as it requires improving
throughputwhilemaintaining a balance among safety, decen-
tralization, and scalability. Among various scaling solutions,
sharding [14, 15, 20, 27, 39, 43] stands out as a promising
approach for addressing the scalability trilemma. Sharding
adopts a “divide and conquer” approach by partitioning the
blockchain into smaller segments called shards. Each shard
stores a portion of the blockchain’s state and can process
transactions independently and concurrently, thereby en-
hancing the performance of the blockchain. Practically, the
state in the blockchain can be represented by an address, a
unique identifier for blockchain users to participate in trans-
actions. Whenever a new state is stored within the block-
chain, a corresponding address will be created. In this paper,
we concentrate on the account-balance data model, wherein
the address signifies either a user or a smart contract [40].
Although enhanced with the sharding mechanism, the

throughput of sharding blockchains cannot scale linearly
with an increasing number of shards, owing to the time-
consuming cross-shard transactions. The cross-shard trans-
action (CST) is a special transaction that is used to handle
the scenario where the states of transaction participants
reside on different shards [24, 39, 42]. CSTs are common
in sharding blockchains, with studies indicating that when
there are more than 16 shards, over 95% of transactions are
CSTs [24, 39]. Therefore, reducing CST is crucial to improve
the throughput of sharding blockchains further.
The key to reducing CST lies in smartly placing states

into different shards. However, there is a trade-off between
minimizing the number of CST and maintaining a balanced
workload distribution among shards. For instance, placing
all states in the same shard could eliminate CST but regress
to a standalone blockchain scenario. In this paper, we refer to
the challenge of reducing CST while maintaining a balanced
workload as the state placement problem.

The reduction of CSTs can be achieved in different opera-
tional phases of a sharding blockchain. As depicted in Fig.1, a
sharding blockchain protocol encompasses multiple consec-
utive epochs. In each epoch, there are two primary phases:
the consensus phase and the reconfiguration phase[15, 26].

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

WWW, 2024, Singapore Anonymous Authors

B

C

A
…

…

…

A

B

C

Consensus
Phase

Reconfiguration
Phase

Epoch 𝑘 Epoch 𝑘 + 1

Consensus
Phase

Reconfiguration
Phase

A

B

C

C

A

B
…

…

…

Consensus node Block Consensus node shuffling

Figure 1. The two phases in each epoch of a sharding block-
chain. In the consensus phase, transactions in the upcoming
blocks are processed. In the reconfiguration phase, the con-
sensus nodes are redistributed for security reasons.

The former phase involves processing transactions and gen-
erating blocks, utilizing state placement to minimize CSTs.
The latter phase occurs every few blocks by shuffling con-
sensus nodes into different shards for security reasons and
implementing state redistribution to minimize CSTs.

In the consensus phase, the new state is created and placed
for the first time. Existing state placement solutions adopted
by cutting-edge sharding blockchains [14, 20, 21, 39, 43] for
this phase are heuristic in nature, which are simple but less
effective in solving the state placement problem. In the re-
configuration phase, the state is redistributed through the
reconfiguration of consensus nodes. Based on the rich spatial-
temporal (ST) characteristics in blockchain transaction data
[8, 19, 45], the state redistribution method [15, 24] utilizes
community detection and graph partitioning techniques ap-
plied to transaction graphs to redistribute states. The ST
characteristics of transactions are also valuable in solving
the state placement problem as they reveal the possible loca-
tions of future states that have transactions with that new
state[8, 19, 45]. However, the transaction graph may con-
tain millions of nodes (addresses) and edges (transaction
relationships), causing the partitioning process to be time-
consuming, taking hundreds of seconds to complete [24].
Consequently, these methods are not feasible in the consen-
sus phase.

To provide an efficient state placement framework in the
consensus phase, we propose Spring, a new State Placement
framework based on deepReinforcement learnING [25] that
utilizes the ST characteristics of transactions. As the block
can be viewed as a sequence of transactions that contain
many new states to be placed, state placement can be viewed
as a sequential decision problem suitable for reinforcement
learning (RL) [37] approaches. Additionally, since the change
of characteristics does not have an explicit pattern as the
blockchain evolves [8, 19, 45], RL can adapt dynamically to
capture changes that heuristics may fail to grasp. Experi-
mental results based on real Ethereum transaction data show
that Spring can solve the state placement problem effectively
in different periods of real-world transaction data.

This paper makes the following contributions:

• To the best of our knowledge, Spring is the first to solve
the state placement problem using RL. We formulate
the Markov Decision Process model for state place-
ment in sharding blockchains, converting the state
placement problem into a sequential decision-making
task while accounting for computational overhead and
the ST characteristics of transactions.

• We propose a sharding blockchain system model and a
decentralized agent deployment and training protocol
to apply Spring into sharding blockchains.

• We evaluate the effectiveness of Spring on a shard-
ing blockchain testbed deployed on the Alibaba Cloud
where the test data set consists of millions of real Ether-
eum transactions from the years 2015, 2019, and 2023.
Spring outperforms SkyChain [44], Monoxide [39],
Shard Scheduler [21], and a heuristic baseline in all
three time periods. In particular, Spring achieves a
throughput improvement of 36.09% and a reduction in
the CST ratio of 26.63%. Additionally, Spring strikes
a good balance between reducing the CST ratio and
maintaining workload balance.

2 Background and related work
2.1 Deep Reinforcement Learning
RL [37] is a prominent method for addressing sequential
decision problems [5]. RL relies on an agent to take actions
continually in an environment, receive rewards and the new
state from the environment based on the outcomes of the ac-
tions, and adjust its policy to optimize long-term cumulative
rewards. Deep Reinforcement Learning (DRL) [25] combines
the strengths of deep learning [23] and RL and has been
widely applied in sequential decision problems in distributed
systems [28, 41].

2.2 Sharding Blockchain and Cross-Shard
Transactions

Several solutions have been proposed to implement a shard-
ing blockchain [9, 15, 20, 27, 43]. The consensus phase in
sharding blockchains includes intra-shard consensus and
cross-shard consensus. The former is relatively simple and
can be implemented using protocols such as PBFT [7]. The
latter, on the other hand, requires interoperability [16] among
all shards to handle cross-shard transactions, which is more
complex. Common methods for cross-shard transaction pro-
cessing include the lock-mint two-phase commit mecha-
nism [20], relay-based approaches [24, 39], and appointing
one special shard to handle all cross-shard transactions [14].
For the reconfiguration phase, since all consensus nodes are
partitioned into smaller committees in different shards, the
cost of compromising a shard is lower than compromising
the entire blockchain. Therefore, shard reconfiguration is
needed to shuffle consensus nodes across all shards to main-
tain the safety of the entire system.

SPRING: Improving the Throughput of Sharding Blockchain via Deep Reinforcement Learning Based State Placement WWW, 2024, Singapore

2.3 State Redistribution
BrokerChain [15] is a cross-shard protocol that aims to re-
duce cross-shard transactions through fine-grained state-
graph partitioning and state segmentation mechanisms. Bro-
kerChain collects transaction information during the recon-
figuration interval and builds a state graph, which is parti-
tioned usingMetis [18]. Subsequently, one state is segmented
into multiple sub-states and distributed across shards. To re-
duce the computation time in BrokerChain, the Constrained
Label Propagation Algorithm (CLPA) [24] is proposed for
state redistribution. The CLPA is a community detection
mechanism that requires less time than Metis.
Overall, state redistribution solutions are storage-space-

consuming and time-consuming. However, since these solu-
tions and Spring work in different phases, they are orthogo-
nal and can be combined to reduce cross-shared transactions
better. We leave this to future work as we focus on the state
placement in the consensus phase.

2.4 RL in Sharding Blockchains
SkyChain [44] is the first to apply DRL in sharding block-
chains. SkyChain proposes a DRL-based sharding blockchain
protocol that enables a sharding blockchain to dynamically
change its number of shards, block size, and shard reconfigu-
ration interval at run-time. Clustering-based dynamic shard-
ing (CBDS) [42] focuses on blockchains in the Internet of
Things (IoT). CBDS clusters IoT devices using K-means [32]
for user grouping and consensus node assignment. CBDS
then builds a transaction graph to represent transactions
between IoT devices and dynamically adjusts sharding block-
chains based on this graph as the state for RL.

Common limitations: Currently, research on RL-based
sharding blockchain is still in its early stages. There are three
main limitations of SkyChain and CBDS: 1) The state space
in SkyChain and CBDS does not consider the state of each
shard. SkyChain only considers the total number of consen-
sus nodes and pending transactions, failing to reflect the
situation at the shard level. 2) The action space design of the
agent is inappropriate. In SkyChain and CBDS, the agent’s
actions include adjusting the reconfiguration interval and
the block size. In a blockchain, these parameters are highly
related to the consensus algorithm and cannot be arbitrar-
ily modified. For instance, increasing the block size leads to
longer transaction propagation time, and may expose the
blockchain to security attacks such as double-spending at-
tacks [17]. 3) The dataset used in SkyChain and CBDS is
a simulated dataset that does not accurately reflect the ST
characteristics of real transactions. Overall, the problem they
solve is more like a general scheduling task for a cloud com-
puting platform: when the load (transactions) increases, and
there are more resources (consensus nodes), the number of
machines (shards) is increased, which does not truly reflect
the characteristics of a sharding blockchain. Consequently,

Agent Shard

next block

Transaction Shard

chain 1

chain 2

chain 3

chain 4

address 1

address 2

address 3

address 4

address 5

address 6

address 7

address 8

address 9

address 10

address 11

next block
 on chain 1

TX 1 to 2

TX 3 to 11

next block
on chain 4
TX 6 to 7

TX 3 to 8

TX with new address

Cross-shard TX

Actor Network

Agent

Critic Network

TX 1 to 2

TX 6 to 7

TX 3 to 8

TX 3 to 11

TX mempool
TX 1 to 2

TX 6 to 7

TX 3 to 8

TX 3 to 11

TX 12 to 16

...

processed
blocksprocessed

blocksprocessed
blocksprocessed

blocks

Total # of TXs
 in each T-shard

Total # of
cross-shard

TXs in each T-shard

Location of
allocated states

C
on

ca
te

na
te

State

Figure 2. SpringChain workflow overview. The client sub-
mits transactions (TXs) to the A-Shard, then the leader in the
A-Shard selects transactions from the mempool and places
new states to T-Shards. The selected transactions are sent to
the T-Shards, some of which are cross-shard transactions.

current DRL-based solutions cannot solve the state place-
ment problem. Therefore, we propose Spring to address the
limitations of previous methods.

3 Sharding Blockchain Design
This section provides an overview of SpringChain, the shard-
ing blockchain protocol where Spring can be applied, to show
the feasibility of integrating Spring in sharding blockchains.

3.1 Basic Design and Assumptions
Similar to prior work [27, 43], we use epochs as shown in
Fig.1 to represent the term of the consensus nodes. Each
epoch spans several consensus rounds for block production.
In the reconfiguration phase of each epoch, a verifiable ran-
dom function [29] is applied to generate unpredictable and
bias-resistant randomness, called Epoch Randomness (ER).
Furthermore, we assume that all nodes have equal computa-
tional power.
As blockchain is decentralized, there are malicious no-

des that stage attacks to compromise the blockchain. Our
assumption is that the adversarial parties cannot control
more than 𝑓 = 1

3 of the consensus nodes and cannot forge
signatures. In practice, this is attainable through various
Sybil attack prevention mechanisms, such as those employed
by well-established blockchains like Bitcoin [30] and Ether-
eum [40], including proof-of-work (PoW) [30] and proof-of-
stake [40]. In SpringChain, we use the PoW to prevent the
Sybil attack. PoW requires nodes seeking to join the block-
chain to solve a puzzle, and the last few bits of the solution
string indicate which shard the node belongs to. All nodes in
SpringChain are connected by a partially synchronous [12]
peer-to-peer network, where the network may partition, but
it will heal after an unknown amount of time.

WWW, 2024, Singapore Anonymous Authors

3.2 System Model
Fig.2 provides an overview of SpringChain. As many shard-
ing blockchains [10, 14, 15, 24] have established, SpringChain
also consists of two types of shards: A-shard and T-shard.
SpringChain requires one A-Shard and 𝑘 T-Shards.

• T-Shard: The T-Shard refers to the transaction shard,
which concurrently verifies and processes transac-
tions.

• A-Shard: The A-Shard refers to the agent shard, which
receives users’ transaction requests and decides which
T-Shard the transaction should be sent to, thus com-
pleting state placement.

Similar to the state-of-the-art sharding blockchains [20,
27, 43, 44], both the A-Shard and T-Shard in Spring adopt
a Byzantine fault tolerant (BFT)-based consensus protocol,
PBFT [7] protocol, as the intra-shard consensus protocol.
In addition, a relay-based [24, 39] CST processing model is
adopted. In this model, the transaction is first processed on
the source blockchain, and then the result is relayed to the
target blockchain to finalize the CST.
The workflow of the sharding protocol shown in Fig.2 is

described as follows:
1. In each consensus round, the leader in the A-Shard

selects 𝑛𝑡 transactions from its transaction mempool
to produce the state placement result in the form of
𝑘 transaction batches. After reaching a consensus on
the placement result, the batches are sent to the corre-
sponding T-Shards.

2. T-Shards verify and execute the transactions, and only
valid transactions are included in the block. Addition-
ally, the new addresses corresponding to the new states
and the number of CSTs are recorded in the new block.

3. Finally, by observing the new blocks of T-Shards, con-
sensus nodes in A-Shard record the location of new
states, the number of CSTS, and the total number of
transactions in each T-Shard for further agent training.

Overhead of A-Shard. Although all transactions are first
sent to A-Shard, A-Shard will not become a bottleneck. For
computing overhead, unlike previous work [9], A-Shard
does not actually process transactions, which is the time-
consuming part [31]. Transactions are stored in the mem-
pool of the A-Shard node, an in-memory data structure with
𝑂 (log𝑛), even constant [11], insertion/deletion time, where
𝑛 is the number of transactions. For storage overhead, unlike
previous work [15, 24] who designates one shard to store
the full state of the whole blockchain, A-Shard only stores
𝑎𝑑𝑑𝑟𝑒𝑠𝑠 ⇒ 𝑠ℎ𝑎𝑟𝑑 relation to place new states.

Spring assigns the transaction containing the new address
to a specific T-Shard to place the new state. When an address
appears on the blockchain for the first time, it indicates
that a new state containing the metadata, like the balance
of the address, is created in the blockchain. For simplicity,
assigning the transaction that contains a new address in this

Hash of previous block, Proposer address, Height,
Epoch,S*

t,...

Votes of the parameters for
previous block

Header

Body

Root of Merkle patricia tree

root

Transactions to T-Shards(A*
t)

Addr1: (9dda901c5176b10a6d83,hi)

Addr2: (9dda901c5176b10a6d83,hi)

Addr3: (9dda901c5176b10a6d83,hi)

Addr4: (34346648f621b96df89dd,hi)

address->shard ID

Figure 3. The data structure of the block in A-Shard at height
ℎ𝑖+1. The red text indicates the vote is from a malicious node.
The 𝑆∗𝑡 and 𝐴∗

𝑡 are the state of T-Shard and state placement
results, respectively, which are used in agent training.

paper actually means placing a new state. Besides, since the
meaning of state in RL is different from that in blockchain, to
avoid ambiguity, address is used interchangeably to represent
state in blockchain in this paper.

3.3 Decentralized Agent Deployment and Training
in A-Shard

To avoid centralization issues, we describe a decentralized
agent deployment and training protocol. Each consensus
node in A-Shard maintains a copy of the agent with identical
initial parameters. Moreover, the hash of A-Shard’s genesis
block is used as the randomness seed in all agents. The update
of the agent and the state placement actions of all agents are
determined via a consensus process. In the consensus phase,
one node is selected as the proposer/leader based on ER and
proposes a new block.

The data structure of a block in A-Shard is shown in Fig.3,
which contains two parts: the header and the body. The block
header includes metadata, votes from peers, and the root of
the Merkle Patricia tree (MPT) [40]. The leaf node of the MPT
stores the mapping from the address to the ID of T-Shards.
With the MPT, the existence and location of the address can
be queried efficiently with 𝑂 (log𝑛) complexity, where 𝑛 is
the number of addresses.
As all the validity of the content in A-Shard block can

be verified via transactions, the basic safety and liveness
property of the underlying consensus protocol is not compro-
mised. Consequently, we use PBFT as an example to illustrate
how the proposer in A-Shard proposes a block and helps all
consensus nodes update the agent consistently. The details
of the security analysis of the protocol are in Appendix.A.
1) Pre-Prepare. At the start of a consensus round, the

leader broadcasts a pre-prepare message that contains the
proposed block to its peers. As demonstrated in Fig.3, the
proposed block includes the state 𝑆∗𝑡 of T-Shards that the
leader observes in the block header, and the placement results
𝐴∗
𝑡 based on 𝑆∗𝑡 in the block body. 𝑆∗𝑡 and 𝐴∗

𝑡 are RL-related
components which will be introduced in Section 4. Upon

SPRING: Improving the Throughput of Sharding Blockchain via Deep Reinforcement Learning Based State Placement WWW, 2024, Singapore

receiving the pre-prepare message, the consensus nodes will
broadcast a prepare message which contains the hash of the
block to guarantee that all peers received the same block.

2) Prepare. Upon receiving prepare messages of the same
block from more than 2/3 of peers, the consensus node will
verify𝐴∗

𝑡 from the leader by creating their own𝐴′
𝑡 with their

local views of state 𝑆 ′
𝑡 . A predefined threshold 𝜙𝑎 is set to

tolerate the inconsistency of placement results caused by
the inconsistent state due to the nature of the distributed
system. Since the placement result is actually 𝑘 transaction
batches, the differences between 𝐴′

𝑡 and 𝐴∗
𝑡 can be evaluated

by the Jaccard index [3]. If the difference is within 𝜙𝑎 , the
consensus node broadcasts the commit message to confirm
the proposed block’s validity.
3) Commit. The proposer and other nodes accumulate

commit messages for the proposed block. If more than 2/3 of
the consensus nodes send commit message for the proposed
block, all consensus nodes will commit the block and update
the local model. Besides, the leader will send the transaction
to the corresponding T-Shard with proof, which indicates
the placement result is reached via a consensus round.

4 DRL Design
We formulate the state placement problem as a Markov Deci-
sion Process (MDP) [33], which is a powerful mathematical
framework that captures the essence of sequential decision-
making under uncertainty and is the foundation of RL. Specif-
ically, the MDP can be represented as a tuple (𝑆,𝐴, 𝑃, 𝑅),
where:

State, 𝑆 : The existing modeling of sharding blockchain
has some limitations [15, 24, 42, 44]. Firstly, they do not con-
sider the state of each shard, the state space in Spring is
designed to consider the current situation in each shard. Sec-
ondly, the state space should not use too much information
as graph-partitioning-based solutions do since the size of
the transaction graph will continue to grow and increase
the overhead of the blockchain node. Thirdly, part of the
information in the transaction graph will be outdated due to
transactions’ changing ST characteristics.

As shown in Fig.2, when a new block arrives, the agent can
observe the information of that block, such as the location of
senders for each receiver, and the states in all shards, such as
the workload distribution and the number of CSTs. Besides,
the type of the new address, whether it corresponds to a
normal account or a smart contract, is also a factor worth
considering, as the transaction characteristics of the two are
different [8, 19, 45].

Taking the above-mentioned factors into account, the state
𝑠 is a 11𝑘 + 1-dimensional vector represented as follows:

s = [num_tx11, . . . , num_tx5𝑘 ,
cross_tx11, . . . , cross_tx5𝑘 ,

sender_pos1, . . . , sender_pos𝑘 , flag F],

where 𝑘 represents the number of T-Shards. num_tx𝑤𝑖 and
cross_tx𝑤𝑖 incorporate the concept of a dynamic sliding win-
dow. They refer to the total number of transactions and
CSTs in the previous five blocks for the 𝑖-th T-Shard so that
𝑤 ∈ [1, 5] indicates the block index. This sliding window
provides the temporal information for the agent because the
order of elements in num_tx𝑤𝑖 and cross_tx𝑤𝑖 is set accord-
ing to the newness of the block. Additionally, sender_pos𝑖
signifies the position of all senders linked to new addresses
within the current block, which reflects the spatial charac-
teristics. The flag F is a one-hot indicator with a value of 0
or 1, indicating whether the address is a contract account or
an externally owned account.

At the start of each training step, num_tx𝑤𝑖 and cross_tx𝑤𝑖

are initialized based on the recent five processed blocks.
Moreover, as the address of senders has been placed in ear-
lier blocks, sender_pos𝑖 is initialized based on the placement
result of existing addresses. The flag F is also initialized based
on the type of the new address.
Overall, considering the feasibility and decentralization

of the blockchain, the state should come from the publicly
available content on the blockchain, which limits the range
of options. Although subject to this limitation, experimental
results show that the information selected from the limited
choices can represent the situations in each shard and each
new address to an acceptable extent, without introducing a
significant storage burden.

Action, 𝐴: Existing RL-based studies select adjusting the
block size and reconfiguration interval as the agent’s action,
which is not applicable in the real sharding blockchain. To
overcome this drawback, the agent in Spring opts to directly
determine which shard the new address will belong to, which
is a more feasible action since it is independent of the pa-
rameters of the consensus process. Specifically, the action is
an 𝑘-dimensional one-hot vector, represented as:

action = [𝑎1, 𝑎2, . . . , 𝑎𝑘], (1)

where the value of 𝑎𝑖 is either 0 or 1, indicating whether to
assign a new address to the 𝑖-th T-Shard or not. The action
space in Spring is concise and directly places the address.

Transition, 𝑃 : The state transition function 𝑃 defines the
probability of reaching the new state 𝑠𝑡+1 after taking action
𝑎𝑡 under the given state 𝑠𝑡 .

𝑃 works in the following ways: For each arriving block,
the total number of transactions num_tx𝑤𝑖 and the number
of cross-shard transactions cross_tx𝑤𝑖 on each T-Shard is
only changed at the start of a step according to the situation
in T-Shards. For the position of the sender sender_pos𝑖 , it is
changed according to each agent’s actions within a block.
After placing an address to a T-Shard, sender_pos𝑖 related
to this address is updated. The flag is updated based on the
type of the current address to be placed.

Reward,𝑅: The reward is the beacon that guides the agent
to achieve our design goal. In reward design, two indices,

WWW, 2024, Singapore Anonymous Authors

i.e., 𝑟𝑐𝑠𝑡𝑟 and 𝑟𝑤𝑙𝑏 , are defined to represent the ratio of CST
and the workload balance situation across all shards in the
current block after taking the action, respectively. The reward
function 𝑟 is defined as follows:

𝑟𝑡 = _ · 𝑟𝑐𝑠𝑡𝑟 + (1 − _) · 𝑟𝑤𝑙𝑏 (2)

𝑟𝑐𝑠𝑡𝑟 =

∑𝑘
𝑖=1 num_tx𝑖∑𝑘
𝑖=1 cross_tx𝑖

(3)

avg_tx =

∑𝑘
𝑖=1 num_tx𝑖

k
(4)

abs_diff =

𝑘∑︁
𝑖=1

|num_tx𝑖 − avg_tx| (5)

𝑟𝑤𝑙𝑏 = exp(−𝛽 · abs_diff), (6)

where 𝑟𝑡 represents the reward at the 𝑡-th step and _ is a
weight parameter that balances the importance between the
cross-shard transaction ratio and workload balancing. 𝑟𝑐𝑠𝑡𝑟
is the inverse of the ratio of CST as we expect a low ratio
of CST. As for 𝑟𝑤𝑙𝑏 , an exponential function of the absolute
difference abs_diff is employed to represent the workload
balance situations. To ensure the balance of the workload and
easier training, we use the Laplace–Stieltjes transform [6] in
𝑟𝑤𝑙𝑏 . Finally, 𝛽 in 𝑟𝑤𝑙𝑏 is to control the decay rate.

The overall objective 𝑅 is to maximize the accumulated
reward and can be defined as follows:

𝑅 = E𝜏∼𝜋\
[𝑇∑︁
𝑡=0

𝛾𝑡𝑟𝑡
]
,

where 𝜏 is the trajectory that represents an episode of state
placement procedure, 𝜋\ is the address policy parameterized
by \ , and𝑇 is the total number of steps in the trajectory. Each
step corresponds to a block. The 𝛾 is the discount factor.
In this paper, Proximal Policy Optimization (PPO) [35] is
applied to optimize the agent. The detailed description of
PPO is in Appendix.B.

5 Evaluation
5.1 Experimental Settings
For the evaluation, the A-Shard is implemented via simu-
lation in Python 3.9 and the T-Shard is implemented via
a blockchain testbed. The agent is trained on a machine
with an Intel(R) Core(TM) i7-9750H CPU @ 2.60 GHz, 64
GB RAM, and an NVIDIA GeForce RTX 2080. Additionally,
we verify the trained result with an open-sourced shard-
ing blockchain testbed, BlockEmulator [2], to show the im-
provement in throughput brought by Spring. BlockEmula-
tor uses PBFT as its intra-shard consensus protocol and a
relay-based approach for CSTs, which is consistent with our
design described in Section 3. The T-Shard is deployed on 64
ecs.c7.large instances from the same zone in Alibaba Cloud
with 16 shards and four consensus nodes in each shard.

To demonstrate the adaptability of Spring, we selected
real Ethereum transaction(TX) data from 2015, 2019, and
2023 [46], encompassing up to six million TXs. The hyperpa-
rameter settings can be found in Appendix.C.

5.2 Overhead of SPRING
For the storage overhead, according to our evaluation, the
size of an RL model is about 30KB. The computational over-
head of Spring is twofold: 1) the cost of assigning an ad-
dress (AA), including the time taken by the agent to take
the action of deciding which shard to assign the address
to, and 2) the cost of updating the training model (UTM).
Based on the machine used in this experiment, AA in Spring
costs about 0.002 seconds, and UTM costs about 0.1 seconds,
which is much lower than the computational overhead of
graph-partitioning-based solutions.

Moreover, the computational speed can still be improved.
AA and UTM are vector computations, which are related to
the computational power of the hardware [22]. Therefore,
powerful hardware such as a graphics processing unit can
accelerate both UTM and AA. Additionally, some of the ad-
dresses are already placed in previous blocks, which means
that not all addresses need to be assigned again and there-
fore less computation time is required. Overall, even with
normal computing resources, the computational cost of both
network structures of Spring is acceptable.

5.3 Exploring Block Size for Improved Performance
Unlike previous DRL-based solutions, the block size in Spring
is not adjustable to avoid potential issues. However, the block
size is not set arbitrarily. In this experiment, we investigate
the impact of block size on the cross-shard transaction ratio
(CSTR). The block size 𝑛𝑡 used in this experiment includes
100, 200, 500, 1000, and 2000. In each experiment, a total of
1000 blocks are used in each experiment to ensure the same
amount of training steps. Fig.4 only shows the CSTR with
different 𝑛𝑡 trained on data from 2023, as results trained with
data from other periods are similar. Fig.4 shows the box plot
of the cross-shard ratio with different 𝑛𝑡 . Among them, when
𝑛𝑡 = 1000, the median value is the lowest. Additionally, the
distribution of outliers for 𝑛𝑡 = 1000 indicates that it has
better stability compared to other 𝑛𝑡 settings.
Considering that the ST characteristics of TX data can

change during runtime [8, 45], 𝑛𝑡 can be seen as the timing
window that represents the ST characteristics within 𝑛𝑡 TXs.
If 𝑛𝑡 is set to be too large, like 2000 in this experiment, the
ST characteristics might have changed significantly within
𝑛𝑡 blocks. Conversely, a too-small 𝑛𝑡 , like 100 to 500 in this
experiment may not contain enough ST information for ef-
fective state placement. Consequently, based on the experi-
mental observations from Fig.4, we set 𝑛𝑡 to 1000 in the rest
of the experiments.

SPRING: Improving the Throughput of Sharding Blockchain via Deep Reinforcement Learning Based State Placement WWW, 2024, Singapore

100 200 500 1000 2000
0.5

0.6

0.7

0.8

0.9

1.0
Ra

tio
 o

f C
ro

ss
-S

ha
rd

 Tr
an

sa
ct

io
n

Figure 4. Box plot of CSTR for
different block sizes with TX data
in 2023

200 400 600 800 1000
Block Number

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ra
tio

 o
f C

ro
ss

-S
ha

rd
 Tr

an
sa

ct
io

n

Spring2015
Spring2019
Spring2023
Skychain2023
Random2023
Shard Scheduler2023
Monoxide2023

Figure 5. Scatter plot of CSTR for
different algorithms

200 400 600 800 1000
Block Number

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Ru
nn

in
g

Av
er

ag
e

of
 C

ro
ss

-S
ha

rd
 Tr

an
sa

ct
io

n

Spring2015
Spring2019
Spring2023
Skychain2023
Random2023
Shard Scheduler2023
Monoxide2023

Figure 6. Running average of CSTR for
different algorithms

Spring Skychain Random Shard
Scheduler

Monoxide
0.5

0.6

0.7

0.8

0.9

1.0

Ra
tio

 o
f C

ro
ss

-S
ha

rd
 Tr

an
sa

ct
io

n

(a) 2015

Spring Skychain Random Shard
Scheduler

Monoxide
0.5

0.6

0.7

0.8

0.9

1.0

Ra
tio

 o
f C

ro
ss

-S
ha

rd
 Tr

an
sa

ct
io

n

(b) 2019

Spring Skychain Random Shard
Scheduler

Monoxide
0.5

0.6

0.7

0.8

0.9

1.0

Ra
tio

 o
f C

ro
ss

-S
ha

rd
 Tr

an
sa

ct
io

n

(c) 2023

Figure 7. Box plot of CSTR for different algorithms with TX
data from 2015, 2019 and 2023

5.4 Performance Comparison
Baselines. We choose the following four baselines to show
the effectiveness of Spring:

1. Random. Random solutions in previous work [20, 43]
randomly select a shard for the new state.

2. Shard Scheduler [21]. Shard Scheduler assigns a new
state to the shard with the least number of states.

3. Monoxide [39]. Monoxide allocates the new state
based on the last few hexadecimal digits of the cor-
responding address. For example, for a new address
ending with “e” in a sharding chain system with eight
shards, it will be placed in the 7th shard (e % 8 = 6).

4. SkyChain [44]. We reproduce SkyChain by using its
state and reward for state placement. SkyChain also
adopts DRL in sharding blockchains and uses the total
number of consensus nodes and pending TXs as its
state and the throughput as its reward.

The performance experiments are conducted using a total
of one million TXs in each period which corresponds to
1000 blocks as the training data, and various metrics such
as CSTR and workload distribution are collected during the
training process. These experiments aim to demonstrate the
effectiveness of Spring compared to the chosen baselines.

5.4.1 Cross-shard Transaction Ratio. Fig.7a to Fig.7c
illustrates the CSTR using different state placement algo-
rithms. For all algorithms, except Spring and SkyChain, the
CSTR is at around 94% in all periods, showing the effective-
ness of DRL. Moreover, Spring significantly outperforms all
other baselines in all periods. As Spring takes advantage
of the ST characteristics of the TX data, it can make more
judicious state placement decisions. Overall, Spring achieves
up to 26.63% reduction in CSTR compared to other baselines.

Fig.5 and Fig.6 take a deeper view into the training process.
As the baselines have similar performance, we only show the
performance of baselines with data from 2023. Fig.5 shows
that in most of the training steps Spring outperforms all
the baselines in all periods. Besides, Fig.6 demonstrates that
Spring can learn the ST characteristics to reduce CSTR effi-
ciently, since we train the agent from scratch with data in
all three periods. It is worth noting that, in the middle of
the training with 2019 data, the CSTR rises. This could be
the case of the change in the ST characteristics. For exam-
ple, most TXs are issued from or to several addresses, with
the counterpart addresses spread out across different shards.
After this period, the CSTR decreases, showing Spring pos-
sesses good adaptability.
For the performance of each algorithm, since SkyChain

uses throughput as a reward, which is related to CSTR, it
can also find a way to reduce CSTR to some extent. However,
it does not consider the state within each shard and the
location of the sender address associated with the receiver,
so its actions are taken based on the less informative state
compared to Spring, resulting in a limited reduction in CSTR.
The heuristic algorithm also has the same issue of not being
able to allocate the state to an appropriate shard.

WWW, 2024, Singapore Anonymous Authors

0 3 6 9 12 15
Shards Index

100

101

102

103

104

105

106

Tr
an

sa
ct

io
n

Nu
m

be
r

Spring

0 3 6 9 12 15
Shards Index

100

101

102

103

104

105

106

Skychain

0 3 6 9 12 15
Shards Index

100

101

102

103

104

105

106

Random

0 3 6 9 12 15
Shards Index

100

101

102

103

104

105

106

Shards Scheduler

0 3 6 9 12 15
Shards Index

100

101

102

103

104

105

106

Monoxide

Figure 8. TX distribution of all shards in different algorithms

Overall, Spring has good adaptability and successfully
utilizes a DRL-based state placement approach that leverages
the ST characteristics of TX data to reduce the CSTR.

5.4.2 Load Balancing Exploration. In this part, the load-
balancing situation in five state placement strategies is ana-
lyzed. Fig.8 shows the accumulated TX distribution in differ-
ent state placement strategies for the 1000 blocks. The y-axis
of Fig.8 is in log-scale. Overall, there is a trade-off between
the cross-shard ratio and workload balance. Previous work
such as Monoxide does not guarantee optimization of both
factors [15]. However, Spring reduces the cross-shard ratio
without excessively sacrificing workload balance.

It can be observed from Fig.8 that all strategies suffer
from some level of workload imbalance. The imbalance in all
algorithms is attributed to the power law distribution of TXs,
which has been observed in Ethereum TX data analysis[8,
45]. This indicates that a small fraction of addresses are
responsible for a large number of TXs. Taking the situation
in 2015 as an example, 9 out of 33,899 addresses contribute
to 73.7% of TXs, following the power law distribution. The
TX distribution also follows the power law in other periods.
These popular addresses are usually smart contracts or mine
pools[8, 45]. Moreover, since Fig.8 represents the cumulative
result, the difference between shards is smaller when a block
contains only 1000 TXs, meaning that the influence of the
imbalance could be amortized across all shards.

Furthermore, it should be emphasized that balance in ad-
dress distribution does not guarantee balance in TX distri-
bution. For instance, although the Shard Scheduler evenly
places addresses across shards, the distribution of TXs is not
even as shown in Fig.8. This holds true for Spring as well.
For instance, although there are about 25% more addresses
in T-Shard 7 (index starts from 0) compared to T-Shard 6,
the difference in the number of TXs between them is only
11%. Additionally, the total number of addresses in 2019 and
2023 is greater than in 2015. This is because, as users become
more concerned about privacy, mixing services [36] have
been widely used since 2019, which generates many one-off
addresses. The placement result of Spring is consistent with
the findings from Ethereum TX data analysis[8, 45], indicat-
ing that Spring successfully captures the characteristics of
the TX data.

Table 1. TPS of different algorithms

Algorithm TPS Algorithm TPS
Spring2015 486.8532 Monoxide2023 325.542
Spring2019 426.424 ShardScheduler2023 321.957
Spring2023 437.961 Random2023 326.691

SkyChain2023 342.35

Moreover, the results could potentially be further im-
proved if state redistribution is considered during the recon-
figuration phase, which could be explored in future work.

5.4.3 Throughput Exploration. The throughput is de-
fined as the number of TXs the sharding blockchain can
process per second (TPS). We collect the throughput using
BlockEmulator [2] to process the TXs in different periods.We
modify the state placement module of the BlockEmulator to
verify the effectiveness of Spring. As shown in Table.1, Spring
consistently outperforms the other algorithms. The perfor-
mance of baselines is similar in all periods. Thus, we only
present the result in 2023. Moreover, the TPS is improved
up to 36.03% with 2023 TX data, which is higher than the
reduction in CSTR, which is 20.99%. This indicates that CST’s
impact on the TPS is significant. Since the cross-shard needs
an extra processing mechanism, it is more time-consuming.
Consequently, reducing the CSTR does improve throughput,
and Spring outperforms other baselines.

6 Conclusion
In this paper, we present Spring, a deep reinforcement learn-
ing (DRL)-based state placement method that first models
the Markov Decision Process for state placement. Our solu-
tion minimizes the proportion of cross-shard transactions
without unduly compromising the workload balance be-
tween different shards. In addition, our approach exploits
the spatial-temporal properties of transaction data, resulting
in improved overall system throughput. Compared to tradi-
tional graph partitioning methods, Spring has lower compu-
tational and storage overheads. In future work, Spring can
be combined with a reconfiguration mechanism to improve
the performance of sharding blockchains.

SPRING: Improving the Throughput of Sharding Blockchain via Deep Reinforcement Learning Based State Placement WWW, 2024, Singapore

References
[1] 2023. Blockchain Scalability Trilemma. https://ethereum.org/en/

upgrades/vision/
[2] 2023. BlockEmulator. https://github.com/HuangLab-SYSU/block-

emulator
[3] 2023. Jaccard Index. https://en.wikipedia.org/wiki/Jaccard_index
[4] Abien Fred Agarap. 2018. Deep learning using rectified linear units

(relu). arXiv preprint arXiv:1803.08375 (2018).
[5] Andrew Gehret Barto, Richard S Sutton, and CJCH Watkins. 1989.

Learning and sequential decision making. University of Massachusetts
Amherst, MA.

[6] CJK Batty. 1990. Tauberian theorems for the Laplace-Stieltjes trans-
form. Trans. Amer. Math. Soc. 322, 2 (1990), 783–804.

[7] Miguel Castro and Barbara Liskov. 2002. Practical Byzantine fault
tolerance and proactive recovery. ACM Transactions on Computer
Systems (TOCS) 20, 4 (2002), 398–461.

[8] Ting Chen, Zihao Li, Yuxiao Zhu, Jiachi Chen, Xiapu Luo, John Chi-
Shing Lui, Xiaodong Lin, and Xiaosong Zhang. 2020. Understanding
ethereum via graph analysis. ACM Transactions on Internet Technology
(TOIT) 20, 2 (2020), 1–32.

[9] Hung Dang, Tien Tuan Anh Dinh, Dumitrel Loghin, Ee-Chien Chang,
Qian Lin, and Beng Chin Ooi. 2019. Towards scaling blockchain sys-
tems via sharding. In Proceedings of the 2019 international conference
on management of data. 123–140.

[10] Sourav Das, Vinith Krishnan, and Ling Ren. 2020. Efficient cross-
shard transaction execution in sharded blockchains. arXiv preprint
arXiv:2007.14521 (2020).

[11] Saulo Dos Santos, Chukwuka Chukwuocha, Shahin Kamali, and
Ruppa K Thulasiram. 2019. An efficient miner strategy for select-
ing cryptocurrency transactions. In 2019 IEEE International Conference
on Blockchain (Blockchain). IEEE, 116–123.

[12] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. 1988. Consensus
in the presence of partial synchrony. Journal of the ACM (JACM) 35, 2
(1988), 288–323.

[13] Abdelatif Hafid, Abdelhakim Senhaji Hafid, and Mustapha Samih.
2020. A novel methodology-based joint hypergeometric distribution
to analyze the security of sharded blockchains. IEEE Access 8 (2020),
179389–179399.

[14] Zicong Hong, Song Guo, Peng Li, and Wuhui Chen. 2021. Pyramid:
A layered sharding blockchain system. In IEEE INFOCOM 2021-IEEE
Conference on Computer Communications. IEEE, 1–10.

[15] Huawei Huang, Xiaowen Peng, Jianzhou Zhan, Shenyang Zhang, Yue
Lin, Zibin Zheng, and Song Guo. 2022. BrokerChain: A Cross-Shard
Blockchain Protocol for Account/Balance-based State Sharding. In
IEEE INFOCOM.

[16] Hai Jin, Xiaohai Dai, and Jiang Xiao. 2018. Towards a novel architecture
for enabling interoperability amongst multiple blockchains. In 2018
IEEE 38th International Conference on Distributed Computing Systems
(ICDCS). IEEE, 1203–1211.

[17] Ghassan O Karame, Elli Androulaki, and Srdjan Capkun. 2012. Double-
spending fast payments in bitcoin. In Proceedings of the 2012 ACM
conference on Computer and communications security. 906–917.

[18] George Karypis and Vipin Kumar. 1998. A fast and high quality mul-
tilevel scheme for partitioning irregular graphs. SIAM Journal on
scientific Computing 20, 1 (1998), 359–392.

[19] Arijit Khan. 2022. Graph Analysis of the Ethereum Blockchain Data:
A Survey of Datasets, Methods, and Future Work. In 2022 IEEE Inter-
national Conference on Blockchain (Blockchain). IEEE, 250–257.

[20] Eleftherios Kokoris-Kogias, Philipp Jovanovic, Linus Gasser, Nicolas
Gailly, Ewa Syta, and Bryan Ford. 2018. Omniledger: A secure, scale-
out, decentralized ledger via sharding. In 2018 IEEE Symposium on
Security and Privacy (SP). IEEE, 583–598.

[21] Michał Król, Onur Ascigil, Sergi Rene, Alberto Sonnino, Mustafa Al-
Bassam, and Etienne Rivière. 2021. Shard scheduler: object placement

and migration in sharded account-based blockchains. In Proceedings of
the 3rd ACM Conference on Advances in Financial Technologies. 43–56.

[22] Griffin Lacey, Graham W Taylor, and Shawki Areibi. 2016. Deep learn-
ing on fpgas: Past, present, and future. arXiv preprint arXiv:1602.04283
(2016).

[23] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. 2015. Deep learning.
nature 521, 7553 (2015), 436–444.

[24] Canlin Li, Huawei Huang, Yetong Zhao, Xiaowen Peng, Ruijie Yang,
Zibin Zheng, and Song Guo. 2022. Achieving Scalability and Load
Balance across Blockchain Shards for State Sharding. In 2022 41st
International Symposium on Reliable Distributed Systems (SRDS). IEEE,
284–294.

[25] Yuxi Li. 2017. Deep reinforcement learning: An overview. arXiv
preprint arXiv:1701.07274 (2017).

[26] Yizhong Liu, Jianwei Liu, Marcos Antonio Vaz Salles, Zongyang Zhang,
Tong Li, Bin Hu, Fritz Henglein, and Rongxing Lu. 2022. Building
blocks of sharding blockchain systems: Concepts, approaches, and
open problems. Computer Science Review 46 (2022), 100513.

[27] Loi Luu, Viswesh Narayanan, Chaodong Zheng, Kunal Baweja, Seth
Gilbert, and Prateek Saxena. 2016. A secure sharding protocol for
open blockchains. In Proceedings of the 2016 ACM SIGSAC conference
on computer and communications security. 17–30.

[28] Hongzi Mao, Mohammad Alizadeh, Ishai Menache, and Srikanth Kan-
dula. 2016. Resource management with deep reinforcement learning.
In Proceedings of the 15th ACM workshop on hot topics in networks.
50–56.

[29] Silvio Micali, Michael Rabin, and Salil Vadhan. 1999. Verifiable random
functions. In 40th annual symposium on foundations of computer science
(cat. No. 99CB37039). IEEE, 120–130.

[30] Satoshi Nakamoto. 2008. Bitcoin: A peer-to-peer electronic cash sys-
tem. Decentralized business review (2008), 21260.

[31] Michael Pacheco, Gustavo Oliva, Gopi Krishnan Rajbahadur, and
Ahmed Hassan. 2023. Is my transaction done yet? an empirical study
of transaction processing times in the ethereum blockchain platform.
ACM Transactions on Software Engineering and Methodology 32, 3
(2023), 1–46.

[32] Malay K Pakhira. 2014. A linear time-complexity k-means algorithm
using cluster shifting. In 2014 international conference on computational
intelligence and communication networks. IEEE, 1047–1051.

[33] Martin L Puterman. 1990. Markov decision processes. Handbooks in
operations research and management science 2 (1990), 331–434.

[34] John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and
Pieter Abbeel. 2015. High-dimensional continuous control using gen-
eralized advantage estimation. arXiv preprint arXiv:1506.02438 (2015).

[35] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and
Oleg Klimov. 2017. Proximal policy optimization algorithms. arXiv
preprint arXiv:1707.06347 (2017).

[36] István András Seres, Dániel A Nagy, Chris Buckland, and Péter Burcsi.
2019. Mixeth: efficient, trustless coin mixing service for ethereum.
Cryptology ePrint Archive (2019).

[37] Richard S Sutton and Andrew G Barto. 2018. Reinforcement learning:
An introduction. MIT press.

[38] Gerald Tesauro et al. 1995. Temporal difference learning and TD-
Gammon. Commun. ACM 38, 3 (1995), 58–68.

[39] Jiaping Wang and Hao Wang. 2019. Monoxide: Scale out blockchains
with asynchronous consensus zones. In 16th USENIX symposium on
networked systems design and implementation (NSDI 19). 95–112.

[40] Gavin Wood et al. 2014. Ethereum: A secure decentralised generalised
transaction ledger. Ethereum project yellow paper 151, 2014 (2014),
1–32.

[41] Mingzhe Xing, Hangyu Mao, and Zhen Xiao. 2022. Fast and Fine-
grained Autoscaler for Streaming Jobs with Reinforcement Learning.
In Proceedings of the Thirty-First International Joint Conference on
Artificial Intelligence (Vienna, Austria, 23-29 July 2022)(IJCAI 2022).

https://ethereum.org/en/upgrades/vision/
https://ethereum.org/en/upgrades/vision/
https://github.com/HuangLab-SYSU/block-emulator
https://github.com/HuangLab-SYSU/block-emulator
https://en.wikipedia.org/wiki/Jaccard_index

WWW, 2024, Singapore Anonymous Authors

ijcai. org, USA. 564–570.
[42] Zhaoxin Yang, Ruizhe Yang, F Richard Yu, Meng Li, Yanhua Zhang, and

Yinglei Teng. 2022. Sharded blockchain for collaborative computing
in the Internet of Things: Combined of dynamic clustering and deep
reinforcement learning approach. IEEE Internet of Things Journal 9, 17
(2022), 16494–16509.

[43] Mahdi Zamani, Mahnush Movahedi, and Mariana Raykova. 2018.
Rapidchain: Scaling blockchain via full sharding. In Proceedings of
the 2018 ACM SIGSAC conference on computer and communications
security. 931–948.

[44] Jianting Zhang, Zicong Hong, Xiaoyu Qiu, Yufeng Zhan, Song Guo,
and Wuhui Chen. 2020. Skychain: A deep reinforcement learning-
empowered dynamic blockchain sharding system. In Proceedings of
the 49th International Conference on Parallel Processing. 1–11.

[45] Lin Zhao, Sourav Sen Gupta, Arijit Khan, and Robby Luo. 2021. Tempo-
ral analysis of the entire ethereum blockchain network. In Proceedings
of the Web Conference 2021. 2258–2269.

[46] Peilin Zheng, Zibin Zheng, Jiajing Wu, and Hong-Ning Dai. 2020.
XBlock-ETH: Extracting and exploring blockchain data from Ethereum.
IEEE Open J. Comput. Soc. 1 (May 2020), 95–106. https://doi.org/10.
1109/OJCS.2020.2990458

A Security Analysis
Shard member selection. In the reconfiguration phase,
all shards are reconfigured to rotate the consensus nodes
within them, ensuring that the failure probability of all shards
remains lower than the safety threshold. Since an adversary
can accumulate in one shard to gain control over it, the failure
probability of A-Shard or T-Shard in Spring is calculated
using the hypergeometric distribution [13]:

𝑃𝑟 [𝑋 ≥ ⌈𝑓 𝑛𝑠⌉] =
𝑛𝑠∑︁

𝑥=⌈ 𝑓 𝑛𝑠 ⌉

(
𝑓 𝑛
𝑥

) (
𝑛−𝑓 𝑛𝑠
𝑛𝑠−𝑥

)(
𝑛
𝑛𝑠

) ,

where 𝑛 denotes the total number of consensus nodes, 𝑛𝑠
is the number of consensus nodes in a shard, and 𝑓 is the
fraction of malicious nodes, which is 1

3 in this paper as A-
Shard and T-Shard adopt PBFT. With a sufficient number of
consensus nodes, the value of 𝑃𝑟 [𝑋 ≥ ⌈𝑓 𝑛𝑠⌉] can be lowered
to as low as 10−6.

Safety and liveness. As T-Shard only processes transac-
tions like a traditional blockchain with PBFT as its consensus
protocol, we mainly focus on the safety and liveness of the
protocol mentioned in A-Shard. The safety property guar-
antees malicious nodes will not compromise the blockchain,
and the liveness property indicates all consensus nodes will
finally reach a consensus on the proposed block. We use 1

3
as the safety threshold since we assume that the number of
malicious nodes is less than 1

3 of the total consensus nodes
in Section.3.
Theorem 1. A-Shard achieves safety if there are less than

1/3 of the nodes in the A-Shard are malicious.
Proof.Assuming the leader is malicious and sends arbitrary

state placement result 𝐴∗
𝑡 and its view of state 𝑆∗𝑡 to other

nodes. According to the Prepare phase, all nodes will verify
the validity independently. Consequently, a malicious leader
cannot compromise the A-Shard. Moreover, Assuming some

consensus nodes are also malicious, they can only vote for
the malicious leader, as shown in the red font in Fig.3, or
refuse to vote for the honest leader. However, as themalicious
nodes are less than 1/3, and the block is valid only when
more than 2/3 of the consensus nodes vote for it, malicious
nodes cannot make an invalid block valid. Overall, safety
can be ensured in A-Shard.
Theorem 2. Spring achieves liveness if there are less than

1/3 of the nodes in the A-Shard are malicious.
Proof. Assuming a partially synchronous network, the pro-

posed block will eventually reach the honest nodes. If a valid
block is not produced due to malicious nodes crashing or mis-
behaving during the consensus round, the consensus round
will time out and switch to the next one. The leader will be
evicted from the peer connection table of other consensus
nodes. Overall, liveness can be ensured in A-Shard.

B Agent Network Structure and Update
Algorithm

We choose a feed-forward neural network with three linear
layers and two ReLU [4] activation functions in the agent
neural network design. The input layer contains 𝑖𝑛𝐷 neurons.
The two hidden linear layers both have a𝑛𝑛𝑒𝑢𝑟𝑜𝑛-dimensional
feature space, and the output layer maps the 𝑛𝑛𝑒𝑢𝑟𝑜𝑛 neurons
to 𝑜𝑢𝑡𝐷 neurons. ReLU activation function is used between
each linear layer.

Figure 9. Schematic diagrams of agent network structures

1. Input layer: This layer has a dimensionality of 𝑖𝑛𝐷 ,
which is the state observation of the agent.

2. Hidden layer 1: A fully connected layer, followed by a
ReLU activation function.

3. Hidden layer 2: Another fully connected layer, also
followed by a ReLU activation function.

https://doi.org/10.1109/OJCS.2020.2990458
https://doi.org/10.1109/OJCS.2020.2990458

SPRING: Improving the Throughput of Sharding Blockchain via Deep Reinforcement Learning Based State Placement WWW, 2024, Singapore

4. Output layer: A fully connected layer with a dimen-
sionality equal to the action space dimension (𝑜𝑢𝑡𝐷)
for the actor-network, or a single output neuron for
the critic network.

As for deep reinforcement learning, a policy is a mapping
from states to actions, denoted by 𝜋 (𝑎 |𝑠), which represents
the probability of taking action 𝑎 in state 𝑠 . It can be opti-
mized to maximize the expected cumulative reward:

𝜋∗ = argmax
𝜋
E
[𝑇∑︁
𝑡=0

𝛾𝑡𝑅(𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1)
��𝜋] .

Here, we adopt the PPO algorithm to optimize the address
assignment policy. PPO consists of an actor network and a
critic network, which are built using a neural network and
are responsible for making action decisions and estimating
the value of the action, respectively.
During an episode, the agent interacts with the environ-

ment using the existing policy 𝜋\ (actor-network) to collect
a batch of data. Once a complete batch of data is obtained,
the actor-network and critic-network learn from the sam-
pled data, following the algorithm 1. Specifically, the actor
network is optimized using surrogated Policy Gradient as
follows:

𝐿(\) = E𝑡 [min(𝑟𝑎𝑡𝑖𝑜𝑡𝐴𝑡 , clip(𝑟𝑎𝑡𝑖𝑜𝑡 , 1 − 𝜖, 1 + 𝜖)𝐴𝑡)],
ratio = E𝑡

[
exp

(
log(𝜋\) − log(𝜋\𝑜𝑙𝑑)

)]
,

𝐴𝑡 = 𝛿𝑡 + (𝛾 · _) · 𝛿𝑡+1 + · · · + (𝛾 · _)𝑇−𝑡 · 𝛿𝑇 ,
𝛿𝑡 = 𝑟𝑡 + 𝛾 ∗𝑉 (𝑠𝑡+1) −𝑉 (𝑠𝑡),

where 𝐴𝑡 is the Generalized Advantage Estimation [34],
which measures the relative advantage of taking action 𝑎𝑡 in
state 𝑠𝑡 compared to the average situation. The critic network
can be optimized with Temporal Difference [38] (TD):

𝐿critic = E𝑡 [(𝑉 (𝑠𝑡) −𝑉target (𝑠𝑡))2],
𝑉 (𝑠𝑡) = E𝑎𝑡

[
𝑟𝑡 + 𝛾 ∗ E𝑠𝑡+1 [𝑉 (𝑠𝑡+1)

]
.

By utilizing the above objective functions, the parameters
of the actor network and critic network can be continuously
updated over multiple episodes, leading to improved perfor-
mance of the agent in the environment.

C Hyper-parameters Settings

Table 2. Hyperparameters and their values

Hyperparameter Value
DRL training batch, 𝑏𝑎𝑡𝑐ℎ 2048

Learning rate, 𝑙𝑟 3e-4
Clip value in PPO, 𝑐𝑙𝑖𝑝 0.2

Discount factor, 𝛾 0.99
Decay rate weight factor, 𝛽 0.1

Weight factor, _ 0.5
number of neurons in each layer, 𝑛𝑛𝑒𝑢𝑟𝑜𝑛 64

Algorithm 1 PPO Overview
1: Initialize policy network parameters \ and critic network

parameters𝑤 .
2: Collect a set of trajectories 𝐷 = 𝜏 by running the current

policy 𝜋\ in the environment.
3: for each state-action pair (𝑠𝑡 , 𝑎𝑡) in 𝐷 do
4: Calculate the target value function 𝑉target (𝑠𝑡)
5: Compute the advantage function 𝐴𝑡

6: end for
7: for K iterations do
8: Perform optimization on the policy network using

Adam with mini-batches sampled from 𝐷 , computing
the gradient 𝑔 by PPO surrogate objective 𝐿(\).

9: Optimize the critic network B times by minimizing
the squared TD error 𝐿critic. Update critic network
parameters𝑤 using Adam, and compute the gradient
𝑔critic.

10: end for

The hyperparameter settings used in Spring are summa-
rized in Table 2. We set the batch size for model training
to 𝑏𝑎𝑡𝑐ℎ = 2048. After comparing surrogate objectives, we
find that the best learning effect on the environment policy
is achieved when the clip value is set to 0.2. For the Adam
optimizer, we set the initial learning rate to 𝑙𝑟 = 3 × 10−4.
The system parameters like transaction size 𝑆𝑇 and block
header size 𝑆𝐻 are set according to real blockchain systems
like Ethereum [40] or other related work like SkyChain [44].

	Abstract
	1 Introduction
	2 Background and related work
	2.1 Deep Reinforcement Learning
	2.2 Sharding Blockchain and Cross-Shard Transactions
	2.3 State Redistribution
	2.4 RL in Sharding Blockchains

	3 Sharding Blockchain Design
	3.1 Basic Design and Assumptions
	3.2 System Model
	3.3 Decentralized Agent Deployment and Training in A-Shard

	4 DRL Design
	5 Evaluation
	5.1 Experimental Settings
	5.2 Overhead of SPRING
	5.3 Exploring Block Size for Improved Performance
	5.4 Performance Comparison

	6 Conclusion
	References
	A Security Analysis
	B Agent Network Structure and Update Algorithm
	C Hyper-parameters Settings

