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Abstract

We present a novel variational framework for performing inference in (neural)
stochastic differential equations (SDEs) driven by Markov-approximate fractional
Brownian motion (fBM). SDEs offer a versatile tool for modeling real-world
continuous-time dynamic systems with inherent noise and randomness. Combining
SDEs with the powerful inference capabilities of variational methods, enables
the learning of representative function distributions through stochastic gradient
descent. However, conventional SDEs typically assume the underlying noise to
follow a Brownian motion (BM), which hinders their ability to capture long-term
dependencies. In contrast, fractional Brownian motion (fBM) extends BM to
encompass non-Markovian dynamics, but existing methods for inferring fBM
parameters are either computationally demanding or statistically inefficient. In this
paper, building upon the Markov approximation of fBM, we derive the evidence
lower bound essential for efficient variational inference of posterior path measures,
drawing from the well-established field of stochastic analysis. Additionally, we
provide a closed-form expression to determine optimal approximation coefficients.
Furthermore, we propose the use of neural networks to learn the drift, diffusion and
control terms within our variational posterior, leading to the variational training of
neural-SDEs. In this framework, we also optimize the Hurst index, governing the
nature of our fractional noise. Beyond validation on synthetic data, we contribute
a novel architecture for variational latent video prediction,—an approach that, to
the best of our knowledge, enables the first variational neural-SDE application to
video perception.

1 Introduction

Our surroundings constantly evolve over time, influenced by several dynamic factors, manifesting in
various forms, from the weather patterns and the ebb & flow of financial markets to the movements
of objects & observers, and the subtle deformations that reshape our environments. Stochastic
differential equations (SDEs) provide a natural way to capture the randomness and continuous-
time dynamics inherent in these real-world processes. To extract meaningful information about the
underlying system, i.e. to infer the model parameters and to accurately predict the unobserved paths,
variational inference (VI) [Bishop and Nasrabadi, 2006] is used as an efficient means, computing the
posterior probability measure over paths [Opper, 2019, Li et al., 2020, Ryder et al., 2018]1.

The traditional application of SDEs assumes that the underlying noise processes are generated by
standard Brownian motion (BM) with independent increments. Unfortunately, for many practical
scenarios, BM falls short of capturing the full complexity and richness of the observed real data,
which is often heavy-tailed containing long-range dependencies, rare events, and intricate temporal

1KL divergence between two SDEs over a finite time horizon has been well-explored in the control literature
[Theodorou, 2015, Kappen and Ruiz, 2016].
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Figure 1: We leverage the Markov approximation, where the non-Markovian fractional Brownian
motion with Hurst index H is approximated by a linear combination of a finite number of Markov
processes (Y1(t), . . . , YK(t)), and propose a variational inference framework in which the posterior
is steered by a control term u(t). Note the long-term memory behaviour of the processes, where
individual Yk(t)s have varying transient effects, from Y1(t) having the longest memory to Y7(t) the
shortest, and tend to forget the action of u(t) after a certain time frame.

structures that cannot be faithfully represented by a Markovian process. The non-Markovian fractional
Brownian motion (fBM) [Mandelbrot and Van Ness, 1968] extends BM to stationary increments
with a more complex dependence structure, i.e. long-range dependence vs. roughness/regularity
controlled by its Hurst index [Gatheral et al., 2018], whose smaller values (H < 1/2) indicate
sub-diffusive random motions and hence yield heavy-tailed processes. Yet, despite its desirable
properties, the computational challenges and intractability of analytically working with fBMs pose
significant challenges for inference.

In this paper, we begin by providing a tractable variational inference framework for SDEs driven by
fractional Brownian motion (Types I & II). To this end, we benefit from the relatively under-explored
Markov representation of fBM and path-wise approximate fBM through a linear combination of
a finite number of Ornstein–Uhlenbeck (OU) processes driven by a common noise [Carmona and
Coutin, 1998a,b, Harms and Stefanovits, 2019]. We further introduce a differentiable method to
optimise for the associated coefficients and conjecture (as well as empirically validate) that this strong
approximation enjoys super-polynomial convergence rates, allowing us to use a handful of processes
even in complex problems. Such Markov-isation also allows us to inherit the well-established tools
of traditional SDEs including Girsanov’s change of measure theorem [Øksendal and Øksendal, 2003],
which we use to derive and maximise the corresponding evidence lower bound (ELBO) to yield
posterior path measures as well as maximum likelihood estimates as illustrated in Fig. 1. We then use
our framework in conjunction with neural networks to devise VI for neural-SDEs [Liu et al., 2019, Li
et al., 2020] driven by the said fractional diffusion. We deploy this model along with a novel neural
architecture for the task of enhanced video prediction. To the best of our knowledge, this is the first
time either fractional or variational neural-SDEs are used to model videos. Our contributions are:
• We make accessible the relatively uncharted Markovian embedding of the fBM and its strong

approximation, to the machine learning community. This allows us to employ the traditional
machinery of SDEs in working with non-Markovian systems.

• We show how to balance the contribution of Markov processes by optimising for the combination
coefficients in closed form. We further estimate the (time-dependent) Hurst index from data.

• We derive the evidence lower bound for SDEs driven by approximate fBM of both Types I and II.
• We model the drift, diffusion and control terms in our framework by neural networks, and propose

a novel architecture for video prediction.
We will make our implementation publicly available upon publication.

2 Method

Our goal is to extend variational inference (VI) Bishop and Nasrabadi [2006] to the case where a
Wiener process in the SDE is replaced by an fBM. Unfortunately, the fractional processes we will
use are not Markovian preventing us from resorting to the standard Girsanov change of measure
approach known for "ordinary" SDE to compute KL–divergences and ELBO functionals needed for
VI [Opper, 2019]. While Tong et al. [2022] leverage sparse approximations for Gaussian processes,
this makes BH conditioned on a finite but larger number of so–called inducing variables. We take a
completely different and conceptually simple approach to VI for fBMSDE based on the exact integral
representation of the fractional Brownian motion. To this end, we first show how a strong (path-wise)
Markov-approximation can be used to approximate an SDE driven by fBM, before delving into the VI
for the Markov-Approximate fBMSDE. We leave additional definitions and proofs to our Appendix.
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Definition 1 (SDEs driven by fBM (fBMSDE)). A common generative model for stochastic dynamical
systems can be formally extended to the case of fBM replacing dW (t) by dBH(t) [Guerra and
Nualart, 2008]:

dX(t) = bθ (X(t), t) dt+ σθ (X(t), t) dBH(t). (1)

The drift function bθ (X, t) ∈ RD models the deterministic part of the change dX(t) of the state
variable X(t) during the infinitesimal time interval dt, whereas the diffusion matrix σθ (X(t), t) ∈
RD×D (assumed to be symmetric and non–singular, for simplicity) encodes the strength of the added
noise. Due to the difficulties in working directly with fBM, we will use its Markov-approximation, to
define our SDE.
Definition 2 (Markov approximation of fBM (MA-fBM)). Eq. (22) suggests that BH(t) could be well
approximated by a Markov process B̂H(t) by (i) truncating the integrals at finite γ values (γ1...γK)
and (ii) approximating the integral by a numerical quadrature as a finite linear combination involving
quadrature points and weights {ωk}. Changing the notation Yγk

(t) → Yk(t):

BH(t) ≈ B̂H(t) ≡
K∑

k=1

ωk (Yk(t)− Yk(0)) , (2)

where for fixed γk the choice of ωk depends on H and the choice of "Type I" or "Type II". For "Type
II", we set Yk(0) = 0. Since Yk(t) is normally distributed [Harms and Stefanovits, 2019, Thm. 2.16]

and can be assumed stationary for "Type I", we can simply sample
(
Y

(I
1 (0), . . . , Y

(I)
K (0)

)
from a

normal distribution with mean 0 and covariance Ci,j = 1/(γi + γj) (see Eq. (17)).

In the literature, different choices of γk and ωk have been proposed [Harms and Stefanovits, 2019,
Carmona and Coutin, 1998a, Carmona et al., 2000] and for certain choices, it is possible to obtain a
superpolynomial rate, as shown by Bayer and Breneis [2023] for the Type II case. As we will show
in Sec. 2.1, choosing γk = rk−n, k = 1, . . . ,K with n = (K + 1)/2 [Carmona and Coutin, 1998a],
we will optimise {ωk}k for both types, to get optimal rates.
Definition 3 (Markov-Approximate fBMSDE (MA-fBMSDE)). Substituting the fBM, BH(t),
in Dfn. 1 by the finite linear combination of OU-processes B̂H(t), we define MA-fBMSDE as:

dX(t) = bθ (X(t), t) dt+ σθ (X(t), t) dB̂H(t), (3)

where dB̂H(t) =
∑K

k=1 ωk dYk(t) with dYk(t) = −γkYk(t)dt+ dW (t) (cf. Dfn. 2).
Proposition 1. X(t) can be augmented by the finite number of Markov processes Yk(t) (approxi-
mating BH(t)) to a higher dimensional state variable of the form Z(t)

.
= (X(t), Y1(t), . . . YK(t)) ∈

RD(K+1), such that the joint process of the augmented system becomes Markovian and can be
described by an ’ordinary’ SDE:

dZ(t) = hθ (Z(t), t) dt+Σθ (Z(t), t) dW (t), (4)

where the augmented drift vector hθ ∈ RD×(K+1) and the diffusion matrix Σθ (Z, t) ∈ RD(K+1)×D

are given by

hθ (Z, t) =

 bθ (X, t)− σθ (X, t)
∑

k ωkγkYk

−γ1Y1

. . .
−γKYK

 Σθ (Z, t) =


ω̄σθ(X, t)

1⃗
...
1⃗

 , (5)

where ω̄ =
∑K

k=1 ωk and 1⃗ = (1, 1, . . . , 1)⊤ ∈ RD. We will refer to Eq. (4) as the variational prior.

Eq. (4) represents a standard SDE driven by Wiener noise allowing us to utilise the standard tools of
stochastic analysis, such as the Girsanov change of measure theorem and derive the evidence lower
bounds (ELBO) required for VI. This is what we will exactly do in the sequel.
Proposition 2 (Controlled MA-fBMSDE). The paths of Eq. (4) can be steered by adding a control
term u(X,Y1, . . . , YK , t) ∈ RD that depends on all variables to be optimised, to the drift hθ resulting
in the transformed SDE, a.k.a. the variational posterior:

dZ̃(t) =
(
hθ

(
Z̃(t), t

)
+ σθ(Z̃(t), t)u(Z̃(t), t)

)
dt+Σθ

(
Z̃(t), t

)
dW (t) (6)
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Sketch of the proof. Using the fact that the posterior probability measure over paths Z̃(t) {Z̃(t); t ∈
[0, T ]} is absolutely continuous w.r.t. the prior process, we apply the Girsanov theorem (cf. App. C.1)
on Eq. (4) to write the new drift, from which the posterior SDE in Eq. (6) is obtained.

We will refer to Eq. (6) as the variational posterior. In what follows, we will assume a parametric
form for the control function u(Z̃(t), t) ≡ uϕ(Z̃(t), t) (as e.g. given by a neural network) and will
devise a scheme for inferring the variational parameters (θ, ϕ), i.e. variational inference.
Proposition 3 (Variational Inference for MA-fBMSDE). The variational parameters ϕ are optimised
by minimising the KL–divergence between the posterior and the prior, where the corresponding
evidence lower bound (ELBO) to be maximised is:

log p (O1, O2, . . . , ON | θ) ≥ EZ̃u

[
N∑
i=1

log pθ

(
Oi | Z̃(ti)

)
−
∫ T

0

1

2

∥∥∥uϕ

(
Z̃(t), t

)∥∥∥2 dt

]
, (7)

where the observations {Oi} are included by likelihoods pθ

(
Oi | Z̃(ti)

)
and the expectation is

taken over random paths of the approximate posterior process defined by (Eq. (6)).

Remark 1. It is noteworthy that the measurements with their likelihoods pθ
(
Oi | X̃(ti)

)
depend

only on the component X̃(t) of the augmented state Z̃(t). The additional variables Yk(t) which are
used to model the noise in the SDE are not directly observed. However, computation of the ELBO
requires initial values for all state variables Z̃(0) (or their distribution). Hence, we sample Yk(0) in
accordance with Dfn. 2.

2.1 Optimising the approximation

We now present the details of our novel method for optimising our approximation B̂
(I,II)
H (t) for

ωk. To this end, we first follow Carmona and Coutin [1998a] and choose a geometric sequence
of γk = (r1−n, r2−n, . . . , rK−n), n = K+1

2 , r > 1. Rather than relying on methods of numerical
quadrature, we consider a simple measure for the quality of the approximation over a fixed time
interval [0, T ] which can be optimised analytically for both types I and II.

Proposition 4 (Optimal ω .
= [ω1, . . . , ωK ] for B̂(I,II)(t)). The L2-error of our approximation

E(I,II)(ω) =

∫ T

0

E
[(

B̂
(I,II)
H (t)−B

(I,II)
H (t)

)2]
dt (8)

is minimized at A(I,II)ω = b(I,II), where

A
(I)
i,j =

2T + e−γiT−1
γi

+ e−γjT−1
γj

γi + γj
, A

(II)
i,j =

T + e−(γi+γj)T−1
γi+γj

γi + γj
(9)

b
(I)
k =

2T

γ
H+1/2
k

− TH+1/2

γkΓ(H + 3/2)
+

e−γkT −Q(H + 1/2, γkT )e
γkT

γ
H+3/2
k

(10)

b
(II)
k =

T

γ
H+1/2
k

P (H + 1/2, γkT )−
H + 1/2

γ
H+3/2
k

P (H + 3/2, γkT ). (11)

P (z, x) = 1
Γ(z)

∫ x

0
tz−1e−t dt is the regularized lower incomplete gamma function and Q(z, x) =

1
Γ(z)

∫∞
x

tz−1e−t dt is the regularized upper incomplete gamma function. We refer the reader to
App. E.2 for the full proof and derivation.

3 Experiments
We implemented our method in JAX [Bradbury et al., 2018], using Diffrax [Kidger, 2021] for SDE
solvers, Optax [Babuschkin et al., 2020] for optimization, Diffrax [Babuschkin et al., 2020] for
distributions and Flax [Heek et al., 2023] for neural networks. Unlike Tong et al. [2022] our approach
is agnostic to discretization and the choice of the solver. Hence, in all experiments we can use the
Stratonovich–Milstein solver, cf. App. F for more details.
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Figure 2: (blue) true variance of a fOU bridge vs. (dashed orange) the empirical variance of our
trained models. The black lines are the sampled approximate posterior paths used to compute the
empirical variance. Our MA-fBM can match the true variance of fBM even in the heavy-tailed regime.

Recovering the fractional Ornstein–Uhlenbeck bridge. Applying our method on linear problems,
allows comparing empirical results to analytical formulations derived e.g. using Gaussian process
methodology Rasmussen et al. [2006]. We begin by assessing the reconstruction capability of our
method on a fractional Ornstein–Uhlenbeck (fOU) bridge, that is an OU–process driven by fBM:
dX(t) = −θX(t) dt+ dBH , starting at X(0) = 0 and conditioned to end at X(T ) = 0. Following
the rules of Gaussian process regression [Rasmussen et al., 2006, Eq. 2.24], we have an analytical
expression for the posterior covariance:

E
[
X̃(t)2

]
= K(t, t)− [K(t, 0) K(t, T )]

[
K(0, 0) K(T, 0)
K(0, T ) K(T, T ) + σ2

]−1 [
K(0, t)
K(T, t)

]
(12)

where K(t, τ) is the prior kernel and the observation noise is 0 for X(0) and σ for X(T ). If θ = 0,
K(t, τ) = E [BH(t)BH(τ)] (Eq. (18)) and if θ > 0 and H > 1/2, the kernel admits the following
form [Lysy and Pillai, 2013, Appendix A]:

K(t, τ) =
(2H2 −H)

2θ

(
e−θ|t−τ |

[
Γ(2H − 1) + Γ(2H − 1, |t− τ |)

θ2H−1
+

∫ |t−τ |

0

eθuu2H−2 du

])
(13)

where Γ(z, x) =
∫∞
x

tz−1e−tdt is the upper incomplete Gamma function. This allows us to compare
the true posterior variance with the empirical variance of a model that is trained by maximizing
the ELBO. for a data point X(T ) = 0. As this is equivalent to the analytical result (Eq. (12)), we
can compare the variances over time. As plotted in Fig. 2, for various H and θ values, our VI can
correctly recover the posterior variance, cf. App. G for additional results.
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Figure 3: Estimating time–
dependent H(t) from data.

Estimating time-dependent Hurst index. Since our method of op-
timizing ωk is tractable and differentiable, we can directly optimize a
parameterized H by maximizing the ELBO. Also a time–dependent
Hurst index H(t) can be modelled, leading to multifractional Brow-
nian Motion [Peltier and Véhel, 1995]. We directly compare with
a toy problem presented in [Tong et al., 2022, Sec. 5.2]. We use
the same model for H(t), a neural network with one hidden layer
of 10 neurons and activation function tanh, and a final sigmoid ac-
tivation, and the same input [sin(t), cos(t), t]. We use B̂

(II)
H since

their method is Type II. Fig. 3 shows a reasonable estimation of
H(t), which is more accurate than the result from Tong et al. [2022],
especially in the heavy-tailed sub-diffusive regime where H < 1/2 and super-diffusive H > 1/2
regime with long-range dependencies. cf. App. F for more details.

Table 1: Mean PSNR in video
prediction.

Model ELBO PSNR

SVG N/A 14.50
SLRVP N/A 16.93
BM −913.60 14.90
MA-fBM −608.00 15.30

Latent video models We apply variatonal inference for MA-
fBMSDE on latent neural-SDE video modelling. See Fig. 4 for
a schematic explanation of our model. We refer to App. F for a
detailed explanation of submodel architectures and hyperparam-
eters. Our latent video model is trained on Stochastic Moving
MNIST [Denton and Fergus, 2018], a video dataset where two
MNIST numbers move on a canvas and bounce off the edge in
random directions. We compare our model driven by MA-fBM to
a baseline model driven by BM. For the baseline we set K = 1, γ1 = 0 and ω1 = 1, which is identical
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Figure 4: Schematic of the latent SDE video model. Video frames {oi}i are encoded to vectors {hi}i.
The static content vector w, that is free of the dynamic information, is inferred from {hi}i. The
context model processes the information with temporal convolution layers, so that its outputs {gi}i
contain information from neighbouring frames. A linear interpolation on {gi}i allows the posterior
SDE model to receive time–appropriate information g(t), at (intermediate) time–steps chosen by the
SDE solver. Finally, the states {xi}i and static w are decoded to reconstruct frames {o′i}i.

to white Brownian motion. This allows us to study only the impact of the driving noise, uneffected
by other desig choices.

As shown in Tab. 1, our MA-fBM driven model is on par with closely related discrete-time methods
such as SVG [Denton and Fergus, 2018] or SLRVP Franceschi et al. [2020], in terms of PSNR.
The Hurst index was optimized during training, and reached H = 0.90 at convergence (long-term
memory). The MA-fBM model achieves higher ELBO and Peak signal-to-noise ratio (PSNR) on
the test set compared to the BM version, indicating the added degree of freedom of the Hurst index
benefits the model, and MA-fBM with H = 0.90 is better suited to the data than BM. Fig. 5 shows
reconstructed posterior samples for the BM and MA-fBM models, conditioned on the same data. We
show in our App., the generative capabilities of the learned prior SDE, where MA-fBMSDE better
captures the data diversity.

Ground truth

BM

MA-fBM

Figure 5: Posterior reconstructions of a model driven by BM and a model driven by MA-fBM,
conditioned on the same data (’Ground truth’).

4 Conclusion
In this paper, we have proposed a new approach for performing variational inference on stochastic
differential equations driven by fractional Brownian motion (fBM). We began by uncovering the
relatively unexplored Markov representation of fBM, allowing us to approximate non-Markovian
paths using a linear combination of Wiener processes. This approximation enabled us to derive
evidence lower bounds through Girsanov’s change of measure, yielding posterior path measures as
well as likelihood estimates. We also solved for optimal coefficients for combining these processes,
in closed form. Our diverse experimental study, spanning fOU bridges and Hurst index estimation,
have consistently validated the effectiveness of our approach. Moreover, our novel, continuous-
time architecture, powered by Markov-approximate fBM driven neural-SDEs, has demonstrated
improvements in video prediction, particularly when inferring the Hurst parameter during inference.

Limitations and future work. In our experiments, we observed increased computational overhead
for larger time horizons due to SDE integration, although the expansion of the number of processes
incurred minimal runtime costs. We have also observed super-polynomial convergence empirically yet
recalled weaker polynomial rates in the literature. We will also extend our framework to (fractional)
Levy processes, which offer enhanced capabilities for modeling heavy-tailed noise/data distributions.
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Broader Impact Statement

Our work is driven by a dedication to the advancement of knowledge and the betterment of society.
While being largely theoretical, similar to many works advancing artificial intelligence, our work
deserves an ethical consideration, which we present below.

All of our experiments were either run on publicly available datasets or on data that is synthetically
generated. No human or animal subjects have been involved at any stage of this work. Our models
are designed to enhance the understanding and prediction of real-world processes without causing
harm or perpetuating unjust biases, unless provided in the datasets. While we do not foresee any
issue with methodological bias, we have not analyzed the inherent biases of our algorithm and there
might be implications in applications demanding utmost fairness.

We aptly acknowledge the contributions of researchers whose work laid the foundation for our own.
Proper citations and credit are given to previous studies and authors. All authors declare that there
are no conflicts of interest that could compromise the impartiality and objectivity of this research. All
authors have reviewed and approved the final manuscript before submission.

On reproducibility. We are committed to transparency in research and for this reason will make
our implementation publicly available upon publication. To demonstrate our dedication, we have
submitted all source code as part of the appendix. Considerable parts involve: (i) the Markov
approximation and optimisation of the ωk coefficients; (ii) maximising ELBO to perform variational
inference between the prior dZ(t) and the posterior dẐ(t) and (iii) the novel neural-SDE based video
prediction architecture making use of all our contributions.
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Appendix

A Further Discussions

Optimal choices for ω and γ values. Regarding the Type II case, there are different ways of
determining γk and ωk in the literature [Carmona and Coutin, 1998a, Bayer and Breneis, 2023, Harms
and Stefanovits, 2019] some of which can lead to super-polynomial convergence [Bayer and Breneis,
2023] under certain assumptions, while more general choices are still shown to converge, though
with a weaker rate [Alfonsi and Kebaier, 2021] while still being strong (path-wise) and of arbitrarily
high polynomial order [Harms, 2020]. Some of these works state that such geometric choice of the
quadrature intervals simplifies the proofs while being not optimal and smarter choices can exist (even
with better rate of convergence). This is the reason why we believe that our computationally tractable,
closed form expressions which optimally solve for these values lead to good, super-polynomial
convergence both for types II and I (since the first type also admits a similar type of analysis).

Practical considerations for choosing γk. Defining γk as (1/γmax, . . . , γmax) is a convenient way
to indicate some practical considerations for choosing γk. Carmona and Coutin [1998b] show that
γ dt > 1/2 leads to unstable integration of the OU–process, where dt is the integration step. Care
should be taken that γmax dt < 1/2, either by decreasing γmax or decreasing the integration step dt.
Additionally, choosing large values for γ is undesirable for numerical reasons. Especially when using
lower precision, numerical overflow can be a problem. Since an OU–process reaches equilibrium
after time 1/γ, a practical lower bound for γmax is the length of the modelled sequences. This ensures
that memory of the MA-fBM process is modelled for at least the length of the sequence.

Time horizon for optimising ωk. The closed form expressions for ωk are in function of H and the
time horizon T (Prop. 4). Since the criterion is defined over the time interval [0, T ], it makes sense to
choose T equal to the typical (or maximal) length of sequences in the modelled dataset. Specifically
for "Type I", we advise to choose T at two or three times the modelled sequence length, as at t = 0,
this process is already at equilibrium, and its ’history’ should be accounted for in the criterion. We
have observed better empirical results when choosing T at a multiple of the sequence length.

State dependent diffusions. For the case, where the diffusion σ(X, t) explicitly depends on the
state variable X , our Markovian approximation results in a ’standard’ white noise SDE for the
augmented system. As such, it does not suffer from problems with proper definitions of stochastic
integrals as compared to the original SDE driven by fBM for such cases. Hence, a straightforward Ito–
interpretation of our augmented SDE is, in principle, possible. This might indicate, at first glance, that
simple numerical solvers such as Euler’s method could be sufficient for simulating the augmented SDE
required for computing posterior expectations for the ELBO. While this point needs further theoretical
investigation, preliminary simulations for for simple models with state dependent diffusions indicate
that an Euler approximation (in accordance with known results for direct simulations of SDE driven
by fBM [Lysy and Pillai, 2013]) quickly lead to deviations from known analytical results. Hence, for
state dependent diffusions, we resort to the Stratonovich interpretation of the augmented system and
use corresponding higher order solvers Kidger [2021]2. This approach yields excellent (pathwise)
agreements with exact analytical results as we show in Sec. 3. Although the ELBO for SDE is derived
from Girsanov’s change of measure theorem for Ito–SDE, by the known correspondence (resulting in
a change of drift functions, when diffusions are state dependent) [Gardiner et al., 1985] between Ito
and Stratonovich SDE we conclude that within this approach, optimisation of the ELBO with respect
to model parameters will also yield the corresponding estimates for the Stratonovich interpretation.

On initial values for "Type I". The initial values for "Type I" can be understood as resulting from
an OU–process which was started at some negative time t → −∞ so that

Y
(I)
k (0) =

∫ 0

−∞
eγks dW (s) (14)

and Y
(I)
k (0) can be considered as samples from the joint stationary distribution. Because the stationary

distribution is normal [Harms and Stefanovits, 2019, Theorem 2.16] we can simply sample initial

2see e.g. https://docs.kidger.site/diffrax/usage/how-to-choose-a-solver/
#stochastic-differential-equations
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states of the Yk(t) processes for Type I with covariance E [Yi(0)Yj(0)]. Using Itô isometry [Øksendal
and Øksendal, 2003]:

E [Yi(0)Yj(0)] = E
[∫ 0

−∞
eγis dW (s)

∫ 0

−∞
eγjs dW (s)

]
(15)

=

∫ 0

−∞
e(γi+γj)s ds (16)

=
1

γi + γj
. (17)

B More Details on Fractional Brownian Motion (fBM) & Its Markov
Approximation

Definition 4 (Fractional Brownian Motion (Types I & II)). fBM is a self-similar, non-Markovian,
non-martingale, zero-mean Gaussian process (BH(t))t∈[0,T ] for T > 0 with a covariance of either

E
[
B

(I)
H (t)B

(I)
H (s)

]
=

1

2
(|t|2H + |s|2H − |t− s|2H) (Type I) (18)

E
[
B

(II)
H (t)B

(II)
H (s)

]
=

1

Γ2(H + 1/2)

∫ s

0

((t− u)(s− u))H−1/2 du (Type II) (19)

where t > s, 0 < H < 1 is the Hurst index, superscripts denote the types and Γ is the Gamma
function.

fBM recovers Brownian motion (BM) for H = 1/2 (regular diffusion) and generalizes it for other
choices. The increments are (i) positively correlated for H > 1/2 (super-diffusion) where the
tail behaviour is infinitely heavier than that of BM, and (ii) negatively correlated for H < 1/2

(sub-diffusion), with variance E
(
|B(I)

H (t)−B
(I)
H (s)|2

)
= |t− s|2H for Type I. The Type II model

implies nonstationary increments of which the marginal distributions are dependent on the time
relative to the start of the observed sample, i.e. all realizations would have to be found very close to
the unconditional mean (i.e. , the origin) [Lim and Sithi, 1995, Davidson and Hashimzade, 2009].

Definition 5 (Integral representations of fBM). B
(I,II)
H admit the following integral forms due to the

Mandelbrot van-Ness and Weyl representations, respectively [Mandelbrot and Van Ness, 1968]:

B
(I)
H (t) =

1

Γ(H + 1/2)

∫ t

−∞

[
K(I)(t, s) :=

(
(t− s)H−1/2 − (−s)

H−1/2
+

)]
dW (s) (20)

=
1

Γ(H + 1/2)

(∫ 0

−∞

(
(t− s)H−1/2 − (−s)H−1/2

)
dW (s) +

∫ t

0

(t− s)H−1/2 dW (s)

)
B

(II)
H (t) =

1

Γ(H + 1/2)

∫ t

0

[
K(II)(t, s) := (t− s)H−1/2

]
dW (s) (21)

where K(I) and K(II) are the kernels corresponding to Types I and II, respectively.

Proposition 5 (Markov representation of fBM [Harms and Stefanovits, 2019]). The long memory
processes B(I,II)

H (t) can be represented by an infinite linear combination of Markov processes, all
driven by the same Wiener noise, but with different time scales, defined by speed of mean reversion γ.
For both types we have representations of the form:

BH(t) =


∫ ∞

0

(Yγ(t)− Yγ(0))µ(γ) dγ, H < 1/2,

−
∫ ∞

0

∂γ(Yγ(t)− Yγ(0))ν(γ) dγ, H > 1/2

, (22)

where µ(γ) = γ−(H+1/2)/ (Γ(H + 1/2)Γ(1/2−H)) and ν(γ) = γ−(H−1/2)/(Γ(H + 1/2)
Γ(3/2 − H)). Note, these non–negative densities are not normalisable. To simplify notation,
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we will drop explicit dependency on the types (I, II) in what follows. For each γ ≥ 0, and
for both types I and II , the processes Yγ(t) are OU processes which are solutions to the SDE
dYγ(t) = −γYγ(t) dt+ dW (t). This SDE is solved by

Yγ(t) = Yγ(0)e
−γt +

∫ t

0

e−γ(t−s) dW (s). (23)

"Type I" and "Type II" differ in the initial conditions Yγ(0). One can show that:

Y (I)
γ (0) =

∫ 0

−∞
eγs dW (s) and Y (II)

γ (0) = 0. (24)

C Proofs and Further Theoretical Details

C.1 The Girsanov theorem II and the KL divergence of measures

We now state the variation II of the Girsanov theorem [Øksendal and Øksendal, 2003] in our notation.
Let X(t) ∈ Rn be an Itô process w.r.t. measure P of the form:

dX(t) = bθ (X(t), t) dt+ σθ (X(t), t) dW (t), (25)
where 0 ≤ t ≤ T , W (t) ∈ Rm, bθ (X(t), t) ∈ Rn and σθ (X(t), t) ∈ Rn×m. Define a measure Q
via:

dQ

dP
= MT := exp

[
−
∫ T

0

u(X(t), t) dW (t)− 1

2

∫ T

0

u2(X(t), t) dt

]
. (26)

Then

W ′(t) :=

∫ T

0

u(X(t), t)dt+W (T ) (27)

is a Brownian motion w.r.t. Q and the process X(t) has the following representation in terms of
B′(t):

dX(t) = αθ (X(t), t) dt+ σθ (X(t), t) dW ′(t), (28)
where the new drift is:

αθ (X(t), t) = bθ (X(t), t)− σθ (X(t), t)u (X(t), t) . (29)
We can also rewrite the Radon–Nykodim derivative in Eq. (26) as

dQ

dP
= exp

[∫ T

0

u (X(t), t) dW (t)− 1

2

∫ T

0

u2 (X(t), t) dt

]
(30)

= exp

[∫ T

0

u (X(t), t) (dW ′(t) + u (X(t), t) dt)− 1

2

∫ T

0

u (X(t), t) dt

]
(31)

= exp

[∫ T

0

u (X(t), t) dW ′(t) +
1

2

∫ T

0

u (X(t), t) dt

]
. (32)

Thus, similar to Li et al. [2020], we get the KL divergence

EQ

[
ln

dQ

dP

]
=

1

2

∫ T

0

EQ[u
2 (X(t), t)]dt. (33)

C.2 Proof of Proposition I

Proof. Each of the D components of the vectors Yk use the same scalar weights ωk ∈ R. Also, note
that each Yk is driven by the same vector of Wiener processes. Hence, we obtain the system of SDEs
given by

dX(t) = bθ (X(t), t) dt− σθ (X(t), t)
∑
k

ωkγkYk(t) dt+ ω̄σθ (X(t), t) dW (t)

dYk(t) = −γkYk(t) dt+ dW (t) for k = 1, . . . ,K

(34)

where ω̄
.
=
∑

k ωk. This system of equations can be collectively represented in terms of the
augmented variable Z(t) := (X(t), Y1(t), . . . YK(t)) ∈ RD(K+1) leading to a single SDE specified
by Eqs. (4) and (5).
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C.3 Proof of Proposition II

Sketch of the proof. Since we can use Girsanov’s theorem II [Øksendal and Øksendal, 2003], the
variational bound derived in Li et al. [2020] (App. 9.6.1) directly applies.

D Covariances

The full derivation of covariances between some processes relevant to this work are described here.

Fractional Brownian motion (Type II). Using Itô isometry [Øksendal and Øksendal, 2003] we
know that for t > s

E
[∫ t

0

(t− u)H−1/2dWu

∫ s

0

(s− u)H−1/2dWu

]
=

∫ s

0

((t− u)(s− u))
H−1/2

du (35)

Thus

E
[
B

(II)
H (t)B

(II)
H (s)

]
=

1

Γ2(H + 1/2)

∫ s

0

((t− u)(s− u))
H−1/2

du (36)

OU–processes driven by the same Wiener process. Observe two Ornstein–Uhlenbeck processes
driven by the same Wiener process:

{
dYi(t) = −γiYi(t)dt+ dW (t)

dYj(t) = −γjYj(t)dt+ dW (t)
(37)

Their covariance can be written as:

Cov(Yi(t), Yj(t)) = E [(Yi(t)− E [Yi(t)])(Yj(t)− E [Yj(t)])] (38)
= E [Yi(t)Yj(t)] (39)

= E
[∫ t

0

e−γi(t−s) dW (s)

∫ t

0

e−γj(t−s) dW (s)

]
(40)

=

∫ t

0

e−(γi+γj)(t−s) ds (41)

=
1

γi + γj
− e−(γi+γj)t

γi + γj
(42)

where Eq. (41) is obtained following the Itô isometry [Øksendal and Øksendal, 2003].

Markov approximated fractional Brownian motion (Type I). Recall that (Dfn. 2)

B̂
(I)
H (t) =

∑
k

ωk(Yk(t)− Yk(0)), Yk(t)− Yk(0) = Yk(0)(e
−γkt − 1) +

∫ t

0

e−γk(t−s) dW (s)

where E[Yi(0)Yj(0)] =
1

γi+γj
(Eq. (17)) and for t > τ :
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E
[
B̂

(I)
H (t)B̂

(I)
H (τ)

]
= E

[(∑
k

ωk (Yk(t)− Yk(0))

)(∑
k

ωk (Yk(τ)− Yk(0))

)]
(43)

=
∑
i,j

ωiωjE[(Yi(t)− Yi(0)) (Yj(τ)− Yj(0))] (44)

=
∑
i,j

ωiωjE
[(

Yi(0)(e
−γit − 1) +

∫ t

0

e−γi(t−s) dW (s)

)
(45)

·
(
Yj(0)(e

−γjτ − 1) +

∫ τ

0

e−γj(τ−s) dW (s)

)]
=
∑
i,j

ωiωj

(
E [Yi(0)Yj(0)] (e

−γit − 1)(e−γjτ − 1) (46)

+

∫ τ

0

(e−γi(t−s)e−γj(τ−s) ds

)
=
∑
i,j

ωiωj
1− e−γit − e−γjτ + e−γi(t−τ)

γi + γj
(47)

Markov approximated fractional Brownian motion (Type II). Recall that (Dfn. 2)

B̂
(II)
H (t) =

∑
k

ωkYk(t), Yk(0) = 0, k = 1, . . . ,K

and for t > τ :

E
[
B̂

(II)
H (t)B̂

(II)
H (τ)

]
= E

[(∑
k

ωkYk(t)

)(
K∑

k=1

ωkYk(τ)

)]
(48)

=
∑
i,j

ωiωjE[Yi(t)Yj(τ)] (49)

=
∑
i,j

ωiωjE
[∫ t

0

e−γi(t−s) dW (s)

∫ τ

0

e−γj(τ−s) dW (s)

]
(50)

=
∑
i,j

ωiωj

∫ τ

0

e−γi(t−s)−γj(τ−s)ds (51)

=
∑
i,j

ωiωj

(
e−γi(t−τ)

γi + γj
− e−γit−γjτ

γi + γj

)
(52)

fBM and MA-fBM (Type I). Since (Dfn. 2)

B̂
(I)
H (t) =

∑
k

ωk(Yk(t)− Yk(0))

where (Eq. (23))

Yk(t)− Yk(0) = Yk(0)(e
−γkt − 1) +

∫ t

0

e−γk(t−s) dW (s)

and (Eq. (14))

Yk(0) =

∫ 0

−∞
eγks dW (s) .

we can write

B̂
(I)
H (t) =

∑
k

ωk

(
(e−γkt − 1)

∫ 0

−∞
eγks dW (s) +

∫ t

0

e−γk(t−s) dW (s)

)
. (53)
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This leads to the following derivation (using Itô isometry [Øksendal and Øksendal, 2003]):

E
[
B̂

(I)
H (t)B

(I)
H (t)

]
=

1

Γ(H + 1/2)

∑
k

ωkE

[(∫ 0

−∞

(
(t− s)H−1/2 − (−s)H−1/2

)
dW (s)

+

∫ t

0

(t− s)H−1/2 dW (s)

)
·
(
(e−γkt − 1)

∫ 0

−∞
eγks dW (s) +

∫ t

0

e−γk(t−s) dW (s)

)]
(54)

=
1

Γ(H + 1/2)

∑
k

ωk

(
(e−γkt − 1)

∫ 0

−∞

(
(t− s)H−1/2 − (−s)H−1/2

)
eγks ds

+

∫ t

0

(t− s)H−1/2e−γk(t−s) ds

)
(55)

=
∑
k

ωk
2− e−γkt −Q(H + 1/2, γkt)e

γkt

γ
H+1/2
k

(56)

where Q(z, x) = 1
Γ(z)

∫∞
x

tz−1e−t dt is the regularized upper incomplete gamma function.

fBM and MA-fBM (Type II).

E
[
B̂

(II)
H (t)B

(II)
H (t)

]
=

1

Γ(H + 1/2)

∑
k

ωkE
[∫ t

0

e−γk(t−s) dW (s)

∫ t

0

(t− s)H−1/2 ds

]
(57)

=
1

Γ(H + 1/2)

∑
k

ωk

∫ t

0

e−γk(t−s)(t− s)H−1/2 ds (58)

=
∑
k

ωk
P (H + 1/2, γkt)

γ
H+1/2
k

(59)

where P (z, x) = 1
Γ(z)

∫ x

0
tz−1e−t dt is the regularized lower incomplete gamma function.

E Choosing ωk values (Proposition IV)

E.1 Baseline

To approximate the integral in Eq. (2) for H < 1/2 we do a piece-wise linear approximation of the
integral between the known Yk(t) values:

K∑
k=1

ωkYk(t) =

K−1∑
k=1

∫ γk+1

γk

(
γk+1 − γ

γk+1 − γk
Yk(t) +

γ − γk
γk+1 − γk

Yk+1(t)

)
µ(γ) dγ (60)

For H > 1/2 we approximate ∂γYγ(t) with finite differences:
K∑

k=1

ωkYk(t) =

K−1∑
k=1

−Yk+1(t)− Yk(t)

γk+1 − γk

∫ γk+1

γk

ν(γ) dγ (61)

This leads to the following proposal for ωk:

ωk =



1

Γ(α)Γ(1− α)

(
1k>1

γ2−α
k −γ2−α

k−1

2−α − γk−1
γ1−α
k −γ1−α

k−1

1−α

γk − γk−1

+1k<K

γk+1
γ1−α
k+1 −γ1−α

k

1−α − γ2−α
k+1 −γ2−α

k

2−α

γk+1 − γk

)
, H < 1/2

−1

(2− α)Γ(α)Γ(2− α)

(
1k>1

γ2−α
k − γ2−α

k−1

γk − γk−1
− 1k<K

γ2−α
k+1 − γ2−α

k

γk+1 − γk

)
, H > 1/2

(62)
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where α = H + 1/2.

E.2 A Proof for the Optimized ωk Values

To optimize ωk values, we first provide a closed form expression for the approximation error and
then show how we can solve for the ωk that minimize this error.

Type I. We will start by optimizing ωk for Type I. Consider the error:

E(I)(ω) =

∫ T

0

E
[(

B̂
(I)
H (t)−B

(I)
H (t)

)2]
(63)

=

∫ T

0

(
E
[
B̂

(I)
H (t)2

]
+ E

[
B

(I)
H (t)2

]
− 2E

[
B̂

(I)
H (t)B

(I)
H (t)

])
dt (64)

Using Eqs. (18), (47) and (56)

E(I)(ω) =

∫ T

0

(∑
i,j

ωiωj
2− e−γit − e−γjt

γi + γj
+ t2H

− 2
∑
k

ωk
2− e−γkt −Q (H + 1/2, γkt) e

γkt

γ
H+1/2
k

)
dt (65)

=
∑
i,j

ωiωj

2T + e−γiT−1
γi

+ e−γjT−1
γj

γi + γj
+

T 2H+1

2H + 1

− 2
∑
k

ωk

(
2T

γ
H+1/2
k

− TH+1/2

γkΓ(H + 3/2)
+

e−γkT −Q (H + 1/2, γkT ) e
γkT

γ
H+3/2
k

)
(66)

This leads to the quadratic form E(I)(ω) = ωTA(I)ω − 2b(I)
T
ω + c(I) with

A
(I)
i,j =

2T + e−γiT−1
γi

+ e−γjT−1
γj

γi + γj
(67)

b
(I)
k =

2T

γ
H+1/2
k

− TH+1/2

γkΓ(H + 3/2)
+

e−γkT −Q(H + 1/2, γkT )e
γkT

γ
H+3/2
k

(68)

c(I) =
T 2H+1

2H + 1
. (69)

Type II. We now repeat a similar procedure for the Type II.

E(II)(ω) =

∫ T

0

E
[(

B̂
(II)
H (t)−B

(II)
H (t)

)2]
(70)

=

∫ T

0

(
E
[
B̂

(II)
H (t)2

]
+ E

[
B

(II)
H (t)2

]
− 2E

[
B̂

(II)
H (t)B

(II)
H (t)

])
dt (71)

Using Eqs. (19), (52) and (59)

E(II)(ω) =

∫ T

0

∑
i,j

ωiωj
1− e−(γi+γj)t

γi + γj
+

t2H

2HΓ(H + 1/2)2
− 2

∑
k

ωk
P (H + 1/2, γkt)

γ
H+1/2
k

dt

(72)

=
∑
i,j

ωiωj

T + e−(γi+γj)T−1
γi+γj

γi + γj
+

T 2H+1

2H(2H + 1)Γ(H + 1/2)2
(73)

− 2
∑
k

ωk

(
T

γ
H+1/2
k

P (H + 1/2, γkT )−
H + 1/2

γ
H+3/2
k

P (H + 3/2, γkT )

)
(74)
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This leads to the quadratic form E(II)(ω) = ωTA(II)ω − 2b(II)
T
ω + c(II) with

A
(II)
i,j =

T + e−(γi+γj)T−1
γi+γj

γi + γj
(75)

b
(II)
k =

T

γ
H+1/2
k

P (H + 1/2, γkT )−
H + 1/2

γ
H+3/2
k

P (H + 3/2, γkT ) (76)

c(II) =
T 2H+1

2H(2H + 1)Γ(H + 1/2)2
. (77)

E.3 Numerically stable implementation of Q(z, x)ex

The term Q(H + 1/2, γkT )e
γkT in Prop. 4 leads to numerical instability, since γkT is typically a

high number (for the highest γk). On the other hand, Q(H + 1/2, γkT ) is a low number for high
γkT . Our stable implementation makes use of a continued fraction [Cuyt et al., 2008, eq. (12.6.17)],
using the ’Kettenbruch’ notation [Cuyt et al., 2008, sec. 1.1] for continued fractions:

Q(H + 1/2, γkT )e
γkT =

Γ(H + 1/2, γkT )

Γ(H + 1/2)
eγkT (78)

=
1

Γ(H + 1/2)(γkT )H+1/2

∞
K

m=1

(
am(H + 1/2)/(γkT )

1

)
(79)

where am(a) is given by

a1(a) = 1, a2j(a) = j − a, a2j+1(a) = j, j ≥ 1 (80)

In practice we observe better accuracy with the original equation for γkT < 10, where it is still stable,
and only need 5 fractions to approximate the equation for γkT > 10.

F Details on model architectures & hyperparameters

F.1 fOU bridge

For all experiments, K = 5 and γk = ( 1
20 , . . . , 20). We use "Type I" and the optimal defini-

tions for ωk, with a time horizon T = 6. The control function is a neural network with two
hidden layers of each 1000 neurons, with tanh activation function. Its input is represented as
[sin t, cos t,X(t), Y1(t), . . . , YK(t)]. The control function is initialized so that its output is 0 at the
start of training. Models are trained for 2000 training steps with a batch size of 32. We use the
Adam [Kingma and Ba, 2014] optimizer with fixed learning rate 10−3. We use the Stratonovich–
Milstein SDE solver [Kidger, 2021] with an integration step of 0.01. The length of the bridge T = 2
and observation noise σ = 0.1.

F.2 Time dependent Hurst index

We directly compare our method with the data and estimate found in the published code-
base of Tong et al. [2022]3. We choose K = 5 and γk = ( 1

20 , . . . , 20) and use "Type
II" (to match the data and noise type in Tong et al. [2022]). The optimal definitions for ωk,
with time horizon T = 2 are used. The control function is a neural network with two hid-
den layers of each 1000 neurons, with tanh activation function. Its input is represented as
[sin t, cos t, sin 2t, cos 2t, . . . , sin 5t, cos 5t,X(t), Y1(t), . . . , YK(t)]. The model is trained for 1000
training steps with a batch size of 4. We use the Adam [Kingma and Ba, 2014] optimizer with a
learning rate 3× 10−3, scheduled with cosine decay to 3× 10−4 by the end of training. We use the
Stratonovich-Milstein SDE solver [Kidger, 2021]. The integration step is 0.01 and observation noise
σ = 0.025 (both identical to Tong et al. [2022]).

3https://github.com/anh-tong/fractional_neural_sde/blob/7565a2/fractional_neural_
sde/example.ipynb
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F.3 Latent video model

For the MA-fBM model, K = 5 and γk = ( 1
20 , . . . , 20). We use "Type I" and the corresponding

definitions for ωk, with a time horizon T = 2.4. For the BM model, K = 1, γ1 = 0 and ω = 1,
which naturally corresponds to white Brownian motion. The number of latent dimensions D = 6.

The encoder model consists of four blocks, containing a convolution layer, maxpool, groupnorm and
SiLU activation. Each block reduces spatial dimension by 2, and the number of features in each block
is (64, 128, 256, 256). The last output is flattened and is the input of a dense layer, with h as output
with 64 features.

The median over the time axis of h is fed into a two layers neural network to produce the static
content vector w. Since the median is permutation invariant, w contains no dynamic information,
only static information. w also has 64 features.

The context model consists of two subsequent 1−D convolutions in the temporal dimension. Thus,
information is shared over different frames, which is necessary for inference. The output of this
model is g. Another model receives (g1, h1, h2, h3) to infer qx1

, the posterior distribution of the
initial state of the SDE. x1 is sampled from qx1

, which we model as a diagonal Normal distribution.
The prior px1

is also optimized, and DKL(p, q) is added to the loss function.

The prior drift bθ(X, t) and the control function u(Z(t), t) have the same architecture, a neural
network with two hidden layers of each 200 neurons, with tanh activation functions. The shared
diffusion σθ(X, t) is implemented so that the noise is commutative to allow Milstein solvers [Li
et al., 2020, Kidger et al., 2021], i.e. σθ(X, t) is diagonal and the i-th component on the diagonal
only receives Xi(t) as input, where we have defined D separate neural networks for each component.
Each neural network has two layers with 200 neurons and tanh activations.

bθ and σθ receive X(t) as input. The control function a concatenated vector of
(X(t), Y1(t), . . . , YK(t), g(t)). g(t) is a linear interpolation of g at time t. This enables the control
function to use appropriate information to be able to steer the process correctly.

The resulting states x after integration of the SDE are fed, together with the static content vector
w in the decoder model. The decoder model has first a dense layer. The outputs of this first layer
are shaped in a 4× 4 spatial grad. Subsequently, four blocks with a convolution layer, groupnorm,
a spatial nearest neighbour upsampling layer and a SiLU activation. Thus, the model reaches the
correct resolution of 64 × 64. Two additional convolution layers with SiLU activation and a final
sigmoid activation complete the decoder model.

We train on sequences of 25 frames, with a time length of 2.4 (0.1 per frame). The frames have
resolution 64 × 64 and 1 color channel. Each model was trained for 187500 training steps with
a batch size of 32. We use the Adam [Kingma and Ba, 2014] optimizer with fixed learning rate
3× 10−4. We use the Stratonovich–Milstein SDE solver [Kidger, 2021] with an integration step of
0.033 (3 integration steps per data frame). Models were trained on a single NVIDIA GeForce RTX
4090, which takes around 39 hours for 1 model.

G Additional experimental results
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Figure 6: E(II) vs. K.

Numerical study of the Markov approximation. By numerically
evaluating the criterion E(II) we can investigate the effect of K, the
number of OU–processes, on the quality of the approximation. Fig. 6
indicates that the approximation error diminishes by increasing K.
However, after a certain threshold the criterion saturates, depending
on H . Adding more processes, especially for low H brings diminish-
ing returns. The rapid convergence evidenced in this empirical result
well agrees with the theoretical findings of [Bayer and Breneis, 2023]
especially for the rough processes showing heavy-tailed behavior –
where H < 1/2.

MSE of the generated trajectories for MA-fBM and for varying K. On a more prac-
tical level, we take integration and numerical errors into account by simulating paths us-
ing MA-fBM and comparing to paths of the true integral driven by the same Wiener noise.
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Figure 7: Mean square error
(MSE) with 95% confidence
intervals vs. H for varying K.

This is only possible for Type II, as for Type I one would need to
start the integration from −∞. Paths are generated from t = 0
to t = 10, with 4000 integration steps for the approximation and
40000 for the true integral. We generate the paths over a range of
Hurst indices and different K values. For each setting, 16 paths
are sampled. Our approach for optimising ωk values (Sec. 2.1)
is compared to a baseline where ωk is derived by a piece-wise
approximation of the Laplace integral (cf. App. E.1). Fig. 7 shows
considerably better results in favor of our approach. Increasing K
has a rapid positive impact on the accuracy of the approximation
with diminishing returns, further confirming the theoretical insights
reported in the literature Alfonsi and Kebaier [2021]. We provide
examples of individual trajectories generated in this experiment in App. G.1.
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Impact of K and the #parameters on inference time. We in-
vestigate the factors that influence the run-time in Fig. 8, where K
OU–processes are gradually included to systems with increasing
number of network parameters. Note that, since our approximation
is driven by 1 Wiener process, and the control function u(Z̃(t), t) is
scalar, the impact on computational load of including more processes
is limited and the run-time is still dominated by the size of the neural
networks. This is good news as different applications might demand
different number of OU–processes.

G.1 Generated trajectories of MA-fBM for varying K

Included here are some of the trajectories used to calculate the MSE of the generated trajectories for
MA-fBM for varying K (Fig. 7). We show trajectories of MA-fBM with our approach (Sec. 2.1) and
the baseline method (cf. App. E.1) for choosing ωk. True paths are plotted in black, the approximations
with varying K in a color-scale as indicated in the legends, see Figs. 9 to 16. Our method quickly
converges to the true path for increasing K, while much slower for the baseline method.
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Figure 9: Generated trajectories of (a) the baseline method summarized in App. E.1 and (b) our
method, MA-fBM (Sec. 2.1), for varying K and H = 0.1.

G.2 fOU Bridge

Fig. 18 shows additional results of the fractional Ornstein–Uhlenbeck bridge. The variances are
calculated with Eq. (12), and Eq. (13) for θ > 0 and H > 1/2 or Eq. (18) for θ = 0. Note that we do
not have a useful covariance equation for θ > 0 and H < 1/2 [Lysy and Pillai, 2013], so this setting
is not included in the experiments.
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Figure 10: Generated trajectories of (a) the baseline method summarized in App. E.1 and (b) our
method, MA-fBM (Sec. 2.1), for varying K and H = 0.2.
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Figure 11: Generated trajectories of (a) the baseline method summarized in App. E.1 and (b) our
method, MA-fBM (Sec. 2.1), for varying K and H = 0.3.
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Figure 12: Generated trajectories of (a) the baseline method summarized in App. E.1 and (b) our
method, MA-fBM (Sec. 2.1), for varying K and H = 0.4.

G.3 Generated Paths in Latent Video Model

Fig. 17 presents the stochastic prediction using the trained prior of our model driven by BM vs the
one driven by the Markov-approximatee fBM.
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Figure 13: Generated trajectories of (a) the baseline method summarized in App. E.1 and (b) our
method, MA-fBM (Sec. 2.1), for varying K and H = 0.6.
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Figure 14: Generated trajectories of (a) the baseline method summarized in App. E.1 and (b) our
method, MA-fBM (Sec. 2.1), for varying K and H = 0.7.
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Figure 15: Generated trajectories of (a) the baseline method summarized in App. E.1 and (b) our
method, MA-fBM (Sec. 2.1), for varying K and H = 0.8.

H Related Work

Fractional noises and neural-SDEs. fBM [Mandelbrot and Van Ness, 1968] was originally used for
the simulation of rough volatility in finance [Gatheral et al., 2018]. Using the Lemarié-Meyer wavelet
representation, Allouche et al. [2022] provided a large probability bound on the deep-feedforward
RELU network approximation of fBM, where up to log terms, a uniform error of O(N−H) is
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Figure 16: Generated trajectories of (a) the baseline method summarized in App. E.1 and (b) our
method, MA-fBM (Sec. 2.1), for varying K and H = 0.9.
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Figure 17: Stochastic predictions using the trained prior of a model driven by BM and a model driven
by MA-fBM, where the initial state is conditioned on the same data. Four samples are shown for each
model. The MA-fBM samples show more diverse movements, thus better capturing the dynamics in
the data. The BM samples are more similar, indicating a less powerful prior was learned.

achievable with log(N) hidden layers and O(N) parameters. Tong et al. [2022] approximated
the fBM (only Type II) with sparse Gaussian processes. Unfortunately, they are limited to Euler-
integration and to the case of H > 1/3. Their model was also not applied to videos. Recently, Yang
et al. [2023] applied Levy driven neural-SDEs to times series prediction and Hayashi and Nakagawa
[2022] considered neural-SDEs driven by fractional noise. Neither of those introduce a variational
framework. Both Liao et al. [2019], Morrill et al. [2021] worked with rough path theory to devise
rough neural-SDEs for tackling long time series. To the best of our knowledge, we are the firsts to
devise a variational inference scheme for neural-SDEs driven by a path-wise approximation of fBM.

SDEs and visual understanding. Apart from the recent video diffusion models [Luo et al., 2023,
Yang et al., 2022, Ho et al., 2022], SDEs for spatiotemporal visual generation is relatively unex-
plored. Park et al. [2021], Ali et al. [2023] used neural-ODEs to generate and manipulate videos.
SDENet [Kong et al., 2020] and MDSDE-Net [Zhang et al., 2023] learned drift and diffusion net-
works for uncertainty estimation of images using out-of-distribution data. Tong et al. [2022] used
approximate-fBMs in score-based diffusion modeling for image generation. Gordon and Parde [2021]
briefly evaluated different neural temporal models for video generation. While Babaeizadeh et al.
[2018] used VI for video prediction, they did not employ SDEs. To the best of our knowledge, we are
the firsts to use neural-SDEs in a variational framework for video understanding.
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Figure 18: The true variance (blue) of a fOU bridge matches the empirical variance (dashed orange)
of our trained models. The transparent black lines are the sampled approximate posterior paths used
to calculate the empirical variance.
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