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ABSTRACT

Potentially infinite sequences of beliefs arise when reasoning about the future, one’s
own beliefs, or others’ beliefs. Machine learning researchers are typically content
with heuristic truncation, or proofs of asymptotic convergence, of sequences of
beliefs; however, such approaches lack insight into the structure of the possible
choices. We construct and analyze several colimits of meta beliefs to understand
the topological and geometric structure of sequences of beliefs. We analyze the
relationship between different levels, the relationship between different beliefs at
different levels, the encoding of temporal and other indexing structures in belief
space, and structures preserved in the colimit. Examples demonstrate the ability
to formalize and reason about problems of learning, cooperative and competitive
communication, and sequential decision making. We conclude by emphasizing
insights gained, and future directions for more concrete machine learning models.

Potentially infinite sequences of beliefs about beliefs—metabeliefs—arise when reasoning about the
future, one’s own, or other agents’ beliefs. Reasoning about potential future observations gives rise
to sequences of beliefs which quantify uncertainty about potential future states. One may have an
infinite hierarchy of beliefs, each quantifying uncertainty at the previous level. Similarly, reasoning
about other agents is a recursive process in which one’s actions and/or beliefs are determined by
considering what the other agents will think—an infinite sequence of beliefs.

In practice, metabeliefs are typically truncated to a finite sequence. In reinforcement learning, the
introduction of a horizon or discount factor alleviates having to reason too far in the future (Sutton &
Barto, 2018). In learning, hierarchies of beliefs are generally fixed and finite by assumption. When
reasoning about other agents, Theory of Mind recursions are computed over a single estimate of the
other agent’s beliefs, without any acknowledgement of the uncertainty about unobservable properties
of other agents (Camerer et al., 2004; Baker et al., 2011; 2017; Wang et al., 2020; Shum et al., 2019;
Wright & Leyton-Brown, 2014).

However, a lack of rigorous analysis makes it difficult to understand the implications of practically-
motivated assumptions. In particular, the relationship between the topology of the underlying space
and how topological properties may be carried through to different levels of reasoning is often ignored.
In some instances, there is a Wasserstein geometry which is induced at all levels of reasoning. In
other cases, the interaction between an indexing set (say, discrete or continuous time) and sequences
of evolving beliefs is ignored, though the topology of the indexing set itself impacts the structure of
the possible beliefs about sequences of beliefs.

A concrete example is the game of rock-paper-scissors. In a single round of rock-paper-scissors,
one must play one of the three options. Doing so depends on inferences about one’s competitor,
and beliefs about their choice are naturally represented as a probability distribution. 1 Because
one can’t know another’s beliefs, it would be wise to consider uncertainty about those probabilities.
Indeed, beliefs about beliefs are also uncertain, ad infinitum. Can we consider beliefs at all levels
simultaneously?

We investigate the colimit of metabelief space as beliefs about beliefs about beliefs—ad infinitum—to
understand the geometric and topological structure of metabeliefs. Section 1 defines and explores
the colimit of beliefs: construction, topological properties, finite moment cases, evolving beliefs.
Section 2 gives the relationship between the colimits constructed in Section 1. Section 3 gives several

1In contrast with Nash equilibria, our setting is applicable to non-cooperative games, cooperative games,
and things that are not games. Here we focus in the rock-paper-scissors example on Bob not knowing Alice’s
strategy, her equilibrium strategy, or even exactly what her space of strategies might be.
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examples and Section 4 an example computation. Section 5 gives related work. We conclude in
Section 6 with future directions relating the colimit models to current machine-learning models.
Throughout, we use rock-paper-scissors as a running example to illustrate the general framework.
The proofs of all lemmas are contained in the Supplemental Materials.

1 BACKGROUND AND CONSTRUCTIONS

Let X be a metric space. Let BX denote the Borel �-algebra with respect to the topology induced by
the metric on X . Consider the space P(X ) of Borel probability measures on X . We can topologize
P(X ) by defining a base of open neighborhoods for any µ 2 P(X ) as follows: Consider the family
of sets defined via the following,

Vµ(f1, ..., fk; ✏1, ..., ✏k) =

⇢
⌫ 2 P(X ) s.t.

����
Z

X
fidµ�

Z

X
fid⌫

���� < ✏i, i = 1, ..., k

�
. (1)

In the above, f1, ..., fk are continuous functions on X and ✏1, ..., ✏k > 0. The topology generated
by the collection of all such sets, varying k, f1, ..., fk, and ✏1, ..., ✏k for every µ 2 P(X ) defines the
weak topology on P(X ).

Theorem 1. (Parthasarathy, 2005) Consider the weak topology on P(X ) defined above.

1. Suppose that X is a metrizable space consisting of at least two points. Then X is homeomor-

phic to the subspace {�x|x 2 X} in P(X ) consisting of single-atom Dirac distributions.

2. P(X ) can be metrized as a separable metric space if and only if X is a separable metric

space.

3. Suppose that X is a separable metric space and E ✓ X is dense in X . Then the set of all

measures whose supports are finite subsets of E is dense in P(X ).
4. P(X ) is a (para)compact metric space if and only if X is a (para)compact metric space.

5. Suppose that X is a separable metric space. Then P(X ) is homeomorphic to a complete

metric space if and only if X is homeomorphic to a complete metric space.

Let Pn+1(X ) := P(Pn(X )) for n � 0, and P
0(X ) := X . Furthermore, let �n : Pn(X ) !

P
n+1(X ) be the map sending p 2 P

n(X ) to the single-atom Dirac distribution centered at p. The
first part of Theorem 1 indicates that X is homeomorphic to the subspace {�n � · · ·� �0(x)|x 2 X} in
P

n+1(X ), since a composition of homeomorphisms is a homeomorphism. Parts (2)-(5) of Theorem
1 indicate how the topology and metrizability of each P

n(X ) is influenced by the topology and
metrizability of the initial space X .

We wish to consider some way of taking the limit as n ! 1 of Pn(X ) in order to study all levels
of reasoning simultaneously; one way of doing this is to compute the direct limit (or colimit) of the
following sequence:

X
�0
�! P(X )

�1
�! P

2(X )
�2
�! · · · . (2)

Doing so will ensure that information about how the distributions at a lower level, say in P
n(X ) for

n � 0 become Dirac distributions at higher levels, i.e. in any P
n+m(X ) for any m � 1. In order to

compute the direct limit of this sequence, we must first define a direct system
2 over the indexing set

N. To this end we define the following functions, �ij : Pi(X ) ! P
j(X ) for i  j, i, j 2 N:

1. �ii : Pi(X ) ! P
i(X ) is the identity map on P

i(X ).
2. �ij : Pi(X ) ! P

j(X ) for i < j is defined as �ij = �
j�1

� · · · � �
i.

Note that in particular for any i  j  k, �ik = �
jk

� �
ij . We now wish to construct the direct limit

of this direct system hP
i(X ), �iji. This is a space, which we will denote suggestively by P

1(X ),
together with maps �i : Pi(X ) ! P

1(X ), such that for any topological space Y with continuous
maps  i : Pi(X ) ! Y there exists a unique continuous function u : P1(X ) ! Y such that the

2The definition of a direct system is given by the sequence of topological spaces together with the maps �ij
between them, satisfying conditions (1) and (2).
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following diagram commutes:

P
i(X ) P

j(X )

P
1(X )

Y

�ij

�i

 i

�j

 ju

That is, for every µ 2 P
i(X ), we have that �j

� �
ij(µ) = �i(µ),  i(µ) = u � �i(µ), and for

any ⌫ 2 P
j(X ),  j(⌫) = u ��j(⌫). This means that continuous maps “factor through" the direct

limit space P
1(X ), so it encodes information about, for example, continuously sampling from

distributions at all levels of reasoning.

1.1 CONSTRUCTING P
1(X )

We will construct P1(X ) in two pieces: first, we will define the underlying set of P1(X ); then, we
will define the topology on P

1(X ), known as the ‘final topology.’ This is a standard construction
from the theory of colimits for topological spaces, see e.g. (Mac Lane, 2013). To construct the
underlying set, we first consider the following set:

S :=
G

n2N
P

n(X ). (3)

Now we define an equivalence relation ⇠ on S by saying that for any µ 2 P
i(X ) and ⌫ 2 P

j(X ),
µ ⇠ ⌫ (µ is equivalent to ⌫) if and only if there is some k 2 N such that i  k and j  k with
�
ik(µ) = �

jk(⌫). Then, as a set, P1(X ) is equal to the set of equivalence classes in S . That is, we
have the following:

P
1(X ) =

 
G

n2N
P

n(X )

!�
⇠ . (4)

We may then define maps �i : Pi(X ) ! P
1(X ) which send each distribution to its corresponding

equivalence class.
Lemma 2. Every equivalence class in P

1(X ) is of the form {µ, �
n(µ), �n+1

� �
n(µ), �n+2

�

�
n+1

� �
n(µ), ...} where µ is a unique distribution in P

n(X ) such that µ is not a single-atom Dirac

distribution or µ is a unique point in X (recall that �
0(x) = �x is the Dirac distribution in P(X )

with support equal to {x}).

The topology on P
1(X ) is what is known as the final topology, which consists of the topology with

the maximum collection of open sets such that each �i : Pi(X ) ! P
1(X ) is continuous.

1.2 PROPERTIES OF P
1(X )

In order to better understand the structure of the colimit P1(X ), we collect here some properties of
the space. For example, what properties of X filter through to P

1(X )? We know from Theorem 1,
for example, that if X is compact, then so is Pn(X ) for every n 2 N. However, compactness is not
translated to the colimit.
Lemma 3. Suppose that X is a compact T1 space

3
consisting of at least two distinct points. Then

P
1(X ) is non-compact with respect to the final topology.

In the following theorem, we will show that some topological properties do pass to the colimit.
Theorem 4. Suppose that X is a metrizable paracompact Hausdorff space. Then P

1(X ) is a

metrizable paracompact Hausdorff space.

In order to prove the above theorem, it will be useful to first show that the property of being Hausdorff
translates from X to P

n(X ) for every n 2 N.
Lemma 5. If X is Hausdorff, then so is P(X ).

3This is equivalent to saying that for every x 2 X , the set {x} is a closed subset of X .
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Proof. (Proof of Theorem 4) By properties (1) and (4) of Theorem 1, if X is metrizable then so is
P

n(X ) and if X is paracompact, then so is Pn(X ) for every n 2 N. Furthermore, if X is Hausdorff,
then so is P

n(X ) for every n 2 N by Lemma 5. Therefore the result follows from (Michael,
1956)

Example: rock-paper-scissors. Suppose that two agents, Alice and Bob, are playing rock-paper-
scissors. Let X = {rock-paper-scissors} be the space of Alice’s potential moves. In order for Bob
to generate his own strategy, he must consider what he knows (or believes that he knows) about
Alice, which results in a distribution in P(X ) where Bob assigns a certain probability to choosing
each potential move. However, a sophisticated Bob must also contend with his uncertainty about
his own beliefs, i.e. he may consider a distribution in P(P(X )) = P

2(X ), and sampling from this
distribution will give him a belief about Alice’s potential move. Similarly, an even more sophisticated
Bob will consider how uncertain he is about his own uncertainty, and be operating in P

4(X ). As
the player Bob becomes more sophisticated, he will be operating in P

n(X ) for increasingly large
values of n. The colimit space P

1(X ) contains information about all possible Bobs, regardless of
sophistication. If Alice is uncertain about what sort of player Bob is, in reasoning about how Bob is
reasoning about her strategy, Alice is (implicitly) operating in the colimit space P

1(X ).

1.3 CONSTRUCTING P
1
p (X )

As Theorem 4 shows, if X is a metrizable paracompact Hausdorff space, so is P1(X ). In this section
we will consider X to be a separable complete metric space with metric d : X ⇥X ! R�0, and study
how the metric structure gives rise to metric structures on a subspace of Pn(X ) for every n 2 N, as
well as on the colimit of these subspaces.

Let p � 1 and consider the space Pp(X ) = {µ 2 P(X )|
R
X d(x, y)pdµ(y) < 1 µ� a.e. x 2 X}

of distributions with finite p-th moments almost everywhere. Then we may construct a similar direct
system:

X
�0
�! Pp(X )

�1
�! P

2
p (X )

�2
�! · · · . (5)

We could generalize this example by changing the values of p at each level, but the notation quickly
becomes unwieldy for something that is likely not of much interest. At any rate, the sequence in
Equation 5 may be turned into a direct system as before, and we may again construct the colimit
Pp(X ). Similarly to Lemma 2, each equivalence class has a unique non-single-atom Dirac distribution.
In this case, since X is separable and complete, so is P

n
p (X ) for any finite n, with respect to the

Wasserstein p-metric (Bogachev & Kolesnikov, 2012). Furthermore, the topology induced by the
Wasserstein p-metric coincides with the weak topology defined previously. We will denote the
Wasserstein p-metric on P

n
p (X ) by W

n
p . That is, when n = 0, W 0

p (x, y) = d(x, y), and when n � 1
and for µ, ⌫ 2 P

n
p (X ), we have:

W
n
p (µ, ⌫) :=

✓
inf

�2�(µ,⌫)
E(↵,�)⇠�

h�
W

n�1
p (↵,�)

�pi
◆ 1

p

. (6)

In the above, �(µ, ⌫) ✓ P
�
P

n�1
p (X )⇥ P

n�1
p (X )

�
is the space of joint distributions on P

n�1
p (X )⇥

P
n�1
p (X ) having marginals µ and ⌫.

In order to define a Wasserstein-like metric on P
1
p (X ), we will first make a few definitions for

ease of writing. For [µ] 2 P
1
p (X ) an equivalence class, define the rank of [µ], denoted r[µ], as the

unique n 2 N such that there exists µ̂ 2 [µ]\P
n
p (X ) where µ̂ is not a single-atom Dirac distribution.

For ease of notation, we will also denote max{r[µ], r[⌫]} as m([µ], [⌫]) for two equivalence classes
[µ], [⌫] 2 P

1
p (X ). Now, we define a metric on P

1
p (X ) as follows:

W
1
p ([µ], [⌫]) := W

m([µ],[⌫])
p (µm([µ],[⌫]), ⌫m([µ],[⌫])). (7)

Here µm([µ],[⌫]) (resp. ⌫m([µ],[⌫])) denotes the unique element in [µ] \ P
m([µ],[⌫])
p (resp. [⌫] \

P
m([µ],[⌫])
p ). That is, one takes representatives from [µ], [⌫] in a space Pn

p (X ) such that at least one of
the representatives is a non-single-atom Dirac distribution, and computes the Wasserstein p-distance
between these two representatives.4

4Note that from the properties of the Wasserstein distance, it is sufficient to consider in Equation 7 Wm
p for

any m � m([µ], [⌫]).
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Lemma 6. W
1
p is a metric on P

1
p (X ).

Theorem 7. The metric topology on P
1
p (X ) induced by W

1
p coincides with the final topology.

Proof. Suppose E ✓ P
1
p (X ) is open with respect to the metric topology. That is, for some indexing

set A there exist open balls B1
✏ta

([µta ]) such that we may write E as follows:

E =
[

a2A

na\

ta=1

B
1
✏ta

([µta ]). (8)

For convenience, we will suppose that the representative µta 2 [µta ] is such that µta 2 P
r[µta ]

p (X ),
i.e. µta is the unique non-single-atom-Dirac-distribution element of [µta ]. We would like to show
that E is open with respect to the final topology. It is necessary and sufficient to prove that for each
i 2 N, (�i)�1(E) is open in P

i
p(X ). We compute:

(�i)�1(E) = {⌫ 2 P
i
p(X )|�i(⌫) 2 E} (9)

=
[

a2A

na\

ta=1

⇢
⌫ 2 P

i
p(X )

����W
m(i,r[µta ])
p (⌫̂, µ̂ta) < ✏ta

�
.

Here ⌫̂, µ̂ta are representatives in P
m(i,r[µta ])
p (X ) of the equivalence classes of [⌫], [µta ], respectively.

Equation 9 then becomes:
[

a2A

na\

ta=1

(
⌫ 2 P

i
p(X )

����

(
W

i
p(⌫, �

r[µta ]i(µta)) < ✏ta if i � r[µta ]

W
r[µta ]

p (�ir[µta ](⌫), µta) < ✏ta if i < r[µta ]

)
(10)

=
[

a2A

na\

ta=1

8
<

:
B

i
✏ta

⇣
�
r[µta ]i(µta)

⌘
if i � r[µta ]

(�ir[µta ])�1
⇣
�
ir[µta ](Pi

p(X )) \B
r[µta ]

✏ta (µta)
⌘

if i < r[µta ]

.

Note that in the case that i � r[µta ]
, we have open balls in P

1
p (X ). Moreover, in the case i < r[µta ]

,
we have an open set since �ir[µta ](Pi

p(X )) \B
r[µta ]

✏ta (µta) is an open set with respect to the subspace
topology on �ir[µta ](Pi

p(X )) ✓ P
r[µta ]

p (X ), and �ir[µta ] is a homeomorphism onto its image, so
necessarily continuous. Thus, (�i)�1(E) is open in P

i
p(X ) for every i 2 N, so E is open with

respect to the final topology.

Conversely, suppose that we have an open set E with respect to the final topology. We now wish to
find a decomposition as in Equation 8 to show that E is open with respect to the metric topology.
Because E is open with respect to the final topology on P

1
p (X ), (�i)�1(E) ✓ P

i
p(X ) is open.

Since the weak topology on P
i
p(X ) coincides with the metric topology induced by the Wasserstein

p-metric W
i
p, there must exist the following decomposition for each i 2 N:

(�i)�1(E) =
[

a2Ai

ni
a\

tia=1

B
i
✏tia

(⌫tia). (11)

Applying �i to both sides yields:

{[⌫] 2 E|r[⌫]  i} =
[

a2Ai

�i

0

@
ni
a\

tia=1

B
i
✏tia

(⌫tia)

1

A (12)

Therefore, E may be written as:

E =
[

i2N

[

a2Ai

�i

0

@
ni
a\

tia=1

B
i
✏tia

(⌫tia)

1

A (13)

Claim: For two sets B1, B2 ✓ P
i(X ), we have �i(B1 \B2) = �i(B1) \�i(B2).

Proof of claim: Let [⌫] 2 �i(B1 \ B2) such that ⌫ is the unique representative of [⌫] that is
not a single-atom Dirac distribution. Then there exists µ 2 B1 \ B2 such that �i(µ) = [⌫], so
[⌫] 2 �i(B1) \�i(B2). Conversely, suppose that [⌫] 2 �i(B1) \�i(B2), again with ⌫ 2 P

k
p (X )

the unique non-single atom Dirac distribution in [⌫]. Note that k  i. Then there exist ⌫j 2 Bj ,

5
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j = 1, 2, such that �i(⌫j) = [⌫]. By definition of �i, this implies ⌫j = �
ki(⌫), hence ⌫1 = ⌫2, so

⌫1 2 B1 \B2. Thus [⌫] 2 �i(B1 \B2).

Now, Equation 13 becomes:

E =
[

i2N

[

a2Ai

ni
a\

tia=1

�i
⇣
B

i
✏tia

(⌫tia)
⌘

(14)

=
[

i2N

[

a2Ai

ni
a\

tia=1

⇣
B

1
✏tia

([⌫tia ]) \�i
�
P

i(X )
�⌘

=
[

i2N

[

a2Ai

0

@�i
�
P

i(X )
�
\

0

@
ni
a\

tia=1

B
1
✏tia

([⌫tia ])

1

A

1

A

=
[

a2[i2NAi

na\

ta=1

B
1
✏ta

([⌫ta ]).

In the above we have reindexed by combining all of the indexing sets Ai into one. Therefore, E is
open with respect to the metric topology on P

1
p (X ).

1.4 INDEX-DEPENDENT DISTRIBUTIONS

Suppose that we wish to include the beliefs evolving with respect to some parameter. For example,
the parameter could be discrete time (indexed by N) or continuous time (indexed by R) or some
more abstract quantity. To this end, the space of evolving beliefs becomes the space of continuous
maps from the indexing space, I, to the space of probability distributions on the underlying space,
P(X ). We denote this space by Hom(I,P(X )). Higher levels of reasoning which also evolve as
indexed by I may then be quantified via letting HIP

n+1(X ) := Hom(I,P(HIP
n(X ))), with

HIP
0(X ) := X . Now, we define the topology on HIP(X ) to be the compact-open topology. For

any compact subset5 K ✓ I and open set6 U ✓ P(X ), we define:
V (K,U) := {f 2 HIP(X )|f(K) ✓ U}. (15)

The collection of all such V (K,U) then forms a sub-base for the compact-open topology on HIP(X ).
Lemma 8. Any space X may be embedded continuously in HIP(X ) via the following map, for any

x 2 X and i 2 I:

cd(x)(i) := �x. (16)
That is, cd is the composition of the map sending each point x to the single-atom Dirac distribution

centered at x and the constant-valued map sending each point in I to the aforementioned distribution.

Similarly to the previous, index-independent case, we may then define maps (cd)n : Pn(X ) !

P
n+1(X ) with (cd)n(p)(i) = �p.

Lemma 9. Suppose that X is Hausdorff. Then each map (cd)n defined above is a homeomorphism

onto its image.

Again, we may also define the maps (cd)ij : Pi(X ) ! P
j(X ) for i  j by taking (cd)ii to be the

identity map on P
i(X ) and for j > i, (cd)ij = (cd)j�1

� · · · � (cd)i is a map embedding P
i(X ) into

P
j(X ). Therefore, we have a direct system, and so the colimit P1(X ) exists.

Now, we may relate any space Hom(I, A) to P(A) by defining a map called push from P(I) ⇥
Hom(I, A) ! P(A) as follows: For any µ 2 P(I) and f 2 Hom(I, A), and any measurable
E ✓ A, we have:

push(µ, f) := f
⇤(µ)(E) = µ(f�1(E)). (17)

That is, push(µ, f) is the push-forward of µ along f . In particular, we obtain a map push :
HIP

n+1(X ) ! P
2(HIP

n(X )).
Lemma 10. The following diagram commutes:

P(I)⇥HIP
n(X ) P(I)⇥ P(HIP

n(X ))

P(I)⇥HIP
n+1(X ) P

2(HIP
n(X ))

id⇥�0

id⇥(cd)n �1�⇡2

push

5Note that I should necessarily come with its own topology, and hence compact subsets.
6Here we are using the weak topology on P(X ) as defined previously.
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Here ⇡2 : P(I) ⇥ P(HIP
n(X )) ! P(HIP

n(X )) is projection onto the second coordinate; i.e.

⇡2(µ, ⌫) = ⌫.

In particular, this shows that the map push � (id⇥ (cd)n) : P(I)⇥HIP
n(X ) ! P

2(HIP
n(X ))

is independent of the choice of distribution µ 2 I.

Similar to the diagram in Lemma 10, we may also consider evaluating at a point in I in order to get a
distribution on HIP

n(X ).
Lemma 11. The following diagram commutes:

I ⇥HIP
n(X ) HIP

n(X )

I ⇥HIP
n+1(X ) P(HIP

n(X )).

⇡2

id⇥(cd)n �

ev

Here ev : I ⇥HIP
n+1(X ) ! P(HIP

n(X )) is the evaluation map satisfying ev(i, f) = f(i).

2 RELATIONSHIPS BETWEEN THE COLIMITS

We now study how the different colimit spaces P1(X ), P1
p (X ), and HIP

1(X ) are related. In
particular, we will show that P1

p (X ) is embedded into P
1(X ), that P1(X ) may be embedded into

HIP
1(X ), and how we can pass from I

1
⇥HIP

1(X ) back to P
1(X ).

Since P
n
p (X ) is a subset of Pn(X ) for every n 2 N, we have that there is an induced map ◆ :

P
1
p (X ) ! P

1(X ) which sends each equivalence class [µ] 2 P
1
p (X ) to the equivalence class

[µ] 2 P
1(X ). Additionally, we may embed P

n(X ) into HIP
n(X ) by recursively defining a

sequence of maps fn : Pn(X ) ! HIP
n(X ) as follows:

⇢
f0 = id

fn+1 = c � push(fn) if n � 0.
(18)

That is, f0 is the identity map on P
0(X ) = X = HIP

0(X ), and fn+1 is defined by composing
the map push(fn) : P(Pn(X ) ! P (HIP

n(X )) and the map c : P (HIP
n(X )) ! HIP

n+1(X )
sending each distribution µ 2 P (HIP

n(X )) to the constant function c(µ)(i) = µ for all i 2 I in
Hom(I,P (HIP

n(X ))) = HIP
n+1(X ).

Lemma 12. The maps defined in Equation 18 are homeomorphisms onto their images.

Hence, there is an induced map f1 : P1(X ) ! HIP
1(X ), with f1([µ]) = [fr[µ]

(µ)].
Lemma 13. The map f1 is a continuous bijection onto its image.

We may also pass from I
n
⇥HIP(X ) to P

n(X ), essentially by selecting points (i1, ..., in) 2 I
n and

evaluating the sequences of distributions at these indices. Formally, the maps gn : In
⇥HIP

n(X ) !
P

n(X ) involved are defined recursively as follows:
⇢
g0 = id

gn+1 = push(gn) � ⌦ � (�⌦n ⇥ ev) if n � 0.
(19)

Here ev : I ⇥ HIP
n+1(X ) ! P(HIP

n(X )) is the map sending (i, f) to the distribution f(i);
�⌦n : In

! P(In) is the map sending (i1, ..., in) to the product measure �i1 ⌦ · · · ⌦ �in ; and
⌦ : P(In)⇥P(HIP

n(X )) ! P(In
⇥HIP

n(X )) sends (µ, ⌫) to the product measure µ⌦ ⌫. For
example, here are the first three maps:

8
<

:

g0(x) = x x 2 X

g1(i, f) = f(i) i 2 I, f 2 Hom(I,P(X )
g2(i1, i2, f) = push(ev)(�i1 ⌦ f(i2)) i1, i2 2 I, f 2 Hom(I,HIP(X )).

(20)

So, for example, for any measurable set E ✓ P(X ), we have:
g2(i1, i2, f)(E) = f(i2) ({h 2 HIP(X )|h(i1) 2 E}) . (21)

In the above, note that f(i2) 2 P(HIP(X )).

We may then define a map g1 : I
1

⇥ HIP
1(X ) ! P

1(X ) with g1(i1, ..., [f ]) =
[gr[f]

(i1, ..., ir[f]
, f)].

7
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Lemma 14. The map gn � (idn ⇥ fn) : I
n
⇥ P

n(X ) ! P
n(X ) defined by (i1, ..., in, µ) 7!

gn(i1, ..., in, fn(µ)) is equal to the projection map ⇡n+1 : In
⇥ P

n(X ) ! P
n(X ) defined by

⇡n+1(i1, ..., in, µ) = µ.

Example: Multiple rounds of rock-paper-scissors. Suppose now that Alice and Bob are play-
ing multiple rounds of rock-paper-scissors, with games indexed by a parameter space T , (for
example, T = {1, 2, 3, 4, ..., N}). Then the space of Bob’s changing beliefs regarding Alice’s
gameplay is given by HT P(X ) = Hom(T ,P(X )). However, a sophisticated Bob will also be
updating based upon his own uncertainty about those beliefs; this implies that Bob is operating in
the space HT P

2(X ) = Hom(T,P(HT P(X ))). Inductively, a Bob who incorporates information
about uncertainty about the sequence of evolving beliefs in HT P

n(X ) is operating in the space
HT P

n+1(X ) = Hom(T ,P(HT P
n(X ))). Thus the analysis of all possible Bobs requires studying

the colimit space HT P
1(X ). Players who play multiple rounds of rock-paper-scissors without

updating their beliefs based upon gameplay may still be included in the analysis, as the space P1(X )
embeds bijectively into HT P

1(X ), as shown in Lemma 13.

3 EXAMPLES

Single-point sets. Suppose that X = {⇤} consists of a single point. Then P(X ) = Pp(X ) consists
of a single point, as does Hom(I,P(X )), since the only map is the map sending every element
of I to the unique element of P(X ). Hence, in all cases, the colimit spaces P1(X ), P1

p (X ), and
HIP

1(X ) also consist of a single point.

Trivial topology. Let X be a non-empty topological space endowed with the trivial topology, i.e. the
only open subsets of X are the empty set and X itself. There is a unique Borel probability distribution
on X , namely the one that assigns a probability of zero to the empty set and a probability of one to
X . Therefore, P(X ) = Pp(X ) = {⇤} and Hom(I,P(X )) consists of a single point. Therefore, the
colimit spaces P1(X ), P1

p (X ), and HIP
1(X ) again consist of a single point.

Competitive/Cooperative games. Consider a competitive or cooperative game in which agents are
reasoning about each other’s strategies. For example, for two agents reasoning about each other’s
beliefs in discrete rounds of play, Agent 1 (A1) will select a particular point in the underlying space X .
Their beliefs about what state is correct in any given round may be modeled on the space HNP(X ) =
Hom(N,P(X )), where here we are endowing N with the discrete topology.78 Agent 2 (A2) attempts
to understand the beliefs of A1, and correspondingly has their own time-dependent beliefs in
HNP2(X ) = Hom(N,P(HNP(X )). A1 reasons about what A2 is reasoning, and hence their
beliefs over time may be modeled as an element of the space HNP3(X ) = Hom(N,P(HNP2(X )).
This process continues, as both agents attempt to reason about how the other agent is reasoning. In
this sense, both agents’ beliefs are modeled by elements of the space HNP1(X ), and as soon as an
agent decides their sequence of beliefs in some space HNPn(X ) = Hom(N,P(HNPn�1(X )), then
at every higher level of reasoning there is certainty: the agent knows what their beliefs at level n are,
and if this information is available to the other agent, then they can conclude what the other agent
believes. Similarly, one could replace N with R for continuous-time reasoning.

Hierarchical models. Statistical models incorporating hierarchies may be modeled using the colimit
structures as well. For example, in Bayesian hierarchical modeling (Gelman et al., 2004), one
considers distributions on the hyperparameters, hyperpriors. Let X contain the possible data. Let
� be a space of hyperparameters. Then there is a map par : � ! P(X ) defined by par(�) = µ�,
the distribution parametrized by � 2 �. “Stage II” hyperpriors correspond to distributions in P(�);
however, these can also be thought of a distributions in P

2(X ) in the following way: Consider the
map push(par) : P(�) ! P

2(X ). Then for any E ✓ P(X ) and  2 P(�), we have the following:
push(par)( )(E) =  

�
par

�1(E)
�
=  ({� 2 �|µ� 2 E}) . (22)

Similarly, any “Stage n” hyperpriors corresponding to distributions in P
n�1(�) give rise to distribu-

tions in P
n(X ). Collecting all levels together gives rise to a map par1 : P1(�) ! P

1(X ) defined

7Recall that the discrete topology on a space I means that every subset of I is open.
8Other topologies are possible, and have different interpretations. In the other extreme, if N is endowed with

the trivial topology, there is a unique Borel distribution on N, and sampling randomly what the agents believe at
any given time is more difficult.

8
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by par1([ ]) = [pushr[ ](par)( )], where push
k(par) = push � push � · · · � push(par), where

we are composing the push-forward maps k times. In this way, the colimit P1(X ) contains all of the
information about the hyperparameters and hyperpriors.

4 COMPUTING DISTANCE IN THE COLIMIT: ROCK-PAPER-SCISSORS

In order to quantify the distance between to different levels of Bob’s reasoning, µ at level M
and ⌫ at level N , we may compute W

1
p ([µ], [⌫]), where µ 2 P

M
p (X ), ⌫ 2 P

N
p (X ), and X =

{rock, paper, scissors}. For simplicity, we consider level M reasoning with level N = 1. For
example, ⌫ = 1

3 (�rock + �paper + �scissors) is a distribution in level N = 1. The computation of
W

1
p ([µ], [⌫]) simplifies in this case as follows:

W
1
p ([µ], [⌫]) =

 
inf

�M2�(µ,⌫M )

Z

PM�1
p (X )

W
M�1
p (↵M�1, ⌫M�1)

p
d�

M (↵M�1, ⌫M�1)

! 1
p

. (23)

Here we have relied upon the notion of disintegration in order to simplify from integrating over
P

M�1
p (X )⇥ P

M�1
p (X ) to just integrating over PM�1

p (X ). We may repeat this process inductively
until we have:

W
1
p ([µ], [⌫]) =

0

B@ inf
�M2�(µ,⌫M )

Z

PM�1
p (X )

inf
�M�12�(↵M�1,⌫M�1)

Z

PM�2(X )

· · ·

Z

Pp(X )

inf
�12�(↵1,⌫)

Z

X⇥X

d(x, y)d�1(x, y) · · · d�M�1(↵M�2, ⌫M�2)d�
M (↵M�1, ⌫M�1)

1

CA

1
p

. (24)

Because X is finite in this case, the innermost integral becomes a finite sum, and finding the innermost
infimum becomes equivalent to solving the following linear programming problem:

Let � = �
1 be a X ⇥X , here 3⇥3, matrix with non-negative entries. Assume that the distance metric

on X is the discrete metric, i.e. d(x, y) = 1 if x 6= y and 0 otherwise. We then wish to minimize
1� trace(�) subject to �1 = ↵1 and �T1 = ⌫.

This optimization problem is readily solved, yielding W
1
p (↵1, ⌫) =

(|↵1(rock)� 1/3|+ |↵1(paper)� 1/3|)1/p. As well, because ⌫K is a Dirac distribution for
each level, the infima may be removed, yielding:

W
1
p ([µ], [⌫]) =

 Z

PM�1
p (X )

Z

PM�2
p (X )

· · ·

Z

Pp(X )
W

1
p (↵1, ⌫)

p
d↵2(↵1)d↵3(↵2) · · · d↵M�1(↵M�2)dµ(↵M�1)

!1/p

(25)

The measure µ exerts influence on these ↵s through the outermost integral. The distance at level
M � 1 is then the result of taking the expected infimum plan � at the level below and integrating to
form the target ↵ for the next level up. At every level above level 1, ↵ will no longer be finite. The
integrals can be approximated using the same strategy, where we consider minimizing the discretized
approximation. Because in our example ⌫ is a point at level 1, it remains a point at each higher level.

5 RELATED WORK

Colimits arise in category theory; category theory has been applied to problems in machine learning
and inference. For example, Bayesian inference has been generalized to the study of particular types
of categories in (Culbertson & Sturtz, 2013), though the context and goals of that paper take place
within the framework of replacing statistical objects by their categorifications (Baez & Dolan, 1998).
Gradient-based learning, probability, and equivariant learning have all been modeled using categorical
methods (Schiebler et al., 2021), though the theory of colimits has not been extensively applied.
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Metabeliefs appear in reinforcement learning, hierarchical/deep learning, and theory-of-mind reason-
ing. Reinforcement learning studies reasoning about the future and typically heuristically truncates
reasoning by a horizon or similar mechanism. Other than proofs of asymptotic convergence, which
do not reveal geometric and topological structure, we are not aware of efforts to understand limiting
structures. Neural networks and Gaussian Processes of increasing depth have been studied, revealing
pathologies and ways of understanding (Duvenaud et al., 2014; Peluchetti & Favaro, 2020; Sonoda &
Murata, 2019; Roberts et al., 2022), but no comparable constructions of colimits that are as broad
or as systematic. Recursive reasoning appears in theory of mind across economics (Brown, 1951;
Camerer et al., 2004; Wright & Leyton-Brown, 2014), cognitive science (Wimmer & Perner, 1983;
Hedden & Zhang, 2002; Wang et al., 2020), and machine learning (Heinrich & Silver, 2016; Baker
et al., 2011; 2017; Wang et al., 2020; Shum et al., 2019), with geometric results for cooperative
reasoning (Wang et al., 2019), but to our knowledge no systematic efforts toward generic construction
or unification of uncertain reasoning.

6 CONCLUSION

Meta beliefs appear throughout machine learning when reasoning about the future, one’s own, or
others’ beliefs. Using tools from category theory, we have analyzed the geometric and topological
structure of infinite sequences of metabeliefs through the colimit space. Examples apply methods
to understanding infinite hierarchies of beliefs as found in hierarchical and deep models, infinite
recursions as in cooperative and competitive games, and Section 1.4 constructs spaces that apply to
temporal structure. Moreover, we have shown how all of these problems are related in Section 2, thus
offering a unified view of metabeliefs. Important future directions involve explicitly representing and
understanding the metabelief structure into a broad set of machine learning models.
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