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Abstract

Recent research has made significant progress in optimizing diffusion models
for downstream objectives, which is an important pursuit in fields such as graph
generation for drug design. However, directly applying these models to graph
presents challenges, resulting in suboptimal performance. This paper introduces
graph diffusion policy optimization (GDPO), a novel approach to optimize graph
diffusion models for arbitrary (e.g., non-differentiable) objectives using reinforce-
ment learning. GDPO is based on an eager policy gradient tailored for graph
diffusion models, developed through meticulous analysis and promising improved
performance. Experimental results show that GDPO achieves state-of-the-art per-
formance in various graph generation tasks with complex and diverse objectives.
Code is available at https://github.com/sail-sg/GDPO.

1 Introduction

Graph generation, a key facet of graph learning, has applications in a variety of domains, including
drug and material design [54], code completion [8], social network analysis [20], and neural architec-
ture search [64]. Numerous studies have shown significant progress in graph generation with deep
generative models [34, 62, 69, 21]. one of The most notable advances in the field is the introduction
of graph diffusion probabilistic models (DPMs) [61, 31]. These methods can learn the underlying
distribution from graph data samples and produce high-quality novel graph structures.

In many use cases of graph generation, the primary focus is on achieving specific objectives, such
as high drug efficacy [60] or creating novel graphs with special discrete properties [22]. These
objectives are often expressed as specific reward signals, such as binding affinity [10] and synthetic
accessibility [7], rather than a set of training graph samples. Therefore, a more pertinent goal in such
scenarios is to train graph generative models to meet these predefined objectives directly, rather than
learning to match a distribution over training data [72].

A major challenge in this context is that most signals are non-differentiable w.r.t. graph representations,
making it difficult to apply many optimization algorithms. To address this, methods based on
property predictors [29, 37] learn parametric models to predict the reward signals, providing gradient
guidance for graph generation. However, since reward signals can be highly complex (e.g., results
from physical simulations), these predictors often struggle to provide accurate guidance [44]. An
alternative direction is to learn graph generative models as policies through reinforcement learning
(RL) [72], which enables the integration of exact reward signals into the optimization. However,
existing work primarily explores earlier graph generative models and has yet to leverage the superior
performance of graph DPMs [9, 68]. On the other hand, several pioneer works have seen significant
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progress in optimizing continuous-variable (e.g., images) DPMs for downstream objectives [6, 16].
The central idea is to formulate the sampling process as a policy, with the objective serving as a
reward, and then learn the model using policy gradient methods. However, when these approaches
are directly extended to (discrete-variable) graph DPMs, we empirically observe a substantial failure,
which we will illustrate and discuss in Sec. 4.

To close this gap, we present graph diffusion policy optimization (GDPO), a policy gradient method
designed to optimize graph DPMs for arbitrary reward signals. Using an RL formulation similar to
that introduced by Black et al. [6] and Fan et al. [16] for continuous-variable DPMs, we first adapt
the discrete diffusion process of graph DPMs to a Markov decision process (MDP) and formulate
the learning problem as policy optimization. Then, to address the observed empirical failure, we
introduce a slight modification to the standard policy gradient method REINFORCE [58], dubbed the
eager policy gradient and specifically tailored for graph DPMs. Experimental evaluation shows that
GDPO proves effective across various scenarios and achieves high sample efficiency. Remarkably,
our method achieves a 41.64% to 81.97% average reduction in generation-test distance and a 1.03%
to 19.31% improvement in the rate of generating effective drugs, while only querying a small number
of samples (1/25 of the training samples).

2 Related Works

Graph Generative Models. Early work in graph generation employs nonparametric random graph
models [15, 26]. To learn complex distributions from graph-structured data, recent research has
shifted towards leveraging deep generative models. This includes approaches based on auto-regressive
generative models [69, 39], variational autoencoders (VAEs) [34, 41, 23], generative adversarial
networks (GANs) [62, 9, 43], and normalizing flows [53, 40, 42].

Recently, diffusion probabilistic models (DPMs) [25, 56] have significantly advanced graph
generation [70]. Models like EDP-GNN [46] GDSS [31] and DruM [30] construct graph DPMs
using continuous diffusion processes [57]. While effective, the use of continuous representations
and Gaussian noise can hurt the sparsity of generated graphs. DiGress [61] employs categorical
distributions as the Markov transitions in discrete diffusion [2], performing well on complex graph
generation tasks. While these works focus on learning graph DPMs from a given dataset, our primary
focus in this paper is on learning from arbitrary reward signals.

Controllable Generation for Graphs. Recent progress in controllable generation has also enabled
graph generation to achieve specific objectives or properties. Previous work leverages mature con-
ditional generation techniques from GANs and VAEs [66, 52, 36, 28, 14]. This paradigm has been
extended with the introduction of guidance-based conditional generation in DPMs [12]. DiGress [61]
and GDSS [31] provide solutions that sample desired graphs with guidance from additional property
predictors. MOOD [37] improves these methods by incorporating out-of-distribution control. How-
ever, as predicting the properties (e.g., drug efficacy) can be extremely difficult [33, 44], the predictors
often struggle to provide accurate guidance. Our work directly performs property optimization on
graph DPMs, thus bypassing this challenge.

Graph Generation using RL. RL techniques find wide application in graph generation to meet
downstream objectives. REINVENT [47] and GCPN [68] are representative works, which define
graph environments and optimize policy networks with policy gradient methods [59]. For data-
free generation modelling, MolDQN [71] replaces the data-related environment with a human-
defined graph environmentand and utilizes Q-Learning [24] for policy optimi zation. To generate
more realistic molecules, DGAPN [63] and FREED [67] investigate the fragment-based chemical
environment, which reduce the search space significantly. Despite the great successes, existing
methods exhibit high time complexity and limited policy model capabilities. Our work, based on
graph DPMs with enhanced policy optimization, achieves new state-of-the-art performance.

Aligning DPMs. Several works focus on optimizing generative models to align with human prefer-
ences [45, 3]. DPOK [16] and DDPO [6] are representative works that align text-to-image DPMs with
black-box reward signals. They formulate the denoising process of DPMs as an MDP and optimize
the model using policy gradient methods. For differentiable rewards, such as human preference mod-
els [35], AlignProp [50] and DRaFT [11] propose effective approaches to optimize DPMs with direct
backpropagation, providing a more accurate gradient estimation than DDPO and DPOK. However,
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these works are conducted on images. To the best of our knowledge, our work is the first effective
method for aligning graph DPMs, filling a notable gap in the literature.

3 Preliminaries

In this section, we briefly introduce the background of graph DPMs and policy gradient methods.

Following Vignac et al. [61], we consider graphs with categorical node and edge attributes, allowing
representation of diverse structured data like molecules. Let X and E be the space of categories for
nodes and edges, respectively, with cardinalities a = |X | and b = |E|. For a graph with n nodes,
we denote the attribute of node i by a one-hot encoding vector x(i) ∈ Ra. Similarly, the attribute
of the edge1 from node i to node j is represented as e(ij) ∈ Rb. By grouping these one-hot vectors,
the graph can then be represented as a tuple G ≜ (X,E), where X ∈ Rn×a and E ∈ Rn×n×b.

3.1 Graph Diffusion Probabilistic Models

Graph diffusion probabilistic models (DPMs) [61] involve a forward diffusion process q(G1:T |G0) =∏T
t=1 q(Gt|Gt−1), which gradually corrupts a data distribution q(G0) into a simple noise distribu-

tion q(GT ) over a specified number of diffusion steps, denoted as T . The transition distribution
q(Gt|Gt−1) can be factorized into a product of categorical distributions for individual nodes and
edges, i.e., q(x(i)

t |x
(i)
t−1) and q(e

(ij)
t |e

(ij)
t−1). For simplicity, superscripts are omitted when no ambi-

guity is caused in the following. The transition distribution for each node is defined as q(xt|xt−1) =

Cat(xt;xt−1Qt), where the transition matrix is chosen as Qt ≜ αtI + (1 − αt)(1a1
⊤
a )/a, with

αt transitioning from 1 to 0 as t increases [2]. It then follows that q(xt|x0) = Cat(xt;x0Q̄t) and

q(xt−1|xt,x0) = Cat(xt−1;
xtQ

⊤
t ⊙ x0Q̄t−1

x0Q̄tx⊤
t

), where Q̄t ≜ Q1Q2 · · ·Qt and ⊙ denotes element-
wise product. The design choice of Qt ensures that q(xT |x0) ≈ Cat(xT ;1a/a), i.e., a uniform dis-
tribution over X . The transition distribution for edges is defined similarly, and we omit it for brevity.

Given the forward diffusion process, a parametric reverse denoising process pθ(G0:T ) =

p(GT )
∏T

t=1 pθ(Gt−1|Gt) is then learned to recover the data distribution from p(GT ) ≈ q(GT ) (an
approximate uniform distribution). The reverse transition pθ(Gt−1|Gt) is a product of categorical
distributions over nodes and edges, denoted as pθ(xt−1|Gt) and pθ(et−1|Gt). Notably, in line with
the x0-parameterization used in continuous DPMs [25, 32], pθ(xt−1|Gt) is modeled as:

pθ(xt−1|Gt) ≜
∑
x̃0∈X

q(xt−1|xt, x̃0)pθ(x̃0|Gt), (1)

where pθ(x̃0|Gt) is a neural network predicting the posterior probability of x0 given a noisy graph
Gt. For edges, each definition is analogous and thus omitted.

The model is learned with a graph dataset D by maximizing the following objective [61]:

JGDPM(θ) = EG0,tEq(Gt|G0) [log pθ(G0|Gt)] , (2)

where G0 and t follow uniform distributions over D and [[1, T ]], respectively. After learning, graph
samples can then be generated by first sampling GT from p(GT ) and subsequently sampling Gt

from pθ(Gt−1|Gt), resulting in a generation trajectory (GT ,GT−1, . . . ,G0).

3.2 Markov Decision Process and Policy Gradient

Markov decision processes (MDPs) are commonly used to model sequential decision-making
problems [17]. An MDP is formally defined by a quintuple (S,A, P, r, ρ0), where S is the state
space containing all possible environment states, A is the action space comprising all available
potential actions, P is the transition function determining the probabilities of state transitions, r
is the reward signal, and ρ0 gives the distribution of the initial state.

In the context of an MDP, an agent engages with the environment across multiple steps. At each step
t, the agent observes a state st ∈ S and selects an action at ∈ A based on its policy distribution

1For convenience, “no edge” is treated as a special type of edge.
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Figure 1: Overview of GDPO. (1) In each optimization step, GDPO samples multiple generation
trajectories from the current Graph DPM and queries the reward function with different G0. (2) For
each trajectory, GDPO accumulates the gradient ∇θ log pθ(G0|Gt) of each (G0,Gt) pair and
assigns a weight to the aggregated gradient based on the corresponding reward signal. Finally, GDPO
estimates the eager policy gradient by averaging the aggregated gradient from all trajectories.

πθ(at|st). Subsequently, the agent receives a reward r(st,at) and transitions to a new state st+1

following the transition function P (st+1|st,at). As the agent interacts in the MDP (starting from
an initial state s0 ∼ ρ0), it generates a trajectory (i.e., a sequence of states and actions) denoted as
τ = (s0,a0, s1,a1, . . . , sT ,aT ). The cumulative reward over a trajectory τ is given by R(τ ) =∑T

t=0 r(st,at). In most scenarios, the objective is to maximize the following expectation:

JRL(θ) = Eτ∼p(τ |πθ) [R(τ )] . (3)

Policy gradient methods aim to estimate∇θJRL(θ) and thus solve the problem by gradient descent.
An important result is the policy gradient theorem [19], which estimates∇θJRL(θ) as follows:

∇θJRL(θ) = Eτ∼p(τ |πθ)

[
T∑

t=0

∇θ log πθ(at|st)R(τ )

]
. (4)

The REINFORCE algorithm [58] provides a simple method for estimating the above policy gradient
using Monte-Carlo simulation, which will be adopted and discussed in the following section.

4 Method

In this section, we study the problem of learning graph DPMs from arbitrary reward signals. We
first present an MDP formulation of the problem and conduct an analysis on the failure of a direct
application of REINFORCE. Based on the analysis, we introduce a substitute termed eager policy
gradient, which forms the core of our method Graph Diffusion Policy Optimization (GDPO).

4.1 A Markov Decision Process Formulation

A graph DPM defines a sample distribution pθ(G0) through its reverse denoising process pθ(G0:T ).
Given a reward signal r(·) for G0, we aim to maximize the expected reward (ER) over pθ(G0):

JER(θ) = EG0∼pθ(G0) [r(G0)] . (5)

However, directly optimizing JER(θ) is challenging since the likelihood pθ(G0) is unavailable [25]
and r(·) is black-box, hindering the use of typical RL algorithms [6]. Following Fan et al. [16], we
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Figure 2: Toy experiment comparing DDPO and GDPO. We generate connected graphs with in-
creasing number of nodes. Node categories are disregarded, and the edge categories are binary,
indicating whether two nodes are linked. The graph DPM is initialized randomly as a one-layer graph
transformer from DiGress [61]. The diffusion step T is set to 50, and the reward signal r(G0) is
defined as 1 if G0 is connected and 0 otherwise. We use 256 trajectories for gradient estimation in
each update. The learning curve illustrates the diminishing performance of DDPO as the number of
nodes increases, while GDPO consistently performs well.

formulate the denoising process as a T -step MDP and obtain an equivalent objective. Using notations
in Sec. 3, we define the MDP of graph DPMs as follows:

st ≜ (GT−t, T − t), at ≜ GT−t−1, πθ(at|st) ≜ pθ(GT−t−1|GT−t),

P (st+1|st,at) ≜ (δGT−t−1
, δT−t−1), r(st,at) ≜ r(G0) if t = T , r(st,at) ≜ 0 if t < T ,

(6)

where the initial state s0 corresponds to the initial noisy graph GT and the policy corresponds to the
reverse transition distribution. As a result, the graph generation trajectory (GT ,GT−1, . . . ,G0) can
be considered as a state-action trajectory τ produced by an agent acting in the MDP. It then follows
that p(τ |πθ) = pθ(G0:T ).2 Moreover, we have R(τ ) =

∑T
t=0 r(st,at) = r(G0). Therefore,

the expected cumulative reward of the agent JRL(θ) = Ep(τ |πθ)[R(τ )] = Epθ(G0:T )[r(G0)] is
equivalent to JER(θ), and thus JER(θ) can also be optimized with the policy gradient∇θJRL(θ):

∇θJRL(θ) = Eτ

[
r(G0)

T∑
t=1

∇θ log pθ(Gt−1|Gt)

]
, (7)

where the generation trajectory τ follows the parametric reverse process pθ(G0:T ).

4.2 Learning Graph DPMs with Policy Gradient

The policy gradient ∇θJRL(θ) in Eq. (7) is generally intractable and an efficient estimation is
necessary. In a related setting centered on continuous-variable DPMs for image generation, DDPO [6]
estimates the policy gradient∇θJRL(θ) with REINFORCE and achieves great results. This motivates
us to also try REINFORCE on graph DPMs, i.e., to approximate Eq. (7) with a Monte Carlo
estimation:

∇θJRL ≈
1

K

K∑
k=1

T

|Tk|
∑
t∈Tk

r(G
(k)
0 )∇θ log pθ(G

(k)
t−1|G

(k)
t ), (8)

where {G(k)
0:T }Kk=1 are K trajectories sampled from pθ(G0:T ) and {Tk⊂ [[1, T ]]}Kk=1 are uniformly

random subsets of timesteps (which avoid summing over all timesteps and accelerate the estimation).

However, we empirically observe that it rarely converges on graph DPMs. To investigate this, we
design a toy experiment, where the reward signal is whether G0 is connected. The graph DPMs are
randomly initialized and optimized using Eq. (8). We refer to this setting as DDPO. Fig. 2 depicts the
learning curves, where the horizontal axis represents the number of queries to the reward signal and
the vertical axis represents the average reward. The results demonstrate that DDPO fails to converge
to a high reward signal area when generating graphs with more than 4 nodes. Furthermore, as the

2With a slight abuse of notation we will use τ = G0:T and τ = (s0,a0, s1,a1, . . . , sT ,aT ) interchange-
ably, which should not confuse as the MDP relates them with a bijection.
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number of nodes increases, the fluctuation of the learning curves grows significantly. This implies
that DDPO is essentially unable to optimize properly on randomly initialized models. We conjecture
that the failure is due to the vast space constituted by discrete graph trajectories and the well-known
high variance issue of REINFORCE [58]. A straightforward method to reduce variance is to sample
more trajectories. However, this is typically expensive in DPMs, as each trajectory requires multiple
rounds of model inference. Moreover, evaluating the reward signals of additional trajectories also
incurs high computational costs, such as drug simulation [48].

This prompts us to delve deeper at a micro level. Since the policy gradient estimation in Eq. (8) is a
weighted summation of gradients, we first inspect each summand term ∇θ log pθ(Gt−1|Gt). With
the parameterization Eq. (1) described in Sec. 3.1, it has the following form:

∇θ log pθ(Gt−1|Gt) =
1

pθ(Gt−1|Gt)

∑
G̃0

q(Gt−1|Gt, G̃0)︸ ︷︷ ︸
weight

∇θpθ(G̃0|Gt)︸ ︷︷ ︸
gradient

, (9)

where we can view the “weight” term as a weight assigned to the gradient ∇θpθ(G̃0|Gt), and thus
∇θ log pθ(Gt−1|Gt) as a weighted sum of such gradients, with G̃0 taken over all possible graphs.
Intuitively, the gradient ∇θpθ(G̃0|Gt) promotes the probability of predicting G̃0 from Gt. Note,
however, that the weight q(Gt−1|Gt, G̃0) is completely independent of r(G̃0) and could assign large
weight for G̃0 that has low reward. Since the weighted sum in Eq. (9) can be dominated by gradient
terms with large q(Gt−1|Gt, G̃0), given a particular sampled trajectory, it is fairly possible that
∇θ log pθ(Gt−1|Gt) increases the probabilities of predicting undesired G̃0 with low rewards from
Gt. This explains why Eq. (8) tends to produce fluctuating and unreliable policy gradient estimates
when the number of Monte Carlo samples (i.e., K and |Tk|) is limited. To further analyze why DDPO
does not yield satisfactory results, we present additional findings in Appendix A.5. Besides, we
discuss the impact of importance sampling techniques in the same section.

4.3 Graph Diffusion Policy Optimization

To address the above issues, we suggest a slight modification to Eq. (8) and obtain a new policy
gradient denoted as g(θ):

g(θ) ≜
1

K

K∑
k=1

T

|Tk|
∑
t∈Tk

r(G
(k)
0 )∇θ log pθ(G

(k)
0 |G

(k)
t ), (10)

which we refer to as the eager policy gradient. Intuitively, although the number of possible graph
trajectories is tremendous, if we partition them into different equivalence classes according to G0,
where trajectories with the same G0 are considered equivalent, then the number of these equivalence
classes will be much smaller than the number of graph trajectories. The optimization over these
equivalence classes will be much easier than optimizing in the entire trajectory space.

Technically, by replacing the summand gradient term∇θ log pθ(Gt−1|Gt) with∇θ log pθ(G0|Gt)
in Eq. (8), we skip the weighted sum in Eq. (9) and directly promotes the probability of predicting
G0 which has higher reward from Gt at all timestep t. As a result, our estimation does not focus on
how Gt changes to Gt−1 within the trajectory; instead, it aims to force the model’s generated results
to be close to the desired G0, which can be seen as optimizing in equivalence classes. While being
a biased estimator of the policy gradient ∇θJRL(θ), the eager policy gradient consistently leads to
more stable learning and better performance than DDPO, as demonstrated in Fig. 2. We present the
resulting method in Fig. 1 and Algorithm 1, naming it Graph Diffusion Policy Optimization (GDPO).

5 Reward Functions for Graph Generation

In this work, we study both general graph and molecule reward signals that are crucial in real-world
tasks. Below, we elaborate on how we formulate diverse reward signals as numerical functions.

5.1 Reward Functions for General Graph Generation

Validity. For graph generation, a common objective is to generate a specific type of graph. For
instance, one might be interested in graphs that can be drawn without edges crossing each other [43].
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Table 1: General graph generation on SBM and Planar datasets.

Method
Planar Graphs SBM Graphs

Deg ↓ Clus ↓ Orb ↓ V.U.N (%) ↑ Deg ↓ Clus ↓ Orb ↓ V.U.N (%) ↑

GraphRNN 24.51 ± 3.22 9.03 ± 0.78 2508.30 ± 30.81 0 6.92 ± 1.13 1.72 ± 0.05 3.15 ± 0.23 4.92 ± 0.35
SPECTRE 2.55 ± 0.34 2.52 ± 0.26 2.42 ± 0.37 25.46 ± 1.33 1.92 ± 1.21 1.64 ± 0.06 1.67 ± 0.14 53.76 ± 3.62
GDSS 10.81 ± 0.86 12.99 ± 0.22 38.71 ± 0.83 0.78 ± 0.72 15.53 ± 1.30 3.50 ± 0.81 15.98 ± 2.30 0
MOOD 5.73 ± 0.82 11.87 ± 0.34 30.62 ± 0.67 1.21 ± 0.83 12.87± 1.20 3.06 ± 0.37 2.81 ± 0.35 0
DiGress 1.43 ± 0.90 1.22 ± 0.32 1.72 ± 0.44 70.02 ± 2.17 1.63 ± 1.51 1.50 ± 0.04 1.70 ± 0.16 60.94 ± 4.98
DDPO 109.59± 36.69 31.47 ± 4.96 504.19 ± 17.61 2.34 ± 1.10 250.06 ± 7.44 2.93 ± 0.32 6.65 ± 0.45 31.25 ± 5.22
GDPO (ours) 0.03 ± 0.04 0.62 ± 0.11 0.02 ± 0.01 73.83 ± 2.49 0.15 ± 0.13 1.50 ± 0.01 1.12 ± 0.14 80.08 ± 2.07

For such objectives, the reward function rval(·) is then formulated as binary, with rval(G0) ≜ 1

indicating that the generated graph G0 conforms to the specified type; otherwise, rval(G0) ≜ 0.

Similarity. In certain scenarios, the objective is to generate graphs that resemble a known set of
graphs D at the distribution level, based on a pre-defined distance metric d(·, ·) between sets of
graphs. As an example, the Deg(G,D) [38] measures the maximum mean discrepancy (MMD) [18]
between the degree distributions of a set G of generated graphs and the given graphs D. Since our
method requires a reward for each single generated graph G0, we simply adopt Deg({G0},D) as
the signal. As the magnitude of reward is critical for policy gradients [58], we define rdeg(G0) ≜
exp

(
−Deg({G0},D)2/σ2

)
, where the σ controls the reward distribution, ensuring that the reward

lies within the range of 0 to 1. The other two similar distance metrics are Clus(G,D) and Orb(G,D),
which respectively measure the distances between two sets of graphs in terms of the distribution of
clustering coefficients [55] and the distribution of substructures [1]. Based on the two metrics, we
define two reward signals analogous to rdeg, namely, rclus and rorb.

5.2 Reward Functions for Molecular Graph Generation

Novelty. A primary objective of molecular graph generation is to discover novel drugs with de-
sired therapeutic potentials. Due to drug patent restrictions, the novelty of generated molecules
has paramount importance. The Tanimoto similarity [4], denoted as J(·, ·), measures the chem-
ical similarity between two molecules, defined by the Jaccard index of molecule fingerprint bits.
Specifically, J ∈ [0, 1], and J(G0,G

′
0) = 1 indicates that two molecules G0 and G′

0 have iden-
tical fingerprints. Following Xie et al. [65], we define the novelty of a generated graph G0 as
NOV(G0) ≜ 1−maxG′

0∈D J(G0,G
′
0), i.e., the similarity gap between G0 and its nearest neighbor

in the training dataset D, and further define rNOV(G0) ≜ NOV(G0).

Drug-Likeness. Regarding the efficacy of molecular graph generation in drug design, a critical
indicator is the binding affinity between the generated drug candidate and a target protein. The
docking score [10], denoted as DS(·), estimates the binding energy (in kcal/mol) between the ligand
and the target protein through physical simulations in 3D space. Following Lee et al. [37], we clip
the docking score in the range [−20, 0] and define the reward function as rDS(G0) ≜ −DS(G0)/20.

Another metric is the quantitative estimate of drug-likeness QED(·), which measures the chemical
properties to gauge the likelihood of a molecule being a successful drug [5]. As it takes values in the
range [0, 1], we adopt rQED(G0) ≜ I[QED(G0) > 0.5].

Synthetic Accessibility. The synthetic accessibility [7] SA(·) evaluates the inherent difficulty in
synthesizing a chemical compound, with values in the range from 1 to 10. We follow Lee et al. [37]
and use a normalized version as the reward function: rSA(G0) ≜ (10− SA(G0))/9.

6 Experiments

In this section, we first examine the performance of GDPO on both general graph generation tasks
and molecular graph generation tasks. Then, we conduct several ablation studies to investigate the
effectiveness of GDPO’s design. Our code can be found in the supplementary material.
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Table 2: Molecule property optimization results on ZINC250k.

Method Metric
Target Protein

parp1 fa7 5ht1b braf jak2

GCPN
Hit Ratio 0 0 1.455 ± 1.173 0 0

DS (top 5%) -8.102± 0.105 -6.688±0.186 -8.544± 0.505 -8.713± 0.155 -8.073±0.093

REINVENT
Hit Ratio 0.480 ± 0.344 0.213 ± 0.081 2.453 ± 0.561 0.127 ± 0.088 0.613 ± 0.167

DS (top 5%) -8.702 ± 0.523 -7.205 ± 0.264 -8.770 ± 0.316 -8.392 ± 0.400 -8.165 ± 0.277

FREED
Hit Ratio 4.627 ± 0.727 1.332 ± 0.113 16.767 ± 0.897 2.940 ± 0.359 5.800 ± 0.295

DS (top 5%) -10.579 ± 0.104 -8.378 ± 0.044 -10.714 ± 0.183 -10.561 ± 0.080 -9.735 ± 0.022

MOOD
Hit Ratio 7.017 ± 0.428 0.733 ± 0.141 18.673 ± 0.423 5.240 ± 0.285 9.200 ± 0.524

DS (top 5%) -10.865 ± 0.113 -8.160 ± 0.071 -11.145 ± 0.042 -11.063 ± 0.034 -10.147 ± 0.060

DiGress
Hit Ratio 0.366 ± 0.146 0.182 ± 0.232 4.236 ± 0.887 0.122 ± 0.141 0.861 ± 0.332

DS (top 5%) -9.219 ± 0.078 -7.736 ± 0.156 -9.280 ± 0.198 -9.052 ± 0.044 -8.706 ± 0.222

DiGress-
guidance

Hit Ratio 1.172±0.672 0.321±0.370 2.821± 1.140 0.152±0.303 0.311±0.621
DS (top 5%) -9.463± 0.524 -7.318±0.213 -8.971± 0.395 -8.825± 0.459 -8.360±0.217

DDPO
Hit Ratio 0.419 ± 0.280 0.342 ± 0.685 5.488 ± 1.989 0.445 ± 0.297 1.717 ± 0.684

DS (top 5%) -9.247 ± 0.242 -7.739 ± 0.244 -9.488 ± 0.287 -9.470 ± 0.373 -8.990 ± 0.221

GDPO
(ours)

Hit Ratio 9.814 ± 1.352 3.449 ± 0.188 34.359 ± 2.734 9.039 ± 1.473 13.405 ± 1.515
DS (top 5%) -10.938 ± 0.042 -8.691 ± 0.074 -11.304 ± 0.093 -11.197 ± 0.132 -10.183 ± 0.124

6.1 General Graph Generation

Datasets and Baselines. Following DiGress [61], we evaluate GDPO on two benchmark datasets:
SBM (200 nodes) and Planar (64 nodes), each consisting of 200 graphs. We compare GDPO with
GraphRNN [69], SPECTRE [43], GDSS [31], MOOD [37] and DiGress. The first two models are
based on RNN and GAN, respectively. The remaining methods are graph DPMs, and MOOD employs
an additional property predictor. We also test DDPO [6], i.e., graph DPMs optimized with Eq. (8).

Implementation. We set T = 1000, |T | = 200, and N = 100. The number of trajectory samples K
is 64 for SBM and 256 for Planar. We use a DiGress model with 10 layers. More implementation
details can be found in Appendix A.1.

Metrics and Reward Functions. We consider four metrics: Deg(G,Dtest), Clus(G,Dtest),
Orb(G,Dtest), and the V.U.N metrics. V.U.N measures the proportion of generated graphs that
are valid, unique, and novel. The reward function is defined as follows:

rgeneral = 0.1× (rdeg + rclus + rorb) + 0.7× rval, (11)

where we do not explicitly incorporate uniqueness and novelty. All rewards are calculated on the
training dataset if a reference graph set is required. All evaluation metrics are calculated on the test
dataset. More details about baselines, reward signals, and metrics are in Appendix A.3.

Results. Table 1 summarizes GDPO’s superior performance in general graph generation, showing
notable improvements in Deg and V.U.N across both SBM and Planar datasets. On the Planar dataset,
GDPO significantly reduces distribution distance, achieving an 81.97% average decrease in metrics
of Deg, Clus, and Orb compared to DiGress (the best baseline method). For the SBM dataset, GDPO
has a 41.64% average improvement. The low distributional distances to the test dataset suggests that
GDPO accurately captures the data distribution with well-designed rewards. Moreover, we observe
that our method outperforms DDPO by a large margin, primarily because the graphs in Planar and
SBM contain too many nodes, which aligns with the observation in Fig. 2.

6.2 Molecule Property Optimization

Datasets and Baselines. Molecule property optimization aims to generate molecules with desired
properties. We evaluate our method on two large molecule datasets: ZINC250k [27] and MOSES [49].
The ZINC250k dataset comprises 249,456 molecules, each containing 9 types of atoms, with a
maximum node count of 38; the MOSES dataset consists of 1,584,663 molecules, with 8 types
of atoms and a maximum node count of 30. We compare GDPO with several leading methods:
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Table 3: Molecule property optimization results on MOSES.

Method Metric
Target Protein

parp1 fa7 5ht1b braf jak2

FREED
Hit Ratio 0.532 ± 0.614 0 4.255 ± 0.869 0.263 ± 0.532 0.798 ± 0.532

DS (top 5%) -9.313 ± 0.357 -7.825 ± 0.167 -9.506 ± 0.236 -9.306 ± 0.327 -8.594 ± 0.240

MOOD
Hit Ratio 5.402 ± 0.042 0.365 ± 0.200 26.143 ± 1.647 3.932 ± 1.290 11.301 ± 1.154

DS (top 5%) -9.814 ± 1.352 -7.974 ± 0.029 10.734 ± 0.049 -10.722 ± 0.135 -10.158 ± 0.185

DiGress
Hit Ratio 0.231 ± 0.463 0.113 ± 0.131 3.852 ± 5.013 0 0.228 ± 0.457

DS (top 5%) -9.223 ± 0.083 -6.644 ± 0.533 -8.640 ± 0.907 8.522 ± 1.017 -7.424 ± 0.994

DDPO
Hit Ratio 3.037 ± 2.107 0.504 ± 0.667 7.855 ± 1.745 0 3.943 ± 2.204

DS (top 5%) -9.727 ± 0.529 -8.025 ± 0.253 -9.631 ± 0.123 -9.407 ± 0.125 -9.404 ± 0.319

GDPO
(ours)

Hit Ratio 24.711 ± 1.775 1.393 ± 0.982 17.646 ± 2.484 19.968 ± 2.309 26.688 ± 2.401
DS (top 5%) -11.002 ± 0.056 -8.468 ± 0.058 -10.990 ± 0.334 -11.337 ± 0.137 -10.290 ± 0.069

GCPN [68], REINVENT [47], FREED [67] and MOOD [37]. GCPN, REINVENT and FREED
are RL methods that search in the chemical environment. MOOD, based on graph DPMs, employs
a property predictor for guided sampling. Similar to general graph generation, we also compare
our method with DiGress and DDPO. Besides, we show the performance of DiGress with property
predictors, termed as DiGress-guidance.

Implementation. We set T = 500, |T | = 100, N = 100, and K = 256 for both datasets. We use
the same model structure with DiGress. See more details in Appendix A.1.

Metrics and Reward Functions. Following MOOD, we consider two metrics essential for real-world
novel drug discovery: Novel hit ratio (%) and Novel top 5% docking score, denoted as Hit Ratio
and DS (top 5%), respectively. Using the notations from Sec. 5.2, the Hit Ratio is the proportion of
unique generated molecules that satisfy: DS < median DS of the known effective molecules, NOV >
0.6, QED > 0.5, and SA < 5. The DS (top 5%) is the average DS of the top 5% molecules (ranked by
DS) that satisfy: NOV > 0.6, QED > 0.5, and SA < 5. Since calculating DS requires specifying a
target protein, we set five different protein targets to fully test GDPO: parp1, fa7, 5ht1b, braf, and
jak2. The reward function for molecule property optimization is defined as follows:

rmolecule = 0.1× (rQED + rSA) + 0.3× rNOV + 0.5× rDS. (12)

We do not directly use Hit Ratio and DS (top 5%) as rewards in consideration of method generality.
The reward weights are determined through several rounds of search, and we find that assigning a
high weight to rNOV leads to training instability, which is discussed in Sec. 6.3. More details about
the experiment settings are discussed in Appendix A.4.

Results. In Table 2, GDPO shows significant improvement on ZINC250k, especially in the Hit
Ratio. A higher Hit Ratio means the model is more likely to generate valuable new drugs, and
GDPO averagely improves the Hit Ratio by 5.72% in comparison with other SOTA methods. For
DS (top 5%), GDPO also has a 1.48% improvement on average. Discovering new drugs on MOSES
is much more challenging than on ZINC250k due to its vast training dataset. In Table 3, GDPO also
shows promising results on MOSES. Despite a less favorable Hit Ratio on 5ht1b, GDPO achieves an
average improvement of 12.94% on the other four target proteins. For DS (top 5%), GDPO records
an average improvement of 5.54% compared to MOOD, showing a big improvement in drug efficacy.

6.3 Generalizability, Sample Efficiency, and A Failure Case

Table 4: Generalizability of GDPO on Spectral MMD.

Dataset
Methods

DiGress DDPO GDPO (ours)

PLANAR 1.0353± 0.4474 20.1431± 3.5810 0.8047± 0.2030

SBM 1.2024± 0.2874 13.2773± 1.4233 1.0861± 0.2551

To validate whether GDPO correctly
optimizes the model, we test the per-
formance of GDPO on metrics not
used in the reward signal. In Ta-
ble 4, we evaluate the performance
on Spectral MMD [43], where the
GDPO is optimized by Eq. (11). The
results demonstrate that GDPO does
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not show overfitting; instead, it finds a more powerful model. The results presented in Appendix A.5
further support that GDPO can attain high sample novelty and diversity.

(a) (b)

Figure 3: We investigate two key factors of GDPO on
ZINC250k, with the target protein being 5ht1b. Similarly,
the vertical axis represents the total queries, while the hor-
izontal axis represents the average reward.(a) We vary the
number of trajectories for gradient estimation. (b) We fix
the weight of rQED and rSA, and change the weight of rNOV
while ensuring the total weight is 1.

We then investigate two crucial fac-
tors for GDPO: 1) the number of tra-
jectories; 2) the selection of the re-
ward signals. We test our method on
ZINC250k and set the target proteins
as 5ht1b. In Fig. 3 (a), the results in-
dicate that GDPO exhibits good sam-
pling efficiency, as it achieves a signif-
icant improvement in average reward
by querying only 10k molecule re-
ward signals, which is much less than
the number of molecules contained in
ZINC250k. Moreover, the sample ef-
ficiency can be further improved by
reducing the number of trajectories,
but this may lead to training instabil-
ity. To achieve consistent results, we
use 256 trajectories. In Fig. 3 (b), we
illustrate a failure case of GDPO when
assigning a high weight to rNOV. Gen-
erating novel samples is challenging. MOOD [37] addresses this challenge by controlling noise in the
sampling process, whereas we achieve it by novelty optimization. However, assigning a large weight
to rNOV can lead the model to rapidly degenerate. One potential solution is to gradually increase the
weight and conduct multi-stage optimization.

7 Conclusion

We introduce GDPO, a novel policy gradient method for learning graph DPMs that effectively
addresses the problem of graph generation under given objectives. Evaluation results on both general
and molecular graphs indicate that GDPO is compatible with complex multi-objective optimization
and achieves state-of-the-art performance on a series of representative graph generation tasks. We
discuss some limitations of our work in Appendix A.2. Our future work will investigate the theoretical
gap between GDPO and DDPO in order to obtain effective unbiased estimators.
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A Experimental Details and Additional Results

A.1 Implementation Details.

For all experiments, we use the graph transformer proposed in DiGress [61] as the graph DPMs,
and the models are pre-trained on the training dataset before applying GDPO or DDPO. During
fine-tuning, we keep all layers fixed except for attention, set the learning rate to 0.00001, and
utilize gradient clipping to limit the gradient norm to be less than or equal to 1. In addition, due to
significant numerical fluctuations during reward normalization, we follow DDPO [6] in constraining
the normalized reward to the range from [−5, 5]. This means that gradients resulting from rewards
beyond this range will not contribute to model updates. When there is insufficient memory to generate
enough trajectories, we use gradient accumulation to increase the number of trajectories used for
gradient estimation. We conducted all experiments on a single A100 GPU with 40GB of VRAM and
an AMD EPYC 7352 24-core Processor.

Training time and efficiency. Training DiGress on the ZINC250k dataset using a single A100 GPU
typically takes 48-72 hours, whereas fine-tuning with GDPO takes only 10 hours (excluding the time
for reward function computation). This high efficiency is in line with the findings in the practice of
DDPO, which is different from traditional RL methods. Additionally, as in Fig. 3 and Sec 6.3, GDPO
effectively improves the average reward of the model using only 10,000 queries. This sample size
is notably small compared to the 250,000 samples present in the ZINC250k dataset, showing the
impressive sample efficiency of GDPO.

A.2 Limitations and Broader Impact.

Below we list some limitations of the current work:

• Potential for overoptimization: As an RL-based approach, a recognized limitation is the risk
of overoptimization, where the DPM distribution may collapse or diverge excessively from the
original distribution. In Section 6.3, we demonstrated a failure case where, with a high weight
on novelty in the reward function, GDPO encounters a sudden drop in reward after a period of
optimization. Future research could explore the application of regularization techniques, similar
to those utilized in recent works such as DPO [51], to mitigate this risk.

• Inherited limitations of DPMs: Our method inherits certain limitations inherent to diffusion
models, particularly concerning their training and inference costs. As we do not modify the
underlying model architecture, these constraints persist.

• Scalability to large graphs: The scalability of GDPO to larger graphs (e.g., with 500 or more
nodes) remains unexplored.

For broader impact, this paper presents work whose goal is to advance the field of Machine Learning.
There are many potential societal consequences of our work, none which we feel must be specifically
highlighted here.

A.3 General Graph Generation

Baselines. There are several baseline methods for general graph generation, we summarize them as
follows:

• GraphRNN: a deep autoregressive model designed to model and generate complex distribu-
tions over graphs. It addresses challenges like non-uniqueness and high dimensionality by
decomposing the generation process into node and edge formations.

• SPECTRE: a novel GAN for graph generation, approaches the problem spectrally by generating
dominant parts of the graph Laplacian spectrum and matching them to eigenvalues and eigen-
vectors. This method allows for modeling global and local graph structures directly, overcoming
issues like expressivity and mode collapse.

• GDSS: A novel score-based generative model for graphs is introduced to tackle the task of
capturing permutation invariance and intricate node-edge dependencies in graph data generation.
This model employs a continuous-time framework incorporating a novel graph diffusion process,

15



Algorithm 1: Graph Diffusion Policy Optimization
Input: graph DPM pθ
Input: # of diffusion steps T , # of timestep samples |T |
Input: reward signal r(·), # of trajectory samples K
Input: learning rate η and # of training steps N
Output: Final graph DPM pθ
for i = 1, . . . , N do

for k = 1, . . . ,K do
G

(k)
0:T ∼ pθ // Sample trajectory
Tk ∼ Uniform([[1, T ]]) // Sample timesteps

rk ← r(G
(k)
0 ) // Get rewards

// Estimate reward mean and variance

r̄ ← 1
K

∑K
k=1 rk std[r]←

√∑K
k=1(rk−r̄)2

K−1

// Estimate the eager policy gradient

g(θ)← 1
K

K∑
k=1

T
|Tk|

∑
t∈Tk

( rk−r̄
std[r] )∇θ log pθ(G

(k)
0 |G

(k)
t )

// Update model parameter
θ ← θ + η · g(θ)

characterized by stochastic differential equations (SDEs), to simultaneously model distributions
of nodes and edges.

• DiGress: DiGress is a discrete denoising diffusion model designed for generating graphs with
categorical attributes for nodes and edges. It employs a discrete diffusion process to iteratively
modify graphs with noise, guided by a graph transformer network. By preserving the distribution
of node and edge types and incorporating graph-theoretic features, DiGress achieves state-of-
the-art performance on various datasets.

• MOOD: MOOD introduces Molecular Out-Of-distribution Diffusion, which employs out-of-
distribution control in the generative process without added costs. By incorporating gradients
from a property predictor, MOOD guides the generation process towards molecules with desired
properties, enabling the discovery of novel and valuable compounds surpassing existing methods.

Metrics. The metrics of general graph generations are all taken from GraphRNN [38]. The reported
metrics compare the discrepancy between the distribution of certain metrics on a test set and the
distribution of the same metrics on a generated graph. The metrics measured include degree distribu-
tions, clustering coefficients, and orbit counts (which measure the distribution of all substructures of
size 4). Following DiGress [61], we do not report raw numbers but ratios computed as follows:

r = MMD(generated, test)2/MMD(training, test)2 (13)

Besides, we explain some metrics that are used in the general graph generation:

• Clus: the clustering coefficient measures the tendency of nodes to form clusters in a network.
Real-world networks, especially social networks, often exhibit tightly knit groups with more ties
between nodes than expected by chance. There are two versions of this measure: global, which
assesses overall clustering in the network, and local, which evaluates the clustering around
individual nodes.

• Orb: Graphlets are induced subgraph isomorphism classes in a graph, where occurrences are
isomorphic or non-isomorphic. They differ from network motifs, which are over- or under-
represented graphlets compared to a random graph null model. Orb will count the occurrences
of each type of graphlet in a graph. Generally, if two graphs have similar numbers of graphlets,
they are considered to be relatively similar.

A.4 Molecule Property Optimization

Implementation Details. Following FREED [67], we selected five proteins, PARP-1 (Poly [ADP-
ribose] polymerase-1), FA7 (Coagulation factor VII), 5-HT1B (5-hydroxytryptamine receptor 1B),
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BRAF (Serine/threonine-protein kinase B-raf), and JAK2 (Tyrosine-protein kinase JAK2), which
have the highest AUROC scores when the protein-ligand binding affinities for DUD-E ligands are
approximated with AutoDock Vina [13], as the target proteins for which the docking scores are
calculated. QED and SA scores are computed using the RDKit library.

Baselines. There are several baseline methods for molecular graph generation under the given
objectives, they are diverse in methodology and performance, we summarize them as follows:

• GCPN: Graph Convolutional Policy Network (GCPN) is a general graph convolutional network-
based model for goal-directed graph generation using reinforcement learning. The GCPN
is trained to optimize domain-specific rewards and adversarial loss through policy gradient,
operating within an environment that includes domain-specific rules.

• REINVENT: This method enhances a sequence-based generative model for molecular design
by incorporating augmented episodic likelihood, enabling the generation of structures with
specified properties. It successfully performs tasks such as generating analogs to a reference
molecule and predicting compounds active against a specific biological target.

• HierVAE: a hierarchical graph encoder-decoder for drug discovery, overcoming limitations of
previous approaches by using larger and more flexible graph motifs as building blocks. The
encoder generates a multi-resolution representation of molecules, while the decoder adds motifs
in a coarse-to-fine manner, effectively resolving attachments to the molecule.

• FREED: a novel reinforcement learning (RL) framework for generating effective acceptable
molecules with high docking scores, crucial for drug design. FREED addresses challenges
in generating realistic molecules and optimizing docking scores through a fragment-based
generation method and error-prioritized experience replay (PER).

• MOOD: please refer to Appendix A.3.

Metrics. There are several metrics for evaluating the molecule properties, we summarize the meaning
of these metrics as follows:

• Docking Score: Docking simulations aim to find the best binding mode based on scoring
functions. Scoring functions in computational chemistry and molecular modeling predict
binding affinity between molecules post-docking. They are commonly used for drug-protein
interactions, but also for protein-protein or protein-DNA interactions. After defining the score
function, we can optimize to find the optimal drug-protein matching positions and obtain the
docking score.

• QED: Drug-likeness evaluation in drug discovery often lacks nuance, leading to potential issues
with compound quality. We introduce QED, a measure based on desirability, which considers
the distribution of molecular properties and allows the ranking of compounds by relative merit.
QED is intuitive, transparent, and applicable to various settings. We extend its use to assess
molecular target druggability and suggest it may reflect aesthetic considerations in medicinal
chemistry.

• SA: a scoring method for rapid evaluation of synthetic accessibility, considering structural
complexity, similarity to available starting materials, and strategic bond assessments. These
components are combined using an additive scheme, with weights determined via linear re-
gression analysis based on medicinal chemists’ accessibility scores. The calculated synthetic
accessibility values align well with chemists’ assessments.

A.5 Additional Results of the GDPO

Table 5: General graph generation on SBM and Planar datasets with different reward signals.

METHOD
PLANAR GRAPHS

Deg ↓ Clus ↓ Orb ↓ V.U.N (%) ↑
Validity (0.6) 0.03 ± 0.03 0.54 ± 0.08 0.02 ± 0.01 72.34 ± 2.78
Validity (0.7) 0.03 ± 0.04 0.62 ± 0.11 0.02 ± 0.01 73.83± 2.49
Validity (0.8) 0.12 ± 0.04 0.88 ± 0.34 0.24 ± 0.07 78.68 ± 3.12
Validity (0.9) 0.86 ± 0.12 2.17 ± 0.84 1.46 ± 0.78 81.26 ± 3.02

Study of the Reward Signals. In Table. 5, we showcase the performance of GDPO on Planar under
different configurations of reward weights. We keep the three weights related to distance the same
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and adjust the weight of validity while ensuring that the sum of weights is 1. The results indicate
that GDPO is not very sensitive to the weights of several reward signals for general graph generation,
even though these weight configurations vary significantly, they all achieve good performance.
Additionally, we found that GDPO can easily increase V.U.N to above 80 while experiencing slight
losses in the other three indicators. When applying GDPO in practice, one can make a tradeoff
between them based on the specific application requirements.

Table 6: Study of the Important Sampling on ZINC250k.

METHOD METRIC
TARGET PROTEIN

parp1 fa7 5ht1b braf jak2

DDPO Hit Ratio 0.419± 0.280 0.342± 0.685 5.488± 1.989 0.445± 0.297 1.717± 0.684
DS (top 5%) −9.247± 0.242 −7.739± 0.244 −9.488± 0.287 −9.470± 0.373 −8.990± 0.221

DDPO-IS Hit Ratio 0.945± 0.385 0.319± 0.237 10.304± 1.277 0.436± 0.272 2.697± 0.462
DS (top 5%) −9.633± 0.206 −7.530± 0.225 −9.877± 0.174 −9.468± 0.252 −9.120± 0.149

GDPO-IS Hit Ratio 0.850± 0.602 0.826± 0.827 16.283± 1.190 1.339± 0.392 4.381± 0.501
DS (top 5%) −9.482± 0.300 −8.254± 0.180 −10.361± 0.319 −9.771± 0.120 −9.583± 0.202

GDPO (OURS) Hit Ratio 9.814± 1.352 3.449± 0.188 34.359± 2.734 9.039± 1.473 13.405± 1.151
DS (top 5%) −10.938± 0.042 −8.691± 0.074 −11.304± 0.093 −11.197± 0.132 −10.183± 0.124

The Impact of Important Sampling. The importance sampling technique in DDPO, aims to facilitate
multiple steps of optimization using the same batch of trajectories. This is achieved by weighting
each item on the trajectory with an importance weight derived from the density ratio estimated using
the model parameters from the previous step θprev and the current step θ (referred to as DDPO-IS):

∇θJDDPO-IS(θ) = Eτ

[
r(G0)

T∑
t=1

pθ(Gt−1|Gt)

pθprev(Gt−1|Gt)
∇θ log pθ(Gt−1|Gt)

]
. (14)

Our eager policy gradient, independently motivated, aims to address the high variance issue of the
policy gradient in each step of optimization, as elaborated in Sec. 4.2. Intuitively, the eager policy
gradient can be viewed as a biased yet significantly less fluctuating gradient estimation.

We conducted a series of experiments on ZINC250k to compare DDPO, DDPO-IS, and GDPO. The
experimental setup remains consistent with the description in Section 6.2. Additionally, consider-
ing that the importance sampling technique in DDPO and our eager policy gradient appear to be
orthogonal, we also explored combining them simultaneously (referred to as GDPO-IS):

∇θJGDPO-IS(θ) = Eτ

[
r(G0)

T∑
t=1

pθ(G0|Gt)

pθprev(G0|Gt)
∇θ log pθ(G0|Gt)

]
. (15)

In Table. 6, while importance sampling enhances the performance of DDPO, consistent with the
results reported in the DDPO paper, it does not yield improvements for GDPO-IS over GDPO. We
speculate that this discrepancy may be due to the biasness of the eager policy gradient, rendering
it incompatible with the importance sampling technique. We intend to investigate the mechanism
and address this in our future work. Nevertheless, it is noteworthy that the performance of DDPO-IS
remains inferior to GDPO, indicating the superiority of our proposed GDPO method.

Table 7: Novelty and Diversity on ZINC250k.

METRIC
TARGET PROTEIN

parp1 fa7 5ht1b braf jak2

IOU 0.0763% 0.0752% 0.0744% 0.113% 0.0759%
UNIQ 94.86% 97.35% 99.86% 99.74% 97.02%

Novelty and Diversity of GDPO. To provide further insight into the novelty and diversity of our
approach, we introduce two additional metrics:

• Intersection over Union (IoU): We compare two sets of molecules: 1) 500 molecules generated
by GDPO (denoted as GDPO) and 2) top 500 molecules among 10,000 molecules generated
by our base DPM before finetuning (denoted as TopPrior). We then compute IoU=100 ×
|GDPO∩TopPrior|
|GDPO∪TopPrior|%. We report an average IoU of 5 independent runs.
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• Uniqueness in 10k samples (Uniq): We generate 10,000 molecules and compute the ratio of
unique molecules Uniq = 100× # unique molecules

# all molecules %.

In Table. 7, these results show that GDPO has not converged to a trivial solution, wherein it merely
selects a subset of molecules generated by the prior diffusion model. Instead, GDPO has learned an
effective and distinct denoising strategy from the prior diffusion model.

The Gap between Image DPMs and Graph DPMs. GDPO is tackling the high variance issue
inherent in utilizing policy gradients on graph DPMs, as stated and discussed in Sec. 4.2. To provide
clarity on what GDPO tackles, we would like to elaborate more on the high variance issue of policy
gradients on graph DPMs. Consider the generation trajectories in image and graph DPMs:

In image DPMs, the generation process follows a (discretization of) continuous diffusion process
(xt)t∈[0,T ]. The consecutive steps xt−1 and xt are typically close due to the Gaussian reverse
denoising distribution p(xt−1|xt) (typically with a small variance).

In graph DPMs, the generation process follows a discrete diffusion process (GT , . . . , G0), where each
Gt is a concrete sample (i.e., one-hot vectors) from categorical distributions. Therefore, consecutive
steps Gt−1 and Gt can be very distant. This makes the trajectory of graph DPMs more fluctuating than
images and thus leads to a high variance of the gradient∇θ log p(Gt−1|Gt) (and the ineffectiveness
of DDPO) when evaluated with same number of trajectories as in DDPO.

Regarding the “distance” between two consecutive steps Gt and Gt−1, our intuition stems from
the fact that graphs generation trajectories are inherently discontinuous. This means that each two
consecutive steps can differ significantly, such as in the type/existence of edges. In contrast, the
generation trajectories of images, governed by reverse SDEs, are continuous. This continuity implies
that for fine-grained discretization (i.e., large T ), xt and xt−1 can be arbitrarily close to each other
(in the limit case of T →∞).

Figure 4: We investigate the L2 distance between two consecutive steps in two types of DPMs. The
diffusion step is 1000 for two models.

To provide quantitative support for this discussion, we conduct an analysis comparing the distances
between consecutive steps in both image and graph DPMs. We employ a DDPM [a] pre-trained on
CIFAR-10 for image diffusion and DiGress [b] pre-trained on the Planar dataset for graph diffusion,
both with a total of T = 1000 time steps. In these models, graphs are represented with one-hot
vectors (as described in Sec. 3) and image pixels are rescaled to the range [0, 1], ensuring their scales
are comparable. We then directly compare the per-dimension L2 distances in both spaces, denoted as
∥Gt −Gt−1∥2/

√
DG and ∥xt − xt−1∥2/

√
DI , where DG and DI are the dimensions of graphs and

images, respectively. (Dividing by
√
D is to eliminate the influence of different dimensionalities.)

We sample 512 trajectories from each DPM and plot the mean and deviation of distances with respect
to the time step t.

In Fig. 4, the results support the explanation of GDPO. While we acknowledge that graphs and images
reside in different spaces and typically have different representations, we believe the comparison with
L2 distance can provide valuable insights into the differences between graph and image DPMs.

GDPO on the Synthetic Tree-like Dataset. We first generate a tree and then connect a clique to
the nodes of the tree, performing a specified number of rewrite operations as suggested. Based on
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(a) Rewrite Step = 0. (b) Rewrite Step = 1. (c) Rewrite Step = 2. (d) Rewrite Step = 3.

(e) Node = 16. (f) Node = 24. (g) Node = 32. (h) Node = 40.

(i) Shallow Clique Position. (j) Middle Clique Position. (k) Deep Clique Position.

Figure 5: Tree with Different Parameters. Node 0 is the root node.
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Figure 6: Ablation Study on the Synthetic Tree-like Dataset.

the number of rewrite steps, graph size, and clique position, we generate multiple datasets, each
containing 400 samples. Of these, 256 samples are used for training Graph DPMs, with the remaining
samples allocated for validation and testing. In Fig. 5, we present some examples. Fig. 5(a)illustrates
a tree structure with a clique of size 4. When the number of rewrite steps is 3, Fig. 5(d) demonstrates
that the overall structure of the samples is disrupted. After training the Graph DPMs, we apply GDPO.
The model receives a reward of 1 when it generates a tree with a clique; otherwise, the reward is 0.
We then ablate the following factors to test the performance of GDPO.

Rewrite Steps: In Fig. 6(a), we demonstrate GDPO’s performance across different rewrite steps, with
four curves representing steps ranging from 0 to 3. Despite a notable decrease in the initial reward as
the number of rewrite steps increases, GDPO consistently optimizes the Graph DPMs effectively to
generate the desired graph structure.

Graph Size: In Fig. 6(b), we gradually increase the number of nodes from 16 to 40. The results show
that graph size affects the initial reward but does not impact GDPO’s optimization performance.
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Clique Position: We experiment with inserting the clique at different levels of the tree but find no
significant difference. We believe this is because the position of the clique does not affect the initial
reward of the Graph DPMs, leading to similar optimization results with GDPO.

Comparison with Baseline: In Fig. 6(c), we compare GDPO with DDPO. The results, consistent
with those in Figure 2 of the paper, reveal a clear distinction between GDPO and DDPO in handling
challenging data generation tasks.

A.6 Discussions

Comparison with the x0-prediction Formulation. Indeed, our eager policy gradient in Eq. 10,
compared to the policy gradient of REINFORCE in Eq. 8, resembles the idea of training a denois-
ing network to predict the original uncorrupted graph rather than performing one-step denoising.
However, we note that training a denoising network to predict the original data is fundamentally a
matter of parametrization of one-step denoising. Specifically, the one-step denoising pθ(xt−1|Gt)
is parameterized as a weighted sum of x0-prediction, as described in Eq. 1. Our method in Eq. 8 is
motivated differently, focusing on addressing the variance issue as detailed in Sections 4.2 and 4.3.

Pros and Cons of the RL Approach against Classifier-based and Classifier-free Guidance
for Graph DPMs. Compared to graph diffusion models using classifier-based and classifier-free
guidance, RL approaches such as GDPO have at least two main advantages:

• Compatibility with discrete reward signals and discrete graph representations: As guidance
for diffusion models is based on gradients, a differentiable surrogate (e.g., property predic-
tors [65, 37]) is needed for non-differentiable reward signals (e.g., results from physical
simulations). RL approaches naturally accommodate arbitrary reward functions without the
need for intermediate approximations.

• Better sample efficiency: For graph diffusion models with classifier-based or classifier-free
guidance, labeled data are required at the beginning and are independently collected with the
graph diffusion models. In contrast, RL approaches like GDPO collect labeled data during
model training, thus allowing data collection from the current model distribution, which can
be more beneficial. We also empirically observe a significant gap in sample efficiency.

Analysis on the Bias-variance Trade off. The main bias of GDPO arises from modifying the
"weight" term in Eq. 9, which shifts the model’s focus more towards the generated results rather than
the intermediate process, thereby reducing potential noise. Due to the discrete nature of Graph DPMs,
the x0-prediction and xt−1-prediction formulations cannot be related through denoising objectives as
in continuous DPMs. This issue also complicates the connection between DDPO and GDPO. We
have not yet identified a relevant solution and are still working on it. In our empirical study, we
do not observe significant performance variance and tradeoff for GDPO given the current scale of
experiments. This may be due to the graph sizes we explored not being sufficiently large. In future
implementations, we will incorporate support for sparse graphs to assess GDPO’s performance on
larger graph datasets and investigate the tradeoff more thoroughly.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We carefully check the claims, and they align with our evaluation.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We illustrate the limitations of our work with a failure case. Additionally, we
discuss the limitations from various perspectives in the appendix.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: Our paper does not propose any theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: All the implementation details are discussed in the appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: In the supplementary materials, we provide the code, dataset, and instructions
for reproduction.
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• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: In the experimental setup section, we provide detailed instructions.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: All statistical results are obtained by repeating the experiment five times, and
the corresponding standard deviations are provided.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: In the appendix, we provide these contents.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This work falls under the general machine learning domain, and during the
research process, we adhered to the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: In the appendix, we discuss the potential impacts of this work in detail.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This work does not involve any relevant datasets or models.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All datasets used in this paper are open-source, and there are no copyright
issues involved.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This work is based on existing datasets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This work does not involve any related issues.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This work does not involve any related issues.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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