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Abstract
The main benefit of unsupervised anomaly detection is the ability to identify arbitrary
instances of pathologies even in the absence of training labels or sufficient examples of
the rare class(es). Even though much work has been done on using auto-encoders (AE)
for anomaly detection, there are still two critical challenges to overcome: First, learning
compact and detailed representations of the healthy distribution is cumbersome. Second,
the majority of unsupervised algorithms are tailored to detect hyperintense lesions on
FLAIR brain MR scans. We found that even state-of-the-art (SOTA) AEs fail to detect
several classes of non-hyperintense anomalies on T1w brain MRIs, such as brain atrophy,
edema, or resections. In this work, we propose reversed AEs (RA) to generate pseudo-
healthy reconstructions and localize various brain pathologies. Our method outperformed
SOTA methods on T1w brain MRIs, detecting more global anomalies (AUROC increased
from 73.1 to 89.4) and local pathologies (detection rate increased from 52.6% to 86.0%).
Keywords: Unsupervised Anomaly Detection, Pathology Screening.

Figure 1: SOTA pathology detection methods, such as DAE (Kascenas et al., 2022) may miss
structural anomalies like atrophy. In contrast, our proposed method RA generates
pseudo-healthy reconstructions for unbiased detection of various diseases.
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1. Introduction

The automated detection of abnormal findings is a critical component in the clinical work-
flow, enabling clinical screening, early disease detection and rapid triage of acute cases.
Supervised machine learning methods (Kamnitsas et al., 2017; Vyas et al., 2018) use large
amounts of expert-annotated datasets to target specific diseases, such as brain tumours or
lesions. However, they generalize poorly beyond the trained distribution and learned dis-
eases, due to the heterogeneity and large amount of existing pathologies (Ruff et al., 2021).
In contrast, unsupervised anomaly detection aims to leverage the large amounts of available
datasets containing normal samples to learn the distribution that best describes the healthy
population. Thus, it is natural to detect any anomaly by identifying patterns that do not
match the expected normative distribution. Reconstruction-based auto-encoders (AEs)
are optimized to only reconstruct in-distribution (ID) samples well, and detect anomalies
from imperfect reconstructions of abnormal data. Even though they have become a very
popular framework for unsupervised anomaly detection and are widely used in medical
imaging (Baur et al., 2021; Bercea et al., 2022; Gong et al., 2019; Pawlowski et al., 2018;
Zimmerer et al., 2019a), there are still two important challenges to overcome.

First, it is difficult to learn concise and accurate representations of the healthy distribu-
tion. Recent work suggests that AEs might reconstruct out-of-distribution (OoD) samples
even better than ID instances (Nalisnick et al., 2018; Ren et al., 2019; Schirrmeister et al.,
2020), which renders them unsuitable for anomaly detection. Several techniques are used
in the literature to regularize AEs, such as enforcing sparsity (Makhzani and Frey, 2013) or
training proxy self-supervised tasks (Vincent et al., 2010; Zimmerer et al., 2019b). Recent
de-noising auto-encoders (Kascenas et al., 2022) achieved SOTA brain tumour segmentation
by learning to remove generated synthetic noise patterns. However, this is advantageous
only when the anomaly distribution is known a priori. Variational AEs (VAEs) (Kingma
and Welling, 2013; Zimmerer et al., 2019a) regularize the distribution over the latent space
to be similar to a prior distribution, usually a standard isotropic Gaussian. While these
methods capture the training distribution better, they are known to produce blurry re-
constructions. In contrast, generative adversarial networks (GANs) (Goodfellow et al.,
2014) can generate high-resolution images and have been applied to medical anomaly de-
tection (Schlegl et al., 2019). More recently, Daniel and Tamar (2021) combined VAEs and
GANs, by training the encoder and the decoder in an introspective way, achieving SOTA
image generations and outlier detection performance. However, their reconstructions do
not perfectly match the inputs, leading to high amount of false positive residual errors.

Second, the majority of the unsupervised algorithms are tailored to detect hyper-intense
regions on FLAIR brain MRI. In Baur et al. (2021) most SOTA algorithms fail without
hyper-intense specific post-processing, such as only keeping the positive residual errors.
Furthermore, simple thresholding techniques have been recently shown to outperform un-
supervised deep learning models for white lesion detection (Meissen et al., 2022a). To
advance the field of unsupervised anomaly detection, it is therefore critical to develop
methods that go beyond hyper-intensity thresholding to enable clinical screening and the
detection and localization of multiple, different pathologies.

In this work, we investigate whether AEs learn meaningful representations to detect
and localize multiple different pathologies and artefacts on T1w brain MRIs. First, we eval-
uate whether AEs can learn the healthy anatomy, i.e., absence of pathology, and produce
pseudo-healthy reconstructions of normal brain scans that were augmented with synthetic
anomalies. Second, we evaluate whether AEs can detect global and local anomalies on a
challenging brain dataset, containing 16 different pathologies. We found that AEs fail at
detecting multiple diseases by either reconstructing the anomalies, or producing blurry or
inaccurate reconstructions. To address these issues, we propose RA, novel reversed AEs to
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produce accurate pseudo-healthy reconstructions of abnormal samples and localize various
pathologies. Figure 1 shows example results of RA compared to SOTA DAE.

Our manuscript advances the field of unsupervised anomaly detection by paving the
way towards generalized pathology localization. In summary, our contributions are:

• We quantify how well AEs can learn the nominal distribution and reconstruct pseudo-healthy
images of abnormal brain scans using synthetic experiments.

• We evaluate SOTA AEs on a wide range of local non-hyperintense anomalies.

• We propose reversed AEs, RA, a novel method that considerably outperforms SOTA unsu-
pervised methods on pathology detection and localization.

2. Background

Unsupervised anomaly detection. In the following we will refer to ’normal’ as the
absence of pathologies. Given a set of normal samples x ∈ X ⊂ RN , the AE objective is
to find a function f : RN → RD and its inverse g : RD → RN , such that x ≈ g(f(x)).
Usually f and g are called encoder and decoder and the mapping f projects the input to
a much lower-dimensional representation. The core assumption of unsupervised anomaly
detection is that the learned representations would contain features describing the nominal
distribution even for outlier samples x /∈ X . Thus, xph = (g(f((x))) ∈ X would be the
pseudo-healthy reconstruction of x. An anomaly score is therefore usually derived directly
from the pixel-wise difference between an input and its reconstruction: s(x) = |x−g(f(x))|.

Evidence lower bound (ELBO). From a variational inference setting (Kingma and
Welling, 2013), our aim is to optimize the parameters θ of a latent variable model pθ(x) by
maximizing the log-likelihood, log pθ(x) of the observed samples x. The term is intractable,
but we can approximate the true posterior pθ(z|x) with a proposal distribution qφ(z|x):

log pθ(x) ≥ Eq(z|x)[log pθ(x|z)]−KL[qφ(z|x)||p(z)] = ELBO(x) (1)

Here KL denotes the Kullback-Leibler divergence; qφ(z|x) and pθ(x|z) are usually known
as the encoder Eφ and decoder Dθ, which are neural networks with parameters φ and θ.
For VAEs, the prior p(z) is usually the normal distribution N (µ0, σ0) and the ELBO can
be maximized using the reparameterization trick.

Soft-introspective VAEs (SI-VAE) (Daniel and Tamar, 2021) added an adversarial
loss to the VAE training. The intuition behind it is to combine the encoding capabilities
of VAEs with the powerful image synthesis ability of GANs (Goodfellow et al., 2014). In
contrast to Pidhorskyi et al. (2018), SI-VAEs do not add additional discriminator networks,
but use the VAEs encoder and decoder in an adversarial way. The encoder is encouraged
to differentiate between real and generated samples by minimizing the KL of the latent
distribution of real samples and the prior and maximizing the KL of generated samples. In
contrast, the decoder is trained to ’fool’ the encoder by reconstructing real data samples
using the standard ELBO and minimizing the KL of generated samples compressed by the
encoder. The objectives of the encoder and decoder which are to be maximized are:

LEφ
(x, z) = ELBO(x)− 1

α
(exp(αELBO(Dθ(z)), (2)

LDθ
(x, z) = ELBO(x) + γELBO(Dθ(z)),

where α ≥ 0 and γ ≥ 0 are hyper-parameters.
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Figure 2: The RA architecture uses an encoder and decoder that optimize the ELBO for
real samples. The reversed embedding loss improves the accuracy of feature rep-
resentations, while expELBO and ELBO respectively encourage the encoder to
push away generated samples from the latent space and the decoder to fool the
encoder. At inference, RA generates pseudo-healthy reconstructions (xph) and
produces anomaly maps by combining residual and perceptual differences.

3. RA: Reversed Autoencoders

SI-VAE reconstructions are imperfect, resulting in large false positive residuals that obscure
errors of interest, i.e., pathologies. We propose new reversed AEs (see Figure 2) to mitigate
these issues by incorporating a reversed multi-scale embedding loss into the encoder and
computing the anomaly scores using residual and perceptual differences.

Reversed embedding similarity. We focus our proposed method on learning better
latent representations by augmenting the encoder with a multi-scale embedding similarity
loss. We therefore enforce that input representations match the embeddings of the gener-
ated reconstructions. This reverse comparison is performed at multiple levels, inspired by
knowledge distillation methods (Salehi et al., 2021):

LReversed(x) =
L∑
l=0

(1− LSim(Elφ(x), E
l
φ(xrec)) +

1

2
MSE(Elφ(x), E

l
φ(xrec)), (3)

where Elφ is the l-th embedding of the L encoder layers, xrec = Dθ(Eφ(x)), LSim is the
cosine similarity, and MSE the mean squared error. The overall encoder objective is:

LEφ
(x, z) = ELBO(x)− 1

α
(exp(αELBO(Dθ(z)) + λLReversed(x), (4)

with λ a weight that we empirically set to 5e−3. The decoder loss remains as in Equation 2.

Anomaly scores. The most common approach for detecting anomalies is to calculate
the residuals between anomalous inputs and their pseudo-healthy reconstructions. How-
ever, these errors have been shown to depend strongly on the underlying intensities (Meissen
et al., 2022b). To address this issue we apply adaptive histogram equalization (eq) before
computing the residual and augment the errors with perceptual differences for robustness:

s(x) = |(eq(xph)− eq(x)| ∗ (Slpips(xph, x) ∗ Slpips(eq(xph), eq(x)), (5)

with Slpips being the learned perceptual image patch similarity (Zhang et al., 2018).
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Table 1: Experiments with synthetic anomalies, i.e., sprites of different intensities and ’copy-
paste’ textural changes. See Figure 3 for visual results.

(a) Pseudo-healthy Reconstruction. RA achieves the
best mean squared error (MSE) and learned percep-
tual image patch similarity (LPIPS) (Zhang et al.,
2018) on the synthetically augmented regions.

Method Intensity Anomaly Texture Anomaly
MSE ↓ LPIPS ↓ MSE ↓ LPIPS ↓

AE-S 17.6± 7.2 29.3± 10.0 11.8± 7.3 28.8± 11.7
VAE 4.4± 5.70 44.3± 6.6 5.3± 5.5 41.9± 8.7
DAE 25.8± 10.6 32.1± 9.4 8.9± 6.0 25.1± 12.1
SI-VAE 3.3± 3.2 19.8± 6.4 5.3± 4.8 19.4± 6.2

RA (ours) 3.1 ± 2.5 17.7 ± 7.6 4.8 ± 5.4 18.5 ± 5.8

(b) Anomaly Segmentation.
RA achieves the best
AUPRC for both synthetic
anomaly types.

Method Int. Ano. Tex. Ano.
AUPRC ↑

AE-S 5.8 7.9
VAE 24.2 20.0
DAE 57.9 30.1
SI-VAE 27.6 20.5

RA (ours) 73.7 57.4

Figure 3: Synthetic experiments. RA removes intensity and textural anomalies and yields
the most accurate pseudo-healthy reconstructions compared to the ground truth.

4. Experiments

Datasets. For an evaluation on clinical data, we use two different brain T1w MRI datasets:
FastMRI+ (Zhao et al., 2021) contains healthy and pathological axial brain MRI scans with
expert bounding box annotation for 30 different pathology categories. We selected the mid-
dle axial slice, which resulted in: 176 normal scans (131 train, 15 validation, and 30 test);
27 scans containing global pathologies; 23 global artefacts; and 171 local pathologies with
expert bounding box annotations. We supplemented the training with 581 T1w healthy
brain MRI middle axial slices from IXI (IXI, 2012) (see Appendix for details).

4.1. Representation learning for healthy distributions

In this section, we investigate whether AEs can learn compact and accurate representa-
tions of the healthy distribution. Therefore, we conduct two synthetic experiments with
intensity and textural anomalies, as shown in Figure 3. We quantify the pseudo-healthy
reconstruction performance of the methods in Table 1(a) and the anomaly segmentation re-
sults in Table 1(b) using the provided healthy images and synthetic masks as ground truth.
AEs (Baur et al., 2021) copy anomalies, resulting in poor reconstruction and anomaly
segmentation accuracy. VAEs (Zimmerer et al., 2019a) learn compact representations pre-
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Table 2: Experiments on T1w brain MRIs with global diseases, artefacts, and 13 different
local pathologies with bounding-box annotations. Figure 4(b) shows visual results.

(a) Anomaly Detection. RA increases the area un-
der the receiver-operator point (AUROC) by 32.4%
for pathology detection and by 13.5% for detecting
global artefacts.

Method Average Global Pathology Global Artefacts
AUROC ↑

AE 47.4± 7.6 49.3± 5.7 45.6± 9.6
VAE 62.9± 6.9 62.0± 7.0 63.8± 6.7
DAE 57.9± 10.0 58.2± 10.3 57.6± 9.6
SI-VAE 73.1± 5.6 67.2± 6.2 79.1± 5.0
MKD 62.2± 4.9 61.3± 6.5 63.2± 3.3

RA (ours) 89.4 ± 1.6 89.0 ± 2.5 89.8 ± 0.7

(b) Pathology localization.
RA is the most robust
method (F1), detecting 86%
of the local pathologies.

Method Local Pathology
#Detected ↑ F1(%) ↑

AE-S 21/171 2.5
VAE 79/171 9.8
DAE 90/171 29.0
SI-VAE 82/171 9.9
MKD 83/171 26.5
RA (ours) 147/171 37.9

venting the reconstruction of anomalies (low MSE score) but produce blurry results (high
LPIPS score). The resulting false positives yield poor segmentation performance. Inter-
estingly, while DAE (Kascenas et al., 2022) achieves very poor reconstruction results, it
outperforms the other baselines in segmenting the anomalies. It does so by in-painting
structures that resemble the learned noise distribution but misses other patterns, e.g.,
textural anomalies (see Figure 3). SI-VAE (Daniel and Tamar, 2021) learns the training
distribution and provides superior pseudo-healthy reconstructions to baselines. However,
it performs poorly in segmenting anomalies due to substantial false positive residual errors.
RA further improves the learned representations and improves the segmentation accuracy
by 137% and 59% compared to SI-VAE and the best baseline, respectively.

4.2. Anomaly Detection

In this section, we assess the ability to detect global anomalies and artefacts as well as local-
ize various pathologies. For the sake of comprehensiveness, we also compare our approach
to the work of Salehi et al. (2021), which utilizes teacher-student methods and multi-scale
knowledge distillation (MKD) for industrial and medical anomaly segmentation. Teacher-
student networks face unique difficulties in medical anomaly segmentation, particularly in
brain MRI, due to small datasets, subtle anomalies, and domain shifts.
Global Detection. The standard method for evaluating unsupervised anomaly detection
is to compare the anomaly scores for unseen normal and pathological images. Table 2(a)
shows the results for detecting global pathologies like small vessel chronic white matter
ischemic changes and global artefacts like motion. With an AUROC score of 89.4, RA out-
performs the SOTA (DAE) by 54.4% and the best baseline (SI-VAE) by 22.3% on average.
Pathology Localization. In contrast to global detection, there is no standard for quanti-
fying the performance of unsupervised pathology localization using ground truth bounding-
boxes. From the clinical standpoint, we are interested in counting the amount of detected
lesions while also limiting the number of false positives to reduce the burden on radiolo-
gists. As a result, we set the anomaly scores to produce no more than 5% false positives on
normal samples and consider a detection to be true positive (TP) if it tags at least 10% of
the pixels in the ground truth bounding box as anomalous. To assess the misclassifications,
we calculate the false positives (FP) as the ratio of false pixel detection on healthy tissue
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(a) Disease-specific detection. The majority of baselines fall short in identifying various dis-
eases, including absent septum pellucidum, edema, encephalomalacia, or white matter
lesions (WML). Moreover, even SOTA AEs struggle with structural anomalies like atro-
phy, where RA improves the detection results to 100% compared to just 31% for DAE.
RA achieves nearly perfect recall, with the most errors occurring when missing small
post-treatment changes (12/44) and small lesions (5/22).

(b) RA produces pseudo-healthy reconstructions allowing for the unbiased detection
and precise localization of various intensity-based and structural pathologies.

Figure 4: Pathology Localization. Figure 4(a) shows quantitative results for different disease
classes and Figure 4(b) shows qualitative examples of our method.

to true detection on anomalous tissue, which is given by: FP =
∑H
h=0 sh/

∑A
a=0 sa, with

H,A being the healthy and anomalous pixels, respectively. The overall performance is
given by the average F1 score: F1 = 1/N

∑N
i=0(2×P ×TP )/(P +TP ), with the precision

P = TP/(TP + FP ). Table 2(b) shows numerical results. RA detects 86.0% of diseases,
whereas the SOTA DAE detects just over half of the pathologies (52.6%). The results
for each disease class are shown in Figure 4(a). It should be noted that most methods
fail to detect various types of anomalies, such as absent septum pellucidum, edema, en-
cephalomalacia, or white matter lesions (WML). Moreover, even SOTA AEs struggle with
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Figure 5: UMAP visualistion of latent representations extracted with RA for normal, patho-
logical, and pseudo-healthy inputs. On the right, two distinct clusters representing
different scanners can be seen, with normal and abnormal samples in close prox-
imity. On the left, sample inputs are displayed to highlight the differences.

structural pathologies, such as brain atrophy. For example, with a F1 score of 22.9, DAE
detects only 31% of cases of enlarged ventricles. RA, on the other hand, detects all cases
of enlarged ventricles with a F1 score of 79.7. RA achieves nearly perfect recall on all
diseases, with the most errors occurring when small post-treatment changes (12 out of 44)
or small lesions (5 out of 22) are missed. Figure 4(b) shows qualitative examples of RA.
Our method generates pseudo-healthy reconstructions of abnormal scans, allowing for the
unbiased detection and localization of various diseases and paving the way for unsupervised
pathology screening.

Ablation: Effect of individual components. The reverse loss improved the de-
tection results, increasing the number of detected pathologies from 128/171 (F1:31.8) to
147/171 (F1:37.9). It especially improved the detection of subtle anomalies such as edema
and small tumors to 16/18 and 24/26 from 9/18, 20/26, respectively. Histogram equaliza-
tion mitigates the bias of not detecting subtle anomalies in terms of intensity differences,
such as edema. Without it, edema detection decreases from 16/18 (F1:51.5) to 11/18 (F1:
26.4). Please refer to section D in Appendix for the full ablation results.

Ablation: On anomaly maps. It is challenging to compute useful anomaly scores.
While pixel-wise residual errors are straightforward and provide precise anomaly maps,
they strongly depend on the underlying intensities and are sensitive to small shifts (Meis-
sen et al., 2022b). Perceptual anomaly maps (Zhang et al., 2018) have been investigated for
related computer vision applications, e.g., industrial defect detection (Roth et al., 2022).
They provide anomaly maps that correspond more closely to human perception. However,
they have poor spatial resolution and use embeddings of networks pre-trained on natural
images like ImageNet, which may not translate well to the medical imaging domain. Other
approaches have tried to compute the likelihood of anomalies in the latent representation
space (Pinaya et al., 2021; Pidhorskyi et al., 2018; Zimmerer et al., 2019a). For exam-
ple, Zimmerer et al. (2019a) uses the KL divergence to distinguish between normal and
abnormal samples. Figure 5 shows the umap (McInnes et al., 2018) visualization of latent
embeddings of RA. It shows representations of normal, pathological and pseudo-healthy
inputs. The normal and abnormal samples are close together within two distinct clusters
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representing different scanners, as shown on the left. Thus, AEs to extract meaningful rep-
resentations that only describe healthy populations, the latent embeddings will not provide
important clues for detecting anomalies. Nonetheless, improving and generalizing anomaly
scores is an important and exciting topic for future research.

5. Discussion

In this work, we have investigated whether AEs can learn meaningful representations and
detect various pathologies on brain T1w MRIs. We have shown that standard, varia-
tional, recent adversarial and SOTA denoising AEs fail to detect multiple classes of non-
hyperintense pathologies. We proposed novel reversed AEs (RA) to learn compact and
detailed representations of the healthy distribution and improved the global and local
pathology detection by 54.4% and 63.5% over SOTA DAE. In particular, RA considerably
improved the detection of enlarged ventricles, achieving total recall and a F1 score of 79.7
(248% improvement). These findings pave the way for generalizing beyond hyperintensity
thresholding to the unbiased detection of various diseases.
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Appendix A. Implementation details

We developed our deep learning framework using Python 3.8. All the methods were imple-
mented in PyTorch. We ran the experiments on NVIDIA RTX A6000 and NVIDIA Tesla
V100 GPUs. In the following we describe the implementation details of the baselines.

Spatial AE (Baur et al., 2021). We followed the official public implementation1.
We trained the networks with a batch size of 8 using an ADAM optimizer with a learning
rate of 5e−04 and L1 reconstruction loss for up to 1500 epochs (early stopping after 500).

VAE (Zimmerer et al., 2019a). We followed the official public implementation2.
We adapt the networks to the higher resolution (128 × 128) of the brain MRI anomaly
experiments by duplicating the last layer with 256 filters. We trained the networks with a
batch size of 8, a latent dimensionality of 512 using an ADAM optimizer with a learning
rate of 5e−04 with a plateau learning rate scheduler (multiplies with 0.1 on plateaus), early
stopping after 500 epochs and L2 reconstruction loss for up to 1500 epochs.

DAE (Kascenas et al., 2022). We followed the official public implementation3.
We trained the network with a batch size of 8 using an ADAM optimizer with a learning
rate of 1e−04 and L1 reconstruction loss. We set the noise parameters to the default
resolution (16) and std (0.2). We trained for up to 1500 epochs and early stopping after
500 consecutive epochs with no improvement greater than 1e−08.

1. https://github.com/StefanDenn3r/Unsupervised_Anomaly_Detection_Brain_MRI
2. https://github.com/MIC-DKFZ/vae-anomaly-experiments/
3. https://github.com/AntanasKascenas/DenoisingAE/
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Figure 6: The reversed embedding loss improves the MSE and perceptual similarity on the
healthy validation set and produces more accurate reconstructions.

Soft-Intro VAE (SI-VAE) (Daniel and Tamar, 2021). We followed the official
public implementation4. We used 5 layers (64,128,256,512,512) with a bottleneck of 256
filters and a final sigmoid activation for the brain pathology experiments. We set βKL =
1, βRec = 1, βNeg = 256 and used ADAM optimizer with learning rates of 5e−05 and batch
size of 8. We trained for up to 1500 epochs (early stopping after 500 epochs).

Appendix B. Training details

We trained the networks to reconstruct only healthy brains on 712 middle axial T1w brain
MRI slices (131 FastMRI+, 581 IXI) and used 15 middle axial slices from the FASTMRI+
dataset for validation. We normalized the brain scans with the 98th percentile of the tissue
intensities, padded them to be square and resized all scans to a resolution of 128×128. We
used affine augmentations with a random rotation up to 10 degrees, up to 0.1 translation,
scaling from 0.9 to 1.1, and horizontal flips with the probability of 0.5. Figure 6 shows the
effect of the reversed embedding loss.

Appendix C. Evaluation details

We performed all evaluation protocols on the FASTMRI+ dataset.

C.1. Synthetic experiments

For the synthetic experiments in subsection 4.1 we altered 30 unseen, normal T1w MRI
middle axial slices with synthetic anomalies. We used the ground truth normal images
and generated anomaly masks to measure the pseudo-healthy reconstruction performance
within the anomalous regions (MSE and LPIPS) and segmentation performance (AUPRC).
Intensity-based anomalies. We augmented the normal images with three different el-
lipses. We uniformly sampled the three intensities to be: hypointense (1st-5h percentile),
mean-ranged (30th-70th percentile), and hyperintense (95th-99th percentile). We chose
the lengths of the ellipse axes to be normally distributed between 8 and 12, and the center
coordinates in the range 32 to 96, with a random angle between 0 and 360 degrees.
Copy-Paste textural anomalies. We first draw random rectangles( width and height
within the range 25 − 50). Then, we randomly select source and destination locations in
the range of 25 to 128 - weight and 25 to 128 - height for x and y coordinates, respectively.

4. https://taldatech.github.io/soft-intro-vae-web/
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Figure 7: Pathology localization evaluation. From left to right: Input image, pseudo-healthy
reconstruction, anomaly map, thresholded anomaly map, the expert annotation
with the currently evaluated pathology, other annotated pathology, healthy tissue
and background, the true positives map (sum: 3.16) and the amount of false
positives (4 = 13.95 / 3.16).

Figure 8: Global and Local Pathology Detection.

C.2. Global Anomaly Detection

For the global anomaly detection evaluation, we used 30 normal, unseen middle axial slices,
27 global pathology scans (25 small vessel chronic white matter ischemic change, 1 global
colpocephaly, 1 global extra-axial collection) and 23 global artefacts (9 motion artefacts,
14 tagged as ’possible artefact’).

C.3. Pathology Localization

We evaluate the localization of following pathologies: absent septum pellucidum (n=1),
craniotomy (n=15), dural thickening (n=7), edema (n=19), encephalomalacia (n=1), en-
larged ventricles (n=19), intraventricular substance (n=1), lesions (n=22), mass (n=26),
posttreatment changes (n=44), resection (n=10), paranasal sinus opacification (n=2), and
white matter lesions (n=5). Figure 7 shows how the localization of pathologies is quanti-
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Table 3: Effect on individual components on the performance of RA.
(a) Anomaly Detection.

Method Average Global Path. Global Art.
AUROC ↑

RA (ours) 89.4 89.0 89.8

w/o Reverse Loss 87.4 88.5 86.3
w/o Hist. Eq. 85.2 85.9 84.6
w/o PL 75.5 71.4 79.6
w/o Hist. Eq. & w/o PL 74.4 77.4 71.5

(b) Pathology localization.
Method Local Pathology

#Detected ↑ F1(%) ↑

RA (ours) 147/171 37.9

w/o Reverse Loss 128/171 31.8
w/o Hist. Eq. 137/171 24.8
w/o PL 120/171 14.4
w/o Hist. Eq & w/o PL 105/171 14.4

fied. The anomaly map is first thresholded. The threshold is computed to produce at most
5% false positives on the 30 normal scans. We use the ground truth bounding box of the
currently evaluated pathology (red) and calculate the amount of detected pixels inside the
box (> 10% → TP) and their sum (3.16). The amount of false positives is given by the
ratio of false detections on healthy tissue (white) to the amount of correct detections inside
the bounding box (red): 13.95/3.16 = 4. Note that, most of the false positives in this case
are around the annotated bounding boxes and for unlabeled artefacts (white dot below the
ventricles). Figure 8 shows the qualitative comparison of all methods on detecting global
and local pathologies.

Appendix D. Effect of individual components

Table 3 shows the performance of each individual component for the experiments in subsec-
tion 4.2. The proposed perceptual scores counteract false positive detection and have the
highest impact on the performance. The histogram equalization is especially beneficial
in detecting subtle anomalies, e.g., it improved the edema detection from 4/18; F1:8.9 to
9/18; F1:16.2 without using a perceptual loss (PL); and from 11/18; F1: 26.4 to 16/18;
F1:51.4 when combined with PL. The reverse loss improved the detection results, increas-
ing the number of detected pathologies from 128/171; F1:31.8 to 147/171; F1:37.9 with our
proposed anomaly map computation and from 82/171; F1:9.9 to 105/171; F1:14.4 when
using simple residual differences.
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